16.07.2013 Views

10 1 Full Volume (PDF)(jcmb.halic.edu.tr) - Journal of Cell and ...

10 1 Full Volume (PDF)(jcmb.halic.edu.tr) - Journal of Cell and ...

10 1 Full Volume (PDF)(jcmb.halic.edu.tr) - Journal of Cell and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong><br />

Molecular Biology<br />

• Sulfabenzamide promotes autophagy through p53/ DRAM pathway<br />

MGP polymorphisms in ischemic s<strong>tr</strong>oke<br />

<s<strong>tr</strong>ong>Volume</s<strong>tr</strong>ong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> · No 1· June 2012<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Survivin -625G/C polymorphism in non-small cell lung cancer


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong><br />

Molecular Biology<br />

<s<strong>tr</strong>ong>Volume</s<strong>tr</strong>ong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> · Number 1<br />

June 2012<br />

İstanbul-TURKEY


Haliç University<br />

Faculty <strong>of</strong> Arts <strong>and</strong> Sciences<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology<br />

Founder<br />

Gündüz GEDİKOĞLU<br />

Our Children Leukemia Foundation<br />

Rights held by<br />

A. Sait SEVGENER<br />

Rector<br />

Correspondence Address:<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology<br />

Haliç Üniversitesi<br />

Fen-Edebiyat Fakültesi,<br />

Sıracevizler Cad. No:29 Bomonti 34381 Şişli<br />

İstanbul-Turkey<br />

Phone: +90 212 343 08 87<br />

Fax: +90 212 231 06 31<br />

E-mail: <s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>@<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology is<br />

indexed in<br />

ULAKBIM, EBSCO,<br />

DOAJ, EMBASE,<br />

CAPCAS, EMBiology,<br />

Socolar, Index COPERNICUS,<br />

Open J-Gate, Chemical Abs<strong>tr</strong>acts<br />

<strong>and</strong><br />

Genamics <strong>Journal</strong>Seek<br />

ISSN 1303-3646<br />

Printed at MART Printing House<br />

Editor-in-Chief<br />

Nagehan ERSOY TUNALI<br />

Editorial Board<br />

M. YOKEŞ<br />

Baki<br />

ÖZDİLLİ<br />

Kürşat<br />

Nural BEKİROĞLU<br />

Emel BOZKAYA<br />

M.Burcu IRMAK YAZICIOĞLU<br />

Mehmet OZANSOY<br />

Aslı BAŞAR<br />

Editorial Assistance<br />

Ozan TİRYAKİOĞLU<br />

Özlem KURNAZ<br />

Advisory Board<br />

A.Meriç ALTINÖZ, Istanbul, Turkey<br />

Tuncay ALTUĞ, İstanbul, Turkey<br />

Canan ARKAN, Munich, Germany<br />

Aglaia ATHANASSIADOU, Pa<strong>tr</strong>as, Greece<br />

E. Zerrin BAĞCI, Tekirdağ, Turkey<br />

Şehnaz BOLKENT, İstanbul, Turkey<br />

Nihat BOZCUK, Ankara, Turkey<br />

A. Nur BUYRU, İstanbul, Turkey<br />

Kemal BÜYÜKGÜZEL, Zonguldak, Turkey<br />

H<strong>and</strong>e ÇAĞLAYAN, İstanbul, Turkey<br />

İsmail ÇAKMAK, İstanbul, Turkey<br />

Ayla ÇELİK, Mersin, Turkey<br />

Adile ÇEVİKBAŞ, İstanbul, Turkey<br />

Beyazıt ÇIRAKOĞLU, İstanbul, Turkey<br />

Fevzi DALDAL, Pennsylvania, USA<br />

Zihni DEMİRBAĞ, Trabzon, Turkey<br />

Gizem DİNLER DOĞANAY, İstanbul, Turkey<br />

Mustafa DJAMGÖZ, London, UK<br />

Aglika EDREVA, S<strong>of</strong>ia, Bulgaria<br />

Ünal EGELİ, Bursa, Turkey<br />

Anne FRARY, İzmir, Turkey<br />

H<strong>and</strong>e GÜRER ORHAN, İzmir, Turkey<br />

Nermin GÖZÜKIRMIZI, İstanbul, Turkey<br />

Ferruh ÖZCAN, İstanbul, Turkey<br />

Asım KADIOĞLU, Trabzon, Turkey<br />

Maria V. KALEVITCH, Pennsylvania, USA<br />

Nevin Gül KARAGÜLER, İstanbul, Turkey<br />

Valentine KEFELİ, Pennsylvania, USA<br />

Meral KENCE, Ankara, Turkey<br />

Fatma Neşe KÖK, İstanbul, Turkey<br />

Uğur ÖZBEK, İstanbul, Turkey<br />

Ayşe ÖZDEMİR, İstanbul, Turkey<br />

Pınar SAİP, Istanbul, TURKEY<br />

Sevtap SAVAŞ, Toronto, Canada<br />

Müge TÜRET SAYAR, İstanbul, Turkey<br />

İsmail TÜRKAN, İzmir, Turkey<br />

Mehmet TOPAKTAŞ, Adana, Turkey<br />

Meral ÜNAL, İstanbul, Turkey<br />

İlhan YAYLIM ERALTAN, İstanbul, Turkey<br />

Selma YILMAZER, İstanbul, Turkey<br />

Ziya ZİYLAN, İstanbul, Turkey


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology<br />

CONTENTS<br />

<s<strong>tr</strong>ong>Volume</s<strong>tr</strong>ong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> · Number 1 · June 2012<br />

Review Article<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase enzyme<br />

M. IMRAN, M.J. ASAD, S.H. HADRI, S. MEHMOOD<br />

Research Articles<br />

Isolation <strong>and</strong> biochemical identification <strong>of</strong> Escherichia coli from<br />

wastewater effluents <strong>of</strong> food <strong>and</strong> beverage indus<strong>tr</strong>y<br />

T. FARASAT, Z. BILAL, F. YUNUS<br />

Investigation <strong>of</strong> the MGP promoter <strong>and</strong> exon 4 polymorphisms in<br />

patients with ischemic s<strong>tr</strong>oke in the Ukrainian population<br />

A.V. ATAMAN, V.Y. GARBUSOVA, Y.A. ATAMAN, O.I. MATLAJ,<br />

O.A. OBUCHOVA<br />

Investigation <strong>of</strong> the association <strong>of</strong> survivin gene -625G/C polymorphism<br />

in non-small cell lung cancer<br />

Survivin geni -625G/C polimorfizminin Küçük Hücreli Dışı Akciğer<br />

Kanseri ile ilişkisinin araştırılması<br />

E. AYNACI, E. COŞKUNPINAR, A. EREN, O. KUM, Y. M. OLTULU, N.<br />

AKKAYA, A. TURNA, İ. YAYLIM, P. YILDIZ<br />

Effects <strong>of</strong> prenatal <strong>and</strong> neonatal exposure to lead on white blood cells in<br />

Swiss mice<br />

R. SHARMA, K. PANWAR, S. MOGRA<br />

Sulfabenzamide promotes autophagic cell death in T-47D breast cancer<br />

cells through p53/ DRAM pathway<br />

R. MOHAMMADPOUR, S. SAFARIAN, S. FARAHNAK, S.<br />

HASHEMINASL, N. SHEIBANI<br />

Media optimization for amylase production in solid state fermentation<br />

<strong>of</strong> wheat bran by fungal s<strong>tr</strong>ains<br />

M. IRFAN, M. NADEEM, Q. SYED<br />

Guidelines for Authors<br />

Front cover image: “DNA s<strong>tr</strong><strong>and</strong>s on abs<strong>tr</strong>act”<br />

Shutterstock image ID: 704<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>25<br />

1<br />

13<br />

19<br />

27<br />

33<br />

41<br />

55<br />

65


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1): 1-11, 2012 Review Article 1<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase enzyme<br />

Muhammad IMRAN *1,2 , Muhammad J. ASAD 1 , Saqib H. HADRI 1 <strong>and</strong> Sajid<br />

MEHMOOD 2<br />

1 Department <strong>of</strong> Biochemis<strong>tr</strong>y, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan<br />

2 Department <strong>of</strong> Biochemis<strong>tr</strong>y <strong>and</strong> Biotechnology, University <strong>of</strong> Gujrat, Pakistan<br />

(* author for correspondence; mirzaimran42@gmail.com)<br />

Received: 22 April 2011; Accepted: 15 May 2012<br />

Abs<strong>tr</strong>act<br />

Laccase is an enzyme that has potential ability <strong>of</strong> oxidation. It belongs to those enzymes, which have innate<br />

properties <strong>of</strong> reactive radical production, <strong>and</strong> its utilization in many fields has been ignored because <strong>of</strong> its<br />

unavailability in the commercial field. There are diverse sources <strong>of</strong> laccase producing organisms like<br />

bacteria, fungi <strong>and</strong> plants. Textile, pulp <strong>and</strong> paper indus<strong>tr</strong>ies discharge a huge quantity <strong>of</strong> waste in the<br />

environment, <strong>and</strong> the disposal <strong>of</strong> this waste is a big problem. To solve this problem, work has done to<br />

discover such an enzyme, which can detoxify these wastes <strong>and</strong> is not harmful to the environment. Laccases<br />

use oxygen <strong>and</strong> produce water as by product. They can degrade a range <strong>of</strong> compounds including phenolic <strong>and</strong><br />

non-phenolic compounds. They also have ability to detoxify a range <strong>of</strong> environmental pollutants. Their<br />

property to act on a range <strong>of</strong> subs<strong>tr</strong>ates <strong>and</strong> also to detoxify a range <strong>of</strong> pollutants have made them to be<br />

usable for several purposes in many indus<strong>tr</strong>ies including paper, pulp, textile <strong>and</strong> pe<strong>tr</strong>ochemical indus<strong>tr</strong>ies.<br />

Keywords: Laccase, solid state fermentation, oxidation, enzyme, fungi.<br />

Lakkaz enziminin üretimi ve endüs<strong>tr</strong>iyel uygulamaları<br />

Özet<br />

Lakkaz, potansiyel oksidasyon yeteneği olan bir enzimdir. Reaktif radikal üretim özelliği olan enzimlere<br />

dahildir ve birçok al<strong>and</strong>aki kullanımı, ticari al<strong>and</strong>a uygun olmaması nedeniyle göz ardı edilmektedir. Bakteri,<br />

mantar ve bitki gibi lakkaz üreten çeşitli organizma kaynakları vardır. Tekstil, kağıt hamuru ve kağıt<br />

endüs<strong>tr</strong>isi çevreye büyük miktarda atık salmaktadır ve bu atıkların uzaklaştırılması büyük bir problemdir. Bu<br />

sorunu çözmek üzere, atıkları detoksifiye eden ve çevreye zararlı olmayan bir enzim keşfetmek için<br />

çalışmalar yapılmıştır. Bu enzim oksijen kullanır ve yan ürün olarak su üretir. Lakkaz, fenolik ve fenolik<br />

olamayan bileşikleri içeren bir dizi bileşiği parçalayabilir. Ayrıca, bir dizi çevresel kirleticiyi detoksifiye<br />

etme yeteneği vardır. Çeşitli subs<strong>tr</strong>atlar üzerine etki etme ve ayrıca bir dizi kirliliği detoksifiye etme özelliği,<br />

bu enzimleri çeşitli amaçlarla tekstil, kâğıt hamuru, kâğıt ve pe<strong>tr</strong>okimya endüs<strong>tr</strong>isini kapsayan birçok<br />

endüs<strong>tr</strong>ide kullanılabilir kılmaktadır.<br />

Anahtar kelimeler: Lakkaz, katı hal fermentasyonu, oksidasyon, enzim, mantarlar.<br />

In<strong>tr</strong>oduction<br />

Laccase was first discovered in the sap <strong>of</strong> the<br />

Japanese lacquer <strong>tr</strong>ee Rhus vernicifera, <strong>and</strong> its<br />

characteristic as a metal containing oxidase was<br />

discovered by Ber<strong>tr</strong><strong>and</strong> in 1985 (Giardina et al.,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Since then, laccases have also been found in<br />

various basidiomycetous <strong>and</strong> ascomycetous fungi<br />

<strong>and</strong> thus far fungal laccases have accounted for the<br />

most important group <strong>of</strong> multicopper oxidases<br />

(MCOs) with respect to number <strong>and</strong> extent <strong>of</strong><br />

characterization (Giardina et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

The large quantity <strong>of</strong> laccases have been widely<br />

reported inside white-rot fungi. A number <strong>of</strong>


2Muhammad IMRAN et al.<br />

laccase genes have been isolated <strong>and</strong> distinguished<br />

for this purpose (Mayer <strong>and</strong> Staples, 2002). The<br />

improvement in laccase appearance, characterized<br />

by an increase in protein <strong>and</strong> mRNA level, was<br />

illus<strong>tr</strong>ated with Picnoprus cinnabarinus, Pleurotus<br />

sajor caju <strong>and</strong> Trametes versicolor (Eggert et al.<br />

1996, Solden <strong>and</strong> Dobson 2001, Collins <strong>and</strong><br />

Dobson 1997).<br />

A number <strong>of</strong> species <strong>of</strong> genus Pleurotus have<br />

been explained as manufacturers <strong>of</strong> laccase<br />

(Leonowicz et al. 2001). We freshly reported that a<br />

s<strong>tr</strong>ain <strong>of</strong> P. pulmonarius produce laccase as the<br />

main ligninolytic enzymes while cultured on wheat<br />

bran solid state medium (Souza et al. 2002). In the<br />

current study, numerous phenolic <strong>and</strong> aromatic<br />

compounds s<strong>tr</strong>ucturally related to lignin were<br />

calculated for their capability to arouse laccase<br />

production by P. pulmonarius. (Solden <strong>and</strong><br />

Dobson, 2001).<br />

P. pulmonarius was pr<strong>of</strong>icient <strong>of</strong> mounting on a<br />

wide variety <strong>of</strong> phenolic <strong>and</strong> aromatic compounds.<br />

Laccase production by P. pulmonarius could be<br />

considerably improved by including an equimolar<br />

combination <strong>of</strong> ferulic acid <strong>and</strong> vanillin as inducer.<br />

The cons<strong>tr</strong>uction <strong>of</strong> different laccase is<strong>of</strong>orm in<br />

reply to phenolics implicates a possible task <strong>of</strong> this<br />

enzyme in the detoxification processes (Souza et<br />

al., 2002)<br />

Numerous white-rot fungi, counting Trametes<br />

versicolor, make ex<strong>tr</strong>a cellular copper-containing<br />

phenol oxidases (E C 1.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.3.2), named laccases<br />

(Birhanli <strong>and</strong> Yesilada, 2006). The two major likely<br />

natural functions at<strong>tr</strong>ibuted to fungal laccases are,<br />

first, their participation in lignin degradation,<br />

mutually with supplementary ligninolytic enzymes<br />

such as peroxidases, <strong>and</strong> second, their function in<br />

fungal virulence as key cause in pathogenesis in<br />

opposition to plant hosts (Gianfreda et al., 1999).<br />

As well, laccases display in vivo other functions<br />

that are the foundation <strong>of</strong> several indus<strong>tr</strong>ial<br />

applications. For instance, in Aspergillus nidulans,<br />

laccases take action on pigment development in<br />

fungal spores (Smith et al., 1997). A number <strong>of</strong><br />

fungi also ooze laccases to take away either<br />

potentially toxic phenols released through lignin<br />

degradation or toxins formed by others organisms.<br />

As a result, the enzyme has probable applications in<br />

the textile indus<strong>tr</strong>ies, dye, as well as for the<br />

degradation <strong>of</strong> a variety <strong>of</strong> xenobiotics, which are<br />

recognized as ecological pollutants (Rama et al.<br />

1998, Jolivalt et al. 1999, Mougin et al., 2000).<br />

Laccase-producing fungi have also been<br />

reported to be helpful apparatus for xenobiotic<br />

removal in liquid effluents as well as in soil<br />

bioremediation (Gianfreda et al. 1999, Jolivalt et al.<br />

2000). Our outcomes demons<strong>tr</strong>ate that the resulting<br />

alteration products themselves are likely to<br />

encourage biological effects moreover on<br />

degrading or non-target organisms. So, an entire<br />

characterization <strong>of</strong> these compounds is essential for<br />

an entire assessment <strong>of</strong> the remediation processes<br />

(Souza et al., 2002).<br />

Laccase represents a family <strong>of</strong> coppercontaining<br />

polyphenol oxidases (PPO) & are<br />

usually called multicopper oxidases (MCO)<br />

(Birhanli <strong>and</strong> Yesilada, 2006; Arora <strong>and</strong> Sharma,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>; Giardina et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Laccases catalyze the<br />

oxidation <strong>of</strong> various substituted phenolic<br />

compounds by using molecular oxygen as the<br />

elec<strong>tr</strong>on acceptor (Sharma et al., 2007). These<br />

enzymes have less subs<strong>tr</strong>ate specificity <strong>and</strong> have<br />

the ability to degrade a range <strong>of</strong> xenobiotics<br />

including indus<strong>tr</strong>ial colored wastewaters (Souza et<br />

al., 2006).<br />

Laccases exhibit broad subs<strong>tr</strong>ate range, which<br />

varies from one laccase to another. Although it is<br />

known to be diphenol oxidase, monophenols like 2,<br />

6-dimethoxy phenol or guaiacol are better<br />

subs<strong>tr</strong>ates than phenols (e.g., catechol or<br />

hydroquinone) (Baldrian, 2006; Arora <strong>and</strong> Sharma,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Laccases catalyze monoelec<strong>tr</strong>onic oxidation <strong>of</strong><br />

molecules to corresponding reactive radicals with<br />

the help <strong>of</strong> four copper atoms, which form the main<br />

catalytic core <strong>of</strong> the laccase, accompanied with the<br />

diminution <strong>of</strong> oxygen to water molecules <strong>and</strong><br />

simultaneous oxidation <strong>of</strong> subs<strong>tr</strong>ate to produce<br />

radicals (Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). All subs<strong>tr</strong>ates<br />

cannot be directly oxidized by laccases, either<br />

because <strong>of</strong> their large size which res<strong>tr</strong>icts their<br />

pene<strong>tr</strong>ation into the enzyme active site or because<br />

<strong>of</strong> their particular high redox potential. To<br />

overcome this hindrance, suitable chemical<br />

mediators are used which are oxidized by the<br />

laccase <strong>and</strong> their oxidized forms are then able to<br />

interact with high redox potential subs<strong>tr</strong>ate targets<br />

(Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

In fungi, laccases carry out a variety <strong>of</strong><br />

physiological roles including morphogenesis,<br />

fungal plant pathogen/host interaction, s<strong>tr</strong>ess<br />

defense, <strong>and</strong> lignin degradation (Gianfreda et al.,<br />

1999; Giardina et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Laccases have been<br />

found in nearly all woodrotting fungi analyzed so<br />

far (Heinzkill <strong>and</strong> Messner, 1997; Giardina et al.,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) <strong>and</strong> are almost ubiquitary enzymes as they<br />

have been isolated from plants, from some kinds <strong>of</strong><br />

bacteria, <strong>and</strong> from insects too (Enguita et al., 2003;<br />

Sharma et al., 2007; Giardina et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).


Laccase has many applications in other fields,<br />

like medical diagnosis, pharmaceutical indus<strong>tr</strong>y.<br />

Laccase has also applications in the agriculture area<br />

by clearing herbicides, pesticides <strong>and</strong> some<br />

explosives in soil. It is also used in the preparation<br />

<strong>of</strong> some important drugs, like anticancer drugs, <strong>and</strong><br />

added in some cosmetics to r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ce their toxicity.<br />

Laccase also has the ability to form polymers <strong>of</strong><br />

value able importance (Couto <strong>and</strong> Herrera, 2006).<br />

Solid state fermentation (SSF) is a technique in<br />

which fungi are grown on solid subs<strong>tr</strong>ate or<br />

subs<strong>tr</strong>ate moistened with a low quantity <strong>of</strong> mineral<br />

salt solution <strong>and</strong> it has a great potential to produce<br />

enzyme especially where the fermented raw<br />

materials are used as a source <strong>of</strong> nu<strong>tr</strong>ients for the<br />

fungi. The enzymes produced by this method have<br />

several applications in several fields including food<br />

<strong>and</strong> fermentation indus<strong>tr</strong>y. These enzymes are also<br />

used to prepare several bioactive compounds. SSF<br />

system is much better than the submerged system<br />

because a number <strong>of</strong> reasons. The benefits <strong>of</strong> SSF<br />

over SMF include the high production <strong>of</strong> the<br />

enzyme, <strong>and</strong> fewer effluent generation. Moreover,<br />

comparably simple equipment is required for SSF<br />

(P<strong>and</strong>ey, 1994).<br />

Neurospora is a genus <strong>of</strong> kingdom fungi that<br />

has become a popular experimental model<br />

organism (Davis et al., 2002). Laccases have<br />

copper atoms at their catalytic sites <strong>and</strong> are<br />

oxidative enzymes (EC 1.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.3.2) which are widely<br />

found in many species <strong>of</strong> fungi, where they are<br />

involved in lignin degradation, in higher plants<br />

where they are involved in biosynthesis <strong>of</strong> lignin<br />

(Mayer <strong>and</strong> Staples, 2002; Sharma <strong>and</strong> Kuhad,<br />

2008), in bacteria (Claus, 2003; Liers et al., 2007),<br />

<strong>and</strong> in insects (Litthauer et al., 2007). Some species<br />

<strong>of</strong> fungi <strong>and</strong> insects produce laccases as<br />

in<strong>tr</strong>acellular proteins, but most <strong>of</strong> the laccases are<br />

produced as ex<strong>tr</strong>acellular proteins by all other types<br />

<strong>of</strong> producers (Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Laccase production in various organisms<br />

Production <strong>of</strong> laccase in fungi<br />

Laccase production occurs in various fungi over a<br />

wide range <strong>of</strong> taxa. Fungi from the deuteromycetes,<br />

ascomycetes (Aisemberg et al., 1989) as well as<br />

basidiomycetes are the known producers <strong>of</strong> laccase<br />

(Sadhasivam et al., 2008). Among them,<br />

basidiomycetes are considered efficient laccase<br />

producers, especially white rot fungi (Revankar <strong>and</strong><br />

lele, 2006; Sadhasivam et al., 2008). Laccase<br />

production has not been reported in lower fungi,<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase 3<br />

i.e., Zygomycetes <strong>and</strong> Chy<strong>tr</strong>idiomycetes. However,<br />

these groups have not yet been studied in detail<br />

(Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Trametes versicolor, Chaetomium<br />

thermophilum <strong>and</strong> Pleurotus eryngii are well<br />

known producers <strong>of</strong> laccase. It has been reported<br />

that some Trichoderma species, including T.<br />

harzianum has the ability to produce polyphenol<br />

oxidases (Kiiskinen et al., 2004; Sadhasivam et al.,<br />

2008).<br />

Laccase has been produced by many species <strong>of</strong><br />

s<strong>of</strong>t, white rot fungi, geophilous saprophytic fungi.<br />

Laccase has also been produced by many edible<br />

mushrooms including the oyster mushroom<br />

Pleurotus os<strong>tr</strong>eatus, the rice mushroom Lentinula<br />

edodes <strong>and</strong> champignon Agaricus bisporus. Other<br />

laccase producers <strong>of</strong> wood-rotting fungi include T.<br />

hirsuta (C. hirsutus), T. villosa, T. gallica, Cerrena<br />

maxima, Lentinus tigrinus, T. ochracea, Pleurotus<br />

eryngii, Trametes (Coriolus) versicolor,<br />

Coriolopsis polyzona, etc. (Morozova et al., 2007).<br />

In fungal physiology, laccases are involved in plant<br />

pathogenesis, pigmentation, detoxification, lignin<br />

degradation (Sadhasivam et al., 2008) <strong>and</strong> also in<br />

development <strong>of</strong> morphogenesis <strong>of</strong> fungi (Baldrian,<br />

2006; Morozova et al., 2007).<br />

Laccases <strong>of</strong> wood-colonizing basidiomycetes<br />

(white rot fungi) have been thoroughly studied (not<br />

least also with respect to laccase-mediator<br />

interaction), <strong>and</strong> many <strong>of</strong> them purified <strong>and</strong><br />

characterized on the protein <strong>and</strong> gene level (Liers et<br />

al., 2007).<br />

Mishra et al. (2008) have used cyanobacterial<br />

biomass <strong>of</strong> water bloom, groundnut shell (GNS)<br />

<strong>and</strong> dye effluent as culture medium for the<br />

production <strong>of</strong> laccase by Coriolus versicolor. They<br />

found the laccase production to be <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.15±2.21<br />

U/ml in the medium having groundnut shell <strong>and</strong><br />

cyanobacterial bloom in a ratio <strong>of</strong> 9:1 (dry weight<br />

basis) at initial pH 5.0 <strong>and</strong> 28±2 o C temperature.<br />

Half life <strong>of</strong> enzyme was 74 min at 60 o C. Kinetic<br />

analysis <strong>of</strong> laccase with ABTS were also<br />

determined, Km <strong>and</strong> Vmax were found to be 0.29mM<br />

<strong>and</strong> 9.49mol/min respectively. Azide <strong>and</strong><br />

hydroxylamine exerted significant inhibition on<br />

production <strong>of</strong> thermostable laccase.<br />

It is reported that Phanerochaete chrysosporium<br />

NCIM 1197 also secretes ex<strong>tr</strong>acellular laccase.<br />

They also studied effect <strong>of</strong> several inducers on the<br />

production <strong>of</strong> laccase. Among several inducers<br />

tested copper sulphate has the greatest tendency to<br />

enhance the produce <strong>of</strong> laccase. Laccase production<br />

increased 3.5 fold in the presence <strong>of</strong> copper sulfate


4Muhammad IMRAN et al.<br />

as compared to con<strong>tr</strong>ol. Laccase production under<br />

SSF, batch fermentation in a laboratory scale<br />

bioreactor <strong>and</strong> static liquid culture was also<br />

compared. The maximum production <strong>of</strong> laccase<br />

was achieved after five days <strong>and</strong> it was found to be<br />

48.89±1.82 U/L, 30.21±1.66 <strong>and</strong> 22.56±1.22 U/L,<br />

respectively (Gnanamani et al., 2006).<br />

The white-rot fungus Trametes pubescens MB<br />

89 is a source <strong>of</strong> the laccase production at indus<strong>tr</strong>ial<br />

level. Ex<strong>tr</strong>acellular laccase formation is<br />

considerably enhanced by the addition <strong>of</strong> Cu (II) in<br />

the low quantities in the simple glucose medium.<br />

When using glucose, a typically repressing<br />

subs<strong>tr</strong>ate, as the main carbon source, significant<br />

laccase formation by T. pubescens only started<br />

when glucose was completely consumed from the<br />

culture medium. In addition, the ni<strong>tr</strong>ogen source<br />

employed had an important effect on laccase<br />

synthesis. When using an optimized medium<br />

containing glucose (40 g/L), peptone from meat (<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

g/L), <strong>and</strong> MgSO4.7H2O <strong>and</strong> stimulating enzyme<br />

formation by the addition <strong>of</strong> 2.0 mM Cu, maximal<br />

laccase activities obtained in a batch cultivation<br />

were approximately 330 U ml – l (Galhaup et al.,<br />

2002).<br />

Production <strong>of</strong> laccase in plants<br />

Laccases are a diverse group <strong>of</strong> multi-copper<br />

proteins with broad subs<strong>tr</strong>ate specificity, originally<br />

discovered in the exudates <strong>of</strong> Rhus vernicifera, the<br />

Japanese lacquer <strong>tr</strong>ee <strong>and</strong> subsequently<br />

demons<strong>tr</strong>ated as a fungal enzyme as well (Sharma<br />

<strong>and</strong> Kuhad, 2008). The plants in which the laccase<br />

enzyme has been detected include lacquer, mango,<br />

mung bean, peach, pine, prune, <strong>and</strong> sycamore<br />

(Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Techniques are also<br />

being developed to express laccase in the crop<br />

plants. Recently, laccase has been expressed in the<br />

embryo <strong>of</strong> maize (Zea mays) seeds (Bailey et al.,<br />

2004; Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Laccase is envolved in polymerization <strong>of</strong> lignin<br />

units; p coumaryl, coniferyl, sinapyl alcohols <strong>and</strong> in<br />

the synthesis <strong>of</strong> lignin in the plants (Morozova et<br />

al., 2007). If the comparison between plant <strong>and</strong><br />

fungal laccases is taken up, the former takes part in<br />

radical-based polymerization <strong>of</strong> lignin (Ranocha et<br />

al., 2002; Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>), whereas fungal<br />

laccase con<strong>tr</strong>ibutes to lignin biodegradation due to<br />

which it has gained considerable significance in<br />

green technology (Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Production <strong>of</strong> laccase in bacteria<br />

Laccase in bacteria is present in<strong>tr</strong>acellularly <strong>and</strong> as<br />

periplasmic protoplast (Claus, 2003; Arora <strong>and</strong><br />

Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). The first bacterial laccase was<br />

found in the plant root associated bacterium,<br />

Azospirillum lip<strong>of</strong>erum (Givaudan et al., 1993;<br />

Sharma et al., 2007; Sharma <strong>and</strong> Kuhad, 2008),<br />

where it was shown to be involved in melanin<br />

formation (Faure et al., 1994; Sharma <strong>and</strong> Kuhad,<br />

2008). Laccase has been discovered in a number <strong>of</strong><br />

bacteria including Bacillus subtilis, Bordetella<br />

compes<strong>tr</strong>is, Caulobacter crescentus, Escherichia<br />

coli, Mycobacterium tuberculosum, Pseudomonas<br />

syringae, Pseudomonas aeruginosa, <strong>and</strong> Yersinia<br />

pestis (Alex<strong>and</strong>re <strong>and</strong> Zhulin, 2000; Enguita et al.,<br />

2003; Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Recently,<br />

Steno<strong>tr</strong>ophomonas maltophilia s<strong>tr</strong>ain was found to<br />

be laccase producing, which was used to degrade<br />

synthetic dyes (Galai et al., 2008; Arora <strong>and</strong><br />

Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Laccase containing six putative copper binding<br />

sites were discovered in marine bacterium<br />

Marinomonas mediterranea, but no functional role<br />

was assigned to this enzyme (Amat et al., 2001;<br />

Sharma <strong>and</strong> Kuhad, 2008). Some <strong>of</strong> the reported<br />

laccases have the ability to perform the activity at<br />

very crucial conditions like in the presence <strong>of</strong> high<br />

conc. <strong>of</strong> Cl - 1 <strong>and</strong> Cu +2 <strong>and</strong> even at neu<strong>tr</strong>al pH<br />

values. The enzyme produced by Sinorhizobium<br />

meliloti is a one <strong>of</strong> the examples <strong>of</strong> such enzymes<br />

<strong>and</strong> is a protein having two subunits with pI 6.2 <strong>and</strong><br />

the molecular weight <strong>of</strong> the subunits is 45 kDa each<br />

(Morozova et al., 2007), whereas laccase produced<br />

by Pseudomonas putida is also an example <strong>of</strong> such<br />

enzyme <strong>and</strong> is a single subunit 59 kDa protein<br />

which works well at pH 7.0 (Morozova et al.,<br />

2007). Both enzymes can oxidize syringaldazine.<br />

Niladevi et al. (2009) used response surface<br />

methodology for the optimization <strong>of</strong> different<br />

nu<strong>tr</strong>itional <strong>and</strong> physical parameters for the<br />

production <strong>of</strong> laccase by the filamentous bacteria<br />

S<strong>tr</strong>eptomyces psammoticus MTCC 7334 in<br />

submerged fermentation. Incubation temperature,<br />

incubation period, agitationrate, concen<strong>tr</strong>ations <strong>of</strong><br />

yeast ex<strong>tr</strong>act, MgSO4.7H2O, <strong>and</strong> <strong>tr</strong>ace elements<br />

were found to influence laccase production<br />

significantly.<br />

A new laccase gene (cotA) was cloned from<br />

Bacillus licheniformis <strong>and</strong> expressed in Escherichia<br />

coli. The recombinant protein CotA was purified<br />

<strong>and</strong> showed spec<strong>tr</strong>oscopic properties typical for<br />

blue multi-copper oxidases. The enzyme has a<br />

molecular weight <strong>of</strong> ~65kDa <strong>and</strong> demons<strong>tr</strong>ates<br />

activity towards canonical laccase subs<strong>tr</strong>ates 2, 2’azino-bis<br />

(3-ethylnenzothiazoline-6sulphonic acid)<br />

(ABTS), syringaldazine (SGZ) <strong>and</strong> 2, 6-


dimethoxyphenol (2, 6-DMP). Kinetic constants Km<br />

<strong>and</strong> kcat for ABTS were <strong>of</strong> 6.5±0.2 µM <strong>and</strong> 83s -1 ,<br />

for SGZ <strong>of</strong> 4.3+0.2 µM <strong>and</strong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0s -1 , <strong>and</strong> for 2, 6-<br />

DMP <strong>of</strong> 56.7+1.0 µM <strong>and</strong> 28 s -1 . Highest oxidizing<br />

activities towards ABTS were obtained at 85 o C<br />

(Koschorreck et al., 2009).<br />

Production <strong>of</strong> laccase in insects<br />

The laccase enzyme has also been characterized in<br />

different insects, e.g., Bombyx, Calliphora,<br />

Diploptera, Drosophila, Lucilia, M<strong>and</strong>uca, Musca,<br />

Orycetes, Papilio, Phormia, Rhodnius,<br />

Sarcophaga, Schistocerca, <strong>and</strong> Tenebrio (Arora<br />

<strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

In insects, laccases have been suggested to be<br />

active in cuticle sclerotization (Dittmer et al., 2004;<br />

Sharma <strong>and</strong> Kuhad, 2008). Recently, two is<strong>of</strong>orms<br />

<strong>of</strong> laccase 2 gene have been found to catalyse<br />

larval, pupal, <strong>and</strong> adult cuticle tanning in Tribolium<br />

castaneum (Arakane et al., 2005; Sharma <strong>and</strong><br />

Kuhad, 2008)<br />

Applications <strong>of</strong> laccase<br />

Laccases have many biotechnological applications<br />

because <strong>of</strong> their oxidation ability towards a broad<br />

range <strong>of</strong> phenolic <strong>and</strong> non-phenolic compounds<br />

(Figure 1) (Mohammadian et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Other applications <strong>of</strong> laccase include the<br />

cleaning the indus<strong>tr</strong>ial effluents, mostly from<br />

indus<strong>tr</strong>ies like paper indus<strong>tr</strong>y, pulp, textile &<br />

pe<strong>tr</strong>ochemical indus<strong>tr</strong>ies. Laccase are also used in<br />

the medical diagnostics <strong>and</strong> for cleaning herbicides,<br />

pesticides <strong>and</strong> some explosives in soil. Laccase has<br />

many applications in agricultural, medicinal <strong>and</strong><br />

indus<strong>tr</strong>ial areas (Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Laccases are also to clean the water in many<br />

purification systems. It has also applications in<br />

medical side to prepare certain drugs like anticancer<br />

drugs <strong>and</strong> it is added in cosmetics to<br />

minimize their toxic effects. Laccase has the<br />

enormous ability to remove xenobiotic substances<br />

<strong>and</strong> produce polymeric products <strong>and</strong> that is why<br />

they are being used for many bioremediation<br />

purposes (Couto <strong>and</strong> Herrera, 2006).<br />

Now researchers are working on enzymatic<br />

synthesis <strong>of</strong> organic compounds, laccase-based<br />

biooxidation, <strong>and</strong> bio<strong>tr</strong>ansformation <strong>and</strong> biosensor<br />

development. The yield <strong>of</strong> laccase can be increased<br />

by optimizing different cultural conditions (Arora<br />

<strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase 5<br />

Figure 1. Scheme <strong>of</strong> applications <strong>of</strong> laccase<br />

(Morozova et al., 2007)<br />

Applications <strong>of</strong> laccase in food indus<strong>tr</strong>ies<br />

Wine stabilization<br />

Laccase is used to improve the quality <strong>of</strong> drinks<br />

<strong>and</strong> for the stabilization <strong>of</strong> certain perishable<br />

products containing plant oils (Morozova et al.,<br />

2007). In food indus<strong>tr</strong>y, wine stabilization is the<br />

main application <strong>of</strong> laccase (Duran <strong>and</strong> Esposito,<br />

2000; Rosana et al., 2002).<br />

Polyphenols have undesirable effects on wine<br />

production <strong>and</strong> on its organoleptic characteristics,<br />

so their removal from the wine is very necessary<br />

(Rosana et al., 2002). Many innovative <strong>tr</strong>eatments,<br />

such as enzyme inhibitors, complexing agents, <strong>and</strong><br />

sulfate compounds, have been proposed for the<br />

removal <strong>of</strong> phenolics responsible for discoloration,<br />

haze, <strong>and</strong> flavor changes but the possibility <strong>of</strong> using<br />

enzymatic laccase <strong>tr</strong>eatments as a specific <strong>and</strong> mild<br />

technology for stabilizing beverages against<br />

discoloration <strong>and</strong> clouding represents an at<strong>tr</strong>active<br />

alternative (Cantarelli et al., 1989; Arora <strong>and</strong><br />

Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Since such an enzyme is not yet<br />

allowed as a food additive, the use <strong>of</strong> immobilized<br />

laccase might be a suitable method to overcome<br />

such legal barriers as in this form it may be<br />

classified as technological aid. So laccase could<br />

find application in preparation <strong>of</strong> must, wine <strong>and</strong> in<br />

fruit juice stabilization (Minussi et al., 2002; Arora<br />

<strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Baking indus<strong>tr</strong>y<br />

In the bread-making process laccases affix bread<br />

<strong>and</strong>/or dough-enhancement additives to the bread<br />

dough, these results in improved freshness <strong>of</strong> the<br />

bread texture, flavour <strong>and</strong> the improved<br />

machinability (Minussi et al., 2002).<br />

Laccase is also one <strong>of</strong> the enzymes used in the<br />

baking indus<strong>tr</strong>y. Laccase enzyme is added in the


6Muhammad IMRAN et al.<br />

baking process which results in the oxidizing effect,<br />

<strong>and</strong> also improves the s<strong>tr</strong>ength <strong>of</strong> s<strong>tr</strong>uctures in<br />

dough <strong>and</strong>/or baked products. Laccase imparts<br />

many characteristics to the baked products<br />

including an improved crumb s<strong>tr</strong>ucture, increased<br />

s<strong>of</strong>tness <strong>and</strong> volume. A flour <strong>of</strong> poor quality can be<br />

also used in this process using laccase enzyme<br />

(Minussi et al., 2002).<br />

Applications <strong>of</strong> laccase in textile indus<strong>tr</strong>y<br />

Synthetic dyes are widely used in such indus<strong>tr</strong>ies as<br />

textile, leather, cosmetics, food <strong>and</strong> paper printing<br />

(Forgacsa et al., 2004). Reactive dyes are coloured<br />

molecules used to dye cellulose fibres (Tavares et<br />

al., 2009). These dyes result in the production <strong>of</strong><br />

large amounts <strong>of</strong> high-colored wastewater. A<br />

special problem is found in the application <strong>of</strong><br />

synthetic dyes that they are resistant to<br />

biodegradation (Wesenberg et al., 2003, Moilanen<br />

et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Normally, from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> to 50% <strong>of</strong> the initial dye<br />

load will be present in the dyebath effluent, giving<br />

rise to a highly coloured effluent (V<strong>and</strong>evivere et<br />

al., 1998; Moilanen et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Therefore, the<br />

<strong>tr</strong>eatment <strong>of</strong> indus<strong>tr</strong>ial effluents containing<br />

aromatic compounds is necessary prior to final<br />

discharge to the environment (Khlifia et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Nowadays, environmental regulations in most<br />

coun<strong>tr</strong>ies require that wastewater must be<br />

decolorized before its discharge (Moilanen et al.,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) to r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ce environmental problems related to<br />

the effluent (Tavares et al., 2009). A wide range <strong>of</strong><br />

physicochemical methods has been developed for<br />

the degradation <strong>of</strong> dye-containing wastewaters<br />

(V<strong>and</strong>evivere et al., 1998; Tavares et al., 2009).<br />

Wastewaters from textile dying process are usually<br />

<strong>tr</strong>eated by physical or chemical processes, which<br />

include physical–chemical processes elec<strong>tr</strong>okinetic<br />

coagulation, elec<strong>tr</strong>ochemical des<strong>tr</strong>uction,<br />

irradiation, precipitation, ozonation, or the Katox<br />

method that involves the use <strong>of</strong> active carbon <strong>and</strong><br />

the mixture <strong>of</strong> certain gases (air) (Banat et al.,<br />

1996, Khlifia et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, Tavares et al., 2009).<br />

However, due to the chemical nature, molecular<br />

size <strong>and</strong> s<strong>tr</strong>ucture <strong>of</strong> the reactive dyes these<br />

classical processes can cause a problem in the<br />

environment <strong>and</strong> better <strong>tr</strong>eatments can be obtained<br />

using bioprocesses (Tavares et al., 2009). Recently,<br />

enzymatic <strong>tr</strong>eatments have at<strong>tr</strong>acted much interest<br />

in the decolourization/degradation <strong>of</strong> textile dyes in<br />

wastewater as an alternative s<strong>tr</strong>ategy to<br />

conventional chemical <strong>and</strong> physical <strong>tr</strong>eatments,<br />

which present serious limitations (Cristovao et al.,<br />

2008, Tavares et al., 2009).<br />

Five indigenous fungi P. os<strong>tr</strong>eatus IBL-02, P.<br />

chrysosporium IBL-03, Coriolus versicolor IBL-<br />

04, G. lucidum IBL-05 <strong>and</strong> S. commune IBL-06<br />

were screened for decolorization <strong>of</strong> four vat dyes,<br />

Cibanon red 2B-MD, Cibanon golden-yellow PK-<br />

MD, Cibanon blue GFJ-MD <strong>and</strong> Indanthrene direct<br />

black RBS. The screening experiment was run for<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> days with 0.01% dye solutions prepared in<br />

alkaline Kirk’s basal nu<strong>tr</strong>ient medium in <strong>tr</strong>iplicate<br />

(250 ml flasks). Every 48 h samples were read on<br />

their respective wavelengths to determine the<br />

percent decolorization. It was observed that C.<br />

versicolor IBL-04 could effectively decolorized all<br />

the four vat dyes at varying incubation times but<br />

best results were shown on Cibanon blue GFJ-MD<br />

(90.7%) after 7 days, followed by golden yellow<br />

(88%), Indanthrene direct black (79.7%) <strong>and</strong><br />

Cibanon red (74%). P. chrysosporium also showed<br />

good decolorization potential on Cibanon blue<br />

(87%), followed by Cibanon golden-yellow<br />

(74.8%), Red (71%), <strong>and</strong> Indanthrene direct black<br />

(54.6%) (Asghar et al., 2008).<br />

Decolourization <strong>and</strong> detoxification <strong>of</strong> a textile<br />

indus<strong>tr</strong>y effluent by laccase from Trametes <strong>tr</strong>ogii in<br />

the presence <strong>and</strong> the absence <strong>of</strong> laccase mediators<br />

had been investigated. It was found that laccase<br />

alone was not able to decolourize the effluent<br />

efficiently even at the highest enzyme<br />

concen<strong>tr</strong>ation tested: less than <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>% decolourization<br />

was obtained with 9 U/mL reaction mixtures. To<br />

enhance effluent decolourization, several potential<br />

laccase mediators were tested at concen<strong>tr</strong>ations<br />

ranging from 0 to 1mM. Most potential mediators<br />

enhanced decolourization <strong>of</strong> the effluent, with 1hydroxybenzo<strong>tr</strong>iazol<br />

(HBT) being the most<br />

effective (Khlifia et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Moilanen et al. (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) used the crude laccases<br />

from the white-rot fungi Cerrena unicolor <strong>and</strong><br />

Trametes hirsuta for their ability to decolorize<br />

simulated textile dye baths. The dyes used were<br />

Remazol Brilliant Blue R (RBBR) (<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 mg/L),<br />

Congo red (12.5 mg/L), Lanaset Grey (75 mg/L)<br />

<strong>and</strong> Poly R-478 (50 mg/L). They assessed the effect<br />

<strong>of</strong> redox mediators on dye decolorization by<br />

laccases. The result was that C. unicolor laccase<br />

was able to decolorize all the dyes tested. It was<br />

especially effective towards Congo red <strong>and</strong> RBBR<br />

with 91 <strong>and</strong> 80% <strong>of</strong> color removal in 19.5 h despite<br />

the fact that simulated textile dye baths were used.<br />

Applications in pharmaceutical indus<strong>tr</strong>y<br />

Laccases have been used for the synthesis <strong>of</strong><br />

several products <strong>of</strong> pharmaceutical indus<strong>tr</strong>y (Arora<br />

<strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). The first chemical <strong>of</strong> the


pharmaceutical importance that has been prepared<br />

using laccase enzyme is actinocin that has been<br />

prepared from 4-methyl-3-hydroxyanthranilic acid.<br />

This compound has anticancer capability <strong>and</strong> works<br />

by blocking the <strong>tr</strong>anscription <strong>of</strong> DNA from the<br />

tumor cell (Burton, 2003).<br />

Another example <strong>of</strong> the anticancer drugs is<br />

Vinblastine, which is useful for the <strong>tr</strong>eatment <strong>of</strong><br />

leukemia. The plant Catharanthus roseus naturally<br />

produces vinblastine. This plant produces small<br />

amount <strong>of</strong> this compound. Katarantine <strong>and</strong><br />

vindoline are the precursors <strong>of</strong> this<br />

pharmaceutically important compound. These<br />

precursors are produced in higher quantities <strong>and</strong> are<br />

easy to purifiy. Laccase is used to convert these<br />

precursors into vinblastine. A 40% conversion <strong>of</strong><br />

these precursors into the final product has been<br />

obtained using laccase (Yaropolov et al., 1994).<br />

The use <strong>of</strong> laccase in such conversion reactions has<br />

made the preparation <strong>of</strong> several important<br />

compounds with useful properties, like antibiotics,<br />

possible (Pilz et al., 2003).<br />

Catechins have the antioxidant ability <strong>and</strong><br />

Laccases can oxidize catechins. These catechins<br />

consist <strong>of</strong> small units <strong>of</strong> tannins <strong>and</strong> these are<br />

important antioxidants found in tea, herbs <strong>and</strong><br />

vegetables. Catechins have the tendency to hunt<br />

free radicals <strong>and</strong> their property makes them useful<br />

in preventing several diseases including cancer,<br />

inflammatory <strong>and</strong> cardiovascular diseases. The<br />

catechins have less antioxidant ability; this property<br />

can be increased by using laccase <strong>and</strong> has resulted<br />

in the conversion <strong>of</strong> catechins in several products<br />

with enhanced antioxidant capability (Kurisawa et<br />

al., 2003).<br />

Laccase has applications in the synthesis <strong>of</strong><br />

hormone derivatives. In<strong>tr</strong>a et al. (2005) <strong>and</strong> Nico<strong>tr</strong>a<br />

et al. (2004) have reported that laccase has the<br />

ability to seperate innovative dimeric derivatives <strong>of</strong><br />

the β-es<strong>tr</strong>adiol <strong>and</strong> <strong>of</strong> the phytoalexin resvera<strong>tr</strong>ol.<br />

Isoeugenol oxidation coniferyl alcohol <strong>and</strong> totarol<br />

gave new dimeric derivatives (Ncanana et al.,<br />

2007) <strong>and</strong> a mixture <strong>of</strong> dimeric <strong>and</strong> te<strong>tr</strong>americ<br />

derivatives (Shiba et al., 2000) respectively,<br />

whereas the oxidation <strong>of</strong> substituted imidazole has<br />

resulted in the production <strong>of</strong> even more complex<br />

subs<strong>tr</strong>ances. These new formed imidazoles or<br />

oligomerization products (2–4) can be used for<br />

pharmacological purposes (Kurisawa et al., 2003).<br />

Aromatic <strong>and</strong> aliphatic amines can be converted<br />

into 3-(3, 4-dihydroxyphenyl)-propionic acid using<br />

laccase based oxidation. The derivatives have the<br />

antiviral natural activity <strong>and</strong> can be used for<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase 7<br />

pharmaceutical purposes (Ncanana et al., 2007).<br />

Conclusion<br />

Laccases are produced by various sources like<br />

fungi, bacteria <strong>and</strong> insects. They have many<br />

indus<strong>tr</strong>ial applications because <strong>of</strong> their innate<br />

ability <strong>of</strong> oxidation <strong>of</strong> a broad range <strong>of</strong> phenolic<br />

<strong>and</strong> non-phenolic compounds. Laccase is utilized in<br />

drink indus<strong>tr</strong>y to improve the quality <strong>of</strong> drinks <strong>and</strong><br />

for stabilization <strong>of</strong> some perishable products having<br />

plant oils. Laccases have the potential for the<br />

synthesis <strong>of</strong> several useful drugs in pharmaceutical<br />

indus<strong>tr</strong>y because <strong>of</strong> their high value <strong>of</strong> oxidation<br />

potential. Laccases have also <strong>tr</strong>emendous ability <strong>of</strong><br />

oxidation <strong>of</strong> harmful <strong>and</strong> indus<strong>tr</strong>ial products <strong>and</strong><br />

belongs to those enzymes, which have instinctive<br />

properties <strong>of</strong> immediate radical production. Laccase<br />

enzyme has the property to act on a range <strong>of</strong><br />

subs<strong>tr</strong>ates <strong>and</strong> to detoxify a range <strong>of</strong> pollutants,<br />

which have made them to be useful in many<br />

indus<strong>tr</strong>ies including paper, pulp, textile <strong>and</strong><br />

pe<strong>tr</strong>ochemical indus<strong>tr</strong>ies.<br />

References<br />

Aisemberg GO, Grorewold E, Taccioli GE,<br />

Judewicz N. A major <strong>tr</strong>anscript in the response<br />

<strong>of</strong> Neurospora crassa to protein synthesis<br />

inhibition by cycloheximide. Exp Mycol. 13:<br />

121–128, 1989.<br />

Alex<strong>and</strong>re G, <strong>and</strong> Zhulin IB. Laccases are wide<br />

spread in bacteria. Trends in Biotech. 18: 41–<br />

42, 2000.<br />

Amat AS, Elio PL, Fern<strong>and</strong>ez E, Borron JCG,<br />

Solano F. Molecular cloning <strong>and</strong> functional<br />

characterization <strong>of</strong> a unique multipotent<br />

polyphenol oxidase from Marinomonas<br />

mediterranea. Biochem Biophys Acta. 1547:<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4–116, 2001.<br />

Arakane Y, Muthukrishnan S, Beeman RW, Kanost<br />

MR, Kramer KJ. Laccase 2 is the phenoloxidase<br />

gene required for beetle cuticle tanning. PNAS.<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>2: 11337-11342, 2005.<br />

Arora DS, Sharma RK. Ligninolytic Fungal<br />

Laccases <strong>and</strong> Their Biotechnological<br />

Applications. Appl Biochem Biotechnol. 160:<br />

1760–1788, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.


8Muhammad IMRAN et al.<br />

Asghar M, Batool S, Bhatti HN, Noreen R, Rahman<br />

SU, Asad MJ. Laccase mediated decolorization<br />

<strong>of</strong> vat dyes by Coriolus versicolor IBL-04. Int<br />

Biodet Biodeg. 62: 465-470, 2008.<br />

Bailey MR, Woodard SL, Callawy E, Beifuss K,<br />

Lundback MM, Lane J. Improved recovery <strong>of</strong><br />

active recombinant laccase from maize seed.<br />

Appl Microbiol Biotechnol. 63: 390–397, 2004.<br />

Baldrian P. Fungal laccases occurrence <strong>and</strong><br />

properties. FEMS Microbiol Rev. 30: 215–242,<br />

2006.<br />

Banat IM, Nigam P, Singh D, Marchnt R.<br />

Microbial decolorization <strong>of</strong> textile dye<br />

containing effluent: a review. Bioresour<br />

Technol. 58: 217–227, 1996.<br />

Birhanli E <strong>and</strong> Yesilada O. Increased production <strong>of</strong><br />

laccase by pellets <strong>of</strong> Funalia <strong>tr</strong>ogii ATCC<br />

200800 <strong>and</strong> Trametes versicolor ATCC 200801<br />

in repeated-batch mode. Enzy Microb Technol.<br />

39: 1286–1293, 2006.<br />

Burton S. Laccases <strong>and</strong> phenol oxidases in organic<br />

synthesis. Curr Org Chem. 7: 1317-1331, 2003.<br />

Cantarelli C, Brenna O, Giovanelli G, Rossi M.<br />

Beverage stabilization through enzymatic<br />

removal <strong>of</strong> phenolics. Food Biotechnol. 3: 203–<br />

214, 1989.<br />

Claus H. Laccases <strong>and</strong> their occurrence in<br />

prokaryotes. Arch Microbiol. 179: 145–150,<br />

2003.<br />

Collins PJ <strong>and</strong> Dobson ADW. Regulation <strong>of</strong><br />

laccase gene <strong>tr</strong>anscription in Trametes<br />

versicolor. Appl Environ Microbiol. 63: 3444–<br />

3450, 1997.<br />

Couto SR <strong>and</strong> Herrera JLT. Indus<strong>tr</strong>ial <strong>and</strong><br />

biotechnological applications <strong>of</strong> laccases: A<br />

review. Biotechnol Advances. 24: 500–513,<br />

2006.<br />

Cristovao RO, Tavares APM, Ribeiro A, Loureiro<br />

JM, Boaventura RAR, Macedo EA. Kinetic<br />

modelling <strong>and</strong> simulation <strong>of</strong> laccase catalyzed<br />

degradation <strong>of</strong> reactive textile dyes. Biores<br />

Technol. 99: 4768–4774, 2008.<br />

Davis RH <strong>and</strong> Perkins DD. Timeline: Neurospora:<br />

a model <strong>of</strong> model microbes. Nat Rev Genet. 3:<br />

397–403, 2002.<br />

Dittmer NT, Suderman RJ, Jiang H, Zhu YC,<br />

Gorman MJ, Kramer KJ, Kanost MR.<br />

Characterization <strong>of</strong> cDNA encoding putative<br />

laccase-like multicopper oxidases <strong>and</strong><br />

developmental expression in the tobacco<br />

hornworm, M<strong>and</strong>uca sexta, <strong>and</strong> the malaria<br />

mosquito, Anopheles gambiae. Insect Biochem<br />

Mol Biol. 34: 29–41, 2004.<br />

Duran N <strong>and</strong> Esposito E. Potential applications <strong>of</strong><br />

oxidative enzymes <strong>and</strong> phenoloxidase-like<br />

compounds in wastewater <strong>and</strong> soil <strong>tr</strong>eatment: a<br />

review. Appl Cataly Env. 28: 83–99, 2000.<br />

Eggert C, Temp U, Eriksson KE. The ligninolytic<br />

system <strong>of</strong> the white rot fungus Pycnoporus<br />

cinnabarinus: purification <strong>and</strong> characterization<br />

<strong>of</strong> the laccase. Appl Environ Microbiol. 62:<br />

1151–1158, 1996.<br />

Enguita FJ, Martins LO, Henriques AO, Carrondo<br />

MA. Crystal s<strong>tr</strong>ucture <strong>of</strong> a bacterial endospore<br />

coat component. A laccase with enhanced<br />

thermostability properties. J Biol Chem. 278:<br />

19416–19425, 2003.<br />

Faure D, Bouillant ML, Bally R. Isolation <strong>of</strong><br />

Azospirillum lip<strong>of</strong>erum 4T Tn5 mutants affected<br />

in melanization <strong>and</strong> laccase activity. Appl<br />

Environ Microbiol. 60, 3413–3415, 1994.<br />

Forgacsa E, Cserhatia T, Oros G. Removal <strong>of</strong><br />

synthetic dyes from wastewaters: a review.<br />

Environ Int. 30: 953–971, 2004.<br />

Galai S, Limam F, Marzouki MN. A new<br />

Steno<strong>tr</strong>ophomonas maltophilia s<strong>tr</strong>ain producing<br />

laccase. Use in decolorization <strong>of</strong> synthetic dyes.<br />

Appl Biochem Biotechnol. 158(2): 416-431<br />

2009.<br />

Galhaup C, Wagner H, Hinterstoisser B, Hal<strong>tr</strong>ich<br />

D. Increased production <strong>of</strong> laccase by the wooddegrading<br />

basidiomycetes Trametes pubescens.<br />

Enz Microb Technol. 30: 529–536, 2002.


Gianfreda L, Xu F, Bollag JM. Laccases: a useful<br />

group <strong>of</strong> delignification <strong>and</strong> possible indus<strong>tr</strong>ial<br />

applications. Multi-Copper Oxidases.<br />

Messerschmidt A (Ed). Singapore: World<br />

Scientific. 201–224, 1999.<br />

Giardina P, Faraco V, Pezzella C, Piscitelli A,<br />

Vanhulle S, Sannia G. Laccases: a never-ending<br />

story. <strong>Cell</strong> Mol Life Sci. 67: 369–385, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Givaudan A, Effose A, Faure D, Potier P, Bouillant<br />

ML, Bally R. Polyphenol oxidase in<br />

Azospirillum lip<strong>of</strong>erum isolated from rice<br />

rhizosphere: evidence for laccase activity in<br />

non-motile s<strong>tr</strong>ains <strong>of</strong> Azospirillum lip<strong>of</strong>erum.<br />

FEMS Microbiol Lett. <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>8: 205–2<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, 1993.<br />

Gnanamani A, Jayaprakashvel M, Arulmani M,<br />

Sadulla S. Effect <strong>of</strong> inducers <strong>and</strong> culturing<br />

processes on laccase synthesis in<br />

Phanerochaete chrysosporium NCIM 1197 <strong>and</strong><br />

the constitutive expression <strong>of</strong> laccase isozymes.<br />

Enz Microb Technol. 38: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>17-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>21, 2006.<br />

Heinzkill M, Messner K. The ligninolytic system <strong>of</strong><br />

fungi. Fungal biotechnology. Anke T (Ed).<br />

Chap Hall Weinheim. 213–226, 1997.<br />

In<strong>tr</strong>a A, Nico<strong>tr</strong>a S, Riva S, Daniel B. Significant<br />

<strong>and</strong> unexpected solvent influence on the<br />

selectivity <strong>of</strong> laccase-catalyzed coupling <strong>of</strong><br />

te<strong>tr</strong>ahydro-2-naphthol derivatives. Adv Synth<br />

Catal. 347: 973-977, 2005.<br />

Jolivalt C, Brenon S, Caminade E, Mougin C,<br />

Pontie M. Immobilization <strong>of</strong> laccase from<br />

Trametes versicolor on a modified PVDF<br />

micr<strong>of</strong>il<strong>tr</strong>ation membrane: characterization <strong>of</strong><br />

the grafted support <strong>and</strong> application in removing<br />

a phenylurea pesticide in wastewater. J Membr<br />

Sci. 180: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>3–113, 2000.<br />

Jolivalt C, Raynal A, Caminade E, Kokel B, Le<br />

G<strong>of</strong>fic F, Mougin C. Transformation <strong>of</strong> N,N<br />

dimethyl-N-(hydroxyphenyl)ureas by laccase<br />

from the white rot fungus Trametes versicolor.<br />

Appl Microbiol Biotechnol. 51: 676–681, 1999.<br />

Khlifia R, Belbahria L, Woodwarda S, Ellouza M,<br />

Dhouiba A, Sayadia S, Mechichia T.<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase 9<br />

Decolourization <strong>and</strong> detoxification <strong>of</strong> textile<br />

indus<strong>tr</strong>y wastewater by the laccase-mediator<br />

system. J Hazard Mater. 175: 802–80, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Kiiskinen LL, Ratto M, Kruus K. Screening for<br />

novel laccase-producing microbes. J Appl<br />

Microbiol. 97: 640–646, 2004.<br />

Koschorreck K, Schmid RD, Urlacher VB.<br />

Improving the functional expression <strong>of</strong> a<br />

Bacillus licheniformis laccase by r<strong>and</strong>om <strong>and</strong><br />

site-directed mutagenesis. J Biotechnol. 9(12):<br />

1-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, 2009.<br />

Kurisawa M, Chung JE, Uyama H, Kobayashi S.<br />

Laccase-catalyzed synthesis <strong>and</strong> antioxidant<br />

property <strong>of</strong> poly(catechin). Macromol Biosci. 3:<br />

758-764, 2003.<br />

Leonowicz A, Cho NS, Luterek J, Wilkolazka A,<br />

Wotjas-Wasilewska M, Matuszewska A,<br />

H<strong>of</strong>richter M, Wesenberg D, Rogalski J. Fungal<br />

laccase: properties <strong>and</strong> activity on lignin. J Bas<br />

Microbiol. 41: 185–227, 2001.<br />

Liers C, Ullrich R, Pecyna M, Schlosser D,<br />

H<strong>of</strong>richter M. Production, purification <strong>and</strong><br />

partial enzymatic <strong>and</strong> molecular<br />

characterization <strong>of</strong> a laccase from the woodrotting<br />

ascomycete Xylaria polymorpha. Enz<br />

Microb Technol. 41: 785–793, 2007.<br />

Mayer AM. Polyphenol oxidases in plant: recent<br />

progress. Phytochem. 26: 11–20, 1987.<br />

Mayer AM, Staples RC. Laccase: new functions<br />

for an old enzyme. Phytochem. 60: 551–565,<br />

2002.<br />

Minussi RC, Pastore GM, Duran N. Potential<br />

applications <strong>of</strong> laccase in the food indus<strong>tr</strong>y.<br />

Trends in Food Scien Technol. 13: 205–216,<br />

2002.<br />

Mishra A, Kumar S, Kumar S. Application <strong>of</strong> Box-<br />

Benhken experimental design for optimization<br />

<strong>of</strong> laccase production Coriolus versicolor<br />

MTCC138 in solid-state fermentation. J Sci<br />

Indust Res. 67: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>98-1<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>7, 2008.


<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>Muhammad IMRAN et al.<br />

Mohammadian M, Roudsari MF, Mollania N,<br />

Dalfard AB, Khajeh K. Enhanced expression <strong>of</strong><br />

a recomninant bacterial laccase at low<br />

temperature <strong>and</strong> microacrobic conditions:<br />

purification <strong>and</strong> biochemical characterization. J<br />

Ind Microbiol Biotechnol. 5: 41-45, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Moilanen U, Osma JF, Winquist E, Leisola M,<br />

Couto SR. Decolorization <strong>of</strong> simulated textile<br />

dye baths by crude laccases from Trametes<br />

hirsute <strong>and</strong> Cerrena unicolor. Eng Life Sci.<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(3): 1–6, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Morozova OV, Shumakovich GP, Gorbacheva MA,<br />

Shleev SV, Yaropolov AI. “Blue” Laccases. J<br />

Biochem. 72(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>): 1136-1150, 2007.<br />

Mougin, C., Boyer, F. D., Caminade, E., Rama, R.<br />

Cleavage <strong>of</strong> the diketoni<strong>tr</strong>ilederivative <strong>of</strong> the<br />

herbicide isoxaflutole by ex<strong>tr</strong>a cellular fungal<br />

oxidases. J Agric Food Chem. 48: 4529–4534,<br />

2000.<br />

Ncanana S, Baratto L, Roncaglia L, Riva S, Burton<br />

SG. Laccase mediated oxidation <strong>of</strong> totarol. Adv<br />

Synth Catal. 349 : 1507-1513, 2007.<br />

Nico<strong>tr</strong>a S, Cramarossa MR, Mucci A, Pagnoni UM,<br />

Riva S, Forti L. Bio<strong>tr</strong>ansformation <strong>of</strong><br />

resvera<strong>tr</strong>ol: synthesis <strong>of</strong> <strong>tr</strong>ans-dehydrodimers<br />

catalyzed by laccases from Myceliophtora<br />

thermophyla <strong>and</strong> from Trametes pubescens.<br />

Te<strong>tr</strong>ahedron. 60: 595-600, 2004.<br />

Niladevi KN, Sukumaran RK, Jacob N, Anisha GS,<br />

Prema P. Optimization <strong>of</strong> laccase production<br />

from a novel s<strong>tr</strong>ain-S<strong>tr</strong>eptomyces psammoticus<br />

using response surface methodology. Microbiol<br />

Res. 164: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>5-113, 2009.<br />

P<strong>and</strong>ey A. Solid State Fermentation. P<strong>and</strong>ey A<br />

(Ed). Wiley Eastern Publishers, New Delhi. 3–<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, 1994.<br />

Pilz R, Hammer E, Schauer F, Krag U. Laccasecatalyzed<br />

synthesis <strong>of</strong> coupling products <strong>of</strong><br />

phenolic subs<strong>tr</strong>ates in different reactors. Appl<br />

Microbiol Biotechnol. 60: 708-712, 2003.<br />

Rama R, Mougin C, Boyer FD, Kollmann A,<br />

Malosse C <strong>and</strong> Sigoillot JC. Bio<strong>tr</strong>ansformation<br />

<strong>of</strong> benzo[a]pyrene in bench scale reactor using<br />

laccase <strong>of</strong> Pycnoporus cinnabarinus. Biotechnol<br />

Lett. 20: 1<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>1–1<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4, 1998.<br />

Ranocha P, Chabannes M, Chamayou S, Danoun S,<br />

Jauneau A, Boudet AM. Laccase downregulation<br />

causes alteration in phenolic<br />

metabolism <strong>and</strong> cell wall s<strong>tr</strong>ucture in poplar.<br />

Plant Physiol. 129:1–11, 2002.<br />

Rosana C, Minussi Y, Pastore GM, Durany N.<br />

Potential applications <strong>of</strong> laccase in the food<br />

indus<strong>tr</strong>y. Trends in Food Sci Technol. 13: 205-<br />

216, 2002.<br />

Savoie JM, Mata G, Billette C. Ex<strong>tr</strong>acellular<br />

laccase production during hyphal interactions<br />

between Trichoderma sp. <strong>and</strong> Shiitake,<br />

Lentinula edodes. Appl Microbiol Biotechnol.<br />

49: 589-593, 1998.<br />

Sadhasivam S, Savitha S, Swaminathan K, Lin FH.<br />

Production, purification <strong>and</strong> characterization <strong>of</strong><br />

mid-redox potential laccase from a newly<br />

isolated Trichoderma harzianum WL1. Process<br />

Biochem. 43: 736-742, 2008.<br />

Sharma KK <strong>and</strong> Kuhad RC. Laccase: enzyme<br />

revisited <strong>and</strong> function redefined. Ind J<br />

Microbiol. 48: 309–316, 2008.<br />

Sharma P, Goel R, Caplash N. Bacterial laccases.<br />

World J Microbiol Biotechnol. 23: 823-832,<br />

2007.<br />

Shiba T, Xiao L, Miyakoshi T, Chen CL. Oxidation<br />

<strong>of</strong> isoeugenol <strong>and</strong> coniferyl alcohol catalyzed<br />

by laccase isolated from Rhus vernicifera<br />

Stokes <strong>and</strong> Pycnoporus coccineus. J Mol Catal<br />

Enzym. <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>: 605-615, 2000.<br />

Smith M, Thurston F, Wood DA. Fungal laccases:<br />

role in oxidor<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ctive enzymes. Bioremed J. 3:<br />

1–25, 1997.<br />

Solden DM <strong>and</strong> Dobson DW. Differential<br />

regulation <strong>of</strong> laccase gene expression in<br />

Pleurotus sajor-caju. Microbiol. 147: 1755–<br />

1763, 2001.<br />

Souza D <strong>and</strong> Peralta RM. Production <strong>of</strong> laccase


is<strong>of</strong>orms by Pleurotus pulmonarius in response<br />

to presence <strong>of</strong> phenolic <strong>and</strong> aromatic<br />

compounds. J Basic Microbiol. 44(2): 129–136,<br />

2004.<br />

Souza CGM, Zilly A, Peralta RM. Production <strong>of</strong><br />

laccase as the sole phenoloxidase by a Brazilian<br />

s<strong>tr</strong>ain <strong>of</strong> Pleurotus pulmonarius in solid state<br />

fermentation. J Bas Microbiol. 42: 83–90, 2002.<br />

Souza DDT, Tiwari R, Sah AK, Raghukumara C.<br />

Enhanced production <strong>of</strong> laccase by a marine<br />

fungus during <strong>tr</strong>eatment <strong>of</strong> colored effluents <strong>and</strong><br />

synthetic dyes. Enz Microb Technol. 38: 504-<br />

511, 2006.<br />

Tavares APM, Cristovao RO, Gamelas JAF,<br />

Loureiro JM, Boaventuraa RAR, Macedoa EA.<br />

Sequential decolourization <strong>of</strong> reactive textile<br />

dyes by laccase mediator system. J Chem<br />

Technol Biotechnol. 84: 442–446, 2009.<br />

V<strong>and</strong>evivere PC, Bianchi R, Vers<strong>tr</strong>aete W.<br />

Treatment <strong>and</strong> reuse <strong>of</strong> wastewater from the<br />

textile wet-processing indus<strong>tr</strong>y: review <strong>of</strong><br />

emerging technologies. J Chem Technol<br />

Biotechnol. 72: 289–302, 1998.<br />

Wesenberg D, Kyriakides I, Agathos N. White-rot<br />

fungi <strong>and</strong> their enzymes for the <strong>tr</strong>eatment <strong>of</strong><br />

indus<strong>tr</strong>ial dye effluents. Biotechnol Adv. 22:<br />

161–187, 2003.<br />

Yaropolov AI, Skorobogatko OV, Vartanov SS,<br />

Varfolomeyev SD. Laccase: Properties,<br />

catalytic mechanism <strong>and</strong> applicability. Appl<br />

Biochem Biotechnol. 49: 257–280, 1994.<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase 11


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1):13-18, 2012 Research Article 13<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Isolation <strong>and</strong> biochemical identification <strong>of</strong> Escherichia coli from<br />

wastewater effluents <strong>of</strong> food <strong>and</strong> beverage indus<strong>tr</strong>y<br />

Tasnim FARASAT*, Zubia BILAL, Fakhar-un-Nisa YUNUS<br />

Department <strong>of</strong> Zoology, Lahore College for Women University, Lahore, Pakistan.<br />

(* author for correspondence; tasnimfarasat@hotmail.com)<br />

Received: 20 May 2011; Accepted: 11 May 2012<br />

Abs<strong>tr</strong>act<br />

The aim <strong>of</strong> this study was the isolation <strong>and</strong> biochemical identification <strong>of</strong> E. coli from indus<strong>tr</strong>ial wastewater<br />

effluents. Sixty samples were collected from different sources in Lahore. The results revealed that E.coli was<br />

found in higher concen<strong>tr</strong>ation in wastewater <strong>of</strong> food <strong>and</strong> beverage indus<strong>tr</strong>ies. Wastewater is an important<br />

reservoir for E.coli <strong>and</strong> presented significant acute toxicity if released into the receiving water body without<br />

being adequately <strong>tr</strong>eated. Results revealed the presence <strong>of</strong> both gram negative <strong>and</strong> positive bacteria. There<br />

was nonsignificant variation among all the samples <strong>of</strong> wastewater. The highest concen<strong>tr</strong>ation <strong>of</strong> E.coli was<br />

observed in wastewater <strong>of</strong> food indus<strong>tr</strong>y Site A (Rettigon road) <strong>and</strong> beverage indus<strong>tr</strong>y Site F (Wahdat road).<br />

Biochemical <strong>and</strong> serological tests confirmed the presence <strong>of</strong> E.coli.<br />

Keywords: E .coli, wastewater, food indus<strong>tr</strong>y, beverage indus<strong>tr</strong>y, effluent.<br />

Yiyecek ve içecek endüs<strong>tr</strong>isi atıksu deşarjlarından Escherichia coli eldesi ve biyokimyasal<br />

tanımlanması<br />

Özet<br />

Bu çalışmanın amacı endüs<strong>tr</strong>iyel atıksu deşarjlarından E. coli eldesi ve biyokimyasal tanımlanmasıdır.<br />

Lahor’da farklı kaynaklardan 60 örnek topl<strong>and</strong>ı. Sonuçlar yiyecek ve içecek endüs<strong>tr</strong>isi atıksularında daha<br />

fazla konsan<strong>tr</strong>asyonda E. coli bulunduğunu gösterdi. Atıksu önemli bir E.coli deposudur ve yeterli olarak<br />

muamele edilmeden alıcı su kaynağına salınırsa ileri derecede toksik olabilir. Sonuçlar hem gram pozitif,<br />

hem de gram negatif bakteri varlığını gösterdi. En yüksek E. coli konsan<strong>tr</strong>asyonu A bölgesi (Rettigon yolu)<br />

yiyecek endüs<strong>tr</strong>isinin ve F bölgesi (Wahdat yolu) içecek endüs<strong>tr</strong>isinin atıksularında gözlemlendi. Biyolojik<br />

ve serolojik testler E. coli varlığını doğruladı.<br />

Anahtar kelimeler: E.coli, atıksu, yiyecek endüs<strong>tr</strong>isi, içecek endüs<strong>tr</strong>isi, atıksu deşarjı.<br />

In<strong>tr</strong>oduction<br />

Indus<strong>tr</strong>ial waste is the most common source <strong>of</strong><br />

water pollution in the present day (Ogedengbe <strong>and</strong><br />

Akinbile, 2004) <strong>and</strong> it increases yearly due to the<br />

fact that indus<strong>tr</strong>ies are increasing as most coun<strong>tr</strong>ies<br />

are getting indus<strong>tr</strong>ialized. Indus<strong>tr</strong>ies produce wastes<br />

which are peculiar in terms <strong>of</strong> type, volume <strong>and</strong><br />

frequency depending on the type <strong>of</strong> indus<strong>tr</strong>y <strong>and</strong><br />

population that uses the product (Odumosu, 1992).<br />

Water <strong>and</strong> wastewater management constitutes a<br />

practical problem for the food <strong>and</strong> beverage<br />

indus<strong>tr</strong>y. In spite <strong>of</strong> significant improvement over<br />

the last 20 years, water consumption <strong>and</strong> disposal<br />

remain critical from environmental <strong>and</strong> economic<br />

st<strong>and</strong>point (Fillaudeau et al., 2005).<br />

A food processing indus<strong>tr</strong>y is involved with the<br />

total environment from the farm to the customer.<br />

Water is absolutely necessary for many steps in the<br />

food processing indus<strong>tr</strong>y. At present, there is no<br />

economical substitute <strong>of</strong> water. Consequently water<br />

conservation <strong>and</strong> water reuse are necessary. By


14 Tasnim FARASAT et al.<br />

practicing conservation <strong>and</strong> reuse, the amount <strong>of</strong><br />

liquid waste <strong>and</strong> pollution potential from the food<br />

processing is r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ced (Mercer, 1964).<br />

On a global scale, contamination <strong>of</strong> drinking<br />

water by pathogenic bacteria causes the most<br />

significant health risk to humans, <strong>and</strong> there have<br />

been countless numbers <strong>of</strong> disease outbreaks <strong>and</strong><br />

poisonings resulting from exposure to un<strong>tr</strong>eated or<br />

poorly <strong>tr</strong>eated drinking water. However, significant<br />

risks to human health may also result from<br />

exposure to toxic contaminants that are <strong>of</strong>ten<br />

globally ubiquitous in waters from which drinking<br />

water is derived. The presence <strong>of</strong> E. coli is a<br />

definite indication <strong>of</strong> fecal contamination (WHO,<br />

2004). Some E. coli s<strong>tr</strong>ains can cause a wide variety<br />

<strong>of</strong> intestinal <strong>and</strong> ex<strong>tr</strong>a-intestinal diseases, such as<br />

diarrhea, urinary <strong>tr</strong>act infections, septicemia, <strong>and</strong><br />

neonatal meningitis (Orskov <strong>and</strong> Orskov, 1992).<br />

The magnitude <strong>of</strong> the problem <strong>of</strong> bacterial<br />

contamination deserves more elaborative studies<br />

from the point <strong>of</strong> production <strong>of</strong> waste effluents to<br />

the point <strong>of</strong> consumption at all intermediary levels.<br />

The aim <strong>of</strong> the present research was isolation <strong>and</strong><br />

biochemical identification <strong>of</strong> E.coli from indus<strong>tr</strong>ial<br />

effluents <strong>of</strong> food <strong>and</strong> beverage indus<strong>tr</strong>ies in Lahore.<br />

Material <strong>and</strong> methods<br />

Sample collection<br />

Sampling was completed in two successive months<br />

from March to April for the microbial assessment<br />

<strong>of</strong> waste effluents from food <strong>and</strong> beverage<br />

indus<strong>tr</strong>ies. Total <strong>of</strong> sixty samples were collected. In<br />

March, effluents <strong>of</strong> food indus<strong>tr</strong>ies were collected<br />

from indus<strong>tr</strong>ies near Rettigon road, Township<br />

indus<strong>tr</strong>ial area, Township indus<strong>tr</strong>ial estate. In April,<br />

effluents <strong>of</strong> beverage indus<strong>tr</strong>ies were collected from<br />

indus<strong>tr</strong>ies near Multan road <strong>and</strong> Wahdat road. Data<br />

from each sample was collected <strong>and</strong> recorded in the<br />

data book. Samples were collected in hermetically<br />

sealed, sterilized falcon tubes <strong>and</strong> were kept at 4ºC<br />

until analysis.<br />

Sample processing<br />

The technique described by Theodor Escherich,<br />

1885 was used for isolation <strong>of</strong> E.coli (Escherich,<br />

1885). To prevent contamination, the area was<br />

swabbed with 70% ethanol prior to opening any<br />

sample container. Samples (0.5 ml) were taken in<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> ml LB (Luria Bertani) broth medium in test<br />

tube, <strong>and</strong> vortexed for one minute <strong>and</strong> left for thirty<br />

minutes at room temperature. Then supernatant<br />

(1ml) was taken from this test tube <strong>and</strong> a 2-fold<br />

serial dilution was prepared (Reddy, 2007). After<br />

this, 500 ml from the final dilution tube was<br />

spreaded on the pe<strong>tr</strong>i dishes (Pyrex) <strong>of</strong> MacConkey<br />

medium <strong>and</strong> LB medium. Pe<strong>tr</strong>i dishes were kept in<br />

the incubator for 24 hours at 37ºC (Hajna <strong>and</strong><br />

Perry, 1939). After 24 hours, plates were studied<br />

for the colonies <strong>of</strong> microbes grown on the media.<br />

Microorganisms grown on MacConkey agar are<br />

capable <strong>of</strong> metabolizing lactose which produces<br />

acid by-products that lower the pH <strong>of</strong> the media<br />

which causes the neu<strong>tr</strong>al red indicator to turn red,<br />

<strong>and</strong> if sufficient acid is produced, a zone <strong>of</strong><br />

precipitated bile develops around the colony<br />

(Koneman, 2005). Different biochemical tests<br />

(Werkman, 1930; O'Meara, 1931; Vaughn et al.,<br />

1939; Silva et al., 1980) were performed for the<br />

identification <strong>of</strong> E. coli in the waste effluents <strong>of</strong><br />

food <strong>and</strong> beverage indus<strong>tr</strong>y (Table 1).<br />

Serological tests<br />

Commercial latex kits are available for O157, O26,<br />

<strong>and</strong> H7 s<strong>tr</strong>ains <strong>of</strong> E. coli. O157 antiserum has been<br />

shown to cross-react with other organisms<br />

including E. hermanii (frequently found in foods)<br />

(Hopkins <strong>and</strong> Hilton, 2000; Law, 2000). Tests<br />

incorporated positive <strong>and</strong> negative con<strong>tr</strong>ol<br />

organisms <strong>and</strong> con<strong>tr</strong>ol latex. Test was performed by<br />

a slide agglutination test using somatic (O) or<br />

flagella (H) antisera. Some pathogenic bacteria<br />

were nonmotile.<br />

Results<br />

E. coli was cultured on LB medium <strong>and</strong><br />

MacConkey medium for morphological<br />

characterization. After 24 hrs, two types <strong>of</strong> colonies<br />

were isolated under microscopic examination. All<br />

the isolated colonies were pink on MacConkey<br />

medium, while creamy yellow on LB medium.<br />

E. coli was observed in highest concen<strong>tr</strong>ation<br />

from wastewater samples <strong>of</strong> indus<strong>tr</strong>y (Site A)<br />

whereas in wastewater samples <strong>of</strong> indus<strong>tr</strong>y (Site B)<br />

six samples indicated the presence <strong>of</strong> E. coli which<br />

was confirmed by biochemical <strong>and</strong> serological test.<br />

Four samples were <strong>of</strong> gram positive bacteria which<br />

may be Bacillus subtilus or Bacillus thuringiensis.<br />

In indus<strong>tr</strong>ial effluent (Site C) eight samples were <strong>of</strong><br />

gram negative while two samples were <strong>of</strong> gram<br />

positive bacteria. It was observed that waste<br />

effluents <strong>of</strong> food indus<strong>tr</strong>y (Site A) revealed greater<br />

percentage <strong>of</strong> gram negative bacteria.<br />

In wastewater samples <strong>of</strong> indus<strong>tr</strong>y (Site D) five<br />

were gram negative, while five were gram positive<br />

bacteria. Six samples in indus<strong>tr</strong>ial effluent (Site E)


Samples<br />

Sources<br />

Indus<strong>tr</strong>ial<br />

effluent (A)<br />

Indus<strong>tr</strong>ial<br />

effluent(B)<br />

Indus<strong>tr</strong>ial<br />

effluent(C)<br />

Indus<strong>tr</strong>ial<br />

effluent(D)<br />

Indus<strong>tr</strong>ial<br />

effluent(E)<br />

Indus<strong>tr</strong>ial<br />

effluent(F)<br />

Identification <strong>of</strong> E. coli from wastewater 15<br />

Table 1. Biochemical identification <strong>of</strong> E. coli in indus<strong>tr</strong>ial wastewaters<br />

Indole<br />

Test<br />

Spot<br />

Indole<br />

Test<br />

Kovacs<br />

Indole<br />

Test<br />

Methyl Red<br />

Test<br />

Voges<br />

Proskeur<br />

Test<br />

Ammonium<br />

acetate Test<br />

Simmon's Test<br />

Ammonium<br />

Ci<strong>tr</strong>ate Test<br />

+ + + + - + -<br />

+ + + + - + -<br />

+ + + + - + -<br />

+ + + + - + -<br />

+ + + + - + -<br />

+ + + + - + -<br />

were gram negative <strong>and</strong> four were gram positive<br />

bacteria. In the wastewater samples <strong>of</strong> beverage<br />

indus<strong>tr</strong>y (Site F) all samples were <strong>of</strong> gram negative<br />

bacteria (Figure 1 <strong>and</strong> 2).<br />

The average value <strong>of</strong> gram negative bacteria in<br />

wastewater <strong>of</strong> food indus<strong>tr</strong>y (Site A) was 5.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> ±<br />

0.34. The average value <strong>of</strong> gram negative bacteria<br />

in wastewater <strong>of</strong> food indus<strong>tr</strong>y (Site B) was 4.66 ±<br />

0.66 while in wastewater <strong>of</strong> food indus<strong>tr</strong>y (Site C)<br />

was 4.50 ± 0.50. The average value <strong>of</strong> gram<br />

negative bacteria in wastewater <strong>of</strong> beverage<br />

indus<strong>tr</strong>y (Site D) was 5.0 ± 0.70, whereas in the<br />

wastewater <strong>of</strong> beverage indus<strong>tr</strong>y (Site E) was 3.8 ±<br />

0.60 <strong>and</strong> in the wastewater <strong>of</strong> beverage indus<strong>tr</strong>y<br />

(Site F) was 4.0 ± 0.33. Student’s t-test revealed a<br />

non significant difference (P >0.05) between gram<br />

positive <strong>and</strong> gram negative bacteria.<br />

Figure 1. Percentage <strong>of</strong> gram negative bacteria in all indus<strong>tr</strong>ial wastewater samples. Food Indus<strong>tr</strong>y A:<br />

Rettigon road; Food Indus<strong>tr</strong>y B: Township indus<strong>tr</strong>ial area; Food Indus<strong>tr</strong>y C: Township indus<strong>tr</strong>ial estate;<br />

Beverage indus<strong>tr</strong>y D: Multan Road; Beverage indus<strong>tr</strong>y E: Multan road; Beverage indus<strong>tr</strong>y F: Wahadat road


16 Tasnim FARASAT et al.<br />

Figure 2. Number <strong>of</strong> E.coli colonies (mean ±SE) in wastewater samples <strong>of</strong> indus<strong>tr</strong>ies. Sites A, B, C: Food<br />

indus<strong>tr</strong>ies at Rettigon road, Township indus<strong>tr</strong>ial area, Township indus<strong>tr</strong>ial Estate Sites D, E, F: Beverage<br />

indus<strong>tr</strong>ies at Multan Road <strong>and</strong> Wahadat road.<br />

Discussion<br />

The bacterium E. coli is one <strong>of</strong> the best <strong>and</strong> most<br />

thoroughly studied free-living organisms. It is also<br />

a remarkably diverse species because some E.coli<br />

s<strong>tr</strong>ains live as harmless commensals in animal<br />

intestines. E. coli is a widely used indicator <strong>of</strong> fecal<br />

contamination in water bodies. External contact <strong>and</strong><br />

subsequent ingestion <strong>of</strong> bacteria from fecal<br />

contamination can cause de<strong>tr</strong>imental health effects<br />

(Money et al., 2009).<br />

Stomach cramps, nausea <strong>and</strong> vomiting are the<br />

symptoms caused by E. coli, however serious<br />

complications can also occur. Water samples were<br />

the only nonfecal samples that tested positive for E.<br />

coli. Water has been implicated in human outbreaks<br />

<strong>and</strong> the studies revealed that water may be an<br />

important source <strong>of</strong> 0157:H7 on farms (Karmali,<br />

1989).<br />

The present research work was conducted to<br />

isolate E. coli from food <strong>and</strong> beverage indus<strong>tr</strong>ial<br />

effluents. Effluents are good primary reservoir for<br />

E. coli. Sixty different samples from food <strong>and</strong><br />

beverage indus<strong>tr</strong>ies were processed for the isolation<br />

<strong>of</strong> E. coli. The food <strong>and</strong> beverage indus<strong>tr</strong>ies uses<br />

large volume <strong>of</strong> water as it is suitable, clean, <strong>and</strong> a<br />

quite inexpensive resource, both as a constituent <strong>of</strong><br />

many products, <strong>and</strong> for other production<br />

requirements. Microbial growth in drinks due to<br />

contaminated water supplies or sugar syrups can<br />

cause discoloration, <strong>of</strong>f flavors <strong>and</strong> shortened shelflife,<br />

as well as increasing the risk <strong>of</strong> infection to<br />

consumers (Noronha et al., 2002).<br />

However, selective media are universally used<br />

in water monitoring <strong>and</strong> were employed in the<br />

United States Environmental Protection Agency<br />

epidemiological investigations, suggesting that<br />

culturable fecal indicator counts are valid predictors<br />

<strong>of</strong> disease risk (Sinton et al., 1994). Sewage can<br />

serve as a vehicle for entering into human <strong>and</strong><br />

nonhuman hosts either by direct contact or through<br />

contamination <strong>of</strong> drinking water supplies (Boczek<br />

et al., 2007).<br />

The results revealed that the highest percentage<br />

<strong>of</strong> E. coli was observed in the waste effluents <strong>of</strong><br />

indus<strong>tr</strong>ies (A <strong>and</strong> F). ANOVA showed non<br />

significant (P > 0.05) variation. Student’s t-test also<br />

revealed non significant difference between gram<br />

positive <strong>and</strong> gram negative bacteria.<br />

According to Boczek <strong>and</strong> colleagues (2007) the<br />

occurrence <strong>of</strong> clonal group in wastewater<br />

demons<strong>tr</strong>ates a potential mode for the dissemination<br />

<strong>of</strong> this clonal group in the environment, with<br />

possible secondary <strong>tr</strong>ansmission to human or<br />

animal hosts. Chalmers <strong>and</strong> colleagues (2000)<br />

demons<strong>tr</strong>ated that the effluent had a significant<br />

pollution potential, mainly due to the low pH <strong>and</strong><br />

high concen<strong>tr</strong>ation <strong>of</strong> E. coli. The results also


demons<strong>tr</strong>ated that the wastewater presented<br />

significant acute toxicity, <strong>and</strong> could cause diseases<br />

if released into the receiving body without being<br />

adequately <strong>tr</strong>eated. This represents a dangerous<br />

public health risk, which needs future evaluation<br />

<strong>and</strong> con<strong>tr</strong>ol. Culture-independent analysis in<br />

various environmental samples has been used to<br />

catalog this species <strong>and</strong> also to assess the impact <strong>of</strong><br />

human activity <strong>and</strong> interactions with microbes on<br />

natural microbial communities.<br />

According to Barreto-Rodrigues <strong>and</strong> colleagues<br />

(2008), the objective <strong>of</strong> the work was to<br />

characterize the effluent originating from a<br />

Brazilian TNT production indus<strong>tr</strong>y. Analyses were<br />

performed using physical, chemical, spec<strong>tr</strong>oscopic<br />

<strong>and</strong> ecotoxicological assays, which demons<strong>tr</strong>ated<br />

that the effluent had a significant pollution<br />

potential, mainly due to the low pH <strong>and</strong> high<br />

concen<strong>tr</strong>ation <strong>of</strong> TNT (156 ± <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> mg L −1 ). The<br />

results also demons<strong>tr</strong>ated that the effluent causes<br />

significant acute toxicity, <strong>and</strong> could cause countless<br />

damages if released into the rivers without being<br />

properly <strong>tr</strong>eated. The observed pollution potential<br />

justifies studies to evaluate <strong>tr</strong>eatment technologies<br />

or recover the residue generated in the TNT<br />

indus<strong>tr</strong>y. From a total <strong>of</strong> 149 E. coli s<strong>tr</strong>ains, 87 E.<br />

coli s<strong>tr</strong>ains were from raw wastewater <strong>and</strong> 62<br />

s<strong>tr</strong>ains from <strong>tr</strong>eated wastewater by stabilization<br />

ponds. Within these s<strong>tr</strong>ains two <strong>and</strong> four positive<br />

serological reaction to E. coli 0157 were found for<br />

raw <strong>and</strong> <strong>tr</strong>eated wastewater, respectively.<br />

In the same direction, Muller <strong>and</strong> his colleagues<br />

(2001) carried out a study on E.coli 0157:H7 s<strong>tr</strong>ains<br />

in water sources in South Africa <strong>and</strong> they did not<br />

find any evidence <strong>of</strong> EHEC 0157 while virulence<br />

factors present in the 96% <strong>of</strong> analyzed samples<br />

(196), however 8 isolates from 8 samples<br />

demons<strong>tr</strong>ated the presence <strong>of</strong> Stx1 <strong>and</strong> Stx2.<br />

References<br />

Barreto-Rodrigues M, Silva FT, Paiva TCB.<br />

Characterization <strong>of</strong> wastewater from the<br />

Brazilian TNT indus<strong>tr</strong>y. J Haz Mat. 164: 385-<br />

388, 2008.<br />

Boczek LA, Rice EW, Johnston B, Johnson JR.<br />

Occurrence <strong>of</strong> antibiotic-resistant uropathogenic<br />

Escherichia coli clonal group A in wastewater<br />

effluents. Appl Environ Microbiol. 73: 4180-<br />

4184, 2007.<br />

Identification <strong>of</strong> E. coli from wastewater 17<br />

Chalmers RM, Aird H, Bolton FJ. Waterborne<br />

Escherichia coli 0157. J Appl Microbiol. 88:<br />

124-132, 2000.<br />

Escherich T. Die Darmbakterien des Neugeboren<br />

und Sauglings Fortschr. Med. 3: 515-522, 1885.<br />

Fillaudeau L, Blanpain-Avet P, Daufin G. Water,<br />

wastewater <strong>and</strong> waste management in brewing<br />

indus<strong>tr</strong>ies. J Cle Pro. 14: 463-471, 2005.<br />

Hajna AA, Perry CA. Optimum Temperature for<br />

Differentiation <strong>of</strong> Escherichia coli from Other<br />

Coliform Bacteria. J Bacteriol. 38: 275-283,<br />

1939.<br />

Hopkins KL, Hilton AC. Methods available for the<br />

sub-typing <strong>of</strong> Escherichia coli O157. World J<br />

Microbiol Biotechnol. 16: 741-748, 2000.<br />

Karmali MA. Infection by verocytotoxin-producing<br />

Escherichia coli. Clin Microbiol Rev. 2: 15-38,<br />

1989.<br />

Koneman EW. Color Atlas <strong>and</strong> Textbook <strong>of</strong><br />

Diagnostic Microbiology, Lippincott, JB. (Ed),<br />

Philadelphia. 313-317, 2005.<br />

Law D. Virulence factors <strong>of</strong> Escherichia coli O157<br />

<strong>and</strong> other Shiga toxin-producing E. coli. J Appl<br />

Microbiol. 88: 729-745, 2000.<br />

Mercer WA. Physical Characteristics <strong>of</strong><br />

Recirculated Water as Related to Sanitary<br />

Conditions. Food Technol. 335: 111-115, 1964.<br />

Money ES, Carter GP, Serre ML. Modern<br />

space/time geo statistics using river distances:<br />

data integration <strong>of</strong> turbidity <strong>and</strong> Escherichia<br />

coli measurements to assess fecal contamination<br />

along the Raritan River in New Jersey. Environ<br />

Sci Technol. 43: 3736-3742, 2009.<br />

Müller EE, Ehlers MM, Grabow, WOK. The<br />

occurrence <strong>of</strong> E. coli 0157:H7 in South Africa<br />

water sources intended for direct <strong>and</strong> indirect<br />

human consumption. Wat Res. 35: 3085 -3088,<br />

2001.


18 Tasnim FARASAT et al.<br />

Noronha M, Britz T, Mavrov V, Janke HD, Chmiel<br />

H. Treatment <strong>of</strong> spent process water from a fruit<br />

juice company for purposes <strong>of</strong> reuse: hybrid<br />

process concept <strong>and</strong> on-site test operation <strong>of</strong> a<br />

pilot plant. Desalination. 143: 183-196, 2002.<br />

Odumosu AOT. Management <strong>of</strong> liquid indus<strong>tr</strong>ial<br />

waste. Ind Waste Manage. 55: 6-7, 1992.<br />

Ogedengbe K, Akinbile CO. Impact <strong>of</strong> indus<strong>tr</strong>ial<br />

pollutants on quality <strong>of</strong> ground <strong>and</strong> surface<br />

waters at Oluyole Indus<strong>tr</strong>ial Estate, Ibadan,<br />

Nigeria. J Technol Develop. 4: 139-144, 2004.<br />

O'Meara RAQ. A simple delicate <strong>and</strong> rapid method<br />

<strong>of</strong> detecting the formation <strong>of</strong> acetylmethylcarbinol<br />

by bacteria fermenting<br />

carbohydrate. J Pathol Bacteriol. 34: 401-406,<br />

1931.<br />

Orskov F, Orskov I. Escherichia coli serotyping<br />

<strong>and</strong> disease in man <strong>and</strong> animals. J Microbiol.<br />

38: 699-704, 1992.<br />

Reddy CA. Methods for general <strong>and</strong> molecular<br />

microbiology (Ed). ASM Press, Washington.<br />

447-521, 2007.<br />

Silva RM, Toledo MR, Trabulsi LR.<br />

Biochemical <strong>and</strong> cultural characteristics <strong>of</strong><br />

invasive Escherichia coli. J Clin Microbiol. 11:<br />

441- 444, 1980.<br />

Sinton LW, Davies-Colley RJ, Bell RG.<br />

Inactivation <strong>of</strong> enterococci <strong>and</strong> fecal coliforms<br />

from sewage <strong>and</strong> meatworks effluents in<br />

seawater chambers. Appl Environ Microbiol.<br />

60: 2040-2048, 1994.<br />

Vaughn RH, Mitchell, NB, Levine, M. The Voges-<br />

Proskauer <strong>and</strong> methyl red reactions in the coliaerogenes<br />

group. J Am Water Works Assoc. 31:<br />

993-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>01, 1939.<br />

Werkman CH. An improved technic for the Voges-<br />

Proskauer test. J Bacteriol. 20: 121-125, 1930.<br />

World Health Organization- WHO. Guidelines for<br />

Drinking Water Quality: Recommendations<br />

(Ed). Switzerl<strong>and</strong>. 1: 229-243, 2004.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1):19-26, 2012 Research Article 19<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Investigation <strong>of</strong> the MGP promoter <strong>and</strong> exon 4 polymorphisms in<br />

patients with ischemic s<strong>tr</strong>oke in the Ukrainian population<br />

Alex<strong>and</strong>er V. ATAMAN *1, Victoria Y. GARBUSOVA 2 , Yuri A. ATAMAN 3 , Olga I.<br />

MATLAJ 4 , Olga A. OBUCHOVA 1<br />

1 Sumy State University, Department <strong>of</strong> Physiology, Pathophysiology <strong>and</strong> Medical Biology, Sumy, Ukraine<br />

2 Sumy State University, Scientific Laboratory <strong>of</strong> Molecular Genetic Research, Sumy, Ukraine<br />

3 Sumy State University, Department <strong>of</strong> Internal Medicine, Sumy, Ukraine<br />

4<br />

Sumy Clinical Hospital No.5, Sumy, Ukraine<br />

(*author for correspondence; ataman_av@mail.ru )<br />

Received: 13 February 2012; Accepted: 18 May 2012<br />

Abs<strong>tr</strong>act<br />

Ma<strong>tr</strong>ix γ-carboxyglutamic acid protein (MGP) is a vitamin K-dependent protein playing a pivotal role in<br />

preventing arterial calcification. In the present study, we aimed to investigate the relation between three<br />

single nucleotide polymorphisms <strong>of</strong> MGP gene <strong>and</strong> ischemic s<strong>tr</strong>oke (IS) in the Ukrainian population. 170 IS<br />

patients <strong>and</strong> 124 healthy con<strong>tr</strong>ols were recruited to the study. MGP SNPs were examined by PCR-RFLP<br />

methodology. The dis<strong>tr</strong>ibution <strong>of</strong> homozygous carriers <strong>of</strong> the major allelic variant, <strong>and</strong> heterozygous <strong>and</strong><br />

homozygous minor allele variants <strong>of</strong> the T-138C MGP promoter polymorphism (rs1800802) in patients with<br />

IS was 61.2%, 31.2% <strong>and</strong> 7.6%, respectively. The corresponding dis<strong>tr</strong>ibutions <strong>of</strong> the variants in the con<strong>tr</strong>ol<br />

group were 59.7%, 35.6%, 4.8%. With regard to the G-7A promoter polymorphism (rs1800801), the<br />

respective dis<strong>tr</strong>ibutions were 35.9%, 48.8% <strong>and</strong> 15.3%, compared to 43.5%, 50% <strong>and</strong> 6.5% in the con<strong>tr</strong>ol<br />

group. Finally, the respective dis<strong>tr</strong>ibutions according to the Thr83Ala exon 4 polymorphism (rs4236) were<br />

39.4%, 48.8% <strong>and</strong> 11.8%, compared to 34.7%, 53.2% <strong>and</strong> 12.1% in the con<strong>tr</strong>ol group. Using logistic<br />

regression analysis, it was estimated that A/A genotype (G-7A polymorphism) was significantly (P=0.016)<br />

associated with IS (OR=2.943; 95% CI: 1.218–7.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>9) in the Ukrainian population. A-allele homozygotes <strong>of</strong><br />

female sex had a risk <strong>of</strong> IS more than 7 times higher compared with carriers <strong>of</strong> G/G genotype.<br />

Keywords: Ma<strong>tr</strong>ix Gla protein, single nucleotide polymorphism, ischemic s<strong>tr</strong>oke, arterial calcification,<br />

Ukrainian population.<br />

Ukrayna popülasyonunda iskemik inme hastalarında MGP promotör ve ekzon 4<br />

polimorfizminin araştırılması<br />

Özet<br />

Ma<strong>tr</strong>is γ–karboksiglutamik asit proteini (MGP) vitamin-K bağımlı protein olup arteriyal kalsitleşmeyi<br />

önlemede önemli rol oynar. Bu çalışmada, MGP geninin üç tek nükleotit polimorfizmi (TNP) ile Ukrayna<br />

popülasyonunda iskemik inme (İİ) arasındaki ilişkiyi araştırmayı hedefledik. Çalışmaya 170 İİ hastası ve 124<br />

sağlıklı kon<strong>tr</strong>ol katıldı. MGP TNP’leri PCR-RFLP metodolojisi ile test edildi. İH hastalarında T-138C MGP<br />

promoter polimorfizminin (rs1800802) majör alel varyantının homozigot taşıyıcılarının ve heterozigot ve<br />

homozigot minör alel varyantlarının dağılımları sırası ile, %61.2, %31.2 ve %7.6’dır. Kon<strong>tr</strong>ol grubunda ilgili<br />

varyant dağılımları %59.7, %35.6 ve %4.8’dir. G-7A promoter polimorfizminde (rs1800801) ise ilgili<br />

dağılımlar %43.5, %50 ve %6.5 olan kon<strong>tr</strong>ol grubu ile karşılaştırıldığında %35.9, %48.8 ve %15.3’dir. Son<br />

olarak, Thr83Ala ekzon 4 polimorfizmine (rs4236) göre dağılımlar %34.7, %53.2 ve %12.1 olan kon<strong>tr</strong>ol<br />

grubu ile karşılaştırıldığında %39.4, %48.8 ve %11.8’dir. Lojistik regresyon analizi kullanarak, Ukrayna<br />

popülasyonunda İİ ile A/A genotipinin (G-7A polimorfizmi) anlamlı (P=0.016) olarak ilişkili olduğu<br />

(OR=2.943; 95% CI: 1.218–7.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>9) tahmin edilmiştir.<br />

Anahtar kelimeler: Ma<strong>tr</strong>is Gla protein, tek nükleotid polimorfizmi, iskemik inme, arteriyal kalsifikasyon,<br />

Ukrayna popülasyonu.


20 Alex<strong>and</strong>er V. ATAMAN et al.<br />

In<strong>tr</strong>oduction<br />

Ischemic s<strong>tr</strong>oke (IS) is, in many instances, the<br />

consequence <strong>of</strong> a thrombus forming on a ruptured<br />

atherosclerotic plaque. Ex<strong>tr</strong>acellular ma<strong>tr</strong>ix<br />

calcification is considered to be a novel marker <strong>of</strong><br />

atherosclerosis <strong>and</strong> related to both coronary artery<br />

<strong>and</strong> cerebrovascular disease. It has been shown that<br />

arterial calcification in major vessel beds is<br />

associated with vascular brain disease (Bos et al.,<br />

2011).<br />

Recent studies suggest that in addition to<br />

modifiable risk factors, such as hypertension,<br />

hyperlipidemia, <strong>and</strong> cigarette smoking, there is a<br />

s<strong>tr</strong>ong genetic component to the development <strong>of</strong><br />

arterial calcification. For instance, the heritability<br />

<strong>of</strong> the presence <strong>of</strong> coronary artery calcification has<br />

been estimated to be up to 50% (Post et al., 2007).<br />

Key genes known to be involved in the<br />

regulation <strong>of</strong> the complex process <strong>of</strong> ectopic s<strong>of</strong>t<br />

tissue mineralization are those acting as<br />

calcification inhibitors such as ma<strong>tr</strong>ix γcarboxyglutamic<br />

acid protein (MGP), osteocalcin<br />

(BGP), osteoprotegerin (Opg), <strong>and</strong> fetuin (Abedin<br />

et al., 2004; Doherty et al., 2004; Giachelli, 2004;<br />

Guzman, 2007; Weissen-Plenz et al., 2008).<br />

Among those, MGP, a vitamin K-dependent<br />

protein, is widely accepted as playing a pivotal role<br />

in preventing local mineralization <strong>of</strong> the vascular<br />

wall (Luo et al., 1997; Schurgers et al., 2005;<br />

Proudfoot <strong>and</strong> Shanahan, 2006). It has been shown<br />

that the anticalcifying activity <strong>of</strong> MGP depends<br />

upon the γ-carboxylation <strong>of</strong> specific glutamic acid<br />

(Glu) residues in MGP. This vitamin K-dependent<br />

reaction yields γ-carboxyglutamic acid (Gla)<br />

residues, which are then able to bind calcium<br />

(Murshed et al., 2004).<br />

The human MGP gene is located on<br />

chromosome 12p (Cancela et al., 1990). Among the<br />

large number <strong>of</strong> identified MGP single nucleotide<br />

polymorphisms (SNPs) eight are under the most<br />

intensive investigation: two SNPs are located in<br />

exons, <strong>and</strong> six in the ups<strong>tr</strong>eam region <strong>of</strong> the MGP<br />

gene. In vi<strong>tr</strong>o studies suggest that SNPs in MGP are<br />

associated with altered promoter activity<br />

(Herrmann et al., 2000; Farzaneh-Far et al., 2001;<br />

Kobayashi et al., 2004). In addition, there is some<br />

evidence that MGP SNPs are associated with<br />

arterial calcification (Herrmann et al., 2000;<br />

Brancaccio et al., 2005; Crosier et al., 2009),<br />

although these results are not consistent (Kobayashi<br />

et al., 2004; Taylor et al., 2005).<br />

There are a large number <strong>of</strong> studies in which the<br />

association <strong>of</strong> varies gene polymorphisms with IS<br />

has been investigated (Kubo, 2008; Debette <strong>and</strong><br />

Seshadri, 2009; Matarin et al., 2009; Wang et al.,<br />

2009; Low et al., 2011), but only in one <strong>of</strong> them the<br />

MGP SNPs were a subject <strong>of</strong> interest (del Rio-<br />

Espinola et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

The purpose <strong>of</strong> the present study was to<br />

investigate the association <strong>of</strong> three MGP SNPs (T-<br />

138C, G-7A, Thr83Ala) with IS in the Ukrainian<br />

population.<br />

Materials <strong>and</strong> methods<br />

Study groups<br />

The study recruited 170 IS patients (57,6% men<br />

<strong>and</strong> 42,4% women) 40 to 85 years <strong>of</strong> age (mean age<br />

[± SE] 64,7±0,7) admitted to Sumy Clinical<br />

Hospital No.5. A final diagnosis <strong>of</strong> IS was<br />

established on the basis <strong>of</strong> clinical, computed<br />

tomography <strong>and</strong> magnetic resonance imaging<br />

examinations. Each case <strong>of</strong> IS was assessed<br />

according to TOAST criteria (Adams et al., 1993).<br />

The patients with IS <strong>of</strong> cardioembolic origin <strong>and</strong><br />

undetermined etiology were excluded from the<br />

study group. The con<strong>tr</strong>ol group consisted <strong>of</strong> 124<br />

clinically healthy individuals with the absence <strong>of</strong><br />

cardio- <strong>and</strong> cerebrovascular pathologies, as<br />

confirmed by medical history, ECG, <strong>and</strong><br />

measurement <strong>of</strong> arterial pressure <strong>and</strong> biochemical<br />

data. The study had been previously approved by<br />

the Ethic Committee <strong>of</strong> the Medical Institute <strong>of</strong><br />

Sumy State University. Appropriate informed<br />

consent was obtained from all patients <strong>and</strong> con<strong>tr</strong>ol<br />

subjects. The participants were unrelated Ukrainian<br />

people from the northeastern region <strong>of</strong> Ukraine.<br />

Blood sampling for genotyping was performed<br />

under sterile conditions into 2.7 ml tubes (S-<br />

Monovette [Sarstedt, Germany]) containing EDTA<br />

potassium salt as an anticoagulant, samples were<br />

frozen <strong>and</strong> stored at -20ºC.<br />

Genotyping <strong>of</strong> SNPs<br />

DNA for genotyping was ex<strong>tr</strong>acted from the venous<br />

blood using commercially available kits (Isogene<br />

Lab Ltd, Russia) according to the manufacturer’s<br />

protocol. To identify MGP SNPs the polymerase<br />

chain reaction (PCR) with subsequent res<strong>tr</strong>iction<br />

fragment length polymorphism (RFLP) analysis<br />

was performed as previously described (Garbuzova<br />

et al., 2012). Briefly, specific regions <strong>of</strong> the MGP<br />

gene were amplified using pairs <strong>of</strong> specific primers.


For T-138C polymorphism (rs1800802) they<br />

were (F) 5`-<br />

AAGCATACGАТGGCCAAAACTTCTGCA-3`<br />

<strong>and</strong> (R) 5`-<br />

GAACTAGCAТТGGAACTTTTCCCAACC-3`;<br />

for G-7A polymorphism (rs1800801): (F) 5`-<br />

CTAGTTCAGTGCCAACCCTTCCCCACC-3`<br />

<strong>and</strong> (R) 5`-<br />

TAGCAGCAGTAGGGAGAGAGGCTCCCA-3`;<br />

for Thr83Ala polymorphism (rs4236): (F) 5`-<br />

TCAATAGGGAAGCCTGTGATG-3` <strong>and</strong> (R) 5`-<br />

AGGGGGATACAAAATCAGGTG -3`. PCR<br />

products were digested using res<strong>tr</strong>iction enzymes:<br />

BseNI (for T-138C), NcoI (for G-7A), <strong>and</strong> Eco477<br />

(for Thr83Ala). The res<strong>tr</strong>iction fragments were<br />

separated by elec<strong>tr</strong>ophoresis <strong>and</strong> analysed on an<br />

ethidium bromide-stained 2.5% agarose gel<br />

visualized using ul<strong>tr</strong>aviolet <strong>tr</strong>ansillumination.<br />

Statistical analysis<br />

Using the Pearson χ 2 test, allelic frequencies in<br />

healthy con<strong>tr</strong>ols <strong>and</strong> IS patients were found to be in<br />

Hardy-Weinberg equilibrium. Statistical analysis<br />

was performed to assess the independent main <strong>and</strong><br />

Genotype Con<strong>tr</strong>ol group<br />

(n=124)<br />

MGP polymorphisms in ischemic s<strong>tr</strong>oke 21<br />

joint effects <strong>of</strong> all analyzed SNPs. To detect the<br />

s<strong>tr</strong>ongest main effect <strong>of</strong> three MGP SNPs the<br />

logistic regression method was applied by using<br />

SPSS 17.0. A comparison <strong>of</strong> variables between the<br />

IS subgroups was performed using ANOVA.<br />

Differences were considered statistically significant<br />

with a P-value < 0.05.<br />

Results<br />

Genotypes <strong>of</strong> three studied MGP polymorphisms<br />

are summarized in Table 1. As shown, major allele<br />

homozygous <strong>and</strong> heterozygous, <strong>and</strong> minor allele<br />

homozygous T-138C polymorphisms <strong>of</strong> the MGP<br />

promoter were detected in 61.2%, 31.2% <strong>and</strong> 7.6%<br />

<strong>of</strong> the IS group, respectively (con<strong>tr</strong>ol group: 59.7,<br />

35.5% <strong>and</strong> 4.8%). Analysis <strong>of</strong> the G-7A promoter<br />

polymorphism yielded respective figures <strong>of</strong> 35.9%,<br />

48.8% <strong>and</strong> 15.3% (con<strong>tr</strong>ol group: 43.5%, 50% <strong>and</strong><br />

6.5%). The dis<strong>tr</strong>ibution <strong>of</strong> genotypes when<br />

analyzing Thr83Ala polymorphism (exon 4) was<br />

39.4%, 48.8% <strong>and</strong> 11.8% in IS group (con<strong>tr</strong>ol<br />

group: 34.7%, 53.2% <strong>and</strong> 12.1).<br />

Table 1. Genotypes <strong>of</strong> MGP polymorphisms in patients with ischemic s<strong>tr</strong>oke (IS) <strong>and</strong> con<strong>tr</strong>ol subjects. Data<br />

presented as n (%). A – major allele; a – minor allele<br />

Promoter T-138C Promoter G-7A Exon 4 Thr83Ala<br />

IS group<br />

(n=170)<br />

Con<strong>tr</strong>ol group<br />

(n=124)<br />

IS group<br />

(n=170)<br />

Con<strong>tr</strong>ol group<br />

(n=124)<br />

IS group<br />

(n=170)<br />

AA 74 (59.7) <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4 (61.2) 54 (43.5) 61 (35.9) 43 (34.7) 67 (39.4)<br />

Aa 44 (35.5) 53 (31.2) 62 (50.0) 83 (48.8) 66 (53.2) 83 (48.8)<br />

aa 6 (4.8) 13 (7.6) 8 (6.5) 26 (15.3) 15 (12.1) 20 (11.8)<br />

The differences in the dis<strong>tr</strong>ibution <strong>of</strong> allelic<br />

variants between the con<strong>tr</strong>ol <strong>and</strong> IS groups were<br />

close to the level <strong>of</strong> statistical significance only for<br />

the G-7A promoter polymorphism (P=0,051). In<br />

women, but not in men, the differences between G-<br />

7A genotypes frequency in IS <strong>and</strong> con<strong>tr</strong>ols were<br />

significant as shown in Table 2.<br />

Using logistic regression analysis (Table 3), it<br />

was estimated that A/A genotype (G-7A<br />

polymorphism) was significantly (P=0.016)<br />

associated with IS (OR=2.943; 95% CI, 1.218 –<br />

7.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>9). Respective analysis for male <strong>and</strong> female<br />

subjects is presented in Table 4. Women who were<br />

minor A-allele homozygotes had a risk <strong>of</strong> IS more<br />

then 7 times higher compared with female carriers<br />

<strong>of</strong> G/G genotype.<br />

Some clinical characteristics <strong>of</strong> IS patients with<br />

various MGP genotypes are presented in Table 5.<br />

There were no differences in the studied parameters<br />

between major allele homozygotes, heterozygotes,<br />

<strong>and</strong> minor allele homozygotes for all three<br />

polymorphisms (with the exception <strong>of</strong> sex<br />

dis<strong>tr</strong>ibution for G-7A polymorphism).


22 Alex<strong>and</strong>er V. ATAMAN et al.<br />

Table 2. Genotypes <strong>of</strong> G-7A MGP promoter polymorphism in female <strong>and</strong> male patients with ischemic<br />

s<strong>tr</strong>oke (IS) <strong>and</strong> con<strong>tr</strong>ol subjects. Data presented as n (%).<br />

Table 3. Results <strong>of</strong> logistic regression analysis <strong>of</strong> association between MGP polymorphisms <strong>and</strong> ischemic<br />

s<strong>tr</strong>oke.Homozygotes by major allele were considered as a reference group. SE – st<strong>and</strong>ard error, OR – odds<br />

ratio, CI – confidential interval<br />

SNP Genotype<br />

Women Men<br />

Genotype Con<strong>tr</strong>ol IS Con<strong>tr</strong>ol IS<br />

Coefficient <strong>of</strong><br />

regression<br />

SE<br />

Wald<br />

statistic<br />

Pvalue<br />

OR<br />

%95 CI<br />

Lower<br />

%95 CI<br />

Upper<br />

Promoter T/C -0.186 0.258 0.521 0.470 0.830 0.500 1.377<br />

T-138C C/C 0.382 0.526 0.527 0.468 1.465 0.522 4.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>7<br />

Promoter G/A 0.193 0.253 0.584 0.445 1.213 0.739 1.991<br />

G-7A A/A 1.079 0.450 5.752 0.016 2.943 1.218 7.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>9<br />

Exon 4 Thr/Ala -0.235 0.259 0.824 0.364 0.790 0.476 1.313<br />

Thr83Ala Ala/Ala -0.265 0.402 0.435 0.5<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 0.767 0.349 1.687<br />

Discussion<br />

Arterial calcification is an abnormal process that<br />

can greatly increase morbidity <strong>and</strong> mortality (Lehto<br />

et al., 1996). MGP is considered one <strong>of</strong> the most<br />

relevant physiological inhibitors <strong>of</strong> s<strong>of</strong>t tissue<br />

mineralization known today. In mice, targeted<br />

deletion <strong>of</strong> the MGP gene causes extensive<br />

calcification <strong>of</strong> the elastic lamellae <strong>of</strong> the<br />

abdominal aorta (Luo et al., 1997). Extensive<br />

vascular calcification is also induced when γcarboxylation<br />

<strong>of</strong> MGP is inhibited using the<br />

vitamin K-antagonist, warfarin (Price et al., 1998).<br />

In the present study, we explored association<br />

between genetic variation in the MGP gene <strong>and</strong> the<br />

risk <strong>of</strong> IS development. Analysing MGP SNPs, we<br />

found the G-7A promoter polymorphism to be<br />

associated with IS in Ukrainian population. We did<br />

not revealed statistically significant relation<br />

between the other two studied polymorphisms (T-<br />

138C, Thr83Ala) <strong>and</strong> IS.<br />

Published data on the MGP SNPs association<br />

with MGP serum concen<strong>tr</strong>ation <strong>and</strong> artery<br />

calcification, <strong>and</strong> the consequences <strong>of</strong><br />

G/G 18 (40.0) 21 (29.2) 36 (45.6) 40 (40.8)<br />

G/A 25 (55.6) 34 (47.2) 37 (46.8) 49 (50.0)<br />

A/A 2 (4.4) 17 (23.6) 6 (7.6) 9 (9.2)<br />

Total 45 72 79 98<br />

P-value 0.022 0.798<br />

atherosclerosis (myocardial infarction in<br />

particularly) are con<strong>tr</strong>adictory.<br />

Farzaneh et al. (2001) did not find any<br />

relationship between the G-7A polymorphism <strong>and</strong><br />

serum MGP level in healthy persons (Netherl<strong>and</strong>s),<br />

but did detect the significant association <strong>of</strong> T-138C<br />

polymorphism with above-mentioned parameter.<br />

The highest level <strong>of</strong> serum MGP was revealed in<br />

the C/C homozygotes <strong>and</strong> the lowest one – in T/T<br />

homozygotes.<br />

In con<strong>tr</strong>ast to the above study, Crosier et al.<br />

(2009) found no association <strong>of</strong> the T-138C<br />

polymorphism with serum MGP concen<strong>tr</strong>ation, but<br />

they showed a significant relationship between the<br />

other two polymorphisms (G-7A, Tht83Ala) <strong>and</strong><br />

serum MGP levels in the healthy men <strong>and</strong> women<br />

(USA). In minor allele homozygotes, the serum<br />

MGP concen<strong>tr</strong>ation was the lowest, in major allele<br />

homozygotes the highest, in heterozygotes the<br />

intermediate values were registered.<br />

In the same study, it was shown that all three<br />

MGP SNPs (T-138C, G-7A, Thr83Ala) are related<br />

to the coronary artery calcification (CAC) in men,<br />

but not in women (Crosier et al., 2009).


MGP polymorphisms in ischemic s<strong>tr</strong>oke 23<br />

Table 4. Logistic regression analysis <strong>of</strong> association between G-7A MGP promoter polymorphism <strong>and</strong><br />

ischemic s<strong>tr</strong>oke in male <strong>and</strong> female subjects. OR – odds ratio, CI – confidential interval<br />

Sex Allele OR (CI) P-value<br />

Women A/A vs. G/G 7.286 (1.479-35.895) 0.015<br />

G/A vs. G/G 1.166 (0.516-2.632) 0.712<br />

Men A/A vs. G/G 1.350 (0.437-4.166) 0.602<br />

G/A vs. G/G 1.192 (0.641-2.217) 0.579<br />

Table 5. Clinical characteristics <strong>of</strong> ischemic s<strong>tr</strong>oke patients with respect to genotypes. Data are mean ± SE.<br />

A/A A/a a/a P<br />

T-138C polymorphism<br />

n <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4 53 13<br />

Age, years 65.4±0.92 63.0±1.39 64.7±2.13 0.288<br />

Gender, M/F 58/46 35/18 5/8 0.162*<br />

BMI (M), kg/m 2 27.8±0.56 27.4±0.64 28.1±1.22 0.862<br />

BMI (F), kg/m 2 29.1±0.74 29.4±0.93 29.0±1.17 0.789<br />

Systolic BP, mmHg 168±2.9 165±3.6 168±9.8 0.780<br />

Diastolic BP, mmHg 96±1.7 94±1.8 93±3.8 0.628<br />

Fasting glucose, mmol/L 5.9±0.15 5.9±0.2 6.1±0.53 0.916<br />

G-7A polymorphism<br />

n 61 83 26<br />

Age, years 63.0±1.15 65.3±1.04 66.8±2.09 0.164<br />

Gender, M/F 40/21 49/34 9/17 0.026*<br />

BMI (M), kg/m 2 27.2±0.45 27.9±0.68 28.6±1.53 0.536<br />

BMI (F), kg/m 2 28.3±0.8 29.9±0.86 28.2±1.13 0.315<br />

Systolic BP, mmHg 167±3.7 167±3.3 167±5.2 0.996<br />

Diastolic BP, mmHg 97±2.0 94±1.8 97±2.4 0.593<br />

Fasting glucose, mmol/L 5.8±0.18 6.0±0.17 6.2±0.35 0.481<br />

Thr83Ala polymorphism<br />

n 67 83 20<br />

Age, years 65.1±1.2 64.4±1.0 64.7±2.1 0.912<br />

Gender, M/F 44/23 45/38 9/11 0.176*<br />

BMI (M), kg/m 2 27.6±0.47 27.6±0.67 28.3±1.9 0.891<br />

BMI (F), kg/m 2 29.4±0.84 28.6±0.78 29.9±1.53 0.668<br />

Systolic BP, mmHg 163±3.7 171±3.0 163±6.6 0.252<br />

Diastolic BP, mmHg 95±1.8 96±1.7 95±4.4 0.812<br />

Fasting glucose, mmol/L 5.9±0.2 6.0±0.17 5.9±0.3 0.859


24 Alex<strong>and</strong>er V. ATAMAN et al.<br />

In some studies, MGP polymorphisms were<br />

also shown to be associated with arterial<br />

calcification <strong>and</strong> myocardial infarction (MI)<br />

(Herrmann et al., 2000; Brancaccio et al., 2005),<br />

while in others (Kobayashi et al., 2004; Taylor et<br />

al., 2005) no association between MGP SNPs <strong>and</strong><br />

cardiovascular events was found. Moreover, in the<br />

studies in which such associations were reported,<br />

the relationship between the type <strong>of</strong> MGP<br />

polymorphism <strong>and</strong> arterial calcification was<br />

different. For example, in the AXA study, the<br />

minor alleles -7A <strong>and</strong> 83Ala were associated with<br />

increased femoral artery calcification (Herrmann et<br />

al., 2000), while in the above-mentioned study by<br />

Crosier et al. (2009), the same alleles were linked<br />

to a decreased level <strong>of</strong> CAC.<br />

It should be noted that the majority <strong>of</strong> studies<br />

cited here was devoted to the relation <strong>of</strong> MGP to<br />

CAC <strong>and</strong> MI. As to cerebral artery atherosclerosis<br />

<strong>and</strong> its severe events such as IS, the role <strong>of</strong> arterial<br />

calcification in this disease <strong>and</strong> the association <strong>of</strong><br />

MGP with cerebrovascular pathology were the<br />

subject <strong>of</strong> investigation <strong>and</strong> discussion only in a<br />

few publications. In particular, Bos et al. (2011)<br />

established a close relationship between<br />

calcification in the various vessel beds outside the<br />

brain <strong>and</strong> imaging markers <strong>of</strong> vascular brain<br />

disease. Calcification in each vessel bed was<br />

shown to be associated with the presence <strong>of</strong><br />

cerebral infarcts <strong>and</strong> with larger volume <strong>of</strong> white<br />

matter lesions (WMLs). The most prominent<br />

associations were found between the in<strong>tr</strong>acranial<br />

carotid calcification <strong>and</strong> WML volume <strong>and</strong><br />

between the ex<strong>tr</strong>acranial carotid calcification <strong>and</strong><br />

infarcts.<br />

Acar et al. (2012) studied a relationship <strong>of</strong><br />

serum MGP levels to the development <strong>of</strong><br />

in<strong>tr</strong>acerebral hemorrhages (ICH) <strong>and</strong> found that in<br />

patients with ICH, serum MGP concen<strong>tr</strong>ation was<br />

much lower than in con<strong>tr</strong>ol group. Moreover, in the<br />

non-survivors, the serum MGP levels were<br />

statistically significantly lower in comparison to the<br />

survivors. According to the authors, measurement<br />

<strong>of</strong> this parameter may be <strong>of</strong> value to estimate<br />

mortality.<br />

At present, there are only a few publications<br />

concerning relation <strong>of</strong> the MGP SNPs to<br />

cerebrovascular disease. Analysing 236<br />

polymorphisms, del Rio-Espinola et al. (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>)<br />

showed that only two <strong>of</strong> them (G-7A <strong>of</strong> MGP <strong>and</strong><br />

T-1C <strong>of</strong> CD40) were related to the brain vessel<br />

reocclusion after fibrinolysis in IS patients. In our<br />

study, it was shown that the G-7A polymorphism <strong>of</strong><br />

MGP was associated with IS. In our previous<br />

investigation (Harbusova et al., 2011), this variant<br />

<strong>of</strong> the MGP promoter polymorphism was found to<br />

be in association with the acute coronary syndrome<br />

(ACS). Minor allele homozygotes (A/A) had<br />

significantly higher risk <strong>of</strong> ACS as well as IS. This<br />

could means that there are some common<br />

mechanisms <strong>of</strong> pathogenesis in both ACS <strong>and</strong> IS<br />

concerning to MGP. Those may be atherosclerosis,<br />

arterial calcification, <strong>and</strong> thrombosis.<br />

The relation <strong>of</strong> MGP to blood vessels<br />

calcification is well known (see above). With<br />

respect to coagulation <strong>and</strong> thrombi formation, it can<br />

be suggested that MGP is somehow connected with<br />

these processes (Krueger et al., 2009). Such an<br />

assumption is based on the fact that MGP belongs<br />

to vitamin K-dependent proteins, a large number <strong>of</strong><br />

which are procoagulants (prothrombin, factor V,<br />

etc) <strong>and</strong> can influence blood clotting <strong>and</strong> thrombi<br />

formation in the coronary <strong>and</strong> cerebral arteries. In<br />

some papers (Wallin et al., 2008), an antagonistic<br />

relationship between calcification <strong>and</strong> coagulation<br />

is discussed. Therefore, MGP can be considered as<br />

a connecting link between these two processes.<br />

Certainly, this assumption requires experimental as<br />

well as clinical pro<strong>of</strong>s, <strong>and</strong> research in this<br />

direction should be continued.<br />

References<br />

Abedin M, Tintut Y, Demer LL. Vascular<br />

calcification. Mechanisms <strong>and</strong> clinical<br />

ramifications. Arterioscler Thromb Vasc Biol.<br />

24: 1161-1170, 2004.<br />

Acar A, Cevik MU, Arıkanoglu A, Evliyaoglu<br />

O, Basarılı MK, Uzar E, Ekici F, Yucel<br />

Y, Tasdemir N. Serum levels <strong>of</strong> calcification<br />

inhibitors in patients with in<strong>tr</strong>acerebral<br />

hemorrhage.<br />

232, 2012.<br />

Int J Neurosci. 122: 227-<br />

Adams HP, Bendixen BH, Kappelle LJ, Biller<br />

J, Love BB, Gordon DL, Marsh EE.<br />

Classification <strong>of</strong> subtype <strong>of</strong> acute ischemic<br />

s<strong>tr</strong>oke. Definitions for use in a multicenter<br />

clinical <strong>tr</strong>ial. TOAST. Trial <strong>of</strong> Org <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>172 in<br />

Acute S<strong>tr</strong>oke Treatment. S<strong>tr</strong>oke. 24: 35-41,<br />

1993.<br />

Bos D, Ikram MA, Elias-Smale SE, Krestin<br />

GP, H<strong>of</strong>man A, Witteman JC, van der Lugt<br />

A, Vernooij MW. Calcification in major vessel<br />

beds relates to vascular brain disease.<br />

Arterioscler Thromb Vasc Biol. 31: 2331-2337,<br />

2011.


Brancaccio D, Biondi ML, Gallieni M, Turri O,<br />

Galassi A, Cecchini F, Russo D, Andreucci V,<br />

Cozzolino M. Ma<strong>tr</strong>ix Gla protein gene<br />

polymorphisms: clinical correlates <strong>and</strong><br />

cardiovascular mortality in chronic kidney<br />

disease patients. Am J Nephrol. 25: 548-552,<br />

2005.<br />

Cancela L, Hsiehg CL, Francket U, Price PA.<br />

Molecular s<strong>tr</strong>ucture, chromosome assignment,<br />

<strong>and</strong> promoter organization <strong>of</strong> the human ma<strong>tr</strong>ix<br />

Gla protein gene. J Biol Chem. 265: 15040-<br />

15048, 1990.<br />

Crosier MD, Booth SL, Peter I, Dawson-Hughes B,<br />

Price PA, O'Donnell CJ, H<strong>of</strong>fmann U,<br />

Wiilliamson MK, Ordovas JM. Ma<strong>tr</strong>ix Gla<br />

protein polymorphisms are associated with<br />

coronary artery calcification. J Nu<strong>tr</strong> Sci<br />

Vitaminol. 55: 59-65, 2009.<br />

Debette S, Sechardi S. Genetics <strong>of</strong><br />

atherothrombotic <strong>and</strong> lacunare s<strong>tr</strong>oke. Circ<br />

Cardiovasc Gen. 2: 191-198, 2009.<br />

del Río-Espínola A, Fernández-Cadenas I, Rubiera<br />

M, Quintana M, Domingues-Montanari S,<br />

Mendióroz M, Fernández-Morales J, Giralt D,<br />

Molina CA, Alvarez-Sabín J, Montaner J.<br />

CD40-1C>T polymorphism (rs1883832) is<br />

associated with brain vessel reocclusion after<br />

fibrinolysis in ischemic s<strong>tr</strong>oke.<br />

Pharmacogenomics. 11: 763-772, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Doherty TM, Fitzpa<strong>tr</strong>ick LA, Inoue D, Qiao JH,<br />

Fishbein MC, De<strong>tr</strong>ano RC, Shah PK,<br />

Rajavashisth TB. Molecular, endocrine, <strong>and</strong><br />

genetic mechanisms <strong>of</strong> arterial calcification.<br />

Endocrine Rev. 25: 629-672, 2004.<br />

Farzaneh-Far A, Davies JD, Braam LA, Spronk<br />

HM, Proudfoot D, Chan SW, O'Shaughnessy<br />

KM, Weissberg PL, Vermeer C, Shanaham CM.<br />

A polymorphism <strong>of</strong> the human ma<strong>tr</strong>ix γcarboxyglutamic<br />

acid protein promoter alters<br />

binding <strong>of</strong> an activating protein-1 complex <strong>and</strong><br />

is associated with altered <strong>tr</strong>anscription <strong>and</strong><br />

serum levels. J Biol Chem. 276: 32466-32473,<br />

2001.<br />

Garbuzova VYu, Gurianova VL, Story DA,<br />

Dosenko VE, Parkhomenko AN, Ataman AV<br />

Association <strong>of</strong> ma<strong>tr</strong>ix Gla protein gene allelic<br />

polymorphisms (G -7 →A, T -138 →C <strong>and</strong><br />

Thr83→Ala) with acute coronary syndrome in<br />

the Ukrainian population. Exp Clin Cardiol. 17:<br />

30-33, 2012.<br />

MGP polymorphisms in ischemic s<strong>tr</strong>oke 25<br />

Giachelli CM. Vascular calcification mechanisms.<br />

J Am Soc Nephrol. 15: 2959-2964, 2004.<br />

Guzman RJ. Clinical, cellular, <strong>and</strong> molecular<br />

aspects <strong>of</strong> arterial calcification. J Vasc Surg. 45<br />

(Suppl A): A57-A63, 2007.<br />

Harbusova VYu, Hurianova VL, Parkhomenko<br />

OM, Dosenko VE, Ataman OV. The frequency<br />

<strong>of</strong> allelic polymorphism <strong>of</strong> ma<strong>tr</strong>ix Gla-protein<br />

gene in acute coronary syndrome patients.<br />

Fiziol Zh. 57: 16-24, 2011.<br />

Herrmann SM, Whatling C, Br<strong>and</strong> E, Nikaud V,<br />

Gariepy J, Simon A, Evans A, Ruidavets LB,<br />

Arveiler D, Luc G, Tiret L, Henney A, Cambien<br />

F. Polymorphisms <strong>of</strong> the human ma<strong>tr</strong>ix Gla<br />

protein (MGP) gene, vascular calcification, <strong>and</strong><br />

myocardial infarction. Arterioscler Thromb<br />

Vasc Biol. 20: 2386-2393, 2000.<br />

Kobayashi N, Kitazawa R, Maeda S, Schurgers LJ,<br />

Kitazawa S. T-138C polymorphism <strong>of</strong> ma<strong>tr</strong>ix<br />

Gla protein promoter alters its expression but is<br />

not directly associated with atherosclerotic<br />

vascular calcification. Kobe J Med Sci. 50: 69-<br />

81, 2004.<br />

Krueger T, Westenfeld R, Schurgers LJ,<br />

Br<strong>and</strong>enburg VM. Coagulation meets<br />

calcification: The vitamin K system. Int J Artif<br />

Organs. 32: 67-74, 2009.<br />

Kubo M. Genetic risk factors<br />

<strong>of</strong> ischemic s<strong>tr</strong>oke identified by a genome-wide<br />

association study. Brain Nerve. 60: 1339-1346,<br />

2008.<br />

Lehto S, Niskanen L, Suhonen M, Rönnemaa T,<br />

Laasko M. Medial artery calcification. A<br />

neglected harbinger <strong>of</strong> cardiovascular<br />

complications in non-insulin-dependent diabetes<br />

mellitus. Arterioscler Thromb Vasc Biol. 16:<br />

978-988, 1996.<br />

Low HQ, Chen CP, Kasiman K, Thalamuthu A, Ng<br />

SS, Foo JN, Chang HM, Wong MC, Tai ES, Liu<br />

J. A comprehensive association analysis <strong>of</strong><br />

homocysteine metabolic pathway genes in<br />

Singaporean Chinese with ischemic s<strong>tr</strong>oke.<br />

PLoS One. 6: e24757, 2011.<br />

Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E,<br />

Behringer RR, Karsenty G. Spontaneous<br />

calcification <strong>of</strong> arteries <strong>and</strong> cartilage in mice<br />

lacking ma<strong>tr</strong>ix Gla protein. Nature. 386: 78-81,<br />

1997.


26 Alex<strong>and</strong>er V. ATAMAN et al.<br />

Matarin M, Brown WM, Dena H, Britton A, De<br />

Vrieze FW, Brott TG, Brown RD, Worrall BB,<br />

Case LD, Chanock SJ, Metter EJ, Ferruci L,<br />

Gamble D, Hardy JA, Rich SS, Singleton A,<br />

Meschia JF. C<strong>and</strong>idate gene polymorphisms for<br />

ischemic s<strong>tr</strong>oke. S<strong>tr</strong>oke. 40: 3436-3442, 2009.<br />

Murshed M, Schinke T, McKee MD, Karsenty G.<br />

Ex<strong>tr</strong>a cellular ma<strong>tr</strong>ix mineralization is regulated<br />

locally: different roles <strong>of</strong> two Gla-containing<br />

proteins. J <strong>Cell</strong> Biol. 165: 625-630, 2004.<br />

Post W, Bielak LF, Ryan KA, Cheng YC, Shen H,<br />

Rumberger JA, Sheedy PF, Shuldiner AR,<br />

Peyser PA, Mitchell BD. Determinants <strong>of</strong><br />

coronary artery <strong>and</strong> aortic calcification in the<br />

Old Order Amish. Circulation. 115: 717-724,<br />

2007.<br />

Price PA, Faus SA, Williamson MK. Warfarin<br />

causes rapid calcification <strong>of</strong> the elastic lamellae<br />

in rat arteries <strong>and</strong> heart valves. Arterioscler<br />

Thromb Vasc Biol. 18: 1400-1407, 1998.<br />

Proudfoot D, Shanahan CM. Molecular<br />

mechanisms mediating vascular calcification:<br />

role <strong>of</strong> ma<strong>tr</strong>ix Gla protein. Nephrology<br />

(Carlton). 11: 455-461, 2006.<br />

Schurgers LJ, Teunissen KJF, Knapen MHJ,<br />

Kwaijtaal M, van Diest R, Appels A,<br />

Reutelingsperger CP, Cleutjens JPM, Vermeer<br />

C. Novel conformation-specific antibodies<br />

against ma<strong>tr</strong>ix gamma-carboxyglutamic acid<br />

(Gla) protein. Arterioscler Thromb Vasc Biol.<br />

25: 1629-1633, 2005.<br />

Taylor BC, Schreiner PJ, Doherty TM, Fornage M,<br />

Carr JJ, Sidney S. Ma<strong>tr</strong>ix Gla protein <strong>and</strong><br />

osteopontin genetic associations with coronary<br />

artery calcification <strong>and</strong> bone density: the<br />

CARDIA study. Hum Genet. 116: 525-528,<br />

2005.<br />

Wallin R, Schurgers L, Wajih N. Effects <strong>of</strong> the<br />

blood coagulation vitamin K as an inhibitor <strong>of</strong><br />

arterial calcification. Thromb Res. 122: 411-<br />

417, 2008.<br />

Wang X, Cheng S, Brophy VH, Erlich HA,<br />

Mannhalter C, Berger K, Lalouschek W,<br />

Browner WS, Shi Y, Ringelstein EB, Kessler C,<br />

Luedemann J, Lindpaintner K, Liu L, Ridker<br />

PM, Zee RY, Cook NR. A meta-analysis <strong>of</strong><br />

c<strong>and</strong>idate gene polymorphisms <strong>and</strong> ischemic<br />

s<strong>tr</strong>oke in 6 study populations: association <strong>of</strong><br />

lymphotoxin-alpha in nonhypertensive patients.<br />

S<strong>tr</strong>oke. 40: 683-695, 2009.<br />

Weissen-Plenz G, Nitschke Y, Rutsch F.<br />

Mechanisms <strong>of</strong> arterial calcification: spotlight<br />

on the inhibitors. Adv Clin Chem. 46: 263-293,<br />

2008.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1):27-32, 2012 Research Article 27<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

<br />

Survivin geni -625G/C polimorfizminin Küçük Hücreli Dışı Akciğer<br />

Kanseri ile ilişkisinin araştırılması<br />

Engin AYNACI 1 , Ender COŞKUNPINAR 2 , Ayşe EREN 2 , Onur KUM 1 , Yasemin<br />

MÜŞTERİ OLTULU 2 , Nergiz AKKAYA 2 , Akif TURNA 3 , İlhan YAYLIM 2 , Pınar<br />

YILDIZ *1 .<br />

1 Yedikule Chest Diseases <strong>and</strong> Thoracic Surgery Training Hospital, Istanbul, Turkey<br />

2 Department <strong>of</strong> Molecular Medicine, Institute <strong>of</strong> Experimental Medicine, Istanbul University, Istanbul,<br />

Turkey<br />

3 Cerrahpaşa Medicine Faculty, Department <strong>of</strong> Thoracic Surgery, Istanbul University, Istanbul, Turkey<br />

(*author for correspondence; pinary70@yahoo.com)<br />

Received: 14 February 2012; Accepted: 21 May 2012<br />

Özet<br />

Akciğer kanseri tüm kanser türleri arasında görülme sıklığı olarak ikinci sırada, kanser sebepli ölümler<br />

arasında ise ilk sırada gelmektedir. Survivin geni 17q25 kromozomal bölgesinde lokalizedir ve 142 amino<br />

asitten oluşan bir protein kodlar. Survivin (BIRC5) apoptozu düzenleyen önemli bir protein ailesi olan<br />

apoptoz proteinlerinin inhibitörü (IAPs) olarak ilk bulunan inhibitörlerden biridir ve özellikle kanser<br />

hücrelerinde ifadesi gerçekleşir. Survivin genindeki polimorfizm survivin üretimi ve aktivitesine etki<br />

edebilir, bu nedenle akciğer kanserine hassasiyet sağlar. Survivin genindeki aşırı ifadenin çok çeşitli<br />

maligniteleri içeren kanser türlerinde hastalık gelişimi, nüksü ve prognozu ile ilişkili olduğu bilinmektedir.<br />

Bu çalışmada bir Türk popülasyonunda survivin geni promotör bölgesi üzerinde bulunan -625G/C gen<br />

polimorfizmi ile küçük hücreli dışı akciğer kanseri arasında, hastalığın gelişimi ile ilgili olası ilişkilerin<br />

araştırılması amaçl<strong>and</strong>ı. Çalışmaya 146 hasta, 98 kon<strong>tr</strong>ol olgu dahil edildi. Yöntem olarak PCR-RFLP tekniği<br />

kullanıldı. Sonuç olarak survivin -625G/C genotip dağılımları incelendiğinde hasta ve kon<strong>tr</strong>ol grupları<br />

arasında istatistiksel olarak anlamlı fark olmadığı tespit edilmiştir.<br />

Anahtar kelimeler: Küçük hücreli dışı akciğer kanseri, survivin, gen polimorfizmi, PCR-RFLP, biyobelirteç.<br />

Investigation <strong>of</strong> the association <strong>of</strong> survivin gene -625G/C polymorphism in non-small cell<br />

lung cancer<br />

Abs<strong>tr</strong>act<br />

Lung cancer is the second most common cancer type diagnosed <strong>and</strong> first in cancer related deaths among all<br />

cancers worldwide. The survivin gene is located on human chromosome 17q25, encoding a protein consisting<br />

<strong>of</strong> 142 amino acids. Survivin is one <strong>of</strong> the first reported inhibitors <strong>of</strong> apoptosis proteins, which is an<br />

important family <strong>of</strong> proteins that regulate apoptosis. Survivin gene polymorphism may affect the survivin<br />

production <strong>and</strong> activity, thus providing sensitivity for the development <strong>of</strong> lung cancer. The overexpression <strong>of</strong><br />

survivin gene was found to be associated with disease development, recurrence <strong>and</strong> prognosis in various<br />

malignancies, including cancers. In this study the demons<strong>tr</strong>ation <strong>of</strong> the prognosis related associations<br />

between the -625G/C gene polymorphism located on the survivin promoter region <strong>and</strong> non small cell lung<br />

cancer in a Turkish population was aimed. 146 patients <strong>and</strong> 98 con<strong>tr</strong>ol subjects included to the study. PCR-<br />

RFLP technique was used as the method. According to survivin -625G/C genotype dis<strong>tr</strong>ibution analysis, no<br />

statistically significant difference between patients <strong>and</strong> con<strong>tr</strong>ols were found.<br />

Keywords: Non small cell lung cancer, survivin, gene polymorphism, PCR-RFLP, biomarker.


28 Engin AYNACI et al.<br />

Giriş<br />

Akciğer kanseri tüm dünyada kansere bağlı<br />

ölümlerin önde gelen sebebi olarak bilinmektedir.<br />

Bununla birlikte özellikle Amerika’da kansere bağlı<br />

ölüm oranları arasında akciğer kanseri sıklığı<br />

gitgide azalmakta, fakat Çin gibi sigara tüketiminin<br />

özellikle son 20 yılda arttığı bazı ülkelerde akciğer<br />

kanseri sebepli ölüm oranının arttığı<br />

gözlenmektedir. Amerika’da 2008 yılında 215.020<br />

yeni vaka belirlenirken, 161.840 kişinin bu hastalık<br />

sebebiyle öldüğü, kayıtlarda yer almaktadır.<br />

Akciğer kanserinin küçük hücreli (KHAK) ve<br />

küçük hücreli dışı (KHDAK) olmak üzere iki tipi<br />

vardır. Son 60 yıldır akciğer kanserinde hastalık<br />

gelişiminin kalıtsal bir temele oturduğu<br />

belirtilmektedir. (Julian et al., 2008).<br />

Programlanmış hücre ölümü olarak bilinen apoptoz,<br />

önemli bir hücre büyüme kon<strong>tr</strong>ol mekanizmasıdır<br />

(Yuan-Hung et al., 2009; Thompson, 1995).<br />

Survivin (BIRC5 olarak da bilinir) apoptozu<br />

düzenleyen önemli bir protein ailesi olan apoptoz<br />

proteinlerinin inhibitörü (IAP) olarak ilk bulunan<br />

inhibitörlerden biridir ve özellikle kanser<br />

hücrelerinde ifadesi gerçekleşir (Reed,1997).<br />

Survivin terminal tetikleyici kaspaz-3 ve kaspaz-9<br />

aktivitesini inhibe ederek her iki apoptoz yolunun<br />

baskılanmasını bloke eder (Nicholson <strong>and</strong><br />

Thornberry, 1997). Ayrıca survivin apoptotik<br />

uyarıcıyla indüklenen interlökin (IL-3), Fas<br />

(CD95), Bax, tümör nekroz faktörü α, kaspazlar ve<br />

antikanser ilaçlarınının etkisini yok eder (Chan et<br />

al., 2009; Yun-Hong et al., 2004). Mitozda<br />

düzenleyici rol oynadığı da çeşitli yayınlarda (Chan<br />

et al., 2009) bildirilmiş olan survivin geni 17q25<br />

kromozomal bölgesinde lokalizedir ve 142 amino<br />

asitten oluşan bir protein kodlar (Chiou et al., 2003;<br />

Deveraux et al., 1997; Uren et al., 1998).<br />

Survivin ayrıca mikrotübül dinamiklerinin<br />

düzenlenmesinde de önemli rol oynar (Li et al.,<br />

1998; Li <strong>and</strong> Altieri, 1999; Altieri, 2006; Giodini et<br />

al., 2002). Survivin geni promotör bölgesindeki<br />

polimorfizmler genin <strong>tr</strong>anskripsiyonuna etki ettiği<br />

için gen aktivitesini ve ekspresyonunu değiştirerek<br />

akciğer kanserine yatkınlık sağlayabilir (Jin Sung et<br />

al., 2008).<br />

Survivin hücre döngüsünde G2/M fazında bol<br />

miktarda eksprese olur ve G1 fazında hızlı<br />

regülasyon sergiler (Li et al., 1998). Bu durum<br />

<strong>tr</strong>anskripsiyonel basamakta kon<strong>tr</strong>ol edilir ve hücre<br />

döngüsüne bağlı elementler (CDE) ve hücre<br />

döngüsü homoloji bölgeleri (CHR) survivin<br />

promotörünün proksimal bölgesinde lokalize olur<br />

(Masayuki et al., 2000; Li <strong>and</strong> Altieri, 1999).<br />

Survivin geni ekspresyon düzeylerindeki artışın<br />

bazı hastalıklar için prognostik belirteç olabileceği<br />

düşünülmektedir (Chun-Hua et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Survivin<br />

genellikle embriyonik dokularda ifade olur ve<br />

görülen homozigot mutasyonların erken<br />

embriyonik dönemde ölümle sonuçlanması bu gen<br />

ailesinin hücre gelişimi, farklılaşması ve homeostaz<br />

sürecinde çok önemli rol oynadığını göstermektedir<br />

(Chan et al., 2009).<br />

Çeşitli tek-nükleotit polimorfizmleri survivin<br />

gen bölgesi promotöründe tespit edilmiştir.<br />

Bunlardan en çok bilineni ve literatürde en fazla<br />

çalışması yapılmış olan CDE/CHR reseptör<br />

bağlayıcı bölgede lokalize olan -31G/C gen<br />

polimorfizmidir. Survivin geninin promotör<br />

bölgesindeki bu mutasyon sonucu hücre<br />

döngüsünden bağımsız olarak genin<br />

<strong>tr</strong>anskripsiyonu ve bunun sonucunda da aşırı ifadesi<br />

görülür (Xu et al., 2004).<br />

Bu çalışmada KHDAK hastalarında PCR-RFLP<br />

tekniği kullanılarak survivin geni promotör<br />

bölgesindekiki -625G/C (rs8073069)<br />

polimorfizminin bir Türk popülasyonunda KHDAK<br />

hastalığına yatkınlığı araştırılmıştır.<br />

Akciğer kanseri ile ilgili olarak eldeki verilerin<br />

doğru olarak kullanılması ve buna ek olarak<br />

hastalık oluşumu ya da gelişiminin anlaşılmasına<br />

yönelik belirteçlerin ve genetik mekanizmaların<br />

anlaşılması özellikle hastalığın erken tanısı ve<br />

tedavi sürecinde bu hastalar için anlamlı olacaktır.<br />

Materyal ve metod<br />

Örneklerin tanımı<br />

Çalışma ile ilgili olarak öncelikle İstanbul<br />

Üniversitesi İstanbul Tıp Fakültesi Etik<br />

Değerlendirme Komisyonu’ndan 09.06.20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> tarih<br />

ve 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>/228-36 dosya numarası ile etik kurul onayı<br />

alındı. Çalışmaya Yedikule Göğüs Hastalıkları ve<br />

Göğüs Cerrahisi Eğitim ve Araştırma Hastanesi 3.<br />

Klinikte ve İstanbul Üniversitesi Cerrahpaşa Tıp<br />

Fakültesi Göğüs Cerrahisi Kliniğinde tanı konulan<br />

toplam 146 KHDAK olgusu ile yine aynı<br />

kliniklerde tetkik edilen ve kronik hastalık veya<br />

malignite bulgusu saptanmayan 98 sağlıklı kon<strong>tr</strong>ol<br />

olgusu alındı. Çalışmaya girmeyi kabul edenlere<br />

gönüllü olur imzaladıktan sonra 1 adet EDTA’lı<br />

tüpe <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> ml kanları alınarak soğuk zincirle<br />

laboratuvara ulaştırıldı.<br />

DNA izolasyonu<br />

Gönüllülerden alınan kanlardan High Pure PCR<br />

Template Preparation Kit (Roche, Manheim)<br />

protokolüne uygun olarak genomik DNA


izolasyonu yapıldı ve daha sonra Nano Drop<br />

Spek<strong>tr</strong><strong>of</strong>otome<strong>tr</strong>e kullanılarak, elde edilen<br />

DNA’ların konsan<strong>tr</strong>asyonları ölçüldü. DNA’lar<br />

konsan<strong>tr</strong>asyonları <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 ng/μl olacak şekilde<br />

seyreltildi.<br />

PCR<br />

Survivin geni promotör bölgesindeki -625G/C<br />

polimorfizmine özgü primerler (Tablo 1) dizayn<br />

edildi. PCR, total hacim 25 µl ve <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>X PCR Buffer<br />

(MBI Fermentas), 1mM MgCl2, 0.2 mM dNTP,<br />

<br />

KHDAK’de survivin polimorfizmi 29<br />

0.375 mM her bir primer, <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 ng genomik DNA ve<br />

1 U Taq DNA polimeraz (MBI Fermentas) olacak<br />

şekilde dizayn edildi. Amplifikasyon şartları,<br />

95°C’de <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> dakika ilk denatürasyondan sonra<br />

95°C’de 45 saniye, 72°C’de 60 saniye 5 döngü,<br />

takiben 94°C’de 45 saniye, 60°C’de 45 saniye ve<br />

72°C’de 60 saniye 30 döngü, uzama aşamasında da<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> dakika 72°C’de olacak şekilde düzenlendi.<br />

Optimum amplifikasyon şartları sağlanarak PCR<br />

ürünleri %2 lik agaroz jel elek<strong>tr</strong><strong>of</strong>orezinde<br />

yürütüldü.<br />

Tablo 1. Survivin geni promotör -625 G/C bölgesi primerleri (FP: İleri Primer, RP: Geri Primer)<br />

Polimorfizm Primer Dizileri PCR Ürün boyu<br />

-625C/G<br />

(rs8073069)<br />

Res<strong>tr</strong>iksiyon analizi<br />

FP: 5’-TGTTCATTTGTCCTTCATGCGC-3’<br />

RP: 5’-CCAGCCTAGGCAACAAGAGCAA-3’<br />

Amplifiye olan PCR ürünleri BstUI res<strong>tr</strong>iksiyon<br />

enzimi ile uygun tamponu içeren karışım<br />

hazırl<strong>and</strong>ıktan sonra 37°C de 4 saat inkübe edildi.<br />

Kesim ürünleri % 3’lük agaroz jelde <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 volt<br />

elek<strong>tr</strong>ik altında, 20 dakika yürütüldükten sonra UV<br />

altında incelenerek genotipler tespit edildi.<br />

İstatistiksel analiz<br />

AJJC tarafından yayınlanmış olan evrelendirme<br />

sistemine göre tümör evrelendirmesi yapılan hasta<br />

olguları ve kon<strong>tr</strong>ollere ait veriler SPSS 15.0<br />

programına yüklendi ve kategorik verilerin<br />

karşılaştırılmasında ki-kare testi ve parame<strong>tr</strong>ik ttesti<br />

kullanıldı.<br />

Şekil 1. Survivin geni -625 G/C bölgesi PCR<br />

görüntüsü<br />

Sonuçlar<br />

125 bç<br />

BstUI kesimi sonrası<br />

ürün boyları<br />

CC: 125<br />

CG: 125/<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4/21<br />

GG: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4/21<br />

Çalışmaya 146 KHDAK hastası ve 98 kon<strong>tr</strong>ol olgu<br />

dahil edildi. Hastaları yaş ortalaması 60,41 yaş<br />

(±9,71), kon<strong>tr</strong>ol olgularının yaş ortalaması 55,23<br />

yaş (±8,8.) di. Çalışmaya dahil edilen hastalardan<br />

132’si erkek (%90,4), 14’ü kadın (%9,6), kon<strong>tr</strong>ol<br />

grubu olgularının ise 56’sı erkek (%57,1), 42’si<br />

kadındı (%42,9). Hasta ve kon<strong>tr</strong>ol grubuna ait<br />

genotip ve alel dağılımları Tablo 2’de verilmiştir.<br />

PCR sonucu elde edilen bant boyu 125 baz çifti<br />

büyüklüğünde (Şekil 1); BstUI res<strong>tr</strong>iksiyon enzimi<br />

kesimi sonucu elde edilen bant büyüklükleri ise<br />

125, <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4 ve 21 baz çifti olarak görüntülendi (Şekil<br />

2).<br />

Şekil 2. BstUI kesimi %3’lük<br />

jel elek<strong>tr</strong><strong>of</strong>orezi görüntüsü. M: 50 bp DNA markörü


30 Engin AYNACI et al.<br />

<br />

Tablo 2. Hasta ve kon<strong>tr</strong>ol grubuna ait genotip ve alel dağılımları<br />

Genotipler ve Alel<br />

dağılımları<br />

Kon<strong>tr</strong>ol<br />

Grubu<br />

N=98<br />

Hasta<br />

Grubu<br />

N=146<br />

-625G/C N % N %<br />

GG 56 57.1 72 49.3<br />

GC 32 32.7 57 39.1<br />

CC <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.2 17 11.6<br />

Aleller<br />

P değeri χ2<br />

0.484 1.45<br />

tamamlamış<br />

yapmış<br />

yapmış<br />

G<br />

C<br />

144<br />

52<br />

56.06<br />

43.94<br />

201<br />

91<br />

58.59<br />

41.41<br />

0.27 1.21<br />

Tartışma<br />

düzeyindeki artışın -31G/C polimorfizmi ile ilişkili<br />

olduğunu ve bu artışın hem mRNA düzeyinde hem<br />

de protein düzeyinde meydana geldiğini<br />

Kanser oluşumunda apoptoz mekanizmasındaki<br />

bozukluklar önemli rol oynamaktadır. Apoptoz,<br />

farklı inhibe ve aktive edici ajanlar tarafından<br />

kon<strong>tr</strong>ol altında tutulan önemli bir olaydır. Kanserde<br />

apoptozun çeşitli anti-apoptotik proteinler<br />

tarafından inhibisyonu söz konusudur.<br />

Survivin, hücre döngüsünün düzenlenmesinde<br />

temel rol oynayan başlıca anti-apoptotik faktördür.<br />

Ayrıca survivinin Bcl-2 ve diğer IAPlerin aksine<br />

farklılaşmasını normal dokularda<br />

anlatımı olmayan ancak çeşitli kanser tiplerinde<br />

ifade edilen bir protein olduğu bilinmektedir. Bu<br />

durum survivin genindeki anormal ifadenin<br />

<strong>tr</strong>anskripsiyonel regülasyon bozukluğuna sebep<br />

olduğunun açık bir göstergesidir. Apoptozu inhibe<br />

eden diğer proteinlerde de bulunan BIR<br />

(“Baculovirus IAP Repeat”) bölgesi ile kaspazlara<br />

bağlanarak etkisini göstermektedir. Dai ve ark.<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> yılında yaptıkları çalışmada survivin geni<br />

promotor bölgesindeki polimorfizmlerin<br />

KHDAK’de gen modifikasyonuna neden<br />

olabileceğini ileri sürmüşlerdir.<br />

Jang ve ark. tarafından yapılan çalışmada -31 G<br />

alelinin -31 C aleline göre önemli derecede düşük<br />

<strong>tr</strong>anskripsiyonel aktiveye sahip olduğu ve bu<br />

durumun -31G/C polimorfizminden etkilenerek<br />

ortaya çıktığı ve buna bağlı olarak -31G/C<br />

polimorfizminin akciğer kanserine yatkınlıkta<br />

önemli bir rolü olduğu belirtilmektedir. (Jang et al.,<br />

2008). Xu ve ark. kanser hücre hatları ile<br />

oldukları bir çalışmada survivin gen ifadesi<br />

.<br />

bildirmişlerdir.<br />

Klinik perspektiften bakıldığında kişisel<br />

paternlerle klinik özelliklerin öngörülmesinde<br />

hastaların genetik parmak izinde survivin geni<br />

ifadesi düzeylerinde ve genetik varyantlarda oluşan<br />

değişikliklerin olası tedaviye yanıtta erken bir<br />

belirteç olabileceğini söylemek mümkündür.<br />

Örneğin plevral efüzyondaki yüksek survivin<br />

düzeylerinin kötü prognoz göstergesi olduğu Lan<br />

ve ark. 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> yılındaki yayınında gösterilmiştir.<br />

Yang ve ark 2009 yılında özefagus kanserli<br />

hastalarda yaptıkları bir çalışmada C alleline sahip<br />

olmanın hastalık riskini 1.4 kat arttırdığını<br />

söylemektedirler. Özefagus kanseri hastalarında<br />

survivin -625G/C promotor polimorfizminin p53<br />

düzeyine bağlı olan survivin yüksek ifadesi<br />

olasılığını artırdığı düşünülmektedir.<br />

Sonuç olarak bir Türk popülasyonu üzerinde<br />

olduğumuz bu çalışmada survivin geni -625<br />

G/C bölgesi (rs8073069) polimorfizminin küçük<br />

hücreli dışı akciğer kanseri hastalığına yatkınlık<br />

sağladığına dair herhangi bir bulgu elde edilemedi.<br />

Ancak olgu sayısının artırılması ve polimorfik<br />

bölgenin özellikle <strong>tr</strong>anskripsiyonun aktivitesine etki<br />

eden promotör bölgesinde olmasından dolayı<br />

yapılabilecek ekspresyon çalışmaları ile özellikle<br />

tanı öncesi ve sonrası gen anlatım ifadesine bağlı<br />

değişikliklerin öngörülmesine yardımcı olabilecek<br />

daha anlamlı sonuçlara ulaşılabileceği<br />

kanaatindeyiz.


Kaynaklar<br />

Altieri DC. Survivin apoptosis: an interloper<br />

between cell death <strong>and</strong> proliferation in cancer.<br />

Lab Invest. 79: 1327-1333, 1999.<br />

Altieri DC. The case for survivin as a regulator <strong>of</strong><br />

microtubule dynamics <strong>and</strong> cell-death decisions.<br />

Curr Opin <strong>Cell</strong> Biol. 18: 609-615, 2006.<br />

Chan H. Han, Qingyi Wei, Karen K. Lu,<br />

Zhensheng Liu, Gordon B. Mills, Li-E Wang.<br />

Polymorphisms in the survivin promoter are<br />

associated with age <strong>of</strong> onset <strong>of</strong> ovarian cancer.<br />

Int J Clin Exp Med. 2: 289-299, 2009.<br />

Chiou SK, Jones MK, Tarnawski AS. Survivin an<br />

anti-apoptosis protein: its biological roles <strong>and</strong><br />

implications for cancer <strong>and</strong> beyond. Med Sci<br />

Monit. 9:I25-I29, 2003.<br />

Chun-Hua Dai, Jian Li, Shun- Bing Shi, Li- Chao<br />

Yu, Li-Ping Ge, Ping Chen, Survivin <strong>and</strong> Smac<br />

Gene Expressions but not Livin Are Predictors<br />

<strong>of</strong> Prognosis in Non-small <strong>Cell</strong> Lung Cancer<br />

Patients Treated with Adjuvant Chemotherapy<br />

Following Surgery. Jpn J Clin Oncol. 2-9,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Dai J, Jin G, Dong J, Chen Y, Xu L, Hu Z, Shen H.<br />

Prognostic significance <strong>of</strong> survivin<br />

polymorphisms on non-small cell lung cancer<br />

survival. J Thorac Oncol. 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

Nov;5(11):1748-54. PubMed PMID: 20881643.<br />

Deveraux QL, Takahashi R, Salvesen GS <strong>and</strong> Reed<br />

JC. X-linked IAP is a direct inhibitor <strong>of</strong> celldeath<br />

proteases. Nature. 388: 300-304, 1997.<br />

Giodini A, Kallio MJ, Wall NR, Gorbsky GJ, Tognin<br />

S, Marchisio PC, Symons M <strong>and</strong> Altieri<br />

DC. Regulation <strong>of</strong> microtubule stability <strong>and</strong><br />

mitotic progression by survivin. Cancer Res.<br />

62: 2462-2467, 2002.<br />

Jang JS, Kim KM, Kang KH, Choi JE, Lee WK,<br />

Kim CH, Kang YM, Kam S, Kim IS, Jun JE,<br />

Jung TH, Park JY. Polymorphisms in the<br />

survivin gene <strong>and</strong> the risk <strong>of</strong> lung cancer. Lung<br />

Cancer. Apr;60(1):31-9, 2008.<br />

Jin Sung Jang,,Kyung Mee Kim, Kyung Hee Kang,<br />

Jin Eun Choi, Won Kee Lee, Chang Ho Kim,<br />

Young Mo Kang, Sin Kam, In-San Kim, Jae<br />

Eun Jun, Tae Hoon Jung, Jae Young Park.<br />

Polimorphizms in the survivin gene <strong>and</strong> the risk<br />

<strong>of</strong> lung cancer. Lung Cancer. 60:31-39, 2008.<br />

KHDAK’de survivin polimorfizmi 31<br />

Julian R. Molina, Ping Yang, Stephen D. Cassivi,<br />

Steven E. Schild,, Alex A. Adjei, Non–Small<br />

<strong>Cell</strong> Lung Cancer: Epidemiology, Risk Factors,<br />

Treatment, <strong>and</strong> Survivorship. Mayo Clin<br />

Proc.83(5): 584–594.,2008.<br />

Lan CC, Wu YK, Lee CH, Huang YC, Huang CY,<br />

Tsai YH, Huang SF, Tsao TC. Increased<br />

survivin mRNA in malignant pleural effusion is<br />

significantly correlated with survival. Jpn J Clin<br />

Oncol. Mar;40(3):234-40, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Li F, Ambrosini G, Chu EY, Plescia J, Tognin S,<br />

Marchisio PC <strong>and</strong> Altieri DC. Con<strong>tr</strong>ol <strong>of</strong><br />

apopto-sis <strong>and</strong> mitotic spindle checkpoint by<br />

survivin. Nature. 396: 580-584, 1998.<br />

Li F.,Altieri DC. The cancer antiapoptosis mouse<br />

survivin gene: characterization <strong>of</strong> locus <strong>and</strong><br />

<strong>tr</strong>anscriptional requirements <strong>of</strong> basal <strong>and</strong> cell<br />

cycle-dependent expression. Cancer Res.59:<br />

3143-3151, 1999.<br />

Masayuki Otaki, Masahiko Hatano, Koichi<br />

Kobayashi, Takeshi Ogasawara, Takayuki<br />

Kuriyama, Takeshi Tokuhisa <strong>Cell</strong> cyledependent<br />

regulation <strong>of</strong> TIAP/m-survivin<br />

expression. Biochim Biophys Acta. 1493:188-<br />

194, 2000.<br />

Nicholson DW,Thornberry NA. Caspase:killer<br />

proteases. Trends Biochem Sci. 22:299-306,<br />

1997.<br />

Reed JC. X-linked IAP is a direct inhibitor <strong>of</strong> celldeath<br />

proteases. Nature. 388: 300-304, 1997.<br />

Thompson CB. Apoptosis is the pathogenesis <strong>and</strong><br />

<strong>tr</strong>eatment <strong>of</strong> disease. Science. 5267:1456-1462,<br />

1991.<br />

Uren AG, Coulson EJ <strong>and</strong> Vaux DL. Conserva-tion<br />

<strong>of</strong> baculovirus inhibitor <strong>of</strong> apoptosis repeat<br />

proteins (BIRPs) in viruses, nematodes, vertebrates<br />

<strong>and</strong> yeasts. Trends Biochem Sci. 23: 159-<br />

162, 1998.<br />

Xu Y, Fang F, Ludewig G, Jones G, Jones D. A<br />

mutation found in promoter region <strong>of</strong> the human<br />

survivin gene is correlated to overexpression <strong>of</strong><br />

survivin in cancer cells. DNA <strong>Cell</strong> Biol.<br />

23:419-429, 2004.<br />

Yang X, Xiong G, Chen X, Xu X, Wang K, Fu Y,<br />

Yang K, Bai Y. Polymorphisms <strong>of</strong> survivin<br />

promoter are associated with risk <strong>of</strong> esophageal<br />

squamous cell arcinoma. J Cancer Res Clin<br />

Oncol. Oct;135(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>):1341-9, 2009.


32 Engin AYNACI et al.<br />

Yang X, Xiong G, Chen X, Xu X, Wang K, Fu Y,<br />

Yang K, Bai Y. Survivin expression in<br />

esophageal cancer: correlation with p53<br />

mutations <strong>and</strong> promoter polymorphism. Dis<br />

Esophagus. 2009;22(3):223-30.<br />

Yuan-Hung Wang, Hung-Yi Chiou, Chang-Te Lin,<br />

Hsiao-Yen Hsieh, Chia-Chang Wu, Cheng-Da<br />

Hsu, Cheng-Huang Shen. Association Between<br />

Survivin Gene Promoter -31C/G Polymorphism<br />

<strong>and</strong> Urothelial Carcinoma Risk in Taiwanese<br />

Population. Urology. 73 (3):670-674, 2009.<br />

Yun-Hong Li, Chen Wang, Kui Meng, Long-Bang<br />

Chen, Xiao-Jun Zhou, İnfluence <strong>of</strong> survivin <strong>and</strong><br />

caspase-3 on cell apoptosis <strong>and</strong> prognosis in<br />

gas<strong>tr</strong>ic carcinoma. World J Gas<strong>tr</strong>oenterol.<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(13):1984-1988, 2004


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1):33-40, 2012 Research Article 33<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Effects <strong>of</strong> prenatal <strong>and</strong> neonatal exposure to lead on white blood<br />

cells in Swiss mice<br />

Ragini SHARMA*, Khushbu PANWAR, Sheetal MOGRA<br />

Environmental <strong>and</strong> Developmental Toxicology Research Lab, Department <strong>of</strong> Zoology, M. L. S. University,<br />

Udaipur- 313001 Rajasthan, India<br />

(* author for correspondence; taurasragini@yahoo.com)<br />

Received: 27 August 2011; Accepted: 25 May 2012<br />

Abs<strong>tr</strong>act<br />

Lead exposure is one <strong>of</strong> the major environmental issues for children <strong>and</strong> women <strong>of</strong> child bearing age. It<br />

crosses the placental barrier <strong>and</strong> its greater intestinal absorption in fetus results in developmental defects.<br />

Lead, as one <strong>of</strong> the environmental pollutants, can threat the lives <strong>of</strong> animals <strong>and</strong> human beings in many ways;<br />

especially during developing stages. The present study was carried out to study the alterations in different<br />

types <strong>of</strong> white blood cells (WBC) due to chronic lead acetate toxicity in neonates, which passes from adult<br />

pregnant female during gestation <strong>and</strong> lactation. Lead acetate was administered orally at 8, 16, 32 mg /kg/BW<br />

to pregnant Swiss mice from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>th day <strong>of</strong> gestation to 21th day <strong>of</strong> lactation. Hematopathological <strong>and</strong><br />

numerical alterations in the WBCs were examined in the neonates after birth at postnatal days 1, 7, 14 <strong>and</strong><br />

21. Blood smears examined illus<strong>tr</strong>ate that lead induces disturbances in the development <strong>of</strong> different types <strong>of</strong><br />

WBCs during postnatal development <strong>and</strong> lead to an abrupt neu<strong>tr</strong>ophilic degeneration, immature cells,<br />

abnormal neu<strong>tr</strong>ophils, reactive <strong>and</strong> plasmacytoid lymphocytes. The results <strong>of</strong> the present study emphasize<br />

that prenatal lead exposure is ex<strong>tr</strong>emely dangerous to developing fetus.<br />

Keywords: Lead acetate, Swiss albino mice, prenatal, neonatal, white blood cells.<br />

Swiss farelerde prenatal ve yenidoğan kurşun maruziyetinin beyaz kan hücreleri üzerine<br />

etkileri<br />

Özet<br />

Kurşun maruziyeti çocuklar ve çocuk doğurma çağındaki kadınlar için majör çevresel konulardan birisidir.<br />

Plasental bariyeri geçer ve fetusta barsaklardan emilimi, gelişimsel defektlerle sonuçlanır. Çevresel<br />

kirliliklerden biri olan kurşun, birçok yönden özellikle gelişim çağı boyunca insan ve hayvan hayatını tehdit<br />

etmektedir. Bu çalışma, yetişkin hamile dişilerden gebelik ve laktasyon süresince yenidoğanlara geçen<br />

kurşun asetatın yarattığı kronik toksisite sebebiyle lökositlerin farklı tiplerindeki değişimleri incelemek için<br />

yapılmıştır. Kurşun asetat, hamile Swiss farelere gebeliğin <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. gününden laktasyonun 21. gününe kadar ağız<br />

yoluyla 8, 16, 32 mg /kg//BW şeklinde uygulanmıştır. Yenidoğanlarda doğumdan sonraki 1, 7, 14 ve 21.<br />

günlerde beyaz kan hücrelerindeki hematopatolojik ve sayısal değişiklikler incelenmiştir. Kurşunun doğum<br />

sonrası gelişim sırasında lökositlerin farklı tiplerinin gelişimindeki bozuklukları indüklediğini ve ani<br />

nö<strong>tr</strong><strong>of</strong>ilik olgunlaşmamış dejenerasyona, hücreler, anormal nö<strong>tr</strong><strong>of</strong>illere, reaktif ve plazmasitoid lenfositlere<br />

neden olduğunu göstermek için kan yaymaları incelenmiştir. Bu çalışmanın sonuçları prenatal kurşun<br />

maruziyetinin gelişen fetus için son derece tehlikeli olduğunu vurgulamaktadır.<br />

Anahtar kelimeler: Kurşun asetat, Swiss albino fare, prenatal, yenidoğan, lökosit.


34Ragini SHARMA et al.<br />

In<strong>tr</strong>oduction<br />

Lead has been recognized as a biological toxicant<br />

<strong>and</strong> different doses have been used to study leadinduced<br />

alterations Prenatal exposure to lead<br />

produces toxic effects in the human fetus, including<br />

increased risk <strong>of</strong> preterm delivery, low birth<br />

weight, <strong>and</strong> impaired mental development; because<br />

during the period <strong>of</strong> early organogenesis the onset<br />

<strong>of</strong> greatest susceptibility to teratogenesis occurs<br />

(Falcon et al., 2003). This highly sensitive or<br />

critical period is the time during which a small dose<br />

<strong>of</strong> a teratogen produces high percentage <strong>of</strong> fetuses<br />

that exhibit malformations <strong>of</strong> the organ in question<br />

(Wilson, 1973; Desesso et al., 1996).<br />

Pregnancy <strong>and</strong> breastfeeding can cause a state<br />

<strong>of</strong> physiological s<strong>tr</strong>ess that increases bone turnover<br />

<strong>of</strong> lead. Lead stored in the bone moves into the<br />

blood, increasing the mother’s blood lead level <strong>and</strong><br />

passing to the fetus, affecting fetal development.<br />

Lead is tightly bound to red blood cells, enhancing<br />

<strong>tr</strong>ansfer from maternal circulation through the<br />

placenta to the fetus. Fetus is more sensitive to lead<br />

because the fetal blood-brain barrier is more<br />

permeable. The toxic effects <strong>of</strong> lead on blood<br />

indices are well known.<br />

Lead potentially induces oxidative s<strong>tr</strong>ess <strong>and</strong><br />

evidence is accumulating to support the role <strong>of</strong><br />

oxidative s<strong>tr</strong>ess in the pathophysiology <strong>of</strong> lead<br />

toxicity. Lead is capable <strong>of</strong> inducing oxidative<br />

damage to brain, heart, kidneys, <strong>and</strong> reproductive<br />

organs. The mechanisms for lead-induced oxidative<br />

s<strong>tr</strong>ess include the effects <strong>of</strong> lead on membranes,<br />

DNA, <strong>and</strong> antioxidant defense systems <strong>of</strong> cells<br />

(Ahamed <strong>and</strong> Siddiqui, 2007). Lead interferes with<br />

a variety <strong>of</strong> body processes <strong>and</strong> is toxic to the body<br />

systems including cardiovascular, reproductive,<br />

hematopoietic, gas<strong>tr</strong>ointestinal <strong>and</strong> nervous systems<br />

(Kosnett, 2006), renal functions (Patocka <strong>and</strong><br />

Cerny, 2003) <strong>and</strong> release <strong>of</strong> glutamate (Xu et al.,<br />

2006). It affects the hematological system even at<br />

concen<strong>tr</strong>ations below <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>μg/dl (ATSDR, 2005).<br />

Many reports are available regarding lead<br />

toxicity <strong>and</strong> its deleterious effects in various<br />

species <strong>of</strong> animals <strong>and</strong> there has been lot <strong>of</strong> work<br />

carried out on pharmacokinetics <strong>and</strong> genotoxicity<br />

but very few researchers <strong>tr</strong>ied to correlate<br />

haematopathological alterations <strong>of</strong> lead acetate in<br />

different white blood cells at different dose levels<br />

in laboratory animals, especially in mice.<br />

Therefore the current study was performed to<br />

clarify the lead induced hematological changes,<br />

especially those related to white blood cells, during<br />

gestational <strong>and</strong> lactational exposure to lead in<br />

Swiss mice.<br />

Materials <strong>and</strong> methods<br />

Sexually mature r<strong>and</strong>om bred Swiss mice with the<br />

age <strong>of</strong> 5-6 weeks, weighing 25-30 gm was used for<br />

this study. During the entire experimental period,<br />

the animals were fed on a st<strong>and</strong>ard diet <strong>and</strong> water<br />

ad libitum. Mice were kept in the ratio <strong>of</strong> 1:4 males<br />

<strong>and</strong> females, respectively, <strong>and</strong> females showing<br />

vaginal plugs were separated in the con<strong>tr</strong>ol <strong>and</strong> lead<br />

<strong>tr</strong>eated group. Lead acetate solution was prepared<br />

by dissolving 4gm lead acetate in 12ml distilled<br />

water. Pregnant Swiss mice were given lead acetate<br />

at a concen<strong>tr</strong>ation <strong>of</strong> 8, 16 <strong>and</strong> 32 mg (266.66,<br />

533.33, <strong>and</strong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>66.66 mg/kg/bodyweight) from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> th<br />

day <strong>of</strong> gestation to 21 st day <strong>of</strong> lactation. Blood<br />

samples were obtained from the tail <strong>of</strong> pups from<br />

each litter at days 1,7,14 <strong>and</strong> 21 day after birth. The<br />

tip <strong>of</strong> the tail was cleaned with spirit before being<br />

cut with a sharp blade <strong>and</strong> was not squeezed to<br />

avoid dilution <strong>of</strong> blood by tissue fluid.<br />

Blood cells were studied in smears prepared by<br />

spreading a drop <strong>of</strong> blood thinly over a clean <strong>and</strong><br />

sterilized microscopic slide with the help <strong>of</strong> another<br />

slide moved over the first at the angle <strong>of</strong> 45ᵒ after<br />

discarding first drop <strong>of</strong> blood. These blood films<br />

were air-dried <strong>and</strong> fixed in absolute methanol for<br />

15 minutes by dipping the film briefly in a Coplin<br />

jar containing absolute methanol. After fixation the<br />

slides were removed <strong>and</strong> air-dried. Afterward blood<br />

smears were stained with freshly made Giemsa<br />

stain diluted with water buffered to pH 6.8 or 7.0<br />

(1:9) stain <strong>and</strong> buffer respectively. The slides were<br />

washed by briefly dipping the slide in <strong>and</strong> out <strong>of</strong> a<br />

Coplin jar <strong>of</strong> buffered water <strong>and</strong> air dried again for<br />

taking observations. The erythrocytes appear pink<br />

to purple, whereas leukocytes turned blue black in<br />

color. All the experimental work was approved by<br />

the Institutional Animal Ethics Committee.<br />

No./CS/Res/07/759.<br />

Group 1- Con<strong>tr</strong>ol (distilled water only).<br />

Group 2- Exposure to 8 mg lead acetate (266.66<br />

mg/kg BW) from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>th day <strong>of</strong> gestation up to 21st<br />

day <strong>of</strong> lactation.<br />

Group 3- Exposure to 16 mg lead acetate<br />

(533.33 mg/kg BW) from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>th day <strong>of</strong> gestation up<br />

to 21st day <strong>of</strong> lactation.<br />

Group 4- Exposure to 32 mg lead acetate<br />

(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>66.66 mg/kg BW) from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>th day <strong>of</strong> gestation up<br />

to 21st day <strong>of</strong> lactation.<br />

The statistical analysis was performed following<br />

t-test for the comparison <strong>of</strong> data between different<br />

experimental groups. The data was calculated using


prism s<strong>of</strong>tware to calculate the p values. <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 WBC<br />

from each group were counted at different weeks,<br />

different cell types were identified <strong>and</strong> % ratio was<br />

calculated. For numerical observation highest dose<br />

level was selected.<br />

Results<br />

In the con<strong>tr</strong>ol group all the WBCs showed normal<br />

appearance. The neu<strong>tr</strong>ophils in con<strong>tr</strong>ol group were<br />

examined by a very characteristic nucleus with<br />

condensed chromatin. It is divided into 3-5 lobes<br />

(Fig.1A, 1, 2, 5 <strong>and</strong> 6) at birth which was observed<br />

with an increase by 5 to 6 lobes (Fig.1B, 1 <strong>and</strong> 3) at<br />

the termination <strong>of</strong> lactation, connected by thin<br />

s<strong>tr</strong><strong>and</strong>s <strong>of</strong> chromatin. Lymphocytes were round or<br />

ovoid at the time <strong>of</strong> birth (Fig. 1A, 3 <strong>and</strong> 4) but<br />

further on they were found notched or slightly<br />

indented (Fig. 1B, 5 <strong>and</strong> 6). The chromatin was<br />

generally diffusely dense. Ordinarily, nucleoli were<br />

not visible. A perinuclear clear zone surrounding<br />

the nucleus was visible after first week <strong>of</strong> lactation<br />

in some cells. The cytoplasm stained light blue <strong>and</strong><br />

ranges from sparse to moderately abundant in<br />

amount. The monocyte in con<strong>tr</strong>ol group were round<br />

with smooth margins, the nucleus was oval,<br />

indented <strong>and</strong> slightly folded (Fig.1B, 4). The<br />

chromatin material was moderately clumped <strong>and</strong><br />

relatively less dense compared to that <strong>of</strong><br />

neu<strong>tr</strong>ophils or lymphocytes. There was no visible<br />

nucleolus with abundant cytoplasm.<br />

The adminis<strong>tr</strong>ation <strong>of</strong> lead acetate altered the<br />

appearance <strong>and</strong> caused s<strong>tr</strong>uctural changes. The<br />

following hematological observations were taken<br />

during postnatal period from birth till the<br />

termination <strong>of</strong> the lactation period upon exposure<br />

<strong>of</strong> different doses <strong>of</strong> lead acetate:<br />

1. At the time <strong>of</strong> birth (PND1)<br />

Abnormal neu<strong>tr</strong>ophils: In lead <strong>tr</strong>eated groups<br />

the neu<strong>tr</strong>ophils showed s<strong>tr</strong>uctural abnormalities in<br />

their nucleus including improper segmentation <strong>and</strong><br />

lesser condensation <strong>of</strong> nucleus. At a lower dose the<br />

chromatin material was condensed, all the lobes<br />

were interconnected with each other <strong>and</strong> form a<br />

nodule like s<strong>tr</strong>ucture at one side (Fig.1C, 1).<br />

Degeneration: In lead <strong>tr</strong>eated group most <strong>of</strong> the<br />

neu<strong>tr</strong>ophils appeared in degenerating state in which<br />

the chromatin material was very less condensed,<br />

fused <strong>and</strong> there was no sign <strong>of</strong> clear lobulization<br />

<strong>and</strong> segmentation (Fig. 1C, 2).<br />

Immature cells: In lead <strong>tr</strong>eated group the<br />

number <strong>of</strong> immature cells was increased (Fig. 1C,<br />

3).<br />

Prenatal <strong>and</strong> neonatal exposure to lead 35 <br />

Ring shaped: In lead <strong>tr</strong>eated groups, some<br />

neu<strong>tr</strong>ophils showed abnormal ring like appearance<br />

<strong>and</strong> diffuse chromatin material, with unclear<br />

cytoplasm. In 32 mg lead <strong>tr</strong>eated group<br />

vacuolization in chromatin material was also<br />

observed ((Fig. 1C, 4).).<br />

Lymphocyte: Reactive (Fig. 1C: 5 <strong>and</strong> 6) <strong>and</strong><br />

cleaved (Fig. C, 5) types <strong>of</strong> lymphocytes were<br />

observed in lead <strong>tr</strong>eated groups.<br />

Monocytes: At postnatal day 1 we cannot<br />

identify any s<strong>tr</strong>uctural change in shape <strong>and</strong> size <strong>of</strong><br />

monocyte as observed on postnatal day 21.<br />

2. During first <strong>and</strong> second week <strong>of</strong> postnatal period<br />

(PND7&14)<br />

The following observations were taken at first to<br />

second week after birth:<br />

Degenerated neu<strong>tr</strong>ophils: In lead <strong>tr</strong>eated group<br />

overall numbers <strong>of</strong> neu<strong>tr</strong>ophils were increased<br />

particularly with degenerated neu<strong>tr</strong>ophils, however,<br />

their number was less than postnatal day 1. In 16<br />

mg lead group on postnatal day 7 the nuclear<br />

material <strong>of</strong> neu<strong>tr</strong>ophil was less condensed <strong>and</strong><br />

nucleus was divided into 2-3 unequal lobes. The<br />

cytoplasm <strong>of</strong> neu<strong>tr</strong>ophil appeared colorless. At the<br />

dose <strong>of</strong> 32mg lead at postnatal day 7, this severity<br />

<strong>of</strong> degeneration was very much increased so that<br />

the lobes were broken into many small fragments.<br />

No sign <strong>of</strong> lobulization <strong>and</strong> appropriate<br />

segmentation <strong>of</strong> neu<strong>tr</strong>ophils were found (Fig. 1D,<br />

1).<br />

Ring shaped neu<strong>tr</strong>ophils: In con<strong>tr</strong>ast to<br />

postnatal day 1, ring like nucleus was not observed<br />

in lead <strong>tr</strong>eated group at postnatal day 7.<br />

Different types <strong>of</strong> neu<strong>tr</strong>ophils: At higher dose<br />

32 mg lead <strong>tr</strong>eated groups apoptotic or necrotic<br />

neu<strong>tr</strong>ophils were more prominent. These<br />

neu<strong>tr</strong>ophils were characterized by 3-4 separate <strong>and</strong><br />

equal lobes with less condensed chromatin <strong>and</strong><br />

diffuse cytoplasmic region (Fig. 1D, 2).<br />

Immature cells: Review <strong>of</strong> the lead <strong>tr</strong>eated<br />

smear revealed that most <strong>of</strong> the leukocytes were<br />

myelocytes, b<strong>and</strong>s, myeloblast <strong>and</strong> other immature<br />

<strong>and</strong> unidentified white blood cells with left shift in<br />

leucocytes. A left shift is an increase in the number<br />

<strong>of</strong> b<strong>and</strong> neu<strong>tr</strong>ophils <strong>and</strong> other immature cell <strong>of</strong> the<br />

granulocytic lineage in the peripheral blood (Fig.<br />

1D, 3).<br />

Various lymphocytes: Adminis<strong>tr</strong>ation <strong>of</strong> lead<br />

acetate produced great variation in lymphocyte<br />

s<strong>tr</strong>ucturally as well as numerically. Various types <strong>of</strong><br />

lymphocytes such as plasmacytoid, reactive, oval,<br />

irregular, binucleated <strong>and</strong> cleaved lymphocytes<br />

were identified, whereas only reactive <strong>and</strong> cleaved


36Ragini SHARMA et al.<br />

lymphocytes were seen in postnatal day 1,<br />

exclusively in lead <strong>tr</strong>eated group.<br />

Lead <strong>tr</strong>eated group with 16 mg lead acetate<br />

produced large lymphocytes <strong>and</strong> most <strong>of</strong> the<br />

lymphocytes were having irregular; clumpy <strong>and</strong><br />

smudgy chromatin material with very dense<br />

nucleus (Fig. 1D, 4). The cytoplasm appeared<br />

completely absent as the nucleus reached its largest<br />

size <strong>and</strong> covered all the cytoplasmic area. Overall,<br />

number <strong>of</strong> lymphocytes decreased in most <strong>of</strong> the<br />

groups. At higher dose (32 mg lead) the<br />

plasmacytoid lymphocytes (eccen<strong>tr</strong>ic nucleus <strong>and</strong><br />

intensely blue / basophilic cytoplasm) (Fig. 1D, 6)<br />

<strong>and</strong> reactive lymphocytes were observed. Reactive<br />

lymphocyte was characterized by relatively very<br />

large, irregular but flattened nucleus with fine<br />

chromatin <strong>and</strong> agranular light blue stained<br />

cytoplasm (Fig. 1D, 5).<br />

3. At the end <strong>of</strong> lactation period (PND21)<br />

Abnormal nuclear segmentation: It includes<br />

abnormal segmentation <strong>of</strong> nucleus, in which the<br />

nuclear lobes were connected with each other. It<br />

gave abnormal appearance <strong>of</strong> nucleus <strong>and</strong><br />

chromatin condensation in most <strong>of</strong> the neu<strong>tr</strong>ophils<br />

(Fig. 1E, 1).<br />

Degeneration: In lower doses <strong>of</strong> lead diffuse<br />

appearance <strong>of</strong> chromatin material was observed in<br />

neu<strong>tr</strong>ophils <strong>and</strong> the lobes were fused with each<br />

other as any segmentation was not observed,<br />

whereas in higher lead <strong>tr</strong>eated group the neu<strong>tr</strong>ophils<br />

presented fragmented chromatin material <strong>and</strong> very<br />

less condensation <strong>of</strong> nucleus which finally leads to<br />

cell lysis (Fig. 1E, 2). The nuclear arrangement was<br />

distorted, as appear that all the lobes were<br />

intermingled with each other <strong>and</strong> in some cases<br />

form a nodule at one side known as sessile nodule<br />

appeared like hypersegmentation (Fig. 1E, 3).<br />

Immature cells: In lead <strong>tr</strong>eated group the<br />

numbers <strong>of</strong> immature cells were increased. A left<br />

shift i.e. presence <strong>of</strong> immature neu<strong>tr</strong>ophils, b<strong>and</strong>s,<br />

metamyelocytes, myelocytes <strong>and</strong> other unidentified<br />

immature cells were observed (Fig. 1F, 1 to 6).<br />

Lymphocytes: As the dose level increased the<br />

number <strong>of</strong> lymphocytes decreased. In higher dose<br />

lead <strong>tr</strong>eated group the lymphocyte appeared large in<br />

size with higher volume <strong>of</strong> cytoplasm. The shape <strong>of</strong><br />

the nucleus also vary from round to elliptical in<br />

s<strong>tr</strong>ucture, termed as reactive lymphocyte (Fig. 1E,<br />

4). Some lymphocytes <strong>tr</strong>ansformed into<br />

plasmocytoid lymphocyte in which the lymphocyte<br />

contains basophilic cytoplasm <strong>and</strong> eccen<strong>tr</strong>ic<br />

nucleus (Fig. 1E, 5).<br />

Monocytes: In lead <strong>tr</strong>eated groups the shape <strong>and</strong><br />

s<strong>tr</strong>ucture <strong>of</strong> the monocyte were modified <strong>and</strong> the<br />

shape <strong>of</strong> the nucleus was also altered from the<br />

normal reniform (kidney shaped) nucleus. The<br />

indentation <strong>of</strong> the nucleus became larger <strong>and</strong><br />

deeper from periphery to center. At higher dose<br />

level intensity <strong>of</strong> the indentation was increased so<br />

that the normal range <strong>of</strong> nucleo-cytoplasmic ratio<br />

was disturbed (Fig. 1E, 6). Numerical changes in<br />

different types <strong>of</strong> WBC <strong>and</strong> percent variations in<br />

different types are incorporated in Table 1 <strong>and</strong> 2<br />

respectively. In present investigation, after<br />

evaluating all the cell types, we can conclude that<br />

lead acetate at PND 1 <strong>and</strong> 14 caused significant<br />

increase in number <strong>of</strong> neu<strong>tr</strong>ophils <strong>and</strong> decrease in<br />

lymphocytes, while there was no significant<br />

difference in the number <strong>of</strong> neu<strong>tr</strong>ophils <strong>and</strong><br />

lymphocytes at PND 7 <strong>and</strong> 21.<br />

Table 1. Various types <strong>of</strong> WBCs at different postnatal days <strong>tr</strong>eated with lead acetate.<br />

Groups Neu<strong>tr</strong>ophils Lymphocytes Monocytes<br />

Con<strong>tr</strong>ol at PND 1 59.25±1.70 38.5±1.29 2.25±1.70<br />

Lead acetate at PND1 66.00±2.16** 28.25±2.06** 5.75±1.70*<br />

Con<strong>tr</strong>ol at PND 7 57.75±2.21 41.75±2.21 0.75±0.95<br />

Lead acetate at PND7 61.75±3.5 37.5±2.88 0.75±0.95<br />

Con<strong>tr</strong>ol at PND 14 55.25±3.40 44.5±3.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 0.25±0.5<br />

Lead acetate at PND14 61.25±1.70** 37.75±1.70** 1.00±0.81<br />

Con<strong>tr</strong>ol at PND 21 47.75±2.5 47.75±2.21 4.5±2.38<br />

Lead acetate at PND21 52.25±4.57 44.00±2.26 3.75±2.75<br />

Values were expressed as means ± S.D.; 4 animals /group;*=p


Prenatal <strong>and</strong> neonatal exposure to lead 37 <br />

Table 2. Percent variation in different types <strong>of</strong> WBCs in lead <strong>tr</strong>eated groups<br />

Lead acetate at PND1<br />

Lead acetate at PND7<br />

Lead acetate at PND14<br />

Lead acetate at PND21<br />

Neu<strong>tr</strong>ophils Lymphocytes Monocytes<br />

Normal 12.3%<br />

Degenerated 12.1%<br />

Ring shaped 8.2%<br />

Immature 4.1%<br />

Abnormal <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.4%<br />

Normal 12.6%<br />

Degenerated 8.4%<br />

Abnormal 16.8%<br />

Immature <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.8%<br />

Ring shaped 6%<br />

Normal 19.2%<br />

Degenerated 19%<br />

Abnormal 9.6%<br />

Immature 6.4%<br />

Apoptotic 6.4%<br />

Normal 6.18%<br />

Degenerated18.5%<br />

Ring shaped 1.5%<br />

Abnormal 17%<br />

Immature 7.4%<br />

Normal 13%<br />

Reactive 17.33%<br />

Cleaved 8.6%<br />

Normal 12.2%<br />

Plasmacytoid 7.4%<br />

Reactive 9.8%<br />

Binucleated 2.4%<br />

Large 4.2%<br />

Normal 4%<br />

Plasmacytoid 4%<br />

Reactive 12.3%<br />

Binucleated 8.2%<br />

Large 4%<br />

Irregular 2%<br />

Oval 2%<br />

Normal <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>%<br />

Abnormal 16.4%<br />

Plasmacytoid1.4%<br />

Reactive 4.4%<br />

Large 5.8%<br />

Irregular 5.86%<br />

Normal 2.0%<br />

Abnormal 3.7%<br />

Abnormal 0.75%<br />

Abnormal 1%<br />

Normal 2%<br />

Abnormal 1.7%<br />

Figure 1. A: Peripheral blood smear <strong>of</strong> con<strong>tr</strong>ol group showing neu<strong>tr</strong>ophil (1-2), lymphocytes (3-4), at the time <strong>of</strong> birth,<br />

neu<strong>tr</strong>ophils (5-6) during second <strong>and</strong> third week <strong>of</strong> lactation. B: Con<strong>tr</strong>ol group showing neu<strong>tr</strong>ophil (1), lymphocyte (2),<br />

during second <strong>and</strong> third week <strong>of</strong> lactation, <strong>and</strong>, neu<strong>tr</strong>ophil (3), lymphocytes (4-5) <strong>and</strong> monocyte (6) at the termination <strong>of</strong><br />

lactation. C: Peripheral blood smear <strong>of</strong> lead <strong>tr</strong>eated group showing abnormal neu<strong>tr</strong>ophil (1), degenerated neu<strong>tr</strong>ophil (2),<br />

immature cell (3), ring like neu<strong>tr</strong>ophil (4), 5 – cleaved (upper WBC) (5) <strong>and</strong> reactive (lower WBC) lymphocyte (5 <strong>and</strong> 6)<br />

at the time <strong>of</strong> birth. D: Lead <strong>tr</strong>eated group showing degenerated neu<strong>tr</strong>ophil (1), necrotic (2), immature cell (3), large<br />

lymphocyte (4), reactive (5) <strong>and</strong> plasmacytoid lymphocyte (6) During first <strong>and</strong> second week <strong>of</strong> postnatal period. E: Lead<br />

<strong>tr</strong>eated group showing - abnormal neu<strong>tr</strong>ophil (1), degenerated neu<strong>tr</strong>ophil (2), hypersegmented neu<strong>tr</strong>ophil (3), reactive<br />

lymphocyte (4), plasmacytoid lymphocyte (5) <strong>and</strong> reactive monocyte (6) at the termination <strong>of</strong> lactation. F: Lead <strong>tr</strong>eated<br />

group showing different immature cells at the termination <strong>of</strong> lactation (1- 6). (All Giemsa stain, 450x).


38Ragini SHARMA et al.<br />

Discussion<br />

Changes in leukocyte parameters are <strong>of</strong>ten one <strong>of</strong><br />

the hallmarks <strong>of</strong> infection. These include changes<br />

in number <strong>and</strong> in cellular morphology. Review <strong>of</strong><br />

the peripheral blood smear can provide significant<br />

insight into the possible presence <strong>of</strong> infection. Early<br />

changes during infection may include an increase in<br />

the number <strong>of</strong> b<strong>and</strong>s, even before the development<br />

<strong>of</strong> leukocytosis. A great shift to immaturity (left<br />

shift) may occur when infection is severe, with<br />

metamylocytes or even earlier forms present on the<br />

peripheral blood smear. There are many evidences<br />

<strong>of</strong> studies conducted on adults <strong>and</strong> RBC concerning<br />

lead toxicity, but very few reports are available<br />

regarding haematopathological alterations <strong>of</strong> lead<br />

acetate in different white blood cells. Significant<br />

decrease in RBC count, hematocrit (Hct) <strong>and</strong><br />

hemoglobin (Hb) were seen in rats <strong>and</strong> human with<br />

high blood lead levels. (Alexa et al., 2002; Noori et<br />

al., 2003; Othman et al., 2004; Toplan et al., 2004)<br />

In our study the con<strong>tr</strong>ol groups showed all the<br />

leukocytes in normal appearance. Still some altered<br />

types <strong>of</strong> WBCs were also observed. The<br />

adminis<strong>tr</strong>ation <strong>of</strong> lead acetate alters the s<strong>tr</strong>ucture<br />

<strong>and</strong> number <strong>of</strong> WBCs. The nuclear arrangement<br />

was also distorted. In lead <strong>tr</strong>eated groups the shape<br />

<strong>and</strong> s<strong>tr</strong>ucture <strong>of</strong> the monocyte was also altered with<br />

reniform (kidney shaped) nucleus. At higher dose<br />

level this intensity <strong>of</strong> indentation was increased so<br />

that the normal range <strong>of</strong> nucleo-cytoplasmic ratio is<br />

disturbed <strong>and</strong> appeared as reactive monocytes. Our<br />

findings are also in support <strong>of</strong> DeNicola et al.<br />

(1991) with the evidence <strong>of</strong> reactive monocytes<br />

enclosing the cytoplasm became more intensely<br />

basophilic <strong>and</strong> vacuolated. This usually indicates a<br />

chronic inflammatory process or may be seen with<br />

hemoplasmas in the cat.<br />

Toxicity in neu<strong>tr</strong>ophils is defined by the<br />

presence <strong>of</strong> Döhle bodies (small, basophilic<br />

aggregates <strong>of</strong> RNA in the cytoplasm), diffuse<br />

cytoplasmic basophilia etc. In our study each lead<br />

<strong>tr</strong>eated group in neonatal period, represents<br />

increased number <strong>of</strong> degenerated neu<strong>tr</strong>ophils<br />

particularly at birth. In the 16 mg lead exposed<br />

group, during first week <strong>of</strong> lactation, the nuclear<br />

material <strong>of</strong> cell was less condensed <strong>and</strong> nucleus<br />

was divided into 2-3 unequal lobes with colorless<br />

cytoplasm. At higher dose <strong>of</strong> 32 mg lead, this<br />

severity <strong>of</strong> degeneration was very much increased<br />

with many small fragments <strong>of</strong> nuclear material <strong>and</strong><br />

no sign <strong>of</strong> lobulization <strong>and</strong> appropriate<br />

segmentation <strong>of</strong> neu<strong>tr</strong>ophils were observed.<br />

In a study performed on young dogs,<br />

development <strong>of</strong> anemia, leukocytosis,<br />

monocytopenia, polychromato-philia, glycosuria,<br />

increased serum urobilinogen, <strong>and</strong> hematuria has<br />

been reported (Zook, 1972). Lead suppresses bone<br />

marrow hematopoiesis, probably through its<br />

interaction with the enteric iron absorption (Klader,<br />

1779; Chnielnika, 1994). In some reports,<br />

leukocytosis has been at<strong>tr</strong>ibuted to the lead-induced<br />

inflammation (Yagminas et al., 1990).<br />

Hogan <strong>and</strong> Adams, (1979) reported a threefold<br />

increase in neu<strong>tr</strong>ophil <strong>and</strong> monocyte count along<br />

with severe leukocytosis in the young rats that were<br />

exposed to lead. The present investigation revealed<br />

that adminis<strong>tr</strong>ation <strong>of</strong> lead acetate alters the<br />

appearance <strong>and</strong> cause s<strong>tr</strong>uctural changes. The<br />

nuclear arrangement was distorted with<br />

intermingled lobes <strong>and</strong> in some cases formed a<br />

sessile nodule.<br />

Con<strong>tr</strong>oversies exist about monocytes; since in<br />

some studies lead-induced monocytopenia<br />

(Xintaras, 1992) <strong>and</strong> in others significant increases<br />

in monocyte count have been reported (Yagminas<br />

et al., 1990). The reason for such difference is<br />

probably due to the extent <strong>of</strong> lead-induced<br />

inflammation.<br />

Mugahi et al. (2003) investigated additional<br />

hematotoxic effects <strong>of</strong> lead on the erythroid cell<br />

lineage <strong>and</strong> leukocytes following long-term<br />

exposure in rats. Wahab et al. (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) showed that<br />

lead caused a significant decrease in hematocrit,<br />

RBC, WBC, hemoglobin concen<strong>tr</strong>ation, mean<br />

corpuscular hemoglobin, mean corpuscular<br />

hemoglobin concen<strong>tr</strong>ation <strong>and</strong> lymphocyte <strong>and</strong><br />

monocyte count; <strong>and</strong> significant increase in<br />

neu<strong>tr</strong>ophil count. The results <strong>of</strong> the present study<br />

are also parallel to the above findings. In lead<br />

exposed pups there was significant increase in the<br />

number <strong>of</strong> neu<strong>tr</strong>ophils at different weeks after birth,<br />

but decrease in the number <strong>of</strong> lymphocytes. The<br />

shortened life span <strong>of</strong> erythrocytes is due to<br />

increased fragility <strong>of</strong> the blood cell membrane <strong>and</strong><br />

r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ced hemoglobin production is due to decreased<br />

levels <strong>of</strong> enzymes involved in hemesynthesis<br />

(Guidotti et al., 2008). It has long been known that<br />

hematopoiesis <strong>and</strong> heme synthesis affected by lead<br />

poisoning (Doull et al., 1980).<br />

In our study reactive <strong>and</strong> cleaved type <strong>of</strong><br />

lymphocyte were observed at the time <strong>of</strong> birth in<br />

lead <strong>tr</strong>eated groups which were reinstated by<br />

increased number <strong>of</strong> plasmacytoid, reactive, large,<br />

oval, irregular, binucleated <strong>and</strong> cleaved<br />

lymphocytes in further days <strong>of</strong> lactation. In the<br />

current investigation at higher dose (32 mg) we


found apoptotic or necrotic neu<strong>tr</strong>ophils were more<br />

prominent in the first <strong>and</strong> second week <strong>of</strong> lactation.<br />

These neu<strong>tr</strong>ophils were characterized by 3-4<br />

separate <strong>and</strong> equal lobes with less condensed<br />

chromatin <strong>and</strong> diffuse cytoplasmic region.<br />

Lead <strong>tr</strong>eated group at the termination <strong>of</strong><br />

lactation, include abnormal nuclear segmentation,<br />

giving abnormal appearance <strong>of</strong> nucleus <strong>and</strong><br />

chromatin condensation in most <strong>of</strong> the neu<strong>tr</strong>ophils<br />

<strong>and</strong> forming a ring like nucleus in some<br />

neu<strong>tr</strong>ophils. Villagra et al., (1997) also postulates<br />

that lead exposure doubles total <strong>and</strong> segmented<br />

neu<strong>tr</strong>ophils in both es<strong>tr</strong>ogens <strong>tr</strong>eated <strong>and</strong> un<strong>tr</strong>eated<br />

rats but causes a three-fold increase in b<strong>and</strong><br />

neu<strong>tr</strong>ophils in animals without es<strong>tr</strong>ogen <strong>tr</strong>eatment,<br />

but not in animals <strong>tr</strong>eated with es<strong>tr</strong>ogen. With a<br />

disappearance <strong>of</strong> non-degranulated eosinophils, the<br />

decrease in non-degranulated eosinophils was<br />

under the effect <strong>of</strong> lead exposure. He also<br />

demons<strong>tr</strong>ates that prepubertal rat exposure to lead<br />

affects blood neu<strong>tr</strong>ophil <strong>and</strong> eosinophil leukocyte<br />

levels <strong>and</strong> induces eosinophil degranulation.<br />

Vyskocil et al., (1991) discovered the effect <strong>of</strong><br />

lead on b<strong>and</strong> neu<strong>tr</strong>ophils reveals an increased<br />

neu<strong>tr</strong>ophilopoiesis rather than release from<br />

in<strong>tr</strong>avascularly sequestered forms in lead-exposed<br />

animals.<br />

In lead <strong>tr</strong>eated group from birth till the<br />

termination <strong>of</strong> lactation, the number <strong>of</strong> immature<br />

cells was increased. There was asynchrony <strong>of</strong><br />

maturation between nucleus <strong>and</strong> cytoplasm. During<br />

normal granulocytopoiesis the lengthening <strong>and</strong><br />

pinching <strong>of</strong> the nucleus were coordinated with<br />

progressive condensation <strong>of</strong> the chromatin with<br />

accelerated maturation nuclear division may be skip<br />

<strong>and</strong> cells retain immature features, because toxic<br />

changes <strong>of</strong> lead accompanies a left shift i.e.<br />

presence <strong>of</strong> immature neu<strong>tr</strong>ophils, b<strong>and</strong>s,<br />

metamyelocytes, myelocytes <strong>and</strong> other unidentified<br />

immature cells. White Blood <strong>Cell</strong>s generally<br />

increase as compared to the con<strong>tr</strong>ol level. The<br />

increase in WBC count indicates the activation <strong>of</strong><br />

defense mechanism <strong>and</strong> immune system <strong>of</strong> gasoline<br />

workers (Whitby, 1980). These findings are also in<br />

confirmations, with our results.<br />

In conclusion, lead exposure leads to various<br />

hematological disorders in white blood cells<br />

including neu<strong>tr</strong>ophilic degeneration, immature<br />

cells, abnormal neu<strong>tr</strong>ophils, reactive <strong>and</strong><br />

plasmacytoid lymphocyte, reactive monocyte etc.<br />

The present study indicates that after adminis<strong>tr</strong>ation<br />

<strong>of</strong> 266.66, 533.33 <strong>and</strong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>66.66 mg/kg/body weight<br />

doses <strong>of</strong> lead acetate WBCs show s<strong>tr</strong>uctural<br />

abnormalities in their nucleus <strong>and</strong> cytoplasm<br />

Prenatal <strong>and</strong> neonatal exposure to lead 39 <br />

including improper segmentation <strong>and</strong> lesser<br />

condensation <strong>of</strong> nucleus. Lead causes fluctuations<br />

in the number <strong>of</strong> various cell types at different<br />

stages <strong>of</strong> postnatal development. The exposure to<br />

lead possesses the potentials to induce hazardous<br />

biological effects during pre <strong>and</strong> postnatal<br />

development in Swiss mice.<br />

References<br />

Ahamed M <strong>and</strong> Siddiqui MKJ. Low level lead<br />

exposure <strong>and</strong> oxidative s<strong>tr</strong>ess: Current opinions.<br />

Clinica Chimica Acta. 383: 57–64, 2007.<br />

Alexa ID, Mihalache IL, Panaghiu L, Palade F.<br />

Chronic lead poisoning- a" forgotten” cause <strong>of</strong><br />

anemia. Rev Med Chir Soc Med Nat Iasi.<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>6(4):825-8, 2002.<br />

Chmielnika J, Zareba G, Nasiadek M. Combined<br />

effect <strong>of</strong> tin <strong>and</strong> lead on heme biosynthesis in<br />

rats. Ecotox Environm Safety. 29: 165-173,<br />

1994.<br />

DeNicola D, Giger U, MacWilliams P <strong>and</strong><br />

Wamsley H. Hematologic Evaluation <strong>of</strong> Cats<br />

<strong>and</strong> Dogs. IDEXX Laboratories. (HO-30b)1991.<br />

Desesso JJ <strong>and</strong> Harris SB. Principles underlying<br />

development toxicity. Toxicology <strong>and</strong> Risk<br />

Assesment. 1996.<br />

Doull J, Klaassen CD <strong>and</strong> Amdur MO. Casaratt<br />

<strong>and</strong> Doulls Toxicology. 2 nd ed. Macmillan<br />

Publishing Co, New York. 415–421, 1980.<br />

Falcon M, Vinas P <strong>and</strong> Luna A. Placental lead <strong>and</strong><br />

outcome <strong>of</strong> pregnancy. Toxicology. 185 (1-<br />

2):59-66, 2003.<br />

Guidotti TL, McNamara J, Moses MS. The<br />

interpretation <strong>of</strong> <strong>tr</strong>ace elements analysis in body<br />

fluids. Indian J Med Res.128:524-53, 2008.<br />

Hogan GR <strong>and</strong> DP Adams. Lead induced<br />

leukocytosis in Female mice. Archive <strong>of</strong><br />

Toxicol. 41:295-300, 1979.<br />

Isha BARBER, Ragini SHARMA, Sheetal<br />

MOGRA, Khushbu PANWAR <strong>and</strong> Umesh<br />

GARU. Lead induced alterations in blood cell<br />

counts <strong>and</strong> hemoglobin during gestation <strong>and</strong><br />

lactation in Swiss albino mice. J <strong>of</strong> <strong>Cell</strong> <strong>and</strong><br />

Mol Biol. 9(1):69-74, 2011.<br />

Klauder DS <strong>and</strong> Petering HG. Anemia <strong>of</strong> lead<br />

intoxication: A role <strong>of</strong> Copper. J Nu<strong>tr</strong>.<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>7(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>):1779-85, 1977.


40Ragini SHARMA et al.<br />

Kosnett. Global approach to r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>cing Lead<br />

exposure <strong>and</strong> poisoning. Mutation Research.<br />

659(1-2): 166-175, 2006.<br />

Mugahi MN, Heiadari Z, Sagheb HM <strong>and</strong><br />

Barbarestani M. Effects <strong>of</strong> chronic lead acetate<br />

intoxication in blood indices <strong>of</strong> male adult rat.<br />

Daru. 11;4: 2003.<br />

Noori MM, Heidari Z, Sagheb H <strong>and</strong> Barbarestani<br />

M. Effects <strong>of</strong> chronic lead acetate intoxication<br />

on blood indices <strong>of</strong> male adult rat. Daru Pharm<br />

J, 11(4): 147-51, 2003.<br />

Othman AI, Sharawy S <strong>and</strong> El-Missiry MA. Role<br />

<strong>of</strong> melatonin in ameliorating lead induced<br />

haematotoxicity. Pharmacol Res. 50(3):301-7,<br />

2004.<br />

Patocka J, Cerný K. Inorganic lead toxicology. Acta<br />

Medica (Hradec Kralove). 46(2):65-72, 2003.<br />

Toplan S, Ozcelik D, Gulyasar T <strong>and</strong> Akyolcu MC.<br />

Changes in hemorheological parameters due to<br />

lead exposure in female rats. J Trace Elem Med<br />

Biol. 18(2):179-82, 2004.<br />

Villagra R, Tchernitchin NN <strong>and</strong> Tchernitchin AN.<br />

Effect <strong>of</strong> Subacute Exposure to Lead <strong>and</strong><br />

Es<strong>tr</strong>ogen on Immature Pre-Weaning Rat<br />

Leukocytes Bull. Environ Contam Toxicol.<br />

58:190-197, 1997.<br />

Vyskocil A, Fiala Z, Tejnorova I, Tusi M. S<strong>tr</strong>ess<br />

reaction in developing rats exposed to 1% lead<br />

acetate. Sb Ved Pr Lek Karlovy University<br />

Hradci Kralove. 34:287-295, 1991.<br />

Wahab AA, Joro JM, Mabrouk MA, Oluwatobi SE,<br />

Bauchi ZM <strong>and</strong> John AA. Ethanolic ex<strong>tr</strong>act <strong>of</strong><br />

Phoenix dactylifera L. prevents lead induced<br />

hematotoxicity in rats. Continental J<br />

Biomedical Sciences. 4: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> - 15, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Whitby LG, Rercy-Robb IW <strong>and</strong> Smith AF.<br />

Chapter 9. Lecture Notes on Clinical Chemis<strong>tr</strong>y.<br />

2nd ed. Blackwell Scientific Publications,<br />

Oxford London Edinburgh Melbourne. 167-<br />

187, 1980.<br />

Wilson JG. Environments <strong>and</strong> birth defects.<br />

Academic Press, New York. 1973.<br />

Xintaras C. Impact <strong>of</strong> Lead contaminated soil on<br />

Public Health. Public Health Service. Agency<br />

for toxic substances <strong>and</strong> Disease Regis<strong>tr</strong>y,<br />

1992.<br />

Xu HH, Chen ZP <strong>and</strong> Shen Y. Meta analysis for<br />

effect <strong>of</strong> lead on male reproductive function. J<br />

<strong>of</strong> Indus<strong>tr</strong>ial hygiene <strong>and</strong> occupational disease.<br />

24(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>): 634-36, 2006.<br />

Yagminas AP, Franklin CA, Villeneuve DC,<br />

Gilman AP, Little PB <strong>and</strong> Valli VE. Subchronic<br />

oral toxicity <strong>of</strong> <strong>tr</strong>iethyl lead in the male<br />

weanling rat: Clinical, biochemical,<br />

hematological, <strong>and</strong> histopathological effects.<br />

Fundam Appl Toxicol. 15: 580-596, 1990.<br />

Zook BC. Lead poisoning in dogs. Am J Vet Res.<br />

33: 981-902, 1972.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1): 41-54, 2012 Research Article 41<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Sulfabenzamide promotes autophagic cell death in T-47D breast<br />

cancer cells through p53/ DRAM pathway<br />

Raziye MOHAMMADPOUR 1 , Shahrokh SAFARIAN *1 , Soroor FARAHNAK 1 , Sana<br />

HASHEMINASL 1 , Nader SHEIBANI 2<br />

1<br />

School <strong>of</strong> Biology, College <strong>of</strong> Science, University <strong>of</strong> Tehran, Tehran, Iran<br />

2<br />

Department <strong>of</strong> Ophthalmology <strong>and</strong> Visual Sciences, School <strong>of</strong> Medicine <strong>and</strong> Public Health, University <strong>of</strong><br />

Wisconsin, Madison, USA<br />

(* author for correspondence; safarian@ibb.ut.ac.ir )<br />

Received: 26 March 2012; Accepted: 29 May 2012<br />

Abs<strong>tr</strong>act<br />

Sulfonamides exhibit their antitumor effects through multiple mechanisms including inhibition <strong>of</strong> membrane<br />

bound carbonic anhydrases, prevention <strong>of</strong> microtubule assembly, cell cycle arrest, <strong>and</strong> inhibition <strong>of</strong> angiogenesis.<br />

Here, sulfabenzamide’s mechanisms <strong>of</strong> action on T-47D breast cancer cells were determined. <strong>Cell</strong>s incubated with<br />

sulfabenzamide exhibited negligible levels <strong>of</strong> apoptosis, necrosis <strong>and</strong> cell cycle arrest when compared to un<strong>tr</strong>eated<br />

cells. These results were confirmed by morphological examinations, DNA fragmentation assays, flow cytome<strong>tr</strong>ic<br />

<strong>and</strong> real time RT-PCR analysis. Surprisingly, despite negligible detection <strong>of</strong> DNA fragmentation, a considerable<br />

increase in caspase-3 activity was observed in cells incubated with sulfabenzamide. The increased expression ratio<br />

<strong>of</strong> DFF-45/DFF-40 indicated that caspase-3-related DNA fragmentation was blocked <strong>and</strong> apoptosis symptoms<br />

could not be seen. However, the effects <strong>of</strong> caspase-3 for PARP1 <strong>and</strong> DNA-PK deactivation resulted in autophagy<br />

induction. The overexpression <strong>of</strong> critical genes involved in autophagy, including ATG5, p53 <strong>and</strong> DRAM, indicated<br />

that in T-47D cells sulfabenzamide-induced antiproliferative effect was mainly exerted through induction <strong>of</strong><br />

autophagy. Furthermore, downregulation <strong>of</strong> AKT1 <strong>and</strong> AKT2 as well as over expression <strong>of</strong> PTEN resulted in<br />

attenuation <strong>of</strong> AKT/mTOR survival pathway showing that death autophagy should be occurred in sulfabenzamide<br />

<strong>tr</strong>eatment.<br />

Keywords: Sulfabenzamide, breast cancer, autophagy, apoptosis, p53.<br />

Sülfobenzamid, T-47D meme kanseri hücrelerinde p53/DRAM yolağı aracılığıyla ot<strong>of</strong>ajik hücre ölümünü<br />

teşvik eder<br />

Sülfonamidler, membrana bağlı karbonik anhidraz inhibisyonunu, mikrotubül toplanmasının engellenmesini, hücre<br />

siklusunun durdurulmasını ve anjiyogenez inhibisyonunu içeren çoklu mekanizmalarla antitümör etkilerini<br />

göstermektedirler. Burada, T-47D meme kanser hücreleri üzerinde sülfobenzamid mekanizmasının etkisi<br />

belirlenmiştir. Sülfobenzamid ile inkübe edilen hücreler yapılmamış uygulama hücrelerle karşılaştırıldıklarında<br />

önemsenmeyecek seviyede apoptoz, nekroz ve hücre siklusunun durmasını ortaya koymuştur. Bu sonuçlar<br />

morfolojik incelemelerle, DNA fragmantasyon analizleriyle, flow sitome<strong>tr</strong>ik ve gerçek zamanlı RT-PCR<br />

analizleriyle doğrulanmıştır. Şaşırtıcı bir şekilde, DNA fragmantasyonunun ihmal edilebilecek tespitine rağmen,<br />

sülfobenzamidle edilmiş inkübe hücrelerde kaspaz 3 aktivitesinde dikkate değer artış bir gözlenmiştir. DFF-45/<br />

DFF-40’ artmış ın ekspresyon oranı, kaspaz 3 ile ilişkili DNA fragmantasyonunun durdurulduğunu ve apoptoz<br />

belirtilerinin görülemeyeceğini işaret etmektedir. Bununla birlikte PARP1 ve DNA-PK deaktivasyonu için kaspaz<br />

3’ün etkileri ot<strong>of</strong>aji indüklenmesiyle sonuçlanmaktadır. ATG5, p53 ve DRAM gibi ot<strong>of</strong>ajide yer alan kritik<br />

genlerin aşırı ekspresyonu T-47D sülfobenzamid-indüklenmiş hücrelerinde antiproliferatif etkinin çoğunlukla<br />

ot<strong>of</strong>aji indüksiyonu aracılığıyla uygul<strong>and</strong>ığını belirtmektedir. Ayrıca, PTEN aşırı ekspresyonu gibi AKT1 ve<br />

AKT’’nin azalarak düzenlenmesi, ot<strong>of</strong>aji ölümünün sülfobenzamid uygulamasıyla meydana geldiğini gösteren<br />

sağ AKT1/mTOR kalım yolağının etkisinin azalmasıyla sonuçlanmaktadır.<br />

Anahtar kelimeler: sülfobenzamid, meme kanseri, ot<strong>of</strong>aji, apoptoz, p53.


42 Raziye MOHAMMADPOUR et al.<br />

In<strong>tr</strong>oduction<br />

Sulfonamides are synthetic antibacterial agents<br />

with diverse pharmacological effects including<br />

antibacterial, antiviral, antidiabetic, antithyroid, <strong>and</strong><br />

diuretic. Their antibacterial effects are con<strong>tr</strong>ibuted<br />

to the interfering with enzyme activities responsible<br />

for folic acid synthesis by competing for para<br />

aminobenzoic acid. These drugs are selectively<br />

toxic for prokaryotes (Owa et al., 1999; Fukuoka et<br />

al., 2001; Yokoi et al., 2002; Supuran 2003). Two<br />

novel sulfonamides, E7070 <strong>and</strong> E70<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, are potently<br />

effective against cancer cells via inhibition <strong>of</strong><br />

tubulin polymerization <strong>and</strong> proliferation. The<br />

ma<strong>tr</strong>ix metalloprotease (MMP) inhibitory effects <strong>of</strong><br />

sulfonamides have been evaluated for <strong>tr</strong>eatment <strong>of</strong><br />

arthritis <strong>and</strong> cancer (Fukuoka et al., 2001; Ozawa et<br />

al., 2001; Supuran et al., 2003; Mohan et al., 2006).<br />

Sulfabenzamide, 4-Amino-N-benzoyl-benzenesulfonamide,<br />

is a sulfonamide derivative used for<br />

<strong>tr</strong>eatment <strong>of</strong> specific vaginal infections in<br />

combination with sulfathiazole <strong>and</strong> sulfacetamide<br />

(Valley <strong>and</strong> Balmer, 1999).<br />

Knowledge regarding alterations in signaling<br />

pathways <strong>and</strong> the type <strong>of</strong> cell death induced by<br />

chemotherapeutic drugs is the first <strong>and</strong> most<br />

important step in design <strong>of</strong> effective <strong>tr</strong>eatments.<br />

Furthermore, manipulation <strong>of</strong> autophagy has the<br />

potential to improve anticancer therapeutics.<br />

Studies have shown that autophagy protects cancer<br />

cells against antitumor effects <strong>of</strong> some drugs by<br />

blocking the apoptotic pathway <strong>and</strong> maintaining<br />

ATP levels. In con<strong>tr</strong>ast, other cancer cells undergo<br />

autophagic cell death (ACD or type II programmed<br />

cell death, PCDII) after anticancer therapies<br />

(Kondo et al., 2005; Kondo <strong>and</strong> Kondo, 2006).<br />

Various anticancer drugs that activate ACD in<br />

breast cancer cells have been reported including<br />

vitamin D analog, EB<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>89, Tamoxifen <strong>and</strong> other<br />

anties<strong>tr</strong>ogen agents (Hoyer-Hansen et al., 2005).<br />

Tamoxifen induced autophagic pathway occurs<br />

through down regulation <strong>of</strong> AKT activity<br />

(Yokoyama et al., 2009). The 3'-methoxylated<br />

analogue isocannflavin B (IsoB) exhibits an<br />

inhibitory effect on T-47D cell proliferation, which<br />

is accompanied by the appearance <strong>of</strong> an intense<br />

in<strong>tr</strong>acytoplasmic vacuolization <strong>of</strong> autophagic origin<br />

(Brunelli et al., 2009).<br />

Here, we choose sulfabenzamide for assessing<br />

its antitumor activity in T-47D breast cancer cell<br />

line. Our main objective was to determine whether<br />

this drug can be used as an antitumor drug in<br />

medicine. From this point <strong>of</strong> view, we could<br />

ascertain that there is a correlation between the<br />

expression level <strong>of</strong> some critical genes <strong>and</strong><br />

induction <strong>of</strong> death autophagy in T-47D cells.<br />

Materials <strong>and</strong> methods<br />

Reagents<br />

Culture medium, RPMI 1640, <strong>and</strong> fetal bovine<br />

serum were from Gibco (Engl<strong>and</strong>); penicillin<br />

s<strong>tr</strong>eptomycin solution, DNA laddering kit,<br />

Annexin-V-FLOUS Staining Kit, Propidium<br />

Iodide (PI) kit, caspase-3 fluorome<strong>tr</strong>ic<br />

immunosorbent enzyme assay kit, 4',6- Diamidino -<br />

2-phenylindole (DAPI) kit were all acquired from<br />

Roche (Germany); MTT was from Sigma<br />

(Engl<strong>and</strong>); sulfabenzamide <strong>and</strong> doxorubicin were<br />

from Sina Darou (Iran) <strong>and</strong> Ebewe Pharma<br />

(Aus<strong>tr</strong>ia), respectively. QuantiFast SYBR Green<br />

PCR master mix <strong>and</strong> RNeasy plus Mini kit were<br />

provided from Qiagen (USA). RevertAidTM M-<br />

MuLV reverse <strong>tr</strong>anscriptase <strong>and</strong> r<strong>and</strong>om hexamer<br />

were purchased from Fermentas (Germany).<br />

<strong>Cell</strong> culture<br />

Epithelial tumor cell line, T-47D, stemmed from<br />

human ductal breast tissue, was provided from<br />

National <strong>Cell</strong> Bank <strong>of</strong> Pasteur Institute (Tehran,<br />

IRAN; ATCC number HTB-133). <strong>Cell</strong>s were<br />

maintained in RPMI 1640 medium supplemented<br />

with heat-inactivated (35 min, 56°C) fetal bovine<br />

serum (<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>% v/v) <strong>and</strong> penicillin s<strong>tr</strong>eptomycin<br />

solution (1% v/v) <strong>and</strong> incubated in humidified<br />

condition; 95% air <strong>and</strong> 5% CO2 at 37°C.<br />

Drug preparation <strong>and</strong> <strong>tr</strong>eatments<br />

Regarding the obtained results from MTT assays,<br />

LC50 for sodium sulfabenzamide <strong>and</strong> doxorubicin<br />

after 48 h were estimated at <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.8 <strong>and</strong> 0.337×<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> -3<br />

mM, respectively. After reaching confluency (~<br />

80%), cells were incubated with freshly prepared<br />

drugs at the LC50 concen<strong>tr</strong>ations, harvested by<br />

<strong>tr</strong>ypsin-EDTA, washed three times by phosphatebuffered<br />

saline, <strong>and</strong> stored at -70°C.<br />

Cytotoxicity/Viability assay<br />

In brief, <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 4 cells/well were seeded in a 96 well<br />

culture plate <strong>and</strong> incubated with different<br />

concen<strong>tr</strong>ations <strong>of</strong> drugs for 24, 48 <strong>and</strong> 72 h. MTT<br />

was then added to the wells (4 mg/ml or <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0<br />

µg/well) <strong>and</strong> the produced formazan was<br />

systematically assessed using Elisa micro plate


eader at the wavelength <strong>of</strong> 570 nm. The percent <strong>of</strong><br />

cell viability related to each drug concen<strong>tr</strong>ation was<br />

estimated in relation to the un<strong>tr</strong>eated sample. All<br />

assays were done at least three times unless stated<br />

otherwise.<br />

Apoptosis quantification<br />

After washing <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 6 cells with PBS, cell pellets were<br />

re-suspended in <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 µl <strong>of</strong> ready to use Annexin/PI<br />

buffer (20 µl <strong>of</strong> each Annexin <strong>and</strong> PI buffer in 1 ml<br />

incubation buffer) for <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>-15 min at 25˚C. Samples<br />

were then diluted in 500 µl <strong>of</strong> incubation buffer <strong>and</strong><br />

analyzed by flow cytome<strong>tr</strong>y (Partech Pass, USA)<br />

using FloMax s<strong>of</strong>tware.<br />

<strong>Cell</strong> cycle analysis<br />

5×<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 5 drug <strong>tr</strong>eated cells were incubated with DAPI<br />

solution (<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> µg/ml <strong>and</strong> 6% Triton X-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 in PBS)<br />

for 30 min in the dark at 4ºC. Using a flow<br />

cytometer fluorescent emission <strong>of</strong> applied indicator<br />

was detected (excitation <strong>and</strong> emission wavelength<br />

<strong>of</strong> 359 nm <strong>and</strong> 461 nm, respectively) <strong>and</strong> the<br />

analysis was performed using FloMax s<strong>of</strong>tware.<br />

Morphological studies <strong>of</strong> the apoptotic cells<br />

<strong>Cell</strong>s were cultured on cover slips coated with Poly<br />

L-lysine <strong>and</strong> exposed to drugs for 48 h. Following<br />

staining with Annexin V-FITC (20 µg/ml) <strong>and</strong> PI<br />

(20 µg/ml) in the dark for <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>-15 min, samples were<br />

examined using a fluorescent microscope (Carl<br />

Zeiss-Germany) using 450-500 nm excitation <strong>and</strong><br />

515-565 nm emission filters.<br />

Measurement <strong>of</strong> caspase-3 activity<br />

Following drug <strong>tr</strong>eatments, cells were harvested<br />

<strong>and</strong> incubated in lysis buffer on ice for 1 minute.<br />

After cen<strong>tr</strong>ifugation, sample supernatants were used<br />

for caspase-3 activity measurements using AC-<br />

DEVED-AFC fluorescent subs<strong>tr</strong>ate as<br />

recommended by the supplier. The concen<strong>tr</strong>ation <strong>of</strong><br />

enzyme-released AFC was estimated using<br />

fluorospec<strong>tr</strong>ophotometer (HITACHI model MPF4-<br />

Japan) at 400 nm excitation <strong>and</strong> 505 nm emission<br />

wavelengths.<br />

DNA laddering assay<br />

2×<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 6 drug <strong>tr</strong>eated cells were lysed with an equal<br />

volume <strong>of</strong> binding/lysis buffer for <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> minutes at 15-<br />

25 º C. The obtained ex<strong>tr</strong>act was processed as<br />

recommended by the supplier. Elec<strong>tr</strong>ophoresis <strong>of</strong><br />

the samples in 1% agarose gel at 75 volt for 90<br />

minutes revealed DNA cleavage pattern <strong>of</strong> cells<br />

Sulfabenzamide promotes autophagic cell death 43<br />

relative to positive con<strong>tr</strong>ol (DNA ex<strong>tr</strong>acted<br />

prepared from U937 cells incubated 3h with 4 µM<br />

camptothecin).<br />

Preparation <strong>of</strong> total RNA, cDNA synthesis <strong>and</strong> real<br />

time RT-PCR<br />

Total RNA was purified using the RNeasy Qiagen<br />

kit according to the manufacturer’s<br />

recommendation. First s<strong>tr</strong><strong>and</strong> cDNA was generated<br />

using RevertAidTM M-MuLV reverse <strong>tr</strong>anscriptase<br />

<strong>and</strong> 5µg <strong>of</strong> RNA with r<strong>and</strong>om hexamer primers.<br />

Real time quantitative RT-PCR was performed<br />

using the QuantiFast SYBR Green PCR Master<br />

Mix under the following program: 95˚C for 5 min<br />

followed by 40 cycles (95˚C for <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> sec, annealing<br />

for 25 sec <strong>and</strong> extension at 72˚C for 30 sec).<br />

Analysis was done using Corbett rotor-gene 6000<br />

s<strong>of</strong>tware based on the comparative Ct method (or<br />

ΔΔCt method). The relative amount <strong>of</strong> target<br />

materials was quantified compared to the reference<br />

gene (GAPDH). Primers were prepared by TAG<br />

(Copenhagen, Denmark) <strong>and</strong> were used to amplify<br />

specific regions <strong>of</strong> cDNA as listed in Table1.<br />

Statistical analysis<br />

For all methods statistical analysis were performed<br />

by the SPSS version 16 <strong>and</strong> Excel 2007 s<strong>of</strong>twares.<br />

Statistical analysis for MTT assay, flow cytome<strong>tr</strong>y,<br />

caspase-3 activity were performed by one way<br />

ANOVA <strong>and</strong> real time RT-PCR methods were<br />

carried out by t-test. All results are presented as<br />

mean ± st<strong>and</strong>ard deviation (p< 0.05 was considered<br />

statistically significant).<br />

Results<br />

Sulfabenzamide inhibits the proliferation <strong>of</strong> T-47D<br />

cells<br />

The MTT assay was used to evaluate the viability<br />

<strong>of</strong> T-47D cells incubated with different<br />

concen<strong>tr</strong>ations <strong>of</strong> sulfabenzamide (0.0-20 mM) or<br />

doxorubicin (0.0-0.6 µM) after 24, 48 <strong>and</strong> 72 h<br />

(chemical s<strong>tr</strong>uctures are shown in Figure 1A). We<br />

checked toxic effects <strong>of</strong> doxorubicin on T-47D<br />

since it had been reported that its anticancer effects<br />

on different cell types exerts through distinct<br />

cellular processes (apoptosis or cell cycle arrest).<br />

Thus, it could be utilized as a con<strong>tr</strong>ol in our<br />

experiments. The 50% growth inhibition (LC50)<br />

concen<strong>tr</strong>ation for sulfabenzamide <strong>and</strong> doxorubicin<br />

after 48 h, were calculated as <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.8 mM <strong>and</strong> 0.33<br />

µM, respectively, <strong>and</strong> utilized in the following<br />

experiments (Figure 1B).


44 Raziye MOHAMMADPOUR et al.<br />

Table 1. List <strong>of</strong> primers. Forward <strong>and</strong> reverse primer pairs for PTEN gene were designed to amplify a region which could<br />

not anneal to PTEN pseudogene. Primer for p53 was designed for the mutant form present in T-47D cells.<br />

Gene Accession number primers<br />

F: CCAGGTGGTCTCCTCTGACTTCAACAG<br />

PCR product(bp)<br />

GAPDH NC_000012.11<br />

R: AGGGTCTCTCTCTTCTTCCTCTTGTGCTCT<br />

F: GTGAGATATGGTTTGAATATGAAGGC<br />

218<br />

ATG5 NC_000006.11<br />

R: CTCTTAAAATGTACTGTGATGTTCCAA<br />

F: GGAGAGGAGCCATTTATTGAAACT<br />

122<br />

beclin1 NC_000017.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: AGAGTGAAGCTGTTGGCACTTTCTG<br />

F: CTTGGATTGGTGGGATGTTTC<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4<br />

DRAM NC_000012.11<br />

R: GATGATGGACTGTAGGAGCGTGT<br />

F: CCAGATGGAAAGACGTTTTTGTG<br />

135<br />

AKT1 NC_000014.8<br />

R: GAGAACAAACTGGATGAAATAAA<br />

F: CTGCGGAAGGAAGTCATCATTGC<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>6<br />

AKT2 NC_000019.9<br />

R: CGGTCGTGGGTCTGGAAGGCATAC<br />

F: CAAACTTTTTCAGAGGGGATCG<br />

125<br />

caspase-3 NC_000004.11<br />

R: GCATACTGTTTCAGCATGGCAC<br />

F: AAGAAGCTGAGCGAGTGTC<br />

261<br />

bax NC_000019.9<br />

R: GGCCCCAGTTGAAGTTGC<br />

F: ATGGAACTAACTATGTTGGACTATG<br />

157<br />

cyclinB1 NC_000005.9<br />

R: AGTATATGACAGGTAATGTTGTAGAGT<br />

F: AGGGGGAAACACCAGAATCAAGTG<br />

138<br />

bcl-2 NC_000018.9<br />

R: CCCAGAGAAAGAAGAGGAGTTATAA<br />

F: GGTCTTGTGGACAGTAGTTTGCC<br />

113<br />

AIF NC_000023.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: TCTCACTCTCTGATCGGATACCA<br />

F:CCTGTGCAGCTGTGGGTTGATTT<br />

115<br />

p53 NC_000017.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: AGGAGGGGCCAGACCATCGCTAT<br />

F: TTGGAGTCCCGATTTCAGAG<br />

150<br />

DFF40 NC_000001.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: CTGTCGAAGTAGCTGCCATTG<br />

F:TTCTGTGTCTACCTTCCAATACTA<br />

194<br />

DFF45 NC_000001.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R:CTGTCTGTTTCATCTACATCAAAG<br />

F: TAACATTAGTCTGGATGGTGTAGA<br />

127<br />

PARP1 NC_000001.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: TTACCTGAGCAATATCATAGACAAT<br />

F: TGGCATTACAGACATCTTTAGTTT<br />

113<br />

DNA-PK NC_000008.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: ACTTTAGGATTTCTTCTCTACATTCA<br />

F: TGGCTAAGTGAAGATGACAATCATG<br />

111<br />

PTEN NC_0000<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: GCACATATCATTACACCAGTTCGT<br />

81


Sulfabenzamide promotes autophagic cell death 45<br />

Figure 1. A) Chemical s<strong>tr</strong>ucture <strong>of</strong> sulfabenzamide <strong>and</strong> doxorubicin. B) Viability curve <strong>of</strong> sodium<br />

sulfabenzamide <strong>and</strong> doxorubicin <strong>tr</strong>eated T-47D cells. Percent viability <strong>of</strong> cells incubated with sodium<br />

sulfabenzamide <strong>and</strong> doxorubicin was calculated relative to the related un<strong>tr</strong>eated con<strong>tr</strong>ols after 24, 48 <strong>and</strong> 72<br />

h. Each point relates to the mean value <strong>of</strong> at least three independent experiments. The related correlation<br />

coefficient (r 2 ) was adjusted until the best fit for the selected mathematical function was used to interpolate<br />

the experimental points.<br />

T-47D cells do not exhibit DNA fragmentation <strong>and</strong><br />

apoptotic morphology in the presence <strong>of</strong><br />

sulfabenzamide or doxorubicin<br />

Unlike DNA fragmentation patterns observed in<br />

DNA ex<strong>tr</strong>acted from U937 cells incubated with<br />

camptothecin (as a positive con<strong>tr</strong>ol <strong>of</strong> DNA<br />

laddering kit), the gel elec<strong>tr</strong>ophoresis <strong>of</strong> DNA<br />

prepared from cells incubated with sulfabenzamide<br />

(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.8 mM) or doxorubicin (0.33 µM) showed no<br />

DNA ladder or smear pattern confirming lack <strong>of</strong><br />

apoptosis or necrosis in these cells (Figure 2A).<br />

Morphological analysis <strong>of</strong> sulfabenzamide <strong>and</strong><br />

doxorubicin <strong>tr</strong>eated cells, double stained with<br />

Annexin-FITC <strong>and</strong> PI, evaluated by fluorescent<br />

microscopy <strong>and</strong> confirmed the results <strong>of</strong> DNA<br />

laddering analysis. There were few cells having<br />

morphological characteristics <strong>of</strong> apoptotic <strong>and</strong><br />

necrotic cells (Figures 2B, 2C). Early (young)<br />

apoptotic cells have rounded shape <strong>and</strong> shiny green<br />

membrane because PI cannot pene<strong>tr</strong>ate into the<br />

cells <strong>and</strong> Annexin-FITC binds to the externally<br />

membrane-exposed phosphatidylserines (Figures<br />

2B, 2C). Late apoptotic <strong>and</strong> necrotic cells have<br />

membrane permeability for PI so their nuclei are<br />

stained red (Figure 2C). The main difference<br />

between necrotic <strong>and</strong> late apoptotic cells is the<br />

potency <strong>of</strong> late apoptotic cells for simultaneous<br />

staining <strong>of</strong> nuclei <strong>and</strong> membrane-exposed<br />

phosphatidylserines with PI <strong>and</strong> Annexin-FITC,<br />

respectively. Membrane blebbing, which is a<br />

common feature <strong>of</strong> apoptotic cells was seen in<br />

Figure 2B. Evidently, healthy cells cannot be seen<br />

under fluorescent microscope since they were not<br />

stained with either <strong>of</strong> the fluorescent dyes (Figure<br />

2E).


46 Raziye MOHAMMADPOUR et al.<br />

Figure 2. A) DNA laddering analysis. 1-3 µg DNA prepared from 2×<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 6 cells was resolved by<br />

elec<strong>tr</strong>ophoresis in a 1% agarose gel. DNA fragmentation was observed only in positive con<strong>tr</strong>ol (camptothecin<br />

<strong>tr</strong>eated) cells, but it was not detected in con<strong>tr</strong>ol or cells incubated with doxorubicin or sodium<br />

sulfabenzamide. B) Observation <strong>of</strong> the morphology <strong>of</strong> early apoptotic cells using fluorescent microscopy<br />

following double staining with Annexin V-FITC <strong>and</strong> PI. Morphological characteristics <strong>of</strong> early apoptotic<br />

cells (rounded green shiny cells showing membrane blebbing) in sulfabenzamide <strong>tr</strong>eated cells. C)<br />

Observation <strong>of</strong> the morphology <strong>of</strong> late apoptotic <strong>and</strong> necrotic cells using fluorescent microscopy following<br />

double staining with Annexin V-FITC <strong>and</strong> PI. Morphological characteristics <strong>of</strong> late apoptotic (flattened green<br />

shiny cells showing red dense nuclei) <strong>and</strong> necrotic cells (red dense spheres lacking green shiny membrane) in<br />

sulfabenzamide <strong>tr</strong>eated cells. Similar results were observed for doxorubicin (not shown). Living cells due to<br />

lack <strong>of</strong> staining with dyes are not detectable in fluorescent visual field (E) but are visible using phase con<strong>tr</strong>ast<br />

microscopy (D).


Sulfabenzamide promotes autophagic cell death 47<br />

Figure 3. Caspase-3 activity was increased in cells incubated with sulfabenzamide or doxorubicin. Enzyme<br />

activity in the con<strong>tr</strong>ol, sodium sulfabenzamide, or doxorubicin <strong>tr</strong>eated cells were 1.308±0.115, 2.07±0.08,<br />

<strong>and</strong> 2.496±0.11 nM.h -1 , respectively. St<strong>and</strong>ard curve based on emission (Y axis) <strong>of</strong> different concen<strong>tr</strong>ation <strong>of</strong><br />

free AFC (nM) is plotted (inset). Diagram <strong>of</strong> free AFC is plotted in 400 nm excitation <strong>and</strong> 505 nm emission<br />

wavelengths.<br />

Table 2. Numerical results <strong>of</strong> flow cytome<strong>tr</strong>y analysis. Results are the mean value ± SD for at least three<br />

replicated experiments. Each column named with Qi which includes data related to the quadrant that are Q1<br />

(PI + <strong>and</strong> Annexin V-FITC - ) or Q1+Q2 (Q2 is the region for PI + <strong>and</strong> Annexin V-FITC + ) indicated percent value<br />

<strong>of</strong> necrotic cells, <strong>and</strong> columns Q4 (PI - <strong>and</strong> Annexin V-FITC + ) or Q2+Q4 show percent values <strong>of</strong> apoptotic cells<br />

(see text). Column Q3 (PI - <strong>and</strong> Annexin V-FITC - ) indicates percent value <strong>of</strong> normal cells. Column <strong>of</strong> G1, S<br />

<strong>and</strong> G2/M represent the percent value <strong>of</strong> the cells placed in each related phase <strong>of</strong> cell cycle. NC, Dox <strong>and</strong> SU<br />

are abbreviations for Negative Con<strong>tr</strong>ol, Doxorubicin <strong>and</strong> Sulfabenzamide, respectively.<br />

Treated<br />

cells<br />

Q3 Q1 Q2 Q4 Q1+Q2 Q2+Q4 G1<br />

S G2<br />

NC 98.94±0.72 0.90±0.46 0.05±0.04 0.35±0.09 0.96±0.50 0.40±0.11 67.06±5.79 16.39±4.27 16.54±3.20<br />

DOX 97.60±1.12 1.33±0.68 0.015±0.02 1.05±0.90 1.34±0.67 1.06±0.90 30.58±1.14 40.55±4.65 28.86±3.51<br />

SU 98.58±0.56 0.27±0.19 0.09±0.08 0.86±0.57 0.37±0.1 0.96±0.54 48.80±4.28 27.47±4.39 22.70±3.79


48 Raziye MOHAMMADPOUR et al.<br />

Caspase-3 activity was increased in the<br />

sulfabenzamide <strong>and</strong> doxorubicin <strong>tr</strong>eated cells<br />

Using caspase-3 specific subs<strong>tr</strong>ate, subsequent<br />

releasing <strong>of</strong> the fluorescent product (AFC) was<br />

measured <strong>and</strong> average enzymatic velocity was<br />

calculated (three independent experiments) as<br />

16.6±1.42, 26.2±1.3 <strong>and</strong> 38.3±0.85 (∆F.h -1 , ∆F<br />

means fluorescent intensity alteration) for un<strong>tr</strong>eated<br />

cell, sulfabenzamide or doxorubicin <strong>tr</strong>eated cells,<br />

respectively. Using the st<strong>and</strong>ard curve <strong>of</strong> free AFC,<br />

enzymatic activity was calculated as 1.308±0.115,<br />

2.07± 0.08 <strong>and</strong> 2.496± 0.11nM.h -1 , respectively<br />

(Figure 3).<br />

Comparing with un<strong>tr</strong>eated cells, caspase-3<br />

activity was increased in drug <strong>tr</strong>eated samples.<br />

Elevated activity <strong>of</strong> caspase-3, which is a sign <strong>of</strong><br />

apoptosis induction, is in con<strong>tr</strong>ast with the DNA<br />

laddering results <strong>and</strong> is further discussed below.<br />

Sulfabenzamide did not induce apoptosis but<br />

induced a minimal shift from G1 to S <strong>and</strong> G2/M<br />

phases <strong>of</strong> the cell cycle<br />

Using flow cytome<strong>tr</strong>ic analysis <strong>and</strong> Annexin-FITC<br />

<strong>and</strong> PI staining, the incidence <strong>of</strong> apoptosis <strong>and</strong><br />

necrosis in un<strong>tr</strong>eated, sulfabenzamide, or<br />

doxorubicin <strong>tr</strong>eated cells were quantified (Figure<br />

4A <strong>and</strong> Table 2).<br />

Congruent with graph interpretation methods<br />

applied in most publications, the sum <strong>of</strong> cell<br />

populations in regions Q2 (PI + <strong>and</strong> Annexin V-<br />

FITC + ) <strong>and</strong> Q4 (PI - <strong>and</strong> Annexin V-FITC + ) were<br />

considered as early <strong>and</strong> late apoptotic cells (Hsu et<br />

al., 2006; Tyagi et al., 2006; Dowejko et al., 2009;<br />

LaPensee et al., 2009). In addition, regions Q1 (PI +<br />

<strong>and</strong> Annexin V-FITC - ) <strong>and</strong> Q3 (PI - <strong>and</strong> Annexin V-<br />

FITC - ) indicated necrotic <strong>and</strong> unscathed<br />

populations, respectively. In some publications, cell<br />

percentages located in Q1 <strong>and</strong> Q2 (Q2 is the region<br />

for PI + <strong>and</strong> Annexin V-FITC + ) quarters are<br />

considered as necrotic cells (Davis et al., 2000). In<br />

these studies, Q4 quarter (PI - <strong>and</strong> Annexin V-<br />

FITC + ) represented the percentage <strong>of</strong> apoptotic<br />

cells. Therefore, in Table 2 determination <strong>of</strong><br />

necrotic cells was performed separately via Q1, as<br />

well as Q1+Q2, <strong>and</strong> the estimation for apoptotic<br />

cells was carried out as Q2+Q4 as well as Q4, in<br />

order to indicate that the low percentages <strong>of</strong><br />

apoptotic <strong>and</strong> necrotic cells observed was not<br />

influenced by the applied analytical methods.<br />

Flow cytome<strong>tr</strong>y is useful for calculating the<br />

percentages <strong>of</strong> cells existing in various stages <strong>of</strong> the<br />

cell cycle including G1, S <strong>and</strong> G2/M. To make a<br />

practical use <strong>of</strong> this technique, cells were stained<br />

with DAPI, which enters the nucleus <strong>and</strong> binds to<br />

DNA <strong>and</strong> emanates fluorescent emission.<br />

Although, no significant change in the normal<br />

pattern <strong>of</strong> cell dis<strong>tr</strong>ibution throughout the cell cycle<br />

was observed for sulfabenzamide <strong>tr</strong>eated cells (18%<br />

shift from G1 to S <strong>and</strong> G2/M) a considerable<br />

<strong>tr</strong>ansition (37%) was detected from G1 to S (main<br />

<strong>tr</strong>ansition) <strong>and</strong> G2/M in cells incubated with<br />

doxorubicin as positive con<strong>tr</strong>ol (Figure 4B <strong>and</strong><br />

Table 2).<br />

Alterations in expression <strong>of</strong> proapoptotic,<br />

prosurvival <strong>and</strong> autophagic genes in<br />

sulfabenzamide <strong>and</strong> doxorubicin <strong>tr</strong>eated cells<br />

The changes in expression level <strong>of</strong> apoptotic, cell<br />

survival <strong>and</strong> autophagic genes were evaluated using<br />

real time RT-PCR. With respect to the results<br />

shown in Figure 5 as well as its insets it can be seen<br />

that in sulfabenzamide <strong>tr</strong>eatments some apoptotic<br />

genes (DFF-45 <strong>and</strong> DNA-PK ) were over expressed<br />

while some others were down regulated (PARP1,<br />

Bax, Bcl-2 <strong>and</strong> AIF) or retained their expression<br />

level in a constant condition (DFF-40 <strong>and</strong> caspase-<br />

3). Moreover, some critical genes which are<br />

important in cell survival pathway were also down-<br />

regulated (AKT1 <strong>and</strong> AKT2) or over expressed<br />

(PTEN). Alterations in gene expression were<br />

evaluated for some autophagic genes such as<br />

ATG5, p53 <strong>and</strong> DRAM indicating higher amounts<br />

<strong>of</strong> the related <strong>tr</strong>anscripts in drug <strong>tr</strong>eated cells<br />

relative to the un<strong>tr</strong>eated ones. In doxorubicin<br />

<strong>tr</strong>eated cells some apoptotic genes were focused<br />

<strong>and</strong> their alterations including over expression <strong>of</strong><br />

caspase-3, DNA-PK, DFF-45 <strong>and</strong> Bax; down<br />

regulation <strong>of</strong> DFF-40 <strong>and</strong> constant expression <strong>of</strong><br />

AIF <strong>and</strong> PARP1 were evaluated (Figure 5).


Sulfabenzamide promotes autophagic cell death 49<br />

Figure 4. A) Two dimensional plots <strong>of</strong> Annexin V-FITC against PI related to the flow cytome<strong>tr</strong>ic<br />

experiments. Two dimensional diagrams from flow cytome<strong>tr</strong>ic studies showed that the percentage <strong>of</strong><br />

apoptotic cells (cells located in the Q4 area or total cells in Q2 + Q4) <strong>and</strong> necrosis (cell located in Q1 or in<br />

Q1+Q2) do not show dramatic differences compared with con<strong>tr</strong>ol cells. B) Effects <strong>of</strong> sodium sulfabenzamide<br />

<strong>and</strong> doxorubicin on the cell cycle dis<strong>tr</strong>ibution. FL4-A indicates the area under the registered elec<strong>tr</strong>ical signal<br />

<strong>of</strong> each stained cell. The curves from left to right relate to G1, S, G2/M phases <strong>of</strong> the cell cycle in con<strong>tr</strong>ol,<br />

doxorubicin or sodium sulfabenzamide <strong>tr</strong>eated samples.


50 Raziye MOHAMMADPOUR et al.<br />

Figure 5. Quantitative real time RT-PCR analysis histograms. Real time RT-PCR for the selected genes for<br />

sulfabenzamide (A) <strong>and</strong> Doxorubicin (B) <strong>tr</strong>eated T-47D cells were determined as described in Methods. The<br />

relative amount <strong>of</strong> target material was quantified compared to the reference gene using the comparative Ct<br />

(ΔΔCt) method. The statistical significant differences are indicated with * <strong>and</strong> ** for 0.01


independent <strong>of</strong> changes in the related mRNA level<br />

(Figures 3 <strong>and</strong> 5). The increased activity <strong>of</strong><br />

caspase-3 was negated via overexpression <strong>of</strong> DFF-<br />

45. DFF-45 is the natural inhibitor <strong>of</strong> DFF-40<br />

(CAD) (Liu et al., 1997). In addition, the increased<br />

expression <strong>of</strong> DFF-45, along with a modest<br />

increase (for sulfabenzamide) <strong>and</strong> a significant<br />

decrease (for doxorubicin) in DFF-40 expression<br />

(Figure 5), indicated that the increased activity <strong>of</strong><br />

caspase-3 could be blocked by the increased<br />

expression ratio <strong>of</strong> DFF-45/DFF-40. This r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ces<br />

the level <strong>of</strong> active DFF-40 to <strong>tr</strong>igger DNA<br />

fragmentation <strong>and</strong> appearance <strong>of</strong> apoptotic<br />

symptoms. Furthermore, it has been reported that<br />

caspases are activated during autophagy in dying<br />

cells <strong>and</strong> are suppressed for apoptosis induction<br />

(Martin et al., 2004; Yu et al., 2004). Therefore, it<br />

can be d<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ced that during autophagy, the effects<br />

<strong>of</strong> activated caspase-3 on their downs<strong>tr</strong>eam<br />

subs<strong>tr</strong>ates (like DFF-40) should be suppressed by<br />

special factors (e.g. DFF-45 in T-47D cells) only in<br />

those cellular routes which are involved in the<br />

appearance <strong>of</strong> apoptosis symptoms (e.g. DNA<br />

fragmentation).<br />

<strong>Cell</strong> cycle arrest, an important cellular target<br />

affected by sulfabenzamide <strong>and</strong> doxorubicin, was<br />

analyzed using flow cytome<strong>tr</strong>y. Incubation <strong>of</strong> T-<br />

47D cells with 0.33 µM doxorubicin resulted in a<br />

significant accumulation <strong>of</strong> cells in S phase, <strong>and</strong> to<br />

a lesser extent in G2/M phase <strong>of</strong> the cell cycle<br />

(Figure 4B <strong>and</strong> Table 2). Thus, doxorubicin exerts<br />

its antiproliferative action mainly through cell cycle<br />

arrest. Induced mitotic catas<strong>tr</strong>ophe following<br />

increased activation <strong>of</strong> cyclinB1/Cdc2 may occur<br />

while cells are delayed, particularly in G2 phase <strong>of</strong><br />

the cell cycle (Lindqvist et al., 2007). The induced<br />

G2/M arrest along with down regulation <strong>of</strong><br />

cyclinB1 expression confirmed that anticancer<br />

activity <strong>of</strong> doxorubicin is not via mitotic<br />

catas<strong>tr</strong>ophe (Figure 5 <strong>and</strong> Table 2). In con<strong>tr</strong>ast to<br />

doxorubicin, minimal cell cycle arrest in S <strong>and</strong><br />

G2/M phases (totally 18%) was observed in T-47D<br />

cells incubated with <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.8 mM sulfabenzamide<br />

(Figure 4B <strong>and</strong> Table2). Thus, cell cycle arrest<br />

could not be mainly responsible for a 50%<br />

r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ction in cell viability in the presence <strong>of</strong><br />

sulfabenzamide.<br />

As we know, when apoptosis is blocked or<br />

delayed autophagy <strong>tr</strong>iggered <strong>and</strong> vice versa. These<br />

possibilities are consistent with our findings<br />

regarding lack <strong>of</strong> apoptosis in drug <strong>tr</strong>eated cells <strong>and</strong><br />

induction <strong>of</strong> autophagy. The induced<br />

overexpression <strong>of</strong> ATG5 supported that autophagy<br />

Sulfabenzamide promotes autophagic cell death 51<br />

<strong>tr</strong>iggered in the presence <strong>of</strong> sulfabenzamide (Figure<br />

5). This could be probably occurred through the<br />

increase in Bax activity working on mitochondrial<br />

membrane to result in activation <strong>of</strong> caspase-3 for<br />

PARP1 <strong>and</strong> DNA-PK deactivation <strong>and</strong> autophagy<br />

induction. It has been reported that induction <strong>of</strong><br />

autophagy by PUMA (the p53-inducible BH3-only<br />

protein) depends on Bax/Bak <strong>and</strong> can be<br />

reproduced by overexpression <strong>of</strong> Bax (Yee et al.,<br />

2009). Here, in doxorubicin <strong>tr</strong>eatment, increase in<br />

Bax activity could be occurred in parallel with the<br />

increment <strong>of</strong> Bax <strong>tr</strong>anscripts affecting on the cells<br />

for caspase-3 activation <strong>and</strong> changing the cell's<br />

destiny toward autophagy (Figure 5). This notion<br />

could be also supplied in sulfabenzamide <strong>tr</strong>eatment<br />

aside from the mild decrease in Bax expression<br />

because activation <strong>of</strong> the existed Bax molecules in<br />

the cells could be happened for caspase-3 activation<br />

<strong>and</strong> autophagy induction (Figure 5). It has been<br />

also reported that proteolytic cleavage <strong>of</strong> PARP1,<br />

performed by caspase-3, produces specific<br />

proteolytic cleavage fragments which are involved<br />

in the cell’s decision to change its fate from<br />

apoptosis toward autophagy (Munoz-Gamez et al.,<br />

2009; Chaitanya et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Induction <strong>of</strong><br />

autophagic cell death is dependent on DNA-PK<br />

inhibition (Daido et al., 2005). Thus, the increased<br />

activity <strong>of</strong> caspase-3 could finally deactivate<br />

PARP1 (has a decreased <strong>and</strong> constant expression<br />

level in sulfabenzamide <strong>and</strong> doxorubicin<br />

<strong>tr</strong>eatments, respectively) <strong>and</strong> DNA-PK (has an<br />

increased <strong>and</strong> invariable expression level in<br />

sulfabenzamide <strong>and</strong> doxorubicin <strong>tr</strong>eatments,<br />

respectively) until apoptosis was blocked <strong>and</strong><br />

autophagy induced (Figures 3 <strong>and</strong> 5).<br />

Despite the existence <strong>of</strong> some con<strong>tr</strong>oversies<br />

regarding the possible role <strong>of</strong> autophagy in tumor<br />

progression by promoting cell survival, autophagy<br />

can exist as a backup mechanism promoting<br />

cellular death when other mortality mechanisms are<br />

not functional. Hyperactivation <strong>of</strong> autophagy above<br />

the threshold point leads to unlimited self-eating <strong>of</strong><br />

the cells causing autophagy or type II programmed<br />

cell death (Hoyer-Hansen et al., 2005; Maiuri et al.,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Based on our data, downregulation <strong>of</strong> AKT1<br />

<strong>and</strong> AKT2 as well as upregulation <strong>of</strong> PTEN in<br />

sulfabenzamide <strong>tr</strong>eated cells indicated that cell<br />

survival pathways were slowed down (Figure 5). In<br />

addition, down regulation <strong>of</strong> bcl-2 was happened<br />

along with the induction <strong>of</strong> autophagy (Figure 5). It<br />

has been reported that targeted silencing <strong>of</strong> bcl-2<br />

expression (an anti-autophagic gene) in human<br />

breast cancer cells with RNA-interference has


52 Raziye MOHAMMADPOUR et al.<br />

promoted autophagic cell death <strong>and</strong> thus presents a<br />

therapeutic potential (Akar et al., 2008).<br />

p53 is involved in decreasing cell survival<br />

potency through inactivation <strong>of</strong> AKT/mTOR<br />

pathways, <strong>and</strong> stimulation <strong>of</strong> autophagy via<br />

<strong>tr</strong>ansactivation <strong>of</strong> DRAM (Maiuri et al., 2007).<br />

Thus, the observed increased expression level <strong>of</strong><br />

DRAM <strong>and</strong> p53 genes support our conclusion that<br />

the repression <strong>of</strong> AKT/mTOR survival pathway<br />

(via p53 overexpression) <strong>and</strong> autophagy induction<br />

(via increased DRAM <strong>tr</strong>anscripts) are responsible<br />

for r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ced viability <strong>of</strong> T-47D cells <strong>and</strong> induction<br />

<strong>of</strong> death inducing autophagy in the presence <strong>of</strong><br />

sulfabenzamide (Figure 5). T -47D cells contain<br />

only a single copy <strong>of</strong> the p53 missense mutation<br />

(Schafer et al., 2000). It has been reported by<br />

various studies that mutant p53 may lose its natural<br />

antitumor activity (Lim et al., 2009). Interestingly,<br />

in the presence <strong>of</strong> sulfabenzamide the antitumor<br />

activities <strong>of</strong> mutant form <strong>of</strong> p53 should return to the<br />

normal activities <strong>of</strong> the wild type form to induce<br />

autophagic cell death. This is very similar to the<br />

mechanism <strong>of</strong> action for some antitumor drugs<br />

reactivating mutant p53 to kill cancerous cells<br />

(Lambert et al., 2009).<br />

Evidently, checking <strong>of</strong> the protein expression<br />

levels using other supplementary methods such as<br />

western blotting could provide us better documents<br />

to support the presented real time RT-PCR data.<br />

But, in our work, we found that the registered<br />

alterations for the level <strong>of</strong> RNA <strong>tr</strong>anscripts were in<br />

a good consistence with the expected cellular<br />

behaviors when the proteins' expression levels or<br />

their activities were theoretically going to become<br />

changed in parallel with the RNA levels in the<br />

cells. Therefore, regardless <strong>of</strong> some exceptions,<br />

evaluating RNA <strong>tr</strong>anscripts could provide us an<br />

adequate image illus<strong>tr</strong>ating the changes in the<br />

proteins’ expression levels in the cells.<br />

Conclusions<br />

In summary, we showed that cell cycle arrest (<strong>and</strong><br />

possibly autophagy) may play a role in action <strong>of</strong><br />

doxorubicin on T-47D cells. However, the<br />

con<strong>tr</strong>ibution <strong>of</strong> apoptosis <strong>and</strong> cell cycle arrest<br />

antiproliferative effect <strong>of</strong> sulfabenzamide on T-47D<br />

cells is minimal. These observations are in con<strong>tr</strong>ast<br />

to many reports in which the mechanism <strong>of</strong> action<br />

<strong>of</strong> sulfonamide derivatives on cancer cells<br />

at<strong>tr</strong>ibuted to the conventional processes <strong>of</strong><br />

apoptosis <strong>and</strong> cell cycle arrest. We believe that<br />

induction <strong>of</strong> autophagic cell death in T-47D cells is<br />

<strong>tr</strong>iggered through p53/DRAM pathway (occurred<br />

along with decreasing <strong>of</strong> Akt/mTOR pathway) <strong>and</strong><br />

this is a reasonable cellular axis to justify our<br />

results.<br />

Abbreviations<br />

AKT: v-akt murine thymoma viral oncogene<br />

homolog, mTOR: Mechanistic Target Of<br />

Rapamycin, PTEN: Phosphatase <strong>and</strong> Tensin<br />

homolog, DRAM: Damage Regulated Autophagy<br />

Modulator, ATG5:Autophagy related gene 5,<br />

Beclin1: Bcl2 Interacting protein 1, PARP1: Poly<br />

ADP-Ribose Polymerase 1, DFF-40/CAD: DNA<br />

Fragmentation Factor 40/ Caspase-Activated<br />

DNase, Bax: Bcl2-Associated X protein, Bcl-2: B-<br />

<strong>Cell</strong> Lymphoma 2, AIF: Apoptosis Inducing<br />

Factor, DFF-45/iCAD: DNA Fragmentation<br />

Factor 45/inhibitor <strong>of</strong> Caspase-Activated DNase,<br />

Cdc2: <strong>Cell</strong> Division Cycle protein 2, ARF: ADP<br />

Ribosylation Factor, GAPDH: Glyceraldehyde-3-<br />

Phosphate Dehydrogenase, ACD: Autophagic <strong>Cell</strong><br />

Death, PCDII: type II Programmed <strong>Cell</strong> Death,<br />

RPMI: Roswell Park Memorial Institute.<br />

Conflict <strong>of</strong> interest<br />

The authors declare that they have no competing<br />

interest.<br />

Authors' con<strong>tr</strong>ibutions<br />

SS designed the study <strong>and</strong> experiments, analyzed<br />

<strong>and</strong> interpreted data <strong>and</strong> also prepared the<br />

manuscript. RM carried out the experiments <strong>and</strong><br />

participated in data analysis as well as writing the<br />

initial draft <strong>of</strong> the manuscript. SH <strong>and</strong> SF<br />

participated in performing the experiments. NS<br />

con<strong>tr</strong>ibuted on giving scientific comments <strong>and</strong> also<br />

carried out final editing <strong>of</strong> the manuscript.<br />

Acknowledgements<br />

Iran National Science Foundation (INSF) <strong>and</strong><br />

Research Council <strong>of</strong> University <strong>of</strong> Tehran have<br />

been gratefully appreciated by the authors because<br />

<strong>of</strong> their foundational supports for this work.<br />

References<br />

Akar U, Chaves-Reyez A, Barria M, Tari A,<br />

Sanguino A, Kondo Y, et al. Silencing <strong>of</strong> Bcl-2<br />

expression by small interfering RNA induces<br />

autophagic cell death in MCF-7 breast cancer<br />

cells. Autophagy. 4: 669–679, 2008.<br />

Alberts B, Johnson A, Lewis J, Raff M, Roberts K,<br />

Walter P. Molecular Biology <strong>of</strong> the <strong>Cell</strong>.


Garl<strong>and</strong> science Taylor & Francis Group, LLC,<br />

UK, 1115-1130, 2008.<br />

Brunelli E, Pinton G, Bellini P, Minassi A,<br />

Appendino G, Moro L. Flavonoid-induced<br />

autophagy in hormone sensitive breast cancer<br />

cells. Fitoterapia. 80: 327-332, 2009.<br />

Chaitanya GV, Steven AJ, Babu PP. PARP-1<br />

cleavage fragments: signatures <strong>of</strong> cell-death<br />

proteases in neurodegeneration. <strong>Cell</strong> Commun<br />

Signal. 8:31-41, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Daido S, Yamamoto A, Fujiwara K, Sawaya R,<br />

Kondo S, Kondo Y. Inhibition <strong>of</strong> the DNAdependent<br />

protein kinase catalytic subunit<br />

radiosensitizes malignant glioma cells by<br />

inducing autophagy. Cancer Res. 65: 4368-<br />

4375, 2005.<br />

Davis JW, Melendez K, Salas VM, Lauer FT,<br />

Burchiel SW. 2,3,7,8-Te<strong>tr</strong>achlorodibenzo-pdioxin<br />

(TCDD) inhibits growth factor<br />

withdrawal-induced apoptosis in the human<br />

mammary epithelial cell line, MCF-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>A.<br />

Carcinogenesis. 21: 881-886, 2000.<br />

Dowejko A, Bauer RJ, Muller-Richter UDA,<br />

Reichert TE. The human homolog <strong>of</strong> the<br />

Drosophila headcase protein slows down cell<br />

division <strong>of</strong> head <strong>and</strong> neck cancer cells.<br />

Carcinogenesis. 30: 1678-1685, 2009.<br />

Fukuoka K, Usuda J, Iwamoto Y, Fukumoto H,<br />

Nakamura T, Yoneda T, et al. Mechanisms <strong>of</strong><br />

action <strong>of</strong> the novel sulfonamide anticancer<br />

agents E7070 on cell cycle progression in<br />

human non-small cell lung cancer cells. Inves<br />

New Drugs. 19: 219-227, 2001.<br />

Hoyer-Hansen M, Bastholm L, Mathiasen IS,<br />

Elling F, Jaattela M. Vitamin D analog EB<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>89<br />

<strong>tr</strong>iggers dramatic lysosomal changes <strong>and</strong> Beclin<br />

1-mediated autophagic cell death. <strong>Cell</strong> Death<br />

Differ. 12: 1297–1309, 2005.<br />

Hsu CL, Yen GC. Induction <strong>of</strong> cell apoptosis in<br />

3T3-L1 pre-adipocytes by flavonoids is<br />

associated with their antioxidant activity. Mol<br />

Nu<strong>tr</strong> Food Res. 50: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>72-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>79, 2006.<br />

Kondo Y, Kanzawa T, Sawaya R, Kondo S. The<br />

role <strong>of</strong> autophagy in cancer development <strong>and</strong><br />

response to therapy. Nat Rev Mol <strong>Cell</strong> Biol. 5:<br />

726-734, 2005.<br />

Kondo Y, Kondo S. Autophagy <strong>and</strong> cancer therapy.<br />

Autophagy. 2: 85-90, 2006.<br />

Sulfabenzamide promotes autophagic cell death 53<br />

Lambert JMR, Gorzov P, Veprintsev DB,<br />

Söderqvist M, Segerbäck, D, Bergman J et al.<br />

PRIMA-1 reactivates mutant p53 by covalent<br />

binding to the core domain. Cancer <strong>Cell</strong>. 15:<br />

376-388, 2009.<br />

LaPensee EW, Schwemberger SJ, LaPensee CR,<br />

Bahassi E, Afton SE, Ben-Jonathan N. Prolactin<br />

confers resistance against cisplatin in breast<br />

cancer cells by activating glutathione-S<strong>tr</strong>ansferase.<br />

Carcinogenesis. 30: 1298-1304,<br />

2009.<br />

Lim LY, Vidnovic N, Ellisen LW, Leong C-O.<br />

Mutant P53 mediates survival <strong>of</strong> breast cancer<br />

cells. Brit J Cancer. <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>1: 1606 – 1612, 2009.<br />

Lindqvist A, Van Zon W, Karlsson Rosenthal C,<br />

Wolthuis RMF. Cyclin B1–Cdk1 activation<br />

continues after cen<strong>tr</strong>osome separation to con<strong>tr</strong>ol<br />

mitotic progression. PLoS Biol. 5: 1127-1137,<br />

2007.<br />

Liu X, Zou H, Slaughter C, Wang X. DFF, a<br />

heterodimeric protein that functions<br />

downs<strong>tr</strong>eam <strong>of</strong> caspase-3 to <strong>tr</strong>igger DNA<br />

fragmentation during apoptosis. <strong>Cell</strong>. 8: 175-<br />

184, 1997.<br />

Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik<br />

SA, Kroemer G. Autophagy regulation by p53.<br />

Curr Opin <strong>Cell</strong> Biol. 22: 181–185, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Maiuri MC, Zalckvar E, Kimchi A, Kroemer G.<br />

Self-eating <strong>and</strong> self-killing: crosstalk between<br />

autophagy <strong>and</strong> apoptosis. Nat Rev Mol <strong>Cell</strong><br />

Biol. 8: 741-752, 2007.<br />

Martin DN, Baehrecke E. Caspases function in<br />

autophagic programmed cell death in<br />

Drosophila. Development. 131: 275- 284, 2004.<br />

Mohan R, Banerjee M, Ray A, Manna T, Wilson L,<br />

Owa T et al. Antimitotic sulfonamides inhibit<br />

microtubule assembly dynamics <strong>and</strong> cancer cell<br />

proliferation. Biochemis<strong>tr</strong>y. 45: 5440-5449,<br />

2006.<br />

Munoz-Gamez A, Rodriguez-Vargas JM, Quiles-<br />

Perez R, Aguilar-Quesada R, Martin-Oliva D,<br />

de Murcia G et al. PARP-1 is involved in<br />

autophagy induced by DNA damage.<br />

Autophagy. 5: 61-74, 2009.<br />

Owa T, Yoshino H, Okauchi T, Yoshimatsu K,<br />

Ozawa Y, Sugi NH, et al. Discovery <strong>of</strong> novel<br />

antitumor sulfonamides targeting G1 phase <strong>of</strong>


54 Raziye MOHAMMADPOUR et al.<br />

the cell cycle. J Med Chem. 42:3789-3799,<br />

1999.<br />

Ozawa Y, Sugi NH, Nagasu T, Owa T, Watanabe<br />

T, Koyanagi N et al. E7070, a novel<br />

sulphonamide agent with potent antitumour<br />

activity in vi<strong>tr</strong>o <strong>and</strong> in vivo. Eur J Cancer. 37:<br />

2275-2282, 2001.<br />

Schafer JM, Lee ES, O'Regan RM, Yao K, Jordan<br />

VC. Rapid development <strong>of</strong> tamoxifenstimulated<br />

mutant p53 Breast Tumors (T47D) in<br />

athymic mice. Clin Cancer Res. 6: 4373-4380,<br />

2000.<br />

Supuran CT, Casini A, Scozzafava A. Protease<br />

inhibitors <strong>of</strong> the sulfonamide type: Anticancer,<br />

antiinfammatory, <strong>and</strong> antiviral agents. Med Res<br />

Rev. 23: 535-558, 2003.<br />

Supuran CT. Indisulam: an anticancer sulfonamide<br />

in clinical development. Expert Opin Investig<br />

Drugs. 12: 283-287, 2003.<br />

Tyagi A, Singh RP, Agarwal C, Agarwal R.<br />

Silibinin activates p53-caspase2 pathway <strong>and</strong><br />

causes caspase-mediated cleavage <strong>of</strong> Cip1/p21<br />

in apoptosis induction in bladder <strong>tr</strong>ansitionalcell<br />

papilloma RT4 cells: evidence for a<br />

regulatory loop between p53 <strong>and</strong> caspase 2.<br />

Carcinogenesis. 27: 2269-2280, 2006.<br />

Valley AW, Balmer CM. Pharmacotherapy: A<br />

Pathophysiologic Approach. Appleton &<br />

Lange, CT. 1957-2012, 1999.<br />

Yee KS, Wilkinson S, James J, Ryan KM, Vousden<br />

KH. PUMA <strong>and</strong> Bax-induced autophagy<br />

con<strong>tr</strong>ibutes to apoptosis. <strong>Cell</strong> Death Differ. 16:<br />

1135–1145, 2009.<br />

Yokoi A, Kuromitsu J, Kawai T, Nagas T, Sugi<br />

NH, Yoshimatsu K, et al. Pr<strong>of</strong>iling novel<br />

sulfonamide antitumor agents with cell-based<br />

phenotypic screens <strong>and</strong> array-based gene<br />

expression analysis. Mol Cancer Ther. 1: 275-<br />

286, 2002.<br />

Yokoyama T, Kondo Y, Bogler O, Kondo S. Drug<br />

Resistance in Cancer <strong>Cell</strong>s (Mehta, K. <strong>and</strong><br />

Siddik, Z.H., eds). Springer Science+Business<br />

Media, LLC: PA. 53-71, 2009.<br />

Yu L, Lenardo MJ, EH Baehrecke Autophagy <strong>and</strong><br />

caspases: a new cell death program. <strong>Cell</strong> Cycle.<br />

3:1124-1126, 2004.<br />

Yu SW, Wang H, Poi<strong>tr</strong>as MF, Coombs C, Bowers<br />

WJ, Feder<strong>of</strong>f HJ et al. Mediation <strong>of</strong> poly (ADPribose)<br />

polymerase-1-dependent cell death by<br />

apoptosis-inducing factor. Science. 297: 259-63,<br />

2002.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1): 55-64, 2012 Research Article 55<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Media optimization for amylase production in solid state<br />

fermentation <strong>of</strong> wheat bran by fungal s<strong>tr</strong>ains<br />

Muhammad IRFAN*, Muhammad NADEEM, Quratualain SYED<br />

Food & Biotechnology Research Center (FBRC), Pakistan Council <strong>of</strong> Scientific & Indus<strong>tr</strong>ial Research<br />

(PCSIR) Laboratories Complex, Ferozpure Road Lahore, Pakistan.<br />

(* author for correspondence; mirfanashraf@yahoo.com)<br />

Received: 02 April 2012; Accepted: 30 May 2012<br />

Abs<strong>tr</strong>act<br />

The present study is concerned with the optimization <strong>of</strong> environmental <strong>and</strong> cultural conditions for the<br />

production <strong>of</strong> α-amylase from wheat bran in solid state fermentation by locally isolated s<strong>tr</strong>ains <strong>of</strong> Aspergillus<br />

niger- ML-17 <strong>and</strong> Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> . The whole fermentation process was carried out in 250 ml<br />

Erlenmeyer flask. Different parameters were optimized for each s<strong>tr</strong>ain to obtain maximum enzyme yield. For<br />

Aspergillus niger-ML-17, incubation period <strong>of</strong> 96 h, initial diluent pH <strong>of</strong> 5.0, 30°C incubation temperature,<br />

inoculum size <strong>of</strong> 5% were found to be optimum for the production <strong>of</strong> α-amylase. Amylase production was<br />

enhanced from 2.3 ± 0.014 IU to 4.4 ± 0.042 IU by supplementing the fermentation media with maltose<br />

(0.25%), yeast ex<strong>tr</strong>act (0.25%), NaNO3 (0.25%), MgSO4 (0.2%), NaCl (0.5%), Tween-80 (0.001%) <strong>and</strong><br />

Asparginine (0.0001%) . In case <strong>of</strong> Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, the optimized cultural conditions for the<br />

production <strong>of</strong> 2.5 ±0.023 IU were inoculum size <strong>of</strong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>%, initial pH <strong>of</strong> the diluent 6.0, incubation temperature<br />

<strong>of</strong> 35 o C for 96h. Further addition <strong>of</strong> maltose (25%), yeast ex<strong>tr</strong>act (0.25%), NH4NO3 (0.25%), MgSO4 (0.2%),<br />

NaCl (0.75%), Tween soluble starch (0.001%) <strong>and</strong> asparginine (0.0001%) to the medium significantly<br />

enhance the enzyme production up to 3.2 ± 0.027 IU.<br />

Keywords: Amylase, wheat bran, A.niger, R.oligosporus, solid state fermentation<br />

Buğday kepeği katı hal fermentasyonunda mantar suşlarıyla amilaz üretimi için besiyeri<br />

optimizasyonu<br />

Özet<br />

Bu çalışma yerel olarak izole edilen Aspergillus niger- ML-17 ve Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> suşları<br />

tarafından buğday kepeği katı hal fermentasyonunda amilaz üretimi için çevre ve kültür koşullarının<br />

optimizasyonuyla ilgilidir. Tüm fermentasyon süreci 250 ml erlende yapılmıştır. Maksimum enzim ürünü<br />

elde etmek amacıyla her suş bir için farklı parame<strong>tr</strong>eler optimize edilmiştir. Aspergillus niger- ML-17 için 96<br />

saat inkübasyon süresi, çözücünün başlangıç pH’sı olarak 5.0, 30°C inkübasyon sıcaklığı, % 5 ekim<br />

büyüklüğü α- amilaz üretimi için optimum bulunmuştur. Amilaz üretimi fermentasyon ortamına maltoz<br />

(%0,25), maya özütü (% 0,25), NaNO3 (% 0,25), MgSO4 (% 0,2), NaCl (% 0,5), Tween-80 (% 0,001) ve<br />

asparajin (% 0,0001) eklenmesiyle 2,3 ± 0,014 IU’ dan 4,4 ± 0,042 IU’ ya artmıştır. Rhizopus oligosporus-<br />

ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> için ise; 2,5 ± 0,023 IU üretim için optimize edilen kültür koşulları %<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> ekim büyüklüğü, çözücünün<br />

başlangıç pH’sı 5,0, inkübasyon sıcaklığı 35°C, 96 saat olacak şekildedir. Besiyerine maltoz (25%), maya<br />

özütü (0.25%), NH4NO3 (0.25%), MgSO4 (0.2%), NaCl (0.75%), Tween çözünür nişasta (0.001%) ve<br />

Asparginine (0.0001%) eklenmesi enzim üretimini önemli ölçüde artırarak 3.2 ± 0.027 IU seviyesine<br />

ulaştırmıştır.<br />

Anahtar kelimeler: Amilaz, buğday kepeği, A.niger, R.oligosporus, katı hal fermentasyonu


56 Muhammad IRFAN et al.<br />

In<strong>tr</strong>oduction<br />

Amylases are a group <strong>of</strong> hydrolases that can<br />

specifically cleave the O-glycosidic bonds in<br />

starch. Two important groups <strong>of</strong> amylases are<br />

glucoamylase <strong>and</strong> α-amylase. Glucoamylase (exo-<br />

1,4-α-D-glucan glucanohydrolase, E.C. 3.2.1.3)<br />

hydrolyzes single glucose units from the nonr<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>cing<br />

ends <strong>of</strong> amylose <strong>and</strong> amylopectin in a<br />

stepwise manner (Anto et al., 2006). Whereas αamylases<br />

(endo-1,4-α-D-glucan glucohydrolase,<br />

E.C. 3.2.1.1) are ex<strong>tr</strong>acellular enzymes that<br />

r<strong>and</strong>omly cleave the 1,4-α-D-glucosidic linkages<br />

between adjacent glucose units inside the linear<br />

amylose chain (Anto et al., 2006, Cas<strong>tr</strong>o et al.,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, P<strong>and</strong>ey et al., 2005).<br />

Alpha-amylases are widely dis<strong>tr</strong>ibuted in nature<br />

<strong>and</strong> can be derived from various sources such as<br />

plants, animals <strong>and</strong> microorganisms (P<strong>and</strong>ey et al.,<br />

2005, Reddy et al., 2003 3-4). However, fungal <strong>and</strong><br />

bacterial amylases have predominant applications<br />

in the indus<strong>tr</strong>ial sector. Major advantage <strong>of</strong> using<br />

fungi for the production <strong>of</strong> amylases is the<br />

economical bulk production capacity <strong>and</strong> ease <strong>of</strong><br />

manipulation. Many species <strong>of</strong> Aspergillus <strong>and</strong><br />

Rhizopus are used as a source <strong>of</strong> fungal α-amylase<br />

(P<strong>and</strong>ey et al., 2005).<br />

Usually amylase production from fungi has<br />

been carried out using well defined chemical media<br />

by submerged fermentation (SMF) <strong>and</strong> solid state<br />

fermentation (SSF) in recent times (Mir<strong>and</strong>a et al.,<br />

1999). The economics <strong>of</strong> enzyme production using<br />

inexpensive raw materials can make an indus<strong>tr</strong>ial<br />

enzyme process competitive (Couto <strong>and</strong> Sanroman,<br />

2006).<br />

For the microbial α-amylase production, two<br />

types <strong>of</strong> fermentation methods are mainly used i.e.<br />

submerged <strong>and</strong> solid state (Norouzian et al., 2006).<br />

Submerged fermentation (SmF) is comparatively<br />

advanced <strong>and</strong> commercially important enzymes are<br />

<strong>tr</strong>aditionally produced by this method (Hashemi et<br />

al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Whereas, solid state fermentation (SSF)<br />

is an old technology <strong>and</strong> has been used since 2600<br />

BC. However, in recent year SSF has emerged as a<br />

well developed biotechnological tool for the<br />

production <strong>of</strong> enzymes (Bhatnagar et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Nowadays, spec<strong>tr</strong>um <strong>of</strong> applications <strong>of</strong> αamylase<br />

is also extending in many other areas such<br />

as analytical chemis<strong>tr</strong>y, clinical <strong>and</strong> medicinal<br />

diagnosis e.g. diagnosis <strong>of</strong> acute inflammation <strong>of</strong><br />

pancreas, macroamylasemia, perforated pelvic ulcer<br />

<strong>and</strong> mumps (Anto et al., 2006, Nimkar et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>,<br />

Chimata et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, Muralikrishna et al., 2005).In<br />

this study we reported here the process<br />

optimization for amylase production from two<br />

fungal species i.e. Aspergillus niger-ML-17 <strong>and</strong><br />

Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> using wheat bran as a<br />

solid subs<strong>tr</strong>ate fermentation.<br />

Materials <strong>and</strong> Methods<br />

Subs<strong>tr</strong>ate<br />

Wheat bran was procured from local market <strong>of</strong><br />

Lahore city <strong>and</strong> was used as a subs<strong>tr</strong>ate for amylase<br />

production in solid state fermentation.<br />

Microorganism <strong>and</strong> culture maintenance<br />

Fungal s<strong>tr</strong>ain <strong>of</strong> Aspergillus niger-ML-17 <strong>and</strong><br />

Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> was obtained from<br />

the Microbiology Laboratory <strong>of</strong> Food <strong>and</strong><br />

Biotechnology Research Center (FBRC), PCSIR<br />

Laboratories Complex, Lahore. The culture was<br />

maintained on Potato-Dex<strong>tr</strong>ose-Agar (PDA) slants.<br />

The slants were grown at 30°C for 5 days <strong>and</strong><br />

stored at 4°C.<br />

Inoculum preparation<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> mL <strong>of</strong> sterilized distilled water was added to a<br />

sporulated 5 days old PDA slant culture. An<br />

inoculum needle was used to dislodge the spore<br />

clusters under sterilized conditions <strong>and</strong> then it was<br />

shaken thoroughly to prepare homogenized spore<br />

suspension.<br />

Solid-state fermentation<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> g wheat bran amended with <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> mL <strong>of</strong> mineral<br />

salt solution containing (g/L) KH2PO4 <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, MgSO4 2,<br />

NaCl 2 <strong>and</strong> MnSO4 0.5 was taken in 250 mL cotton<br />

plugged Erlenmeyer flask, mixed homogenously<br />

<strong>and</strong> sterilized at 121°C for 15 min in an autoclave.<br />

Thereafter, the flask material was cooled at room<br />

temperature <strong>and</strong> inoculated with 1 mL spore<br />

suspensions <strong>of</strong> Aspergillus niger-ML-17 <strong>and</strong><br />

Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. The flasks were then<br />

incubated at 30°C for 5 days.<br />

Optimization <strong>of</strong> cultural <strong>and</strong> nu<strong>tr</strong>itional parameters<br />

Various process parameters were optimized for<br />

maximal enzyme production such as fermentation<br />

period (24-168 h), incubation temperature (20-<br />

40°C), initial pH (4-8), inoculum size (2, 5, 7, <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>,<br />

13, 15, 17%). Experiments were also performed to<br />

evaluate the influence <strong>of</strong> different carbon sources<br />

(maltose, glucose, galactose, lactose, sucrose,<br />

arabinose, cellulose, soluble starch) <strong>and</strong> ni<strong>tr</strong>ogen<br />

sources (yeast ex<strong>tr</strong>act, peptone, <strong>tr</strong>yptone, urea,


ammonium ci<strong>tr</strong>ate, ammonium phosphate,<br />

NH4NO3, (NH4)2SO4, NH4Cl <strong>and</strong> NaNO3) different<br />

metal salts (MnCl2, ZnCl2, CaCl2, MgSO4, FeSO4),<br />

NaCl concen<strong>tr</strong>ation (0.25-2.0%), surfactants<br />

(Tween-80, Triton-X-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0, sodium dodecyl<br />

sulphate, sodium lauryl sulphate) <strong>and</strong> different<br />

amino acids (asparginine, aspartic acid, proline,<br />

cystine, arginine ) on α-amylase production under<br />

the optimized fermentation conditions.<br />

Recovery <strong>of</strong> enzyme<br />

After the specified incubation period (in each case),<br />

50 mL <strong>of</strong> distilled water was added in each flask<br />

containing fermented mash <strong>and</strong> placed on a shaker<br />

at 200 rpm for 60 min. Afterward, the mixture was<br />

filtered <strong>and</strong> cen<strong>tr</strong>ifuged at 8,000 rpm for 15 min at<br />

4°C to remove the fungal spores <strong>and</strong> unwanted<br />

particles. The clear supernatant thus obtained after<br />

cen<strong>tr</strong>ifugation was used as a source <strong>of</strong> crude<br />

enzyme.<br />

Alpha amylase activity<br />

The activity <strong>of</strong> α-amylase was assayed as described<br />

earlier (Irfan et al., 2011) by incubating 0.5 mL <strong>of</strong><br />

the diluted enzyme with 0.5 mL soluble starch (0.5<br />

%, w/v) prepared in 0.1 M sodium Phosphate<br />

buffer, pH= 7. After incubation at 60 ºC for <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

minutes the reaction was stopped <strong>and</strong> the r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>cing<br />

sugars released were assayed colorime<strong>tr</strong>ically by<br />

the addition <strong>of</strong> 1 mL <strong>of</strong> 3-5-dini<strong>tr</strong>osalicylic acid<br />

reagent. One enzyme activity unit (U) was defined<br />

as the amount <strong>of</strong> enzyme releasing 1 µmol <strong>of</strong><br />

maltose from the subs<strong>tr</strong>ate in 1 minute at 60 ºC.<br />

Statistical analysis<br />

All the data was statistically (SD) analyzed by<br />

using Micros<strong>of</strong>t excel computer programme.<br />

Results<br />

Amylase production in solid state fermentation 57<br />

The most widely used enzyme in the indus<strong>tr</strong>y for<br />

starch hydrolysis is α-amylase. These enzymes<br />

account for 65 % <strong>of</strong> enzyme market in the world<br />

(Muralikrishna et al., 2005). For the production <strong>of</strong><br />

commercially important enzymes, selection <strong>of</strong> a<br />

particular s<strong>tr</strong>ain remains a tedious task. Amylolytic<br />

enzymes are commonly produced by filamentous<br />

fungi preferably from species <strong>of</strong> Aspergillus <strong>and</strong><br />

Rhizopus (P<strong>and</strong>ey et al., 2005).<br />

Time course study for the production <strong>of</strong> αamylase<br />

Figure 1 depicts the time course study (24-120 h)<br />

for the production <strong>of</strong> α-amylase by Aspergillus<br />

niger-ML-17 <strong>and</strong> Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

using solid state fermentation. Optimum<br />

fermentation period <strong>of</strong> 96 h was best for both<br />

Aspergillus niger-ML-17 (4.7 ±0.14 IU) <strong>and</strong><br />

Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> (2.7 ±0.08 IU) in<br />

solid state fermentation. Further increase in the<br />

incubation period decreased the enzyme secretion.<br />

Therefore, incubation time <strong>of</strong> 96 h was selected as<br />

optimum time for the production <strong>of</strong> α-amylase in<br />

the subsequent experimental work. Maximum<br />

accumulation <strong>of</strong> α-amylase occurs during stationary<br />

phase. Further increase in incubation period<br />

decreased the production <strong>of</strong> α-amylase. It might be<br />

due to the deficiency <strong>of</strong> nu<strong>tr</strong>ients, accumulation <strong>of</strong><br />

toxic substances <strong>and</strong> proteolysis <strong>of</strong> α-amylase as<br />

interpreted by many workers (Chamber et al., 1999,<br />

Shafique et al., 2009). Abu et al., (2005) also<br />

reported maximum α-amylase production by<br />

Aspergillus niger after an incubation period <strong>of</strong> 96 h.<br />

Figure 1. Time course study <strong>of</strong> amylase production (Error bars represent the SD among replicates).


58 Muhammad IRFAN et al.<br />

Effect <strong>of</strong> initial pH <strong>of</strong> diluent on α-amylase<br />

production<br />

The effect <strong>of</strong> different initial pH (4-6.5) <strong>of</strong> the<br />

diluent on α-amylase production by Aspergillus<br />

niger-ML-17 <strong>and</strong> Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

using SSF is shown in figure 2. Enzyme production<br />

was maximum (3.7±0.015 IU) when initial pH <strong>of</strong><br />

the diluent was adjusted at 5.0 using s<strong>tr</strong>ains <strong>of</strong><br />

A.niger-ML-17 in SSF. When s<strong>tr</strong>ain <strong>of</strong><br />

R.ologosporus –ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> was employed for amylase<br />

production, it gave better yield (2.7 ± 0.016 IU) at<br />

6.0 initial pH <strong>of</strong> the diluent. Further increase in the<br />

initial pH <strong>of</strong> the diluent resulted decreased in the<br />

enzyme activity. It is due to the fact that fungal<br />

growth was optimum at this pH <strong>and</strong> hence the<br />

enzyme production. Initial pH <strong>of</strong> the medium is<br />

known to affect the synthesis <strong>and</strong> secretion <strong>of</strong> αamylase.<br />

Alpha amylase production by microbial<br />

s<strong>tr</strong>ains s<strong>tr</strong>ongly depends on the ex<strong>tr</strong>acellular pH as<br />

it influences many enzymatic reactions as well as<br />

the <strong>tr</strong>ansport <strong>of</strong> various components across the cell<br />

membrane (Ellaiah et al., 2002). In con<strong>tr</strong>ast to the<br />

present findings, Alva et al. (2007) achieved the<br />

optimal α-amylase production at initial pH 5.8 by<br />

Aspergillus sp. Conversely, this might be because<br />

the requirement <strong>of</strong> slightly acidic pH for optimum<br />

growth <strong>of</strong> fungi (Liu et al., 2008, Sun et al., 2009).<br />

Figure 2. Effect <strong>of</strong> initial pH <strong>of</strong> diluents on amylase production (Error bars represent the SD among<br />

replicates)<br />

Effect <strong>of</strong> temperature on the production <strong>of</strong> αamylase<br />

Figure 3 showed the effect <strong>of</strong> varying incubation<br />

temperature (20-40ºC) on the production <strong>of</strong> αamylase<br />

by Aspergillus niger-ML-17 <strong>and</strong><br />

R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> using SSF. Maximal enzyme<br />

production (3.5 ±0.034 IU) was obtained in<br />

fermentation flask that was incubated at 30ºC after<br />

the conidial inoculation <strong>of</strong> A.niger-ML-17. On the<br />

other h<strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> gave better<br />

enzyme production (2.5 ±0.023 IU) at 35 o C. All the<br />

other flasks that were incubated on temperatures<br />

other than these gave comparatively less production<br />

<strong>of</strong> α-amylase. Alpha amylase production by fungi is<br />

related to the growth which sequentially depends<br />

upon the incubation temperature. Many other<br />

researchers have also reported 30°C as optimum<br />

temperature for the fungal growth <strong>and</strong> enzyme<br />

production. This is because the enzyme production<br />

is growth associated <strong>and</strong> 30°C is optimum<br />

temperature for fungi <strong>and</strong> subsequently α-amylase<br />

production (Shafique et al., 2009, Dakhmouche et<br />

al., 2006).


Amylase production in solid state fermentation 59<br />

Figure 3. Effect <strong>of</strong> incubation temperature on amylase production (Error bars represent the SD among<br />

replicates).<br />

Effect <strong>of</strong> inoculum size on the production <strong>of</strong> αamylase<br />

Effect <strong>of</strong> inoculum size was checked by varying the<br />

concen<strong>tr</strong>ation <strong>of</strong> spores <strong>of</strong> A.niger-ML-17 <strong>and</strong><br />

R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> in solid state fermentation <strong>of</strong><br />

wheat bran. Optimum inoculum size <strong>of</strong> 5% (3.5<br />

±0.014 IU) <strong>and</strong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>% (2.9 ±0.011 IU) <strong>of</strong> A.niger-<br />

ML-17 <strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> gave highest<br />

yield <strong>of</strong> enzyme production respectively as shown<br />

in figure 4. By increasing the size <strong>of</strong> inoculum<br />

resulted in decreased enzyme production. Increased<br />

inoculum size resulted in increases moisture level<br />

which ultimately decreased the fungal growth <strong>and</strong><br />

enzyme production (Sharma et al., 1996). Ammar<br />

<strong>and</strong> El-Safey (2003) obtained highest yield <strong>of</strong><br />

amylase production from A. flavus var columnaris<br />

using inoculum size <strong>of</strong> 0.0637 x <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 6 /ml -1 . In<br />

another study 5 x <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 6 spores per flask gave<br />

maximum enzyme production by Aspergillus niger<br />

ATCC 16404 (Dakhmouche et al., 2006). Zambare<br />

(20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) obtained highest enzyme production (1672-<br />

1693 U/gdfs) at inoculum level <strong>of</strong> 5-8% (v/w) in<br />

solid state fermentation using s<strong>tr</strong>ain <strong>of</strong> A.oryzae.<br />

Figure 4. Effect <strong>of</strong> inoculum size on amylase production (Error bars represent the SD among replicates).<br />

Effect <strong>of</strong> different carbon sources on the<br />

production <strong>of</strong> α-amylase<br />

Different carbon sources i.e. soluble starch,<br />

glucose, galactose, lactose, arabinose, cellulose,<br />

maltose <strong>and</strong> sucrose were also evaluated for the<br />

production <strong>of</strong> α-amylase (Figure 5). A.niger-ML-<br />

17 better used the maltose as a carbon source <strong>and</strong><br />

improved enzyme production (4.4 ± 0.042 IU) as<br />

compared to con<strong>tr</strong>ol while soluble starch (3.2 ±<br />

0.027 IU) was found best carbon source for<br />

amylase production in case <strong>of</strong> R.oligosporus-ML-<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. All the other tested carbon sources gave<br />

comparatively less enzyme production which is<br />

supplemented to the fermentation medium at<br />

concen<strong>tr</strong>ation <strong>of</strong> 0.25% (w/v). Therefore, soluble<br />

starch <strong>and</strong> maltose was optimized as a carbon<br />

source in the further experimental work<br />

R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> <strong>and</strong> A.niger-ML-17<br />

respectively. Many other workers also reported<br />

starch as the best carbon source for the production<br />

<strong>of</strong> alpha amylase (Gigras et al., 2002, Dharani<br />

2004). It is because α-amylase is an ex<strong>tr</strong>acellular<br />

enzyme <strong>and</strong> its production is increased by its<br />

subs<strong>tr</strong>ate (Chimata et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>; Varalakshmi et al.,<br />

2009).


60 Muhammad IRFAN et al.<br />

Figure 5. Effect <strong>of</strong> different carbon sources on amylase production (Error bars represent the SD among<br />

replicates).<br />

production by employing s<strong>tr</strong>ains <strong>of</strong> A.niger-ML-17<br />

Effect <strong>of</strong> different ni<strong>tr</strong>ogen sources on the<br />

<strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. Thus, yeast ex<strong>tr</strong>act was<br />

production <strong>of</strong> α-amylase<br />

used as an optimized organic ni<strong>tr</strong>ogen sources in<br />

Figure 6 depicts the effect <strong>of</strong> ni<strong>tr</strong>ogen sources this further research. Hashemi et al., (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) also<br />

(peptone, urea, <strong>tr</strong>yptone, casein, skimmed milk <strong>and</strong> obtained maximum α-amylase production (140<br />

yeast ex<strong>tr</strong>act NH4SO4, NH4NO3, NaNO3, U/g) with NH4NO3 but at a level <strong>of</strong> 1% (w/v).<br />

ammonium ci<strong>tr</strong>ate & ammonium phosphate) on the Amylase production is enhanced with the addition<br />

production <strong>of</strong> α-amylase by Aspergillus niger-ML- <strong>of</strong> organic ni<strong>tr</strong>ogen sources (Hamilton et al., 1999,<br />

17 <strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> using SSF. Among all Hayashida et al., 1998 28,29). Many workers (Anto<br />

the selected inorganic ni<strong>tr</strong>ogen sources maximum et al., 2006, Pederson <strong>and</strong> Neilson 2000, Oshoma et<br />

amylase production (3.9 ±0.1IU) was obtained, al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, Valaparla 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) reported that yeast<br />

when NaNO3 (0.25%, w/v) was used in medium ex<strong>tr</strong>act as an organic ni<strong>tr</strong>ogen source produces<br />

inoculated with spores <strong>of</strong> A.niger-ML-17 while the maximum amylase production. Pederson <strong>and</strong><br />

s<strong>tr</strong>ain R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> best utilized (2.6 ±0.08 Neilson (2000) optimized (NH4)2SO4 for maximum<br />

IU) NH4NO3 at concen<strong>tr</strong>ation <strong>of</strong> 0.25% for amylase amylase productivity by A. oryzae.<br />

production. In case <strong>of</strong> organic ni<strong>tr</strong>ogen sources<br />

yeast ex<strong>tr</strong>act was found better for amylase<br />

Figure 6. Effect <strong>of</strong> ni<strong>tr</strong>ogen sources on amylase production (Error bars represent the SD among replicates).<br />

Effect <strong>of</strong> different metal salts on amylase<br />

production in SSF<br />

Different metal salts (MnCl2, ZnCl2, CaCl2, MgSO4<br />

<strong>and</strong> FeSO4) were added to the fermentation<br />

medium to enhance the amylase yield by A.niger-<br />

ML-17 <strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> in solid state<br />

fermentation. Results (Fig. 7) revealed that addition<br />

<strong>of</strong> MgSO4 at 0.1% concen<strong>tr</strong>ation to the medium<br />

favored the enzyme production by both tested<br />

fungi. Of all the metal salts FeSO4 lowers the<br />

enzyme production as compared to con<strong>tr</strong>ol.<br />

Rameshkumar <strong>and</strong> Sivasudha (2011) reported that<br />

supplementation <strong>of</strong> 0.1% CaCl2 as a mineral source<br />

to the medium effectively increased the amylase<br />

production by B.subtilis in solid state fermentation.<br />

According to Negi <strong>and</strong> Banerjee (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) addition <strong>of</strong><br />

HgCl2 to the medium increases the amylase<br />

production up to 2.44 folds. Most <strong>of</strong> the study<br />

indicated that the enzyme did not require a specific<br />

ion for their proper functioning (Reyed 2007).<br />

Sanghvi et al., (2011) produced amylase from<br />

Chrysosporium asperatum in submerged<br />

fermentation <strong>and</strong> reported that supplementation <strong>of</strong><br />

FeCl3 in the medium as a mineral source slightly<br />

increased the amylase production.


Amylase production in solid state fermentation 61<br />

Figure 7. Effect <strong>of</strong> different metal salts on amylase production (Error bars represent the SD among<br />

replicates).<br />

Effect <strong>of</strong> different concen<strong>tr</strong>ation <strong>of</strong> NaCl on<br />

amylase production in SSF<br />

In this experiment, different concen<strong>tr</strong>ations <strong>of</strong> NaCl<br />

(0.25-2.0 %) were employed to check the effect <strong>of</strong><br />

different concen<strong>tr</strong>ation <strong>of</strong> NaCl on amylase<br />

production by A.niger-ML-17 <strong>and</strong> R.oligosporus-<br />

ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. Results indicated (Fig. 8) that A.niger-ML-<br />

17 showed maximum (3.6 ±0.17 IU) enzyme<br />

production at 0.5% concen<strong>tr</strong>ation <strong>of</strong> NaCl in the<br />

medium while R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> gave<br />

maximum titer <strong>of</strong> amylase (2.5± 0.13 IU) at 0.75%<br />

concen<strong>tr</strong>ation <strong>of</strong> NaCl. By increasing the NaCl<br />

concen<strong>tr</strong>ation beyond this decline in enzyme<br />

production was observed. Kokab et al., (2003)<br />

produced amylase from Bacillus subtilis in solid<br />

state fermentation having medium containing 1.5%<br />

concen<strong>tr</strong>ation <strong>of</strong> NaCl. Patel et al., (2005) purified<br />

<strong>and</strong> characterized the amylase enzyme from<br />

A.oryzae in SSF having medium with 0.1%<br />

concen<strong>tr</strong>ation <strong>of</strong> NaCl.<br />

Figure 8. Effect <strong>of</strong> different concen<strong>tr</strong>ations <strong>of</strong> NaCl on amylase production (Error bars represent the SD<br />

among replicates).<br />

Effect <strong>of</strong> surfactants on amylase production<br />

Figure 9 illus<strong>tr</strong>ated the effect <strong>of</strong> different<br />

surfactants on amylase production by A.niger –ML-<br />

17 <strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. Result showed that<br />

addition <strong>of</strong> Tween 80 (0.05 v/w) to the medium is<br />

effective in enzyme production by both A.niger-<br />

ML-17 (3.7 IU) <strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> (2.5 IU)<br />

in SSF. SDS <strong>and</strong> SLS had no s<strong>tr</strong>ong influence on<br />

enzyme production in solid state fermentation by<br />

tested fungi. Negi <strong>and</strong> Banerjee (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) reported<br />

that Triton-X-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 <strong>and</strong> sodium laurate sulphate are<br />

the stimulator for enzyme production but sodium<br />

laurate sulphate increased amylase production by<br />

1.28 folds. Gupta et al. (2008) also reported that<br />

different surfactants like Tween-80, Triton X-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0<br />

<strong>and</strong> SDS had s<strong>tr</strong>ong influence on amylase<br />

production in submerged fermentation using<br />

Aspergillus niger. Vu et al. (2011) stated that use <strong>of</strong><br />

Tween-80 as a surfactant effectively enhances the<br />

cellulose production in solid state fermentation.<br />

Production <strong>of</strong> hydrolytic enzymes can be enhanced<br />

by the surfactants <strong>and</strong> fatty acids (Singh et al.,<br />

1991). When surfactants are added, they enhance<br />

the microbial growth in SSF by promoting the<br />

pene<strong>tr</strong>ation <strong>of</strong> water into the solid subs<strong>tr</strong>ate ma<strong>tr</strong>ix,<br />

leading in an increase <strong>of</strong> surface area (Asgher et al.,<br />

2006).


62 Muhammad IRFAN et al.<br />

Figure 9. Effect <strong>of</strong> different surfactants on amylase production (Error bars represents the SD among<br />

replicates).<br />

Effect <strong>of</strong> different amino acids on amylase<br />

production in SSF<br />

To check the effect <strong>of</strong> different amino acids on<br />

amylase production, various amino acids like<br />

asparaginine, aspartic acid, praline, cysteine <strong>and</strong><br />

arginine were evaluated by A.niger –ML-17<strong>and</strong><br />

R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> in SSF. Results (Fig. <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>)<br />

revealed that supplementation <strong>of</strong> asparginine with<br />

concen<strong>tr</strong>ation <strong>of</strong> 0.0001% favored enzyme<br />

production in solid state fermentation. Rest <strong>of</strong> the<br />

amino acids showed no significant effect on<br />

enzyme production.<br />

Sidkey et al. (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>), isolated different s<strong>tr</strong>ains<br />

from natural environment <strong>and</strong> screened for amylase<br />

production. Among various screened s<strong>tr</strong>ains<br />

Aspergillus flavus was found to be potent amylase<br />

producer when supplementations <strong>of</strong> methionine as<br />

an amino acid cotent to the medium. Some workers<br />

(Moustafa, 2002; Sidkey et al., 1996) reported that<br />

acidic amino acids like glutamic <strong>and</strong> aspartic acids<br />

are the best inducers for amylase production.<br />

Figure <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. Effect <strong>of</strong> different amino acids on amylase production (Error bars represent the SD among<br />

replicates).<br />

References<br />

Abu EA, Ado SA, James DB. Raw starch<br />

degrading amylase production by mixed culture<br />

<strong>of</strong> Aspergillus niger <strong>and</strong> Saccharomyces<br />

cerevisiae grown on Sorghum pomace. Afr J<br />

Biotechnol. 4(8): 785- 790, 2005.<br />

Alva S, Anumpama J, Savla J, Chiu YY, Vyshali<br />

P, Shruti M, Yogeetha BS, Bhavya D, Purvi J,<br />

Ruchi K, Kumudini BS, Varalakshmi KN.<br />

Production <strong>and</strong> characterization <strong>of</strong> fungal<br />

amylase enzyme isolated from Aspergillus sp.<br />

JGI 12 in solid state culture. Afri J Biotechnol.<br />

6(5):576-581, 2007.<br />

Ammar MS <strong>and</strong> El-Safey EM. Production <strong>of</strong> αamylase<br />

enzyme produced by Aspergillus flavus<br />

var. columnaris, S-9KP from maize meal <strong>and</strong><br />

rice husk under solid-state fermentation (SSF)<br />

conditions in open air. International Conference<br />

<strong>of</strong> Enzymes in the Environment, Activity,<br />

Ecology <strong>and</strong> Applications, Praha, Czech<br />

Republic, July 14-17, pp.33, 2003.<br />

Anto H, Trivedi UB <strong>and</strong> Patel KC. Glucoamylase<br />

production by solid-state fermentation using<br />

rice flake manufacturing waste products as


subs<strong>tr</strong>ate. Bioresource Technol. 97(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>):1161-<br />

1166, 2006.<br />

Asgher M, Asad MJ, Legge RL. Enhanced lignin<br />

peroxidase synthesis by Phanerochaete<br />

chrysosporium in solid state bioprocessing <strong>of</strong> a<br />

lignocellulosic subs<strong>tr</strong>ate. World J Microb<br />

Biotechnol. 22:449-53, 2006.<br />

Bhatnagar D, Joseph L, Raj RP. Amylase <strong>and</strong> acid<br />

protease production by solid state fermentation<br />

using Aspergillus niger from mangrove swamp.<br />

Indian J Fish. 57(1):45-51, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Cas<strong>tr</strong>o AM, Carvalho DF, Freire DMG, Castilho<br />

LR. Economic analysis <strong>of</strong> the production <strong>of</strong><br />

amylases <strong>and</strong> other hydrolases by Aspergillus<br />

awamori in solid-state fermentation <strong>of</strong> babassu<br />

cake. SAGE-Hindawi Access to Research<br />

Enzyme Research, 1, 9, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Chamber R, Haddaoui E, Petitgla<strong>tr</strong>an MF, Lindy O,<br />

Sarvas M. Bacillus subtilis α-amylase. The rate<br />

limiting step <strong>of</strong> secretion is growth phase in<br />

dependent. FEMS Microbiol Lett. 173 (1):127-<br />

131, 1999.<br />

Chimata MK, Sasidhar P, Challa S. Production <strong>of</strong><br />

ex<strong>tr</strong>acellular amylase from agricultural residues<br />

by a newly isolated Aspergillus species in solid<br />

state fermentation. Afri J Biotechnol.<br />

9(32):5162-5169, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Couto SR <strong>and</strong> Sanroman MA. Application <strong>of</strong> solidstate<br />

fermentation to food indus<strong>tr</strong>y. J Food Eng.<br />

76:291-302, 2006.<br />

Dakhmouche S, Gheribi-Aoulmi Z, Meraihi Z,<br />

Bennamoun L. Application <strong>of</strong> a statistical<br />

design to the optimization <strong>of</strong> culture medium<br />

for a-amylase production by Aspergillus niger<br />

ATCC 16404 grown on orange waste powder. J<br />

Food Eng. 73 (2):190-197, 2006.<br />

Dharani APV. Effect <strong>of</strong> C:N ratio on alpha amylase<br />

production by Bacillus licheniformis SPT 27<br />

Afr. J. Biotech., 3: 519-522, 2004.<br />

Ellaiah PK, Adinarayana Y, Bhavani P <strong>and</strong><br />

Padmaja B. Optimization <strong>of</strong> process parameters<br />

for glucoamylase production under solid state<br />

fermentation by a newly isolated Aspergillus<br />

species. Process Biochem. 38:615–620, 2002.<br />

Gigras P, Sahai V, Gupta R. Statistical media<br />

optimization <strong>and</strong> production <strong>of</strong> ITS alpha<br />

amylase from Aspergillus oryzae in a<br />

bioreactor. Current Microbiol. 45:203–208,<br />

2002.<br />

Amylase production in solid state fermentation 63<br />

Gupta A, Gupta VK, Modi DR, Yadava LP.<br />

Production <strong>and</strong> characterization <strong>of</strong> alpha<br />

amylase from Aspergillus niger. Biotechnology.<br />

7(3):551-556, 2008.<br />

Hamilton LH, Kelly CT, Fogarty WM. Production<br />

<strong>and</strong> properties <strong>of</strong> the raw starch-digesting αamylase<br />

<strong>of</strong> Bacillus species IMD 435. Process<br />

Biochem. 35(1–2):27–31, 1999.<br />

Hashemi M, Shojaosadati SA, Razavi SH, Mousavi<br />

SM, Khajeh K, Safari M. The efficiency <strong>of</strong><br />

temperature shift s<strong>tr</strong>ategy to improve the<br />

production <strong>of</strong> α-Amylase by Bacillus sp. in a<br />

solid-state fermentation system. Food <strong>and</strong><br />

Bioprocess Technol. 5(3): <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>93-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>99, 2012.<br />

Hayashida S, Teamoto Y, Inove T. Production <strong>and</strong><br />

characteristics <strong>of</strong> raw potato Starch digesting<br />

amylase from Bacillus subtilis. 65. Appl<br />

Environ Microbiol. 54: 1516-1522, 1998.<br />

Irfan M, Nadeem M, Syed Q, Baig S. Production<br />

<strong>of</strong> thermostable α-amylase from Bacillus sp. in<br />

solid state fermentation. J Appl Sci Res.<br />

7(5):607-617, 2011.<br />

Kokab S, Asghar M, Rehman K, Asad MJ, Adedyo<br />

O. Bio-Processing <strong>of</strong> Banana Peel for α-<br />

Amylase Production by Bacillus subtilis. Int J<br />

Agr Biol. 5, 1, 2003.<br />

Liu XD <strong>and</strong> Xu Y. A novel raw starch digesting αamylase<br />

from a newly isolated Bacillus sp. YX-<br />

1, Purification <strong>and</strong> characterization.<br />

Bioresource Technol. 99: 4315-4320, 2008.<br />

Mir<strong>and</strong>a OA, Salgueiro AA, Pimental NCB,<br />

Limafilho JJ, Melo EHM, Duran N. Lipase<br />

production by a Brazilian s<strong>tr</strong>ain <strong>of</strong> Penicillium<br />

ci<strong>tr</strong>inium using indus<strong>tr</strong>ial residue. Bioresource<br />

Technology 69 : 145-149, 1999.<br />

Moustafa OA. Thermostable alpha-amylase(s) from<br />

irradiated microbial origin utilizing agricultural<br />

<strong>and</strong> environmental wastes under solid state<br />

fermentation conditions. M.Sc. Thesis. Al-Azhar<br />

University, 2002.<br />

Muralikrishna G <strong>and</strong> Nirmala M. Cereal αamylases-an<br />

overview. Carbohydrate Polym.<br />

60: 163-173, 2005.<br />

Negi S <strong>and</strong> Banerjee R. Optimization <strong>of</strong> culture<br />

parameters to enhance production <strong>of</strong> amylase<br />

<strong>and</strong> protease from Aspergillus awamori in a<br />

single fermentation. Afric J Biochem Res.<br />

2(3):73-80, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.


64 Muhammad IRFAN et al.<br />

Nimkar MD, Deogade NG, Kawale M. Production<br />

<strong>of</strong> alpha-amylase from Bacillus subtilis &<br />

Aspergillus niger using different agro waste by<br />

solid state fermentation. Asiatic J Biotechnol<br />

Res. 01:23-28, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Norouzan D, Akbarzadeh A, Scharer JM, Young<br />

MM. Fungal glucoamylases. Biotechnol Adv.<br />

24(1): 80-85, 2006.<br />

Oshoma CE, Imarhiagbe EE, Ikenebomeh MJ,<br />

Eigbaredon HE. Ni<strong>tr</strong>ogen supplements effect on<br />

amylase production by Aspergillus niger using<br />

cassava whey medium. Afri J Biotechnol. 9<br />

(5):682-686, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

P<strong>and</strong>ey A, Webb C, Soccol CR, Larroche C.<br />

Enzyme Technology, New Delhi, Asiatech<br />

publishers, Inc. 197, 2005.<br />

Pederson H <strong>and</strong> Nielsen J. The influence <strong>of</strong><br />

ni<strong>tr</strong>ogen sources on the α-amylase productivity<br />

<strong>of</strong> Aspergillus oryzae in continuous cultures.<br />

Appl Microb Biotechnol. 53(3): 278-281, 2000.<br />

Patel AK, Nampoothiri MK, Ramach<strong>and</strong>aran S.<br />

Partial purification <strong>and</strong> characterization <strong>of</strong> αamylase<br />

produced by Aspergillus oryzae using<br />

spent brewing grains. Indian J Biotechnol.<br />

4:336-341, 2005.<br />

Rameshkumar A, Sivasudha T. Optimization <strong>of</strong><br />

Nu<strong>tr</strong>itional Constitute for Enhanced Alpha<br />

amylase Production Using by Solid State<br />

Fermentation Technology. Int J Microb Res. 2<br />

(2):143-148, 2011.<br />

Reddy AS, Jharat R, Byrne N. Purification <strong>and</strong><br />

properties <strong>of</strong> amylase from A review. J Food<br />

Biochem. 21:281-302, 2003.<br />

Reyed RM. Biosynthesis <strong>and</strong> properties <strong>of</strong><br />

ex<strong>tr</strong>acellular amylase by encapsulation<br />

Bifidoba<strong>tr</strong>ium bifidum in batch culture.<br />

Aus<strong>tr</strong>alian J Basic Appl Sci. 1: 7-14, 2007.<br />

Sanghvi GV, Rina DK, Kishore SR. Isolation,<br />

Optimization, <strong>and</strong> Partial Purification <strong>of</strong><br />

Amylase from Chrysosporium asperatum by<br />

Submerged Fermentation. J Microb Biotechnol.<br />

21(5):470–476, 2011.<br />

Shafique S, Bajwa R, Shafique S. Screening <strong>of</strong><br />

Aspergillus niger <strong>and</strong> A. flavus s<strong>tr</strong>ains for ex<strong>tr</strong>a<br />

cellular α-amylase activity. Pak J Bot.<br />

41(2):897-905, 2009.<br />

Sharma DK, Tiwari M, Behere BK. Solid state<br />

fermentation <strong>of</strong> new subs<strong>tr</strong>ates for production <strong>of</strong><br />

cellulase <strong>and</strong> other biopolymer hydrolyzing<br />

enzymes. Appl Biochem Biotechnol. 15:495-<br />

500, 1996.<br />

Sidkey NM, Abo-Shadi MA, Al-Mu<strong>tr</strong>afy AM,<br />

Sefergy F, Al-Reheily N. Screening <strong>of</strong><br />

Microorganisms Isolated from some Enviro-<br />

Agro-Indus<strong>tr</strong>ial Wastes in Saudi Arabia for<br />

Amylase Product. J American Sci. 6(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>):926-<br />

939, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Sidkey NM, Shash SM, Ammar MS. Regulation <strong>of</strong><br />

α-amylase biosynthesis by Aspergillus sp. ,S-7<br />

attaching the Nile Hyacinth homogenate<br />

produced under laboratory scale fermentation<br />

conditions. Al-Azhar Bullutin Sci. 7(1):437-488,<br />

1996.<br />

Singh A, Abidi AB, Darmwal NS, Agrawal AK.<br />

Influence <strong>of</strong> nu<strong>tr</strong>itional factors <strong>of</strong> cellulase<br />

production from natural lignocellulosic residues<br />

by Aspergillus niger. Agri Biol Res. 7:19-27,<br />

1991.<br />

Sun H, Ge X, Wang L, Zhao P, Peng M.<br />

Microbial production <strong>of</strong> raw starch digesting<br />

enzymes. Afr J Biotechnol. 8 (9):1734-1739,<br />

2009.<br />

Varalakshmi KN, Kumudini BS, N<strong>and</strong>ini BN,<br />

Solomon J, Suhas R, Mahesh B, Kavitha AP.<br />

Production <strong>and</strong> characterization <strong>of</strong> α-amylase<br />

from Aspergillus niger JGI 24 isolated in<br />

Bangalore. Polish J Microbiol. 58: 29-36,<br />

2009.<br />

Valaparla VK. Purification <strong>and</strong> properties <strong>of</strong> a<br />

thermostable α-amylase by Acremonium<br />

Sporosulcatum. Int J Biotechnol Biochem.<br />

6(1):25–34, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Vu VH, Pham TA, Kim K. Improvement <strong>of</strong> fungal<br />

cellulase production by mutation <strong>and</strong><br />

optimization <strong>of</strong> solid state fermentation.<br />

Mycobiology. 39(1): 20-25, 2011.<br />

Zambare V. Solid state fermentation <strong>of</strong> Aspergillus<br />

oryzae for Glucoamylase Production on Agro<br />

residues. Int J Life Sci. 4:16-25, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology - GUIDELINES for AUTHORS<br />

General<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology<br />

(J<strong>Cell</strong>MolBiol) is an international journal which<br />

covers original works in the field <strong>of</strong> cell biology,<br />

molecular biology, genetics, microbiology,<br />

neurobiology, bioinformatics <strong>and</strong> related topics.<br />

The <strong>of</strong>ficial language <strong>of</strong> the journal is English,<br />

however manuscripts in Turkish are accepted as<br />

well.<br />

Conditions for publication<br />

This journal publishes research articles, review<br />

articles, short communications, book/s<strong>of</strong>tware<br />

reviews, case reports <strong>and</strong> letters to the editor.<br />

Research articles: Only original con<strong>tr</strong>ibutions will<br />

be accepted which have not been published<br />

previously. Manuscripts should not exceed 15<br />

papers <strong>of</strong> printed text, including tables, figures <strong>and</strong><br />

references<br />

Review articles: Reviews <strong>of</strong> recent developments in<br />

a research field <strong>and</strong> ideas will be accepted.<br />

Manuscripts should not exceed 15 papers <strong>of</strong> printed<br />

text. Illus<strong>tr</strong>ations are encouraged.<br />

Short communications: These include small-scale<br />

investigations or innovative methods, techniques,<br />

clinical <strong>tr</strong>ials <strong>and</strong> epidemiological studies. It should<br />

not exceed 3 pages.<br />

Letters to editor: These include opinions, news <strong>and</strong><br />

suggestions. Letters should not exceed 2 papers <strong>of</strong><br />

printed text.<br />

Case Reports: These include individual<br />

observations based on small numbers <strong>of</strong> subjects.<br />

This type <strong>of</strong> research cannot indicate causality but<br />

may indicate areas for further research.<br />

REVISED<br />

December 2011<br />

Manuscripts should be submitted by e-mail to:<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology<br />

Haliç Üniversitesi<br />

Fen Edebiyat Fakültesi<br />

Moleküler Biyoloji ve Genetik Bölümü<br />

Sıracevizler Cad. No:29<br />

Bomonti-Şişli 34381, İstanbul-TÜRKİYE<br />

Tel: +90 212 343 08 87, Fax: +90 212 231 06 31<br />

E-Mail: <s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>@<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

65<br />

Book/s<strong>of</strong>tware reviews: Short but concise<br />

description <strong>of</strong> the book/s<strong>of</strong>tware, not exceeding a<br />

page. Book/s<strong>of</strong>tware reviews are not peer reviewed.<br />

Presentation<br />

Papers should be typed clearly, double-spaced with<br />

3 cm wide margins.<br />

Manuscripts should be prepared using Word<br />

Processor.<br />

Cover Letter: You may briefly explain your work<br />

<strong>and</strong> its con<strong>tr</strong>ibution to present knowledge.<br />

Title Page: The first page <strong>of</strong> your manuscript<br />

should be a title page containing the type <strong>of</strong> paper;<br />

the title; all authors' full names, <strong>and</strong> affiliations;<br />

<strong>and</strong> the corresponding author's contact address<br />

(including phone <strong>and</strong> fax numbers) <strong>and</strong> e-mail<br />

address. The title should be as short as possible, but<br />

should give adequate information regarding the<br />

contents. Authors should also state a running title<br />

<strong>of</strong> no more than 50 characters including spaces.<br />

All pages must be numbered.<br />

<s<strong>tr</strong>ong>Full</s<strong>tr</strong>ong> Paper<br />

The full paper should be divided into the following<br />

parts in the order indicated:


66<br />

Abs<strong>tr</strong>act: A brief, informative abs<strong>tr</strong>act, not<br />

exceeding 200 words, should be provided in<br />

English <strong>and</strong> in Turkish. For authors who are not<br />

native Turkish speakers, J<strong>Cell</strong>MolBiol can provide<br />

the Turkish abs<strong>tr</strong>act.<br />

Keywords: Immediately following the abs<strong>tr</strong>act,<br />

authors should provide 5 keywords or phrases that<br />

reflect the content <strong>of</strong> the article.<br />

In<strong>tr</strong>oduction should include theory, hypotheses,<br />

prior work<br />

Material <strong>and</strong> methods may include subheadings<br />

Results: If the study consists <strong>of</strong> different parts,<br />

subheadings in this section should be consistent<br />

with subheadings in the methods.<br />

Discussion<br />

Acknowledgements should precede the list <strong>of</strong><br />

references<br />

References: Papers cited in the manuscript should<br />

be listed in alphabetical order according to the first<br />

author's surname.<br />

Tables <strong>and</strong> Figures<br />

• Tables <strong>and</strong> figures should both be embedded<br />

within the text in their appropriate positions <strong>and</strong> be<br />

submitted separately.<br />

• Elec<strong>tr</strong>onically submitted figures are preferred in<br />

*.jpg or *.tiff (min. 300 dpi) formats. Bar scales<br />

should be drawn directly on the figures when<br />

necessary. Figure legends should not be included in<br />

the *jpg or *tif files.<br />

• Each table should be accompanied by a short<br />

ins<strong>tr</strong>uctive title line plus an explanatory caption at<br />

the top. Indicate footnotes within tables by<br />

superscript letters <strong>and</strong> type footnotes below the<br />

table.<br />

• All the tables <strong>and</strong> figures must be referred to<br />

within the text.<br />

Units, Abbreviations <strong>and</strong> Scientific Names<br />

• Only SI units should be used. Current<br />

abbreviations can be used without explanation,<br />

others must be explained.<br />

• All acronyms/abbreviations must be explained<br />

in parenthesis after their first occurrence. If many<br />

unfamiliar acronyms/abbreviations are used, please<br />

REVISED<br />

December 2011<br />

compile them in an "Abbreviations" section at the<br />

end <strong>of</strong> the paper.<br />

• Latin expressions should be typed in italics.<br />

Referencing<br />

• In the text, citations with two authors should<br />

take the form: Smith <strong>and</strong> Robinson,1990. If several<br />

papers are cited by the same author in the same<br />

year, they should be lettered in sequence (1990a),<br />

(1990b), etc. When papers are by more then two<br />

authors they should be cited as Smith et al.,1990. In<br />

cases where more than one reference is written for<br />

the same sentence, they should appear in ascending<br />

publication order, e.g. (Jones et al., 2005; Smith et<br />

al., 2007; Brown et al., 2009).<br />

• In the list, references must be placed in<br />

alphabetical order. The following models for the<br />

reference list cover all situations. The punctuation<br />

given must be exactly followed. The journal titles<br />

should be abbreviated appropriately.<br />

Redford IR. Evidence for a general relationship<br />

between the induced level <strong>of</strong> DNA double<br />

s<strong>tr</strong><strong>and</strong> breakage <strong>and</strong> cell killing after Xirradiation<br />

<strong>of</strong> mammalian cells. Int J Radiat<br />

Biol. 49: 611- 620, 1986.<br />

Tccioli CE, Cottlieb TM, Blund T. Product <strong>of</strong> the<br />

XRCCS gene <strong>and</strong> its role in DNA repair <strong>and</strong><br />

V(D)J recombination. Science. 265: 1442-1445,<br />

1994<br />

Ohlrogge JB. Biochemis<strong>tr</strong>y <strong>of</strong> plant acyl carrier<br />

proteins. The Biochemis<strong>tr</strong>y <strong>of</strong> Plants: A<br />

Comprehensive Treatise. Stumpf PK <strong>and</strong> Conn<br />

EE (Ed). Academic Press, New York. 137-157,<br />

1987.<br />

Brown LA. How to cope with your supervisor. PhD<br />

Thesis. University <strong>of</strong> New Orleans, 2005.<br />

Web document with no author: Leafy seadragons<br />

<strong>and</strong> weedy seadragons 2001. Re<strong>tr</strong>ieved<br />

November 13, 2002, from http:// www.<br />

windspeed.net.au/jenny/seadragons/<br />

Web document with author: Dawson J, Smith L,<br />

Deubert K. Referencing, not plagiarism.<br />

Re<strong>tr</strong>ieved October 31, 2002 from http:<br />

//study<strong>tr</strong>ekk.lis.curtin.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.au/<br />

• Only papers published or in press should be<br />

cited in the literature list. Unpublished results,<br />

including submitted manuscripts <strong>and</strong> those in<br />

preparation, should be indicated as unpublished<br />

data in the text.


Submission Policies <strong>and</strong> Authorship<br />

Upon submission <strong>of</strong> a manuscript, it is accepted<br />

that all co-authors have approved the contents <strong>of</strong><br />

the manuscript <strong>and</strong> its submission by the<br />

corresponding author, <strong>and</strong> that the corresponding<br />

author is authorized to represent all co-authors in<br />

pre-publication discussions with J<strong>Cell</strong>MolBiol.<br />

The corresponding author is responsible for<br />

ensuring that all the con<strong>tr</strong>ibutors to the relevant<br />

work are listed as authors <strong>and</strong> that all authors have<br />

aggreed to the manuscript’s content <strong>and</strong> its<br />

submission to the J<strong>Cell</strong>MolBiol. In case the <strong>Journal</strong><br />

happens to be aware <strong>of</strong> an authorship dispute,<br />

authorship must be approved in writing by all <strong>of</strong> the<br />

parties.<br />

Cost<br />

There are no submission fees or page charges.<br />

Criteria for the Selection <strong>of</strong> Manuscripts<br />

Manuscripts should meet the following criteria: The<br />

study conducted is material is original <strong>and</strong> ethical,<br />

the writing is clear; the study methods are<br />

appropriate, the data are valid, the conclusions are<br />

reasonable <strong>and</strong> supported by the data; the<br />

information is important; <strong>and</strong> the topic is<br />

interesting to our readership.<br />

Editorial Processes<br />

Researchers may request informal feedback from<br />

the editors in a particular manuscript. The<br />

presubmission process aids in the submission<br />

decision for authors.<br />

When J<strong>Cell</strong>MolBiol receives a manuscript, the<br />

Editor-in-Chief will first decide whether the<br />

manuscript meets the formal criteria specified with<br />

“Guidelines for Authors” <strong>and</strong> whether it fits within<br />

the scope <strong>of</strong> the <strong>Journal</strong>. In case <strong>of</strong> doubt on the<br />

basis <strong>of</strong> initial review, the Editor-in-Chief will<br />

consult other members <strong>of</strong> the Editorial Board.<br />

Manuscripts that are found suitable for peer review<br />

will be assigned to two expert reviewers. Reviewers<br />

may either be Editorial/Advisory Board members<br />

or external experts selected by the Editorial Board.<br />

The corresponding author is notified by e-mail<br />

when the editor decides to send a paper for review.<br />

The reviewers will have up to three weeks to<br />

review the submitted article. After peer review, the<br />

editor will contact the author. If the author is<br />

required to submit a revised version, the revised<br />

version has to be submitted by the author within<br />

REVISED<br />

December 2011<br />

67<br />

two weeks. Otherwise, the manuscript will be<br />

removed from the manuscript submission queue<br />

<strong>and</strong> will be considered rejected.<br />

In cases where the referees have requested welldefined<br />

changes to the manuscript, editors may<br />

request a revised manuscript that addresses to<br />

referees’ concerns. The revised version is sent back<br />

to the original referees for re-review. In cases<br />

where the referees’ concerns are more wideranging,<br />

editors may reject the manuscript. The<br />

revised manuscript should be accompanied by a<br />

cover letter that includes a point-by-point response<br />

to referees’ comments <strong>and</strong> an explanation <strong>of</strong> how<br />

the manuscript has been changed.<br />

As a matter <strong>of</strong> policy, we do not suppress referees’<br />

reports, any comments directed to authors are<br />

<strong>tr</strong>ansmitted regardless <strong>of</strong> what we may think <strong>of</strong> the<br />

content. On rare occasions, we may edit a report to<br />

remove <strong>of</strong>fensive language or comments to reveal<br />

confidentiality.<br />

The final decision to accept or reject a manuscript<br />

will be made by the Editor-in-Chief. If it becomes<br />

apparent that there are serious problems with the<br />

scientific content or with violations <strong>of</strong> our<br />

publishing policies, the Editor-in-Chief also<br />

reserves the right to reject a paper even after it has<br />

been accepted.<br />

After acceptance, the Editor-in-Chief may make<br />

further changes to the text <strong>and</strong> figures so that the<br />

manuscript is readable <strong>and</strong> clear. Page pro<strong>of</strong>s will<br />

be sent to the corresponding author via email for<br />

checking before publication. Corresponding authors<br />

are sent pro<strong>of</strong>s <strong>and</strong> are welcome to discuss<br />

proposed changes with the Editor-in-Chief, but<br />

J<strong>Cell</strong>MolBiol reserves the right to make the final<br />

decision about the style. Corrected pro<strong>of</strong>s should be<br />

sent back within three days <strong>of</strong> receipt, otherwise the<br />

Editor-in-Chief reserves the rights to correct the<br />

pro<strong>of</strong>s himself <strong>and</strong> to send the material for<br />

publication. In cases where the authors do not<br />

submit the appropriately signed Publication<br />

Agreement Form, the manuscript is drawn from<br />

publication process even if it is accepted.<br />

Appeals<br />

Authors have the right to ask the Editor-in-Chief to<br />

reconsider a rejection decision, which is considered<br />

an appeal. Decisions are reversed only if the Editor<br />

is convinced that the original decision was a serious<br />

mistake. If an appeal merits further consideration,<br />

the Editor may send the author’s response or the<br />

revised paper to one or more referees, or Editor


68<br />

may ask one referee to comment on the concerns<br />

raised by another referee.<br />

Advance Online Publication<br />

J<strong>Cell</strong>MolBiol provides Advance Online Publication<br />

<strong>of</strong> articles, which benefit authors with an earlier<br />

publication date <strong>and</strong> allows the readers’ access to<br />

accepted papers several weeks before they appear<br />

in print<br />

Ethical Issues<br />

For manuscripts reporting experiments on live<br />

vertebrates or higher invertebrates, authors must<br />

declare that the study was approved by the<br />

institutional ethics committee. Papers describing<br />

investigations on human subjects must include a<br />

statement that informed consent was obtained from<br />

all subjects.<br />

Plagiarism<br />

If portions <strong>of</strong> the manuscript have already been<br />

published by the author on other journals or<br />

websites, J<strong>Cell</strong>MolBiol Editorial Board needs to<br />

know which portions <strong>of</strong> the manuscript have been<br />

previously published <strong>and</strong> where. The author should<br />

include a note in the cover letter indicating which<br />

portions have been published elsewhere.<br />

In case <strong>of</strong> any suspicion on scientific misconduct or<br />

dishonesty in research, J<strong>Cell</strong>MolBiol reserves the<br />

right to forward any submitted manuscript to an<br />

appropriate authority for investigation.<br />

Copyright Notice<br />

It is the responsibility <strong>of</strong> the submitting author to<br />

ensure that the authorship <strong>of</strong> the paper reflects the<br />

con<strong>tr</strong>ibutions <strong>of</strong> the authors to the work described,<br />

<strong>and</strong> that all listed authors have agreed to the<br />

submission <strong>of</strong> the manuscript in its current form.<br />

Conditions <strong>of</strong> publication in J<strong>Cell</strong>MolBiol are that<br />

the paper has not already been published elsewhere;<br />

that it is not currently being considered for<br />

publication else-where; all persons designated as<br />

authors should qualify for authorship, <strong>and</strong> all those<br />

who qualify should be listed. If accepted, Haliç<br />

University <strong>and</strong> J<strong>Cell</strong>MolBiol have the exclusive<br />

license to publish.<br />

J<strong>Cell</strong>MolBiol is freely available to individuals <strong>and</strong><br />

institutions. Copies <strong>of</strong> this <strong>Journal</strong> <strong>and</strong> articles in<br />

this journal may be dis<strong>tr</strong>ibuted for research or for<br />

<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>cational purposes free <strong>of</strong> charge. However,<br />

REVISED<br />

December 2011<br />

commercial use <strong>of</strong> articles contained herein is<br />

prohibited without the written consent <strong>of</strong> the<br />

Editor-in-Chief.<br />

Publication Agreement<br />

The corresponing author is required to assign the<br />

Publication Agreement Form in order to publish the<br />

submitted manuscript in J<strong>Cell</strong>MolBiol.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong><br />

<s<strong>tr</strong>ong>Volume</s<strong>tr</strong>ong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> · No 1 · June 2012<br />

Review Article<br />

Molecular Biology<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase enzyme<br />

M. IMRAN, M.J. ASAD, S.H. HADRI, S. MEHMOOD<br />

Research Articles<br />

Isolation <strong>and</strong> biochemical identification <strong>of</strong> Escherichia coli from wastewater effluents <strong>of</strong> food<br />

<strong>and</strong> beverage indus<strong>tr</strong>y<br />

T. FARASAT, Z. BILAL, F. YUNUS<br />

Investigation <strong>of</strong> the MGP promoter <strong>and</strong> exon 4 polymorphisms in patients with ischemic<br />

s<strong>tr</strong>oke in the Ukrainian population<br />

A.V. ATAMAN, V.Y. GARBUSOVA, Y.A. ATAMAN, O.I. MATLAJ, O.A. OBUCHOVA<br />

Investigation <strong>of</strong> the association <strong>of</strong> survivin gene -625G/C polymorphism in non-small cell<br />

lung cancer<br />

E. AYNACI, E. COŞKUNPINAR, A. EREN, O. KUM, Y. M. OLTULU, N. AKKAYA, A.<br />

TURNA, İ. YAYLIM, P. YILDIZ<br />

Effects <strong>of</strong> prenatal <strong>and</strong> neonatal exposure to lead on white blood cells in Swiss mice<br />

R. SHARMA, K. PANWAR, S. MOGRA<br />

Sulfabenzamide promotes autophagic cell death in T-47D breast cancer cells through p53/<br />

DRAM pathway<br />

R. MOHAMMADPOUR, S. SAFARIAN, S. FARAHNAK, S. HASHEMINASL, N. SHEIBANI<br />

Media optimization for amylase production in solid state fermentation <strong>of</strong> wheat bran by<br />

fungal s<strong>tr</strong>ains<br />

M. IRFAN, M. NADEEM, Q. SYED<br />

Guidelines for Authors<br />

1<br />

13<br />

19<br />

27<br />

33<br />

41<br />

55<br />

65

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!