16.07.2013 Views

10 1 Full Volume (PDF)(jcmb.halic.edu.tr) - Journal of Cell and ...

10 1 Full Volume (PDF)(jcmb.halic.edu.tr) - Journal of Cell and ...

10 1 Full Volume (PDF)(jcmb.halic.edu.tr) - Journal of Cell and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong><br />

Molecular Biology<br />

• Sulfabenzamide promotes autophagy through p53/ DRAM pathway<br />

MGP polymorphisms in ischemic s<strong>tr</strong>oke<br />

<s<strong>tr</strong>ong>Volume</s<strong>tr</strong>ong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> · No 1· June 2012<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Survivin -625G/C polymorphism in non-small cell lung cancer


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong><br />

Molecular Biology<br />

<s<strong>tr</strong>ong>Volume</s<strong>tr</strong>ong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> · Number 1<br />

June 2012<br />

İstanbul-TURKEY


Haliç University<br />

Faculty <strong>of</strong> Arts <strong>and</strong> Sciences<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology<br />

Founder<br />

Gündüz GEDİKOĞLU<br />

Our Children Leukemia Foundation<br />

Rights held by<br />

A. Sait SEVGENER<br />

Rector<br />

Correspondence Address:<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology<br />

Haliç Üniversitesi<br />

Fen-Edebiyat Fakültesi,<br />

Sıracevizler Cad. No:29 Bomonti 34381 Şişli<br />

İstanbul-Turkey<br />

Phone: +90 212 343 08 87<br />

Fax: +90 212 231 06 31<br />

E-mail: <s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>@<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology is<br />

indexed in<br />

ULAKBIM, EBSCO,<br />

DOAJ, EMBASE,<br />

CAPCAS, EMBiology,<br />

Socolar, Index COPERNICUS,<br />

Open J-Gate, Chemical Abs<strong>tr</strong>acts<br />

<strong>and</strong><br />

Genamics <strong>Journal</strong>Seek<br />

ISSN 1303-3646<br />

Printed at MART Printing House<br />

Editor-in-Chief<br />

Nagehan ERSOY TUNALI<br />

Editorial Board<br />

M. YOKEŞ<br />

Baki<br />

ÖZDİLLİ<br />

Kürşat<br />

Nural BEKİROĞLU<br />

Emel BOZKAYA<br />

M.Burcu IRMAK YAZICIOĞLU<br />

Mehmet OZANSOY<br />

Aslı BAŞAR<br />

Editorial Assistance<br />

Ozan TİRYAKİOĞLU<br />

Özlem KURNAZ<br />

Advisory Board<br />

A.Meriç ALTINÖZ, Istanbul, Turkey<br />

Tuncay ALTUĞ, İstanbul, Turkey<br />

Canan ARKAN, Munich, Germany<br />

Aglaia ATHANASSIADOU, Pa<strong>tr</strong>as, Greece<br />

E. Zerrin BAĞCI, Tekirdağ, Turkey<br />

Şehnaz BOLKENT, İstanbul, Turkey<br />

Nihat BOZCUK, Ankara, Turkey<br />

A. Nur BUYRU, İstanbul, Turkey<br />

Kemal BÜYÜKGÜZEL, Zonguldak, Turkey<br />

H<strong>and</strong>e ÇAĞLAYAN, İstanbul, Turkey<br />

İsmail ÇAKMAK, İstanbul, Turkey<br />

Ayla ÇELİK, Mersin, Turkey<br />

Adile ÇEVİKBAŞ, İstanbul, Turkey<br />

Beyazıt ÇIRAKOĞLU, İstanbul, Turkey<br />

Fevzi DALDAL, Pennsylvania, USA<br />

Zihni DEMİRBAĞ, Trabzon, Turkey<br />

Gizem DİNLER DOĞANAY, İstanbul, Turkey<br />

Mustafa DJAMGÖZ, London, UK<br />

Aglika EDREVA, S<strong>of</strong>ia, Bulgaria<br />

Ünal EGELİ, Bursa, Turkey<br />

Anne FRARY, İzmir, Turkey<br />

H<strong>and</strong>e GÜRER ORHAN, İzmir, Turkey<br />

Nermin GÖZÜKIRMIZI, İstanbul, Turkey<br />

Ferruh ÖZCAN, İstanbul, Turkey<br />

Asım KADIOĞLU, Trabzon, Turkey<br />

Maria V. KALEVITCH, Pennsylvania, USA<br />

Nevin Gül KARAGÜLER, İstanbul, Turkey<br />

Valentine KEFELİ, Pennsylvania, USA<br />

Meral KENCE, Ankara, Turkey<br />

Fatma Neşe KÖK, İstanbul, Turkey<br />

Uğur ÖZBEK, İstanbul, Turkey<br />

Ayşe ÖZDEMİR, İstanbul, Turkey<br />

Pınar SAİP, Istanbul, TURKEY<br />

Sevtap SAVAŞ, Toronto, Canada<br />

Müge TÜRET SAYAR, İstanbul, Turkey<br />

İsmail TÜRKAN, İzmir, Turkey<br />

Mehmet TOPAKTAŞ, Adana, Turkey<br />

Meral ÜNAL, İstanbul, Turkey<br />

İlhan YAYLIM ERALTAN, İstanbul, Turkey<br />

Selma YILMAZER, İstanbul, Turkey<br />

Ziya ZİYLAN, İstanbul, Turkey


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology<br />

CONTENTS<br />

<s<strong>tr</strong>ong>Volume</s<strong>tr</strong>ong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> · Number 1 · June 2012<br />

Review Article<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase enzyme<br />

M. IMRAN, M.J. ASAD, S.H. HADRI, S. MEHMOOD<br />

Research Articles<br />

Isolation <strong>and</strong> biochemical identification <strong>of</strong> Escherichia coli from<br />

wastewater effluents <strong>of</strong> food <strong>and</strong> beverage indus<strong>tr</strong>y<br />

T. FARASAT, Z. BILAL, F. YUNUS<br />

Investigation <strong>of</strong> the MGP promoter <strong>and</strong> exon 4 polymorphisms in<br />

patients with ischemic s<strong>tr</strong>oke in the Ukrainian population<br />

A.V. ATAMAN, V.Y. GARBUSOVA, Y.A. ATAMAN, O.I. MATLAJ,<br />

O.A. OBUCHOVA<br />

Investigation <strong>of</strong> the association <strong>of</strong> survivin gene -625G/C polymorphism<br />

in non-small cell lung cancer<br />

Survivin geni -625G/C polimorfizminin Küçük Hücreli Dışı Akciğer<br />

Kanseri ile ilişkisinin araştırılması<br />

E. AYNACI, E. COŞKUNPINAR, A. EREN, O. KUM, Y. M. OLTULU, N.<br />

AKKAYA, A. TURNA, İ. YAYLIM, P. YILDIZ<br />

Effects <strong>of</strong> prenatal <strong>and</strong> neonatal exposure to lead on white blood cells in<br />

Swiss mice<br />

R. SHARMA, K. PANWAR, S. MOGRA<br />

Sulfabenzamide promotes autophagic cell death in T-47D breast cancer<br />

cells through p53/ DRAM pathway<br />

R. MOHAMMADPOUR, S. SAFARIAN, S. FARAHNAK, S.<br />

HASHEMINASL, N. SHEIBANI<br />

Media optimization for amylase production in solid state fermentation<br />

<strong>of</strong> wheat bran by fungal s<strong>tr</strong>ains<br />

M. IRFAN, M. NADEEM, Q. SYED<br />

Guidelines for Authors<br />

Front cover image: “DNA s<strong>tr</strong><strong>and</strong>s on abs<strong>tr</strong>act”<br />

Shutterstock image ID: 704<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>25<br />

1<br />

13<br />

19<br />

27<br />

33<br />

41<br />

55<br />

65


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1): 1-11, 2012 Review Article 1<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase enzyme<br />

Muhammad IMRAN *1,2 , Muhammad J. ASAD 1 , Saqib H. HADRI 1 <strong>and</strong> Sajid<br />

MEHMOOD 2<br />

1 Department <strong>of</strong> Biochemis<strong>tr</strong>y, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan<br />

2 Department <strong>of</strong> Biochemis<strong>tr</strong>y <strong>and</strong> Biotechnology, University <strong>of</strong> Gujrat, Pakistan<br />

(* author for correspondence; mirzaimran42@gmail.com)<br />

Received: 22 April 2011; Accepted: 15 May 2012<br />

Abs<strong>tr</strong>act<br />

Laccase is an enzyme that has potential ability <strong>of</strong> oxidation. It belongs to those enzymes, which have innate<br />

properties <strong>of</strong> reactive radical production, <strong>and</strong> its utilization in many fields has been ignored because <strong>of</strong> its<br />

unavailability in the commercial field. There are diverse sources <strong>of</strong> laccase producing organisms like<br />

bacteria, fungi <strong>and</strong> plants. Textile, pulp <strong>and</strong> paper indus<strong>tr</strong>ies discharge a huge quantity <strong>of</strong> waste in the<br />

environment, <strong>and</strong> the disposal <strong>of</strong> this waste is a big problem. To solve this problem, work has done to<br />

discover such an enzyme, which can detoxify these wastes <strong>and</strong> is not harmful to the environment. Laccases<br />

use oxygen <strong>and</strong> produce water as by product. They can degrade a range <strong>of</strong> compounds including phenolic <strong>and</strong><br />

non-phenolic compounds. They also have ability to detoxify a range <strong>of</strong> environmental pollutants. Their<br />

property to act on a range <strong>of</strong> subs<strong>tr</strong>ates <strong>and</strong> also to detoxify a range <strong>of</strong> pollutants have made them to be<br />

usable for several purposes in many indus<strong>tr</strong>ies including paper, pulp, textile <strong>and</strong> pe<strong>tr</strong>ochemical indus<strong>tr</strong>ies.<br />

Keywords: Laccase, solid state fermentation, oxidation, enzyme, fungi.<br />

Lakkaz enziminin üretimi ve endüs<strong>tr</strong>iyel uygulamaları<br />

Özet<br />

Lakkaz, potansiyel oksidasyon yeteneği olan bir enzimdir. Reaktif radikal üretim özelliği olan enzimlere<br />

dahildir ve birçok al<strong>and</strong>aki kullanımı, ticari al<strong>and</strong>a uygun olmaması nedeniyle göz ardı edilmektedir. Bakteri,<br />

mantar ve bitki gibi lakkaz üreten çeşitli organizma kaynakları vardır. Tekstil, kağıt hamuru ve kağıt<br />

endüs<strong>tr</strong>isi çevreye büyük miktarda atık salmaktadır ve bu atıkların uzaklaştırılması büyük bir problemdir. Bu<br />

sorunu çözmek üzere, atıkları detoksifiye eden ve çevreye zararlı olmayan bir enzim keşfetmek için<br />

çalışmalar yapılmıştır. Bu enzim oksijen kullanır ve yan ürün olarak su üretir. Lakkaz, fenolik ve fenolik<br />

olamayan bileşikleri içeren bir dizi bileşiği parçalayabilir. Ayrıca, bir dizi çevresel kirleticiyi detoksifiye<br />

etme yeteneği vardır. Çeşitli subs<strong>tr</strong>atlar üzerine etki etme ve ayrıca bir dizi kirliliği detoksifiye etme özelliği,<br />

bu enzimleri çeşitli amaçlarla tekstil, kâğıt hamuru, kâğıt ve pe<strong>tr</strong>okimya endüs<strong>tr</strong>isini kapsayan birçok<br />

endüs<strong>tr</strong>ide kullanılabilir kılmaktadır.<br />

Anahtar kelimeler: Lakkaz, katı hal fermentasyonu, oksidasyon, enzim, mantarlar.<br />

In<strong>tr</strong>oduction<br />

Laccase was first discovered in the sap <strong>of</strong> the<br />

Japanese lacquer <strong>tr</strong>ee Rhus vernicifera, <strong>and</strong> its<br />

characteristic as a metal containing oxidase was<br />

discovered by Ber<strong>tr</strong><strong>and</strong> in 1985 (Giardina et al.,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Since then, laccases have also been found in<br />

various basidiomycetous <strong>and</strong> ascomycetous fungi<br />

<strong>and</strong> thus far fungal laccases have accounted for the<br />

most important group <strong>of</strong> multicopper oxidases<br />

(MCOs) with respect to number <strong>and</strong> extent <strong>of</strong><br />

characterization (Giardina et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

The large quantity <strong>of</strong> laccases have been widely<br />

reported inside white-rot fungi. A number <strong>of</strong>


2Muhammad IMRAN et al.<br />

laccase genes have been isolated <strong>and</strong> distinguished<br />

for this purpose (Mayer <strong>and</strong> Staples, 2002). The<br />

improvement in laccase appearance, characterized<br />

by an increase in protein <strong>and</strong> mRNA level, was<br />

illus<strong>tr</strong>ated with Picnoprus cinnabarinus, Pleurotus<br />

sajor caju <strong>and</strong> Trametes versicolor (Eggert et al.<br />

1996, Solden <strong>and</strong> Dobson 2001, Collins <strong>and</strong><br />

Dobson 1997).<br />

A number <strong>of</strong> species <strong>of</strong> genus Pleurotus have<br />

been explained as manufacturers <strong>of</strong> laccase<br />

(Leonowicz et al. 2001). We freshly reported that a<br />

s<strong>tr</strong>ain <strong>of</strong> P. pulmonarius produce laccase as the<br />

main ligninolytic enzymes while cultured on wheat<br />

bran solid state medium (Souza et al. 2002). In the<br />

current study, numerous phenolic <strong>and</strong> aromatic<br />

compounds s<strong>tr</strong>ucturally related to lignin were<br />

calculated for their capability to arouse laccase<br />

production by P. pulmonarius. (Solden <strong>and</strong><br />

Dobson, 2001).<br />

P. pulmonarius was pr<strong>of</strong>icient <strong>of</strong> mounting on a<br />

wide variety <strong>of</strong> phenolic <strong>and</strong> aromatic compounds.<br />

Laccase production by P. pulmonarius could be<br />

considerably improved by including an equimolar<br />

combination <strong>of</strong> ferulic acid <strong>and</strong> vanillin as inducer.<br />

The cons<strong>tr</strong>uction <strong>of</strong> different laccase is<strong>of</strong>orm in<br />

reply to phenolics implicates a possible task <strong>of</strong> this<br />

enzyme in the detoxification processes (Souza et<br />

al., 2002)<br />

Numerous white-rot fungi, counting Trametes<br />

versicolor, make ex<strong>tr</strong>a cellular copper-containing<br />

phenol oxidases (E C 1.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.3.2), named laccases<br />

(Birhanli <strong>and</strong> Yesilada, 2006). The two major likely<br />

natural functions at<strong>tr</strong>ibuted to fungal laccases are,<br />

first, their participation in lignin degradation,<br />

mutually with supplementary ligninolytic enzymes<br />

such as peroxidases, <strong>and</strong> second, their function in<br />

fungal virulence as key cause in pathogenesis in<br />

opposition to plant hosts (Gianfreda et al., 1999).<br />

As well, laccases display in vivo other functions<br />

that are the foundation <strong>of</strong> several indus<strong>tr</strong>ial<br />

applications. For instance, in Aspergillus nidulans,<br />

laccases take action on pigment development in<br />

fungal spores (Smith et al., 1997). A number <strong>of</strong><br />

fungi also ooze laccases to take away either<br />

potentially toxic phenols released through lignin<br />

degradation or toxins formed by others organisms.<br />

As a result, the enzyme has probable applications in<br />

the textile indus<strong>tr</strong>ies, dye, as well as for the<br />

degradation <strong>of</strong> a variety <strong>of</strong> xenobiotics, which are<br />

recognized as ecological pollutants (Rama et al.<br />

1998, Jolivalt et al. 1999, Mougin et al., 2000).<br />

Laccase-producing fungi have also been<br />

reported to be helpful apparatus for xenobiotic<br />

removal in liquid effluents as well as in soil<br />

bioremediation (Gianfreda et al. 1999, Jolivalt et al.<br />

2000). Our outcomes demons<strong>tr</strong>ate that the resulting<br />

alteration products themselves are likely to<br />

encourage biological effects moreover on<br />

degrading or non-target organisms. So, an entire<br />

characterization <strong>of</strong> these compounds is essential for<br />

an entire assessment <strong>of</strong> the remediation processes<br />

(Souza et al., 2002).<br />

Laccase represents a family <strong>of</strong> coppercontaining<br />

polyphenol oxidases (PPO) & are<br />

usually called multicopper oxidases (MCO)<br />

(Birhanli <strong>and</strong> Yesilada, 2006; Arora <strong>and</strong> Sharma,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>; Giardina et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Laccases catalyze the<br />

oxidation <strong>of</strong> various substituted phenolic<br />

compounds by using molecular oxygen as the<br />

elec<strong>tr</strong>on acceptor (Sharma et al., 2007). These<br />

enzymes have less subs<strong>tr</strong>ate specificity <strong>and</strong> have<br />

the ability to degrade a range <strong>of</strong> xenobiotics<br />

including indus<strong>tr</strong>ial colored wastewaters (Souza et<br />

al., 2006).<br />

Laccases exhibit broad subs<strong>tr</strong>ate range, which<br />

varies from one laccase to another. Although it is<br />

known to be diphenol oxidase, monophenols like 2,<br />

6-dimethoxy phenol or guaiacol are better<br />

subs<strong>tr</strong>ates than phenols (e.g., catechol or<br />

hydroquinone) (Baldrian, 2006; Arora <strong>and</strong> Sharma,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Laccases catalyze monoelec<strong>tr</strong>onic oxidation <strong>of</strong><br />

molecules to corresponding reactive radicals with<br />

the help <strong>of</strong> four copper atoms, which form the main<br />

catalytic core <strong>of</strong> the laccase, accompanied with the<br />

diminution <strong>of</strong> oxygen to water molecules <strong>and</strong><br />

simultaneous oxidation <strong>of</strong> subs<strong>tr</strong>ate to produce<br />

radicals (Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). All subs<strong>tr</strong>ates<br />

cannot be directly oxidized by laccases, either<br />

because <strong>of</strong> their large size which res<strong>tr</strong>icts their<br />

pene<strong>tr</strong>ation into the enzyme active site or because<br />

<strong>of</strong> their particular high redox potential. To<br />

overcome this hindrance, suitable chemical<br />

mediators are used which are oxidized by the<br />

laccase <strong>and</strong> their oxidized forms are then able to<br />

interact with high redox potential subs<strong>tr</strong>ate targets<br />

(Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

In fungi, laccases carry out a variety <strong>of</strong><br />

physiological roles including morphogenesis,<br />

fungal plant pathogen/host interaction, s<strong>tr</strong>ess<br />

defense, <strong>and</strong> lignin degradation (Gianfreda et al.,<br />

1999; Giardina et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Laccases have been<br />

found in nearly all woodrotting fungi analyzed so<br />

far (Heinzkill <strong>and</strong> Messner, 1997; Giardina et al.,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) <strong>and</strong> are almost ubiquitary enzymes as they<br />

have been isolated from plants, from some kinds <strong>of</strong><br />

bacteria, <strong>and</strong> from insects too (Enguita et al., 2003;<br />

Sharma et al., 2007; Giardina et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).


Laccase has many applications in other fields,<br />

like medical diagnosis, pharmaceutical indus<strong>tr</strong>y.<br />

Laccase has also applications in the agriculture area<br />

by clearing herbicides, pesticides <strong>and</strong> some<br />

explosives in soil. It is also used in the preparation<br />

<strong>of</strong> some important drugs, like anticancer drugs, <strong>and</strong><br />

added in some cosmetics to r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ce their toxicity.<br />

Laccase also has the ability to form polymers <strong>of</strong><br />

value able importance (Couto <strong>and</strong> Herrera, 2006).<br />

Solid state fermentation (SSF) is a technique in<br />

which fungi are grown on solid subs<strong>tr</strong>ate or<br />

subs<strong>tr</strong>ate moistened with a low quantity <strong>of</strong> mineral<br />

salt solution <strong>and</strong> it has a great potential to produce<br />

enzyme especially where the fermented raw<br />

materials are used as a source <strong>of</strong> nu<strong>tr</strong>ients for the<br />

fungi. The enzymes produced by this method have<br />

several applications in several fields including food<br />

<strong>and</strong> fermentation indus<strong>tr</strong>y. These enzymes are also<br />

used to prepare several bioactive compounds. SSF<br />

system is much better than the submerged system<br />

because a number <strong>of</strong> reasons. The benefits <strong>of</strong> SSF<br />

over SMF include the high production <strong>of</strong> the<br />

enzyme, <strong>and</strong> fewer effluent generation. Moreover,<br />

comparably simple equipment is required for SSF<br />

(P<strong>and</strong>ey, 1994).<br />

Neurospora is a genus <strong>of</strong> kingdom fungi that<br />

has become a popular experimental model<br />

organism (Davis et al., 2002). Laccases have<br />

copper atoms at their catalytic sites <strong>and</strong> are<br />

oxidative enzymes (EC 1.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.3.2) which are widely<br />

found in many species <strong>of</strong> fungi, where they are<br />

involved in lignin degradation, in higher plants<br />

where they are involved in biosynthesis <strong>of</strong> lignin<br />

(Mayer <strong>and</strong> Staples, 2002; Sharma <strong>and</strong> Kuhad,<br />

2008), in bacteria (Claus, 2003; Liers et al., 2007),<br />

<strong>and</strong> in insects (Litthauer et al., 2007). Some species<br />

<strong>of</strong> fungi <strong>and</strong> insects produce laccases as<br />

in<strong>tr</strong>acellular proteins, but most <strong>of</strong> the laccases are<br />

produced as ex<strong>tr</strong>acellular proteins by all other types<br />

<strong>of</strong> producers (Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Laccase production in various organisms<br />

Production <strong>of</strong> laccase in fungi<br />

Laccase production occurs in various fungi over a<br />

wide range <strong>of</strong> taxa. Fungi from the deuteromycetes,<br />

ascomycetes (Aisemberg et al., 1989) as well as<br />

basidiomycetes are the known producers <strong>of</strong> laccase<br />

(Sadhasivam et al., 2008). Among them,<br />

basidiomycetes are considered efficient laccase<br />

producers, especially white rot fungi (Revankar <strong>and</strong><br />

lele, 2006; Sadhasivam et al., 2008). Laccase<br />

production has not been reported in lower fungi,<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase 3<br />

i.e., Zygomycetes <strong>and</strong> Chy<strong>tr</strong>idiomycetes. However,<br />

these groups have not yet been studied in detail<br />

(Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Trametes versicolor, Chaetomium<br />

thermophilum <strong>and</strong> Pleurotus eryngii are well<br />

known producers <strong>of</strong> laccase. It has been reported<br />

that some Trichoderma species, including T.<br />

harzianum has the ability to produce polyphenol<br />

oxidases (Kiiskinen et al., 2004; Sadhasivam et al.,<br />

2008).<br />

Laccase has been produced by many species <strong>of</strong><br />

s<strong>of</strong>t, white rot fungi, geophilous saprophytic fungi.<br />

Laccase has also been produced by many edible<br />

mushrooms including the oyster mushroom<br />

Pleurotus os<strong>tr</strong>eatus, the rice mushroom Lentinula<br />

edodes <strong>and</strong> champignon Agaricus bisporus. Other<br />

laccase producers <strong>of</strong> wood-rotting fungi include T.<br />

hirsuta (C. hirsutus), T. villosa, T. gallica, Cerrena<br />

maxima, Lentinus tigrinus, T. ochracea, Pleurotus<br />

eryngii, Trametes (Coriolus) versicolor,<br />

Coriolopsis polyzona, etc. (Morozova et al., 2007).<br />

In fungal physiology, laccases are involved in plant<br />

pathogenesis, pigmentation, detoxification, lignin<br />

degradation (Sadhasivam et al., 2008) <strong>and</strong> also in<br />

development <strong>of</strong> morphogenesis <strong>of</strong> fungi (Baldrian,<br />

2006; Morozova et al., 2007).<br />

Laccases <strong>of</strong> wood-colonizing basidiomycetes<br />

(white rot fungi) have been thoroughly studied (not<br />

least also with respect to laccase-mediator<br />

interaction), <strong>and</strong> many <strong>of</strong> them purified <strong>and</strong><br />

characterized on the protein <strong>and</strong> gene level (Liers et<br />

al., 2007).<br />

Mishra et al. (2008) have used cyanobacterial<br />

biomass <strong>of</strong> water bloom, groundnut shell (GNS)<br />

<strong>and</strong> dye effluent as culture medium for the<br />

production <strong>of</strong> laccase by Coriolus versicolor. They<br />

found the laccase production to be <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.15±2.21<br />

U/ml in the medium having groundnut shell <strong>and</strong><br />

cyanobacterial bloom in a ratio <strong>of</strong> 9:1 (dry weight<br />

basis) at initial pH 5.0 <strong>and</strong> 28±2 o C temperature.<br />

Half life <strong>of</strong> enzyme was 74 min at 60 o C. Kinetic<br />

analysis <strong>of</strong> laccase with ABTS were also<br />

determined, Km <strong>and</strong> Vmax were found to be 0.29mM<br />

<strong>and</strong> 9.49mol/min respectively. Azide <strong>and</strong><br />

hydroxylamine exerted significant inhibition on<br />

production <strong>of</strong> thermostable laccase.<br />

It is reported that Phanerochaete chrysosporium<br />

NCIM 1197 also secretes ex<strong>tr</strong>acellular laccase.<br />

They also studied effect <strong>of</strong> several inducers on the<br />

production <strong>of</strong> laccase. Among several inducers<br />

tested copper sulphate has the greatest tendency to<br />

enhance the produce <strong>of</strong> laccase. Laccase production<br />

increased 3.5 fold in the presence <strong>of</strong> copper sulfate


4Muhammad IMRAN et al.<br />

as compared to con<strong>tr</strong>ol. Laccase production under<br />

SSF, batch fermentation in a laboratory scale<br />

bioreactor <strong>and</strong> static liquid culture was also<br />

compared. The maximum production <strong>of</strong> laccase<br />

was achieved after five days <strong>and</strong> it was found to be<br />

48.89±1.82 U/L, 30.21±1.66 <strong>and</strong> 22.56±1.22 U/L,<br />

respectively (Gnanamani et al., 2006).<br />

The white-rot fungus Trametes pubescens MB<br />

89 is a source <strong>of</strong> the laccase production at indus<strong>tr</strong>ial<br />

level. Ex<strong>tr</strong>acellular laccase formation is<br />

considerably enhanced by the addition <strong>of</strong> Cu (II) in<br />

the low quantities in the simple glucose medium.<br />

When using glucose, a typically repressing<br />

subs<strong>tr</strong>ate, as the main carbon source, significant<br />

laccase formation by T. pubescens only started<br />

when glucose was completely consumed from the<br />

culture medium. In addition, the ni<strong>tr</strong>ogen source<br />

employed had an important effect on laccase<br />

synthesis. When using an optimized medium<br />

containing glucose (40 g/L), peptone from meat (<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

g/L), <strong>and</strong> MgSO4.7H2O <strong>and</strong> stimulating enzyme<br />

formation by the addition <strong>of</strong> 2.0 mM Cu, maximal<br />

laccase activities obtained in a batch cultivation<br />

were approximately 330 U ml – l (Galhaup et al.,<br />

2002).<br />

Production <strong>of</strong> laccase in plants<br />

Laccases are a diverse group <strong>of</strong> multi-copper<br />

proteins with broad subs<strong>tr</strong>ate specificity, originally<br />

discovered in the exudates <strong>of</strong> Rhus vernicifera, the<br />

Japanese lacquer <strong>tr</strong>ee <strong>and</strong> subsequently<br />

demons<strong>tr</strong>ated as a fungal enzyme as well (Sharma<br />

<strong>and</strong> Kuhad, 2008). The plants in which the laccase<br />

enzyme has been detected include lacquer, mango,<br />

mung bean, peach, pine, prune, <strong>and</strong> sycamore<br />

(Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Techniques are also<br />

being developed to express laccase in the crop<br />

plants. Recently, laccase has been expressed in the<br />

embryo <strong>of</strong> maize (Zea mays) seeds (Bailey et al.,<br />

2004; Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Laccase is envolved in polymerization <strong>of</strong> lignin<br />

units; p coumaryl, coniferyl, sinapyl alcohols <strong>and</strong> in<br />

the synthesis <strong>of</strong> lignin in the plants (Morozova et<br />

al., 2007). If the comparison between plant <strong>and</strong><br />

fungal laccases is taken up, the former takes part in<br />

radical-based polymerization <strong>of</strong> lignin (Ranocha et<br />

al., 2002; Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>), whereas fungal<br />

laccase con<strong>tr</strong>ibutes to lignin biodegradation due to<br />

which it has gained considerable significance in<br />

green technology (Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Production <strong>of</strong> laccase in bacteria<br />

Laccase in bacteria is present in<strong>tr</strong>acellularly <strong>and</strong> as<br />

periplasmic protoplast (Claus, 2003; Arora <strong>and</strong><br />

Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). The first bacterial laccase was<br />

found in the plant root associated bacterium,<br />

Azospirillum lip<strong>of</strong>erum (Givaudan et al., 1993;<br />

Sharma et al., 2007; Sharma <strong>and</strong> Kuhad, 2008),<br />

where it was shown to be involved in melanin<br />

formation (Faure et al., 1994; Sharma <strong>and</strong> Kuhad,<br />

2008). Laccase has been discovered in a number <strong>of</strong><br />

bacteria including Bacillus subtilis, Bordetella<br />

compes<strong>tr</strong>is, Caulobacter crescentus, Escherichia<br />

coli, Mycobacterium tuberculosum, Pseudomonas<br />

syringae, Pseudomonas aeruginosa, <strong>and</strong> Yersinia<br />

pestis (Alex<strong>and</strong>re <strong>and</strong> Zhulin, 2000; Enguita et al.,<br />

2003; Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Recently,<br />

Steno<strong>tr</strong>ophomonas maltophilia s<strong>tr</strong>ain was found to<br />

be laccase producing, which was used to degrade<br />

synthetic dyes (Galai et al., 2008; Arora <strong>and</strong><br />

Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Laccase containing six putative copper binding<br />

sites were discovered in marine bacterium<br />

Marinomonas mediterranea, but no functional role<br />

was assigned to this enzyme (Amat et al., 2001;<br />

Sharma <strong>and</strong> Kuhad, 2008). Some <strong>of</strong> the reported<br />

laccases have the ability to perform the activity at<br />

very crucial conditions like in the presence <strong>of</strong> high<br />

conc. <strong>of</strong> Cl - 1 <strong>and</strong> Cu +2 <strong>and</strong> even at neu<strong>tr</strong>al pH<br />

values. The enzyme produced by Sinorhizobium<br />

meliloti is a one <strong>of</strong> the examples <strong>of</strong> such enzymes<br />

<strong>and</strong> is a protein having two subunits with pI 6.2 <strong>and</strong><br />

the molecular weight <strong>of</strong> the subunits is 45 kDa each<br />

(Morozova et al., 2007), whereas laccase produced<br />

by Pseudomonas putida is also an example <strong>of</strong> such<br />

enzyme <strong>and</strong> is a single subunit 59 kDa protein<br />

which works well at pH 7.0 (Morozova et al.,<br />

2007). Both enzymes can oxidize syringaldazine.<br />

Niladevi et al. (2009) used response surface<br />

methodology for the optimization <strong>of</strong> different<br />

nu<strong>tr</strong>itional <strong>and</strong> physical parameters for the<br />

production <strong>of</strong> laccase by the filamentous bacteria<br />

S<strong>tr</strong>eptomyces psammoticus MTCC 7334 in<br />

submerged fermentation. Incubation temperature,<br />

incubation period, agitationrate, concen<strong>tr</strong>ations <strong>of</strong><br />

yeast ex<strong>tr</strong>act, MgSO4.7H2O, <strong>and</strong> <strong>tr</strong>ace elements<br />

were found to influence laccase production<br />

significantly.<br />

A new laccase gene (cotA) was cloned from<br />

Bacillus licheniformis <strong>and</strong> expressed in Escherichia<br />

coli. The recombinant protein CotA was purified<br />

<strong>and</strong> showed spec<strong>tr</strong>oscopic properties typical for<br />

blue multi-copper oxidases. The enzyme has a<br />

molecular weight <strong>of</strong> ~65kDa <strong>and</strong> demons<strong>tr</strong>ates<br />

activity towards canonical laccase subs<strong>tr</strong>ates 2, 2’azino-bis<br />

(3-ethylnenzothiazoline-6sulphonic acid)<br />

(ABTS), syringaldazine (SGZ) <strong>and</strong> 2, 6-


dimethoxyphenol (2, 6-DMP). Kinetic constants Km<br />

<strong>and</strong> kcat for ABTS were <strong>of</strong> 6.5±0.2 µM <strong>and</strong> 83s -1 ,<br />

for SGZ <strong>of</strong> 4.3+0.2 µM <strong>and</strong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0s -1 , <strong>and</strong> for 2, 6-<br />

DMP <strong>of</strong> 56.7+1.0 µM <strong>and</strong> 28 s -1 . Highest oxidizing<br />

activities towards ABTS were obtained at 85 o C<br />

(Koschorreck et al., 2009).<br />

Production <strong>of</strong> laccase in insects<br />

The laccase enzyme has also been characterized in<br />

different insects, e.g., Bombyx, Calliphora,<br />

Diploptera, Drosophila, Lucilia, M<strong>and</strong>uca, Musca,<br />

Orycetes, Papilio, Phormia, Rhodnius,<br />

Sarcophaga, Schistocerca, <strong>and</strong> Tenebrio (Arora<br />

<strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

In insects, laccases have been suggested to be<br />

active in cuticle sclerotization (Dittmer et al., 2004;<br />

Sharma <strong>and</strong> Kuhad, 2008). Recently, two is<strong>of</strong>orms<br />

<strong>of</strong> laccase 2 gene have been found to catalyse<br />

larval, pupal, <strong>and</strong> adult cuticle tanning in Tribolium<br />

castaneum (Arakane et al., 2005; Sharma <strong>and</strong><br />

Kuhad, 2008)<br />

Applications <strong>of</strong> laccase<br />

Laccases have many biotechnological applications<br />

because <strong>of</strong> their oxidation ability towards a broad<br />

range <strong>of</strong> phenolic <strong>and</strong> non-phenolic compounds<br />

(Figure 1) (Mohammadian et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Other applications <strong>of</strong> laccase include the<br />

cleaning the indus<strong>tr</strong>ial effluents, mostly from<br />

indus<strong>tr</strong>ies like paper indus<strong>tr</strong>y, pulp, textile &<br />

pe<strong>tr</strong>ochemical indus<strong>tr</strong>ies. Laccase are also used in<br />

the medical diagnostics <strong>and</strong> for cleaning herbicides,<br />

pesticides <strong>and</strong> some explosives in soil. Laccase has<br />

many applications in agricultural, medicinal <strong>and</strong><br />

indus<strong>tr</strong>ial areas (Arora <strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Laccases are also to clean the water in many<br />

purification systems. It has also applications in<br />

medical side to prepare certain drugs like anticancer<br />

drugs <strong>and</strong> it is added in cosmetics to<br />

minimize their toxic effects. Laccase has the<br />

enormous ability to remove xenobiotic substances<br />

<strong>and</strong> produce polymeric products <strong>and</strong> that is why<br />

they are being used for many bioremediation<br />

purposes (Couto <strong>and</strong> Herrera, 2006).<br />

Now researchers are working on enzymatic<br />

synthesis <strong>of</strong> organic compounds, laccase-based<br />

biooxidation, <strong>and</strong> bio<strong>tr</strong>ansformation <strong>and</strong> biosensor<br />

development. The yield <strong>of</strong> laccase can be increased<br />

by optimizing different cultural conditions (Arora<br />

<strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase 5<br />

Figure 1. Scheme <strong>of</strong> applications <strong>of</strong> laccase<br />

(Morozova et al., 2007)<br />

Applications <strong>of</strong> laccase in food indus<strong>tr</strong>ies<br />

Wine stabilization<br />

Laccase is used to improve the quality <strong>of</strong> drinks<br />

<strong>and</strong> for the stabilization <strong>of</strong> certain perishable<br />

products containing plant oils (Morozova et al.,<br />

2007). In food indus<strong>tr</strong>y, wine stabilization is the<br />

main application <strong>of</strong> laccase (Duran <strong>and</strong> Esposito,<br />

2000; Rosana et al., 2002).<br />

Polyphenols have undesirable effects on wine<br />

production <strong>and</strong> on its organoleptic characteristics,<br />

so their removal from the wine is very necessary<br />

(Rosana et al., 2002). Many innovative <strong>tr</strong>eatments,<br />

such as enzyme inhibitors, complexing agents, <strong>and</strong><br />

sulfate compounds, have been proposed for the<br />

removal <strong>of</strong> phenolics responsible for discoloration,<br />

haze, <strong>and</strong> flavor changes but the possibility <strong>of</strong> using<br />

enzymatic laccase <strong>tr</strong>eatments as a specific <strong>and</strong> mild<br />

technology for stabilizing beverages against<br />

discoloration <strong>and</strong> clouding represents an at<strong>tr</strong>active<br />

alternative (Cantarelli et al., 1989; Arora <strong>and</strong><br />

Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Since such an enzyme is not yet<br />

allowed as a food additive, the use <strong>of</strong> immobilized<br />

laccase might be a suitable method to overcome<br />

such legal barriers as in this form it may be<br />

classified as technological aid. So laccase could<br />

find application in preparation <strong>of</strong> must, wine <strong>and</strong> in<br />

fruit juice stabilization (Minussi et al., 2002; Arora<br />

<strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Baking indus<strong>tr</strong>y<br />

In the bread-making process laccases affix bread<br />

<strong>and</strong>/or dough-enhancement additives to the bread<br />

dough, these results in improved freshness <strong>of</strong> the<br />

bread texture, flavour <strong>and</strong> the improved<br />

machinability (Minussi et al., 2002).<br />

Laccase is also one <strong>of</strong> the enzymes used in the<br />

baking indus<strong>tr</strong>y. Laccase enzyme is added in the


6Muhammad IMRAN et al.<br />

baking process which results in the oxidizing effect,<br />

<strong>and</strong> also improves the s<strong>tr</strong>ength <strong>of</strong> s<strong>tr</strong>uctures in<br />

dough <strong>and</strong>/or baked products. Laccase imparts<br />

many characteristics to the baked products<br />

including an improved crumb s<strong>tr</strong>ucture, increased<br />

s<strong>of</strong>tness <strong>and</strong> volume. A flour <strong>of</strong> poor quality can be<br />

also used in this process using laccase enzyme<br />

(Minussi et al., 2002).<br />

Applications <strong>of</strong> laccase in textile indus<strong>tr</strong>y<br />

Synthetic dyes are widely used in such indus<strong>tr</strong>ies as<br />

textile, leather, cosmetics, food <strong>and</strong> paper printing<br />

(Forgacsa et al., 2004). Reactive dyes are coloured<br />

molecules used to dye cellulose fibres (Tavares et<br />

al., 2009). These dyes result in the production <strong>of</strong><br />

large amounts <strong>of</strong> high-colored wastewater. A<br />

special problem is found in the application <strong>of</strong><br />

synthetic dyes that they are resistant to<br />

biodegradation (Wesenberg et al., 2003, Moilanen<br />

et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Normally, from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> to 50% <strong>of</strong> the initial dye<br />

load will be present in the dyebath effluent, giving<br />

rise to a highly coloured effluent (V<strong>and</strong>evivere et<br />

al., 1998; Moilanen et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Therefore, the<br />

<strong>tr</strong>eatment <strong>of</strong> indus<strong>tr</strong>ial effluents containing<br />

aromatic compounds is necessary prior to final<br />

discharge to the environment (Khlifia et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Nowadays, environmental regulations in most<br />

coun<strong>tr</strong>ies require that wastewater must be<br />

decolorized before its discharge (Moilanen et al.,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) to r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ce environmental problems related to<br />

the effluent (Tavares et al., 2009). A wide range <strong>of</strong><br />

physicochemical methods has been developed for<br />

the degradation <strong>of</strong> dye-containing wastewaters<br />

(V<strong>and</strong>evivere et al., 1998; Tavares et al., 2009).<br />

Wastewaters from textile dying process are usually<br />

<strong>tr</strong>eated by physical or chemical processes, which<br />

include physical–chemical processes elec<strong>tr</strong>okinetic<br />

coagulation, elec<strong>tr</strong>ochemical des<strong>tr</strong>uction,<br />

irradiation, precipitation, ozonation, or the Katox<br />

method that involves the use <strong>of</strong> active carbon <strong>and</strong><br />

the mixture <strong>of</strong> certain gases (air) (Banat et al.,<br />

1996, Khlifia et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, Tavares et al., 2009).<br />

However, due to the chemical nature, molecular<br />

size <strong>and</strong> s<strong>tr</strong>ucture <strong>of</strong> the reactive dyes these<br />

classical processes can cause a problem in the<br />

environment <strong>and</strong> better <strong>tr</strong>eatments can be obtained<br />

using bioprocesses (Tavares et al., 2009). Recently,<br />

enzymatic <strong>tr</strong>eatments have at<strong>tr</strong>acted much interest<br />

in the decolourization/degradation <strong>of</strong> textile dyes in<br />

wastewater as an alternative s<strong>tr</strong>ategy to<br />

conventional chemical <strong>and</strong> physical <strong>tr</strong>eatments,<br />

which present serious limitations (Cristovao et al.,<br />

2008, Tavares et al., 2009).<br />

Five indigenous fungi P. os<strong>tr</strong>eatus IBL-02, P.<br />

chrysosporium IBL-03, Coriolus versicolor IBL-<br />

04, G. lucidum IBL-05 <strong>and</strong> S. commune IBL-06<br />

were screened for decolorization <strong>of</strong> four vat dyes,<br />

Cibanon red 2B-MD, Cibanon golden-yellow PK-<br />

MD, Cibanon blue GFJ-MD <strong>and</strong> Indanthrene direct<br />

black RBS. The screening experiment was run for<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> days with 0.01% dye solutions prepared in<br />

alkaline Kirk’s basal nu<strong>tr</strong>ient medium in <strong>tr</strong>iplicate<br />

(250 ml flasks). Every 48 h samples were read on<br />

their respective wavelengths to determine the<br />

percent decolorization. It was observed that C.<br />

versicolor IBL-04 could effectively decolorized all<br />

the four vat dyes at varying incubation times but<br />

best results were shown on Cibanon blue GFJ-MD<br />

(90.7%) after 7 days, followed by golden yellow<br />

(88%), Indanthrene direct black (79.7%) <strong>and</strong><br />

Cibanon red (74%). P. chrysosporium also showed<br />

good decolorization potential on Cibanon blue<br />

(87%), followed by Cibanon golden-yellow<br />

(74.8%), Red (71%), <strong>and</strong> Indanthrene direct black<br />

(54.6%) (Asghar et al., 2008).<br />

Decolourization <strong>and</strong> detoxification <strong>of</strong> a textile<br />

indus<strong>tr</strong>y effluent by laccase from Trametes <strong>tr</strong>ogii in<br />

the presence <strong>and</strong> the absence <strong>of</strong> laccase mediators<br />

had been investigated. It was found that laccase<br />

alone was not able to decolourize the effluent<br />

efficiently even at the highest enzyme<br />

concen<strong>tr</strong>ation tested: less than <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>% decolourization<br />

was obtained with 9 U/mL reaction mixtures. To<br />

enhance effluent decolourization, several potential<br />

laccase mediators were tested at concen<strong>tr</strong>ations<br />

ranging from 0 to 1mM. Most potential mediators<br />

enhanced decolourization <strong>of</strong> the effluent, with 1hydroxybenzo<strong>tr</strong>iazol<br />

(HBT) being the most<br />

effective (Khlifia et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Moilanen et al. (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) used the crude laccases<br />

from the white-rot fungi Cerrena unicolor <strong>and</strong><br />

Trametes hirsuta for their ability to decolorize<br />

simulated textile dye baths. The dyes used were<br />

Remazol Brilliant Blue R (RBBR) (<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 mg/L),<br />

Congo red (12.5 mg/L), Lanaset Grey (75 mg/L)<br />

<strong>and</strong> Poly R-478 (50 mg/L). They assessed the effect<br />

<strong>of</strong> redox mediators on dye decolorization by<br />

laccases. The result was that C. unicolor laccase<br />

was able to decolorize all the dyes tested. It was<br />

especially effective towards Congo red <strong>and</strong> RBBR<br />

with 91 <strong>and</strong> 80% <strong>of</strong> color removal in 19.5 h despite<br />

the fact that simulated textile dye baths were used.<br />

Applications in pharmaceutical indus<strong>tr</strong>y<br />

Laccases have been used for the synthesis <strong>of</strong><br />

several products <strong>of</strong> pharmaceutical indus<strong>tr</strong>y (Arora<br />

<strong>and</strong> Sharma, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). The first chemical <strong>of</strong> the


pharmaceutical importance that has been prepared<br />

using laccase enzyme is actinocin that has been<br />

prepared from 4-methyl-3-hydroxyanthranilic acid.<br />

This compound has anticancer capability <strong>and</strong> works<br />

by blocking the <strong>tr</strong>anscription <strong>of</strong> DNA from the<br />

tumor cell (Burton, 2003).<br />

Another example <strong>of</strong> the anticancer drugs is<br />

Vinblastine, which is useful for the <strong>tr</strong>eatment <strong>of</strong><br />

leukemia. The plant Catharanthus roseus naturally<br />

produces vinblastine. This plant produces small<br />

amount <strong>of</strong> this compound. Katarantine <strong>and</strong><br />

vindoline are the precursors <strong>of</strong> this<br />

pharmaceutically important compound. These<br />

precursors are produced in higher quantities <strong>and</strong> are<br />

easy to purifiy. Laccase is used to convert these<br />

precursors into vinblastine. A 40% conversion <strong>of</strong><br />

these precursors into the final product has been<br />

obtained using laccase (Yaropolov et al., 1994).<br />

The use <strong>of</strong> laccase in such conversion reactions has<br />

made the preparation <strong>of</strong> several important<br />

compounds with useful properties, like antibiotics,<br />

possible (Pilz et al., 2003).<br />

Catechins have the antioxidant ability <strong>and</strong><br />

Laccases can oxidize catechins. These catechins<br />

consist <strong>of</strong> small units <strong>of</strong> tannins <strong>and</strong> these are<br />

important antioxidants found in tea, herbs <strong>and</strong><br />

vegetables. Catechins have the tendency to hunt<br />

free radicals <strong>and</strong> their property makes them useful<br />

in preventing several diseases including cancer,<br />

inflammatory <strong>and</strong> cardiovascular diseases. The<br />

catechins have less antioxidant ability; this property<br />

can be increased by using laccase <strong>and</strong> has resulted<br />

in the conversion <strong>of</strong> catechins in several products<br />

with enhanced antioxidant capability (Kurisawa et<br />

al., 2003).<br />

Laccase has applications in the synthesis <strong>of</strong><br />

hormone derivatives. In<strong>tr</strong>a et al. (2005) <strong>and</strong> Nico<strong>tr</strong>a<br />

et al. (2004) have reported that laccase has the<br />

ability to seperate innovative dimeric derivatives <strong>of</strong><br />

the β-es<strong>tr</strong>adiol <strong>and</strong> <strong>of</strong> the phytoalexin resvera<strong>tr</strong>ol.<br />

Isoeugenol oxidation coniferyl alcohol <strong>and</strong> totarol<br />

gave new dimeric derivatives (Ncanana et al.,<br />

2007) <strong>and</strong> a mixture <strong>of</strong> dimeric <strong>and</strong> te<strong>tr</strong>americ<br />

derivatives (Shiba et al., 2000) respectively,<br />

whereas the oxidation <strong>of</strong> substituted imidazole has<br />

resulted in the production <strong>of</strong> even more complex<br />

subs<strong>tr</strong>ances. These new formed imidazoles or<br />

oligomerization products (2–4) can be used for<br />

pharmacological purposes (Kurisawa et al., 2003).<br />

Aromatic <strong>and</strong> aliphatic amines can be converted<br />

into 3-(3, 4-dihydroxyphenyl)-propionic acid using<br />

laccase based oxidation. The derivatives have the<br />

antiviral natural activity <strong>and</strong> can be used for<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase 7<br />

pharmaceutical purposes (Ncanana et al., 2007).<br />

Conclusion<br />

Laccases are produced by various sources like<br />

fungi, bacteria <strong>and</strong> insects. They have many<br />

indus<strong>tr</strong>ial applications because <strong>of</strong> their innate<br />

ability <strong>of</strong> oxidation <strong>of</strong> a broad range <strong>of</strong> phenolic<br />

<strong>and</strong> non-phenolic compounds. Laccase is utilized in<br />

drink indus<strong>tr</strong>y to improve the quality <strong>of</strong> drinks <strong>and</strong><br />

for stabilization <strong>of</strong> some perishable products having<br />

plant oils. Laccases have the potential for the<br />

synthesis <strong>of</strong> several useful drugs in pharmaceutical<br />

indus<strong>tr</strong>y because <strong>of</strong> their high value <strong>of</strong> oxidation<br />

potential. Laccases have also <strong>tr</strong>emendous ability <strong>of</strong><br />

oxidation <strong>of</strong> harmful <strong>and</strong> indus<strong>tr</strong>ial products <strong>and</strong><br />

belongs to those enzymes, which have instinctive<br />

properties <strong>of</strong> immediate radical production. Laccase<br />

enzyme has the property to act on a range <strong>of</strong><br />

subs<strong>tr</strong>ates <strong>and</strong> to detoxify a range <strong>of</strong> pollutants,<br />

which have made them to be useful in many<br />

indus<strong>tr</strong>ies including paper, pulp, textile <strong>and</strong><br />

pe<strong>tr</strong>ochemical indus<strong>tr</strong>ies.<br />

References<br />

Aisemberg GO, Grorewold E, Taccioli GE,<br />

Judewicz N. A major <strong>tr</strong>anscript in the response<br />

<strong>of</strong> Neurospora crassa to protein synthesis<br />

inhibition by cycloheximide. Exp Mycol. 13:<br />

121–128, 1989.<br />

Alex<strong>and</strong>re G, <strong>and</strong> Zhulin IB. Laccases are wide<br />

spread in bacteria. Trends in Biotech. 18: 41–<br />

42, 2000.<br />

Amat AS, Elio PL, Fern<strong>and</strong>ez E, Borron JCG,<br />

Solano F. Molecular cloning <strong>and</strong> functional<br />

characterization <strong>of</strong> a unique multipotent<br />

polyphenol oxidase from Marinomonas<br />

mediterranea. Biochem Biophys Acta. 1547:<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4–116, 2001.<br />

Arakane Y, Muthukrishnan S, Beeman RW, Kanost<br />

MR, Kramer KJ. Laccase 2 is the phenoloxidase<br />

gene required for beetle cuticle tanning. PNAS.<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>2: 11337-11342, 2005.<br />

Arora DS, Sharma RK. Ligninolytic Fungal<br />

Laccases <strong>and</strong> Their Biotechnological<br />

Applications. Appl Biochem Biotechnol. 160:<br />

1760–1788, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.


8Muhammad IMRAN et al.<br />

Asghar M, Batool S, Bhatti HN, Noreen R, Rahman<br />

SU, Asad MJ. Laccase mediated decolorization<br />

<strong>of</strong> vat dyes by Coriolus versicolor IBL-04. Int<br />

Biodet Biodeg. 62: 465-470, 2008.<br />

Bailey MR, Woodard SL, Callawy E, Beifuss K,<br />

Lundback MM, Lane J. Improved recovery <strong>of</strong><br />

active recombinant laccase from maize seed.<br />

Appl Microbiol Biotechnol. 63: 390–397, 2004.<br />

Baldrian P. Fungal laccases occurrence <strong>and</strong><br />

properties. FEMS Microbiol Rev. 30: 215–242,<br />

2006.<br />

Banat IM, Nigam P, Singh D, Marchnt R.<br />

Microbial decolorization <strong>of</strong> textile dye<br />

containing effluent: a review. Bioresour<br />

Technol. 58: 217–227, 1996.<br />

Birhanli E <strong>and</strong> Yesilada O. Increased production <strong>of</strong><br />

laccase by pellets <strong>of</strong> Funalia <strong>tr</strong>ogii ATCC<br />

200800 <strong>and</strong> Trametes versicolor ATCC 200801<br />

in repeated-batch mode. Enzy Microb Technol.<br />

39: 1286–1293, 2006.<br />

Burton S. Laccases <strong>and</strong> phenol oxidases in organic<br />

synthesis. Curr Org Chem. 7: 1317-1331, 2003.<br />

Cantarelli C, Brenna O, Giovanelli G, Rossi M.<br />

Beverage stabilization through enzymatic<br />

removal <strong>of</strong> phenolics. Food Biotechnol. 3: 203–<br />

214, 1989.<br />

Claus H. Laccases <strong>and</strong> their occurrence in<br />

prokaryotes. Arch Microbiol. 179: 145–150,<br />

2003.<br />

Collins PJ <strong>and</strong> Dobson ADW. Regulation <strong>of</strong><br />

laccase gene <strong>tr</strong>anscription in Trametes<br />

versicolor. Appl Environ Microbiol. 63: 3444–<br />

3450, 1997.<br />

Couto SR <strong>and</strong> Herrera JLT. Indus<strong>tr</strong>ial <strong>and</strong><br />

biotechnological applications <strong>of</strong> laccases: A<br />

review. Biotechnol Advances. 24: 500–513,<br />

2006.<br />

Cristovao RO, Tavares APM, Ribeiro A, Loureiro<br />

JM, Boaventura RAR, Macedo EA. Kinetic<br />

modelling <strong>and</strong> simulation <strong>of</strong> laccase catalyzed<br />

degradation <strong>of</strong> reactive textile dyes. Biores<br />

Technol. 99: 4768–4774, 2008.<br />

Davis RH <strong>and</strong> Perkins DD. Timeline: Neurospora:<br />

a model <strong>of</strong> model microbes. Nat Rev Genet. 3:<br />

397–403, 2002.<br />

Dittmer NT, Suderman RJ, Jiang H, Zhu YC,<br />

Gorman MJ, Kramer KJ, Kanost MR.<br />

Characterization <strong>of</strong> cDNA encoding putative<br />

laccase-like multicopper oxidases <strong>and</strong><br />

developmental expression in the tobacco<br />

hornworm, M<strong>and</strong>uca sexta, <strong>and</strong> the malaria<br />

mosquito, Anopheles gambiae. Insect Biochem<br />

Mol Biol. 34: 29–41, 2004.<br />

Duran N <strong>and</strong> Esposito E. Potential applications <strong>of</strong><br />

oxidative enzymes <strong>and</strong> phenoloxidase-like<br />

compounds in wastewater <strong>and</strong> soil <strong>tr</strong>eatment: a<br />

review. Appl Cataly Env. 28: 83–99, 2000.<br />

Eggert C, Temp U, Eriksson KE. The ligninolytic<br />

system <strong>of</strong> the white rot fungus Pycnoporus<br />

cinnabarinus: purification <strong>and</strong> characterization<br />

<strong>of</strong> the laccase. Appl Environ Microbiol. 62:<br />

1151–1158, 1996.<br />

Enguita FJ, Martins LO, Henriques AO, Carrondo<br />

MA. Crystal s<strong>tr</strong>ucture <strong>of</strong> a bacterial endospore<br />

coat component. A laccase with enhanced<br />

thermostability properties. J Biol Chem. 278:<br />

19416–19425, 2003.<br />

Faure D, Bouillant ML, Bally R. Isolation <strong>of</strong><br />

Azospirillum lip<strong>of</strong>erum 4T Tn5 mutants affected<br />

in melanization <strong>and</strong> laccase activity. Appl<br />

Environ Microbiol. 60, 3413–3415, 1994.<br />

Forgacsa E, Cserhatia T, Oros G. Removal <strong>of</strong><br />

synthetic dyes from wastewaters: a review.<br />

Environ Int. 30: 953–971, 2004.<br />

Galai S, Limam F, Marzouki MN. A new<br />

Steno<strong>tr</strong>ophomonas maltophilia s<strong>tr</strong>ain producing<br />

laccase. Use in decolorization <strong>of</strong> synthetic dyes.<br />

Appl Biochem Biotechnol. 158(2): 416-431<br />

2009.<br />

Galhaup C, Wagner H, Hinterstoisser B, Hal<strong>tr</strong>ich<br />

D. Increased production <strong>of</strong> laccase by the wooddegrading<br />

basidiomycetes Trametes pubescens.<br />

Enz Microb Technol. 30: 529–536, 2002.


Gianfreda L, Xu F, Bollag JM. Laccases: a useful<br />

group <strong>of</strong> delignification <strong>and</strong> possible indus<strong>tr</strong>ial<br />

applications. Multi-Copper Oxidases.<br />

Messerschmidt A (Ed). Singapore: World<br />

Scientific. 201–224, 1999.<br />

Giardina P, Faraco V, Pezzella C, Piscitelli A,<br />

Vanhulle S, Sannia G. Laccases: a never-ending<br />

story. <strong>Cell</strong> Mol Life Sci. 67: 369–385, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Givaudan A, Effose A, Faure D, Potier P, Bouillant<br />

ML, Bally R. Polyphenol oxidase in<br />

Azospirillum lip<strong>of</strong>erum isolated from rice<br />

rhizosphere: evidence for laccase activity in<br />

non-motile s<strong>tr</strong>ains <strong>of</strong> Azospirillum lip<strong>of</strong>erum.<br />

FEMS Microbiol Lett. <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>8: 205–2<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, 1993.<br />

Gnanamani A, Jayaprakashvel M, Arulmani M,<br />

Sadulla S. Effect <strong>of</strong> inducers <strong>and</strong> culturing<br />

processes on laccase synthesis in<br />

Phanerochaete chrysosporium NCIM 1197 <strong>and</strong><br />

the constitutive expression <strong>of</strong> laccase isozymes.<br />

Enz Microb Technol. 38: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>17-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>21, 2006.<br />

Heinzkill M, Messner K. The ligninolytic system <strong>of</strong><br />

fungi. Fungal biotechnology. Anke T (Ed).<br />

Chap Hall Weinheim. 213–226, 1997.<br />

In<strong>tr</strong>a A, Nico<strong>tr</strong>a S, Riva S, Daniel B. Significant<br />

<strong>and</strong> unexpected solvent influence on the<br />

selectivity <strong>of</strong> laccase-catalyzed coupling <strong>of</strong><br />

te<strong>tr</strong>ahydro-2-naphthol derivatives. Adv Synth<br />

Catal. 347: 973-977, 2005.<br />

Jolivalt C, Brenon S, Caminade E, Mougin C,<br />

Pontie M. Immobilization <strong>of</strong> laccase from<br />

Trametes versicolor on a modified PVDF<br />

micr<strong>of</strong>il<strong>tr</strong>ation membrane: characterization <strong>of</strong><br />

the grafted support <strong>and</strong> application in removing<br />

a phenylurea pesticide in wastewater. J Membr<br />

Sci. 180: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>3–113, 2000.<br />

Jolivalt C, Raynal A, Caminade E, Kokel B, Le<br />

G<strong>of</strong>fic F, Mougin C. Transformation <strong>of</strong> N,N<br />

dimethyl-N-(hydroxyphenyl)ureas by laccase<br />

from the white rot fungus Trametes versicolor.<br />

Appl Microbiol Biotechnol. 51: 676–681, 1999.<br />

Khlifia R, Belbahria L, Woodwarda S, Ellouza M,<br />

Dhouiba A, Sayadia S, Mechichia T.<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase 9<br />

Decolourization <strong>and</strong> detoxification <strong>of</strong> textile<br />

indus<strong>tr</strong>y wastewater by the laccase-mediator<br />

system. J Hazard Mater. 175: 802–80, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Kiiskinen LL, Ratto M, Kruus K. Screening for<br />

novel laccase-producing microbes. J Appl<br />

Microbiol. 97: 640–646, 2004.<br />

Koschorreck K, Schmid RD, Urlacher VB.<br />

Improving the functional expression <strong>of</strong> a<br />

Bacillus licheniformis laccase by r<strong>and</strong>om <strong>and</strong><br />

site-directed mutagenesis. J Biotechnol. 9(12):<br />

1-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, 2009.<br />

Kurisawa M, Chung JE, Uyama H, Kobayashi S.<br />

Laccase-catalyzed synthesis <strong>and</strong> antioxidant<br />

property <strong>of</strong> poly(catechin). Macromol Biosci. 3:<br />

758-764, 2003.<br />

Leonowicz A, Cho NS, Luterek J, Wilkolazka A,<br />

Wotjas-Wasilewska M, Matuszewska A,<br />

H<strong>of</strong>richter M, Wesenberg D, Rogalski J. Fungal<br />

laccase: properties <strong>and</strong> activity on lignin. J Bas<br />

Microbiol. 41: 185–227, 2001.<br />

Liers C, Ullrich R, Pecyna M, Schlosser D,<br />

H<strong>of</strong>richter M. Production, purification <strong>and</strong><br />

partial enzymatic <strong>and</strong> molecular<br />

characterization <strong>of</strong> a laccase from the woodrotting<br />

ascomycete Xylaria polymorpha. Enz<br />

Microb Technol. 41: 785–793, 2007.<br />

Mayer AM. Polyphenol oxidases in plant: recent<br />

progress. Phytochem. 26: 11–20, 1987.<br />

Mayer AM, Staples RC. Laccase: new functions<br />

for an old enzyme. Phytochem. 60: 551–565,<br />

2002.<br />

Minussi RC, Pastore GM, Duran N. Potential<br />

applications <strong>of</strong> laccase in the food indus<strong>tr</strong>y.<br />

Trends in Food Scien Technol. 13: 205–216,<br />

2002.<br />

Mishra A, Kumar S, Kumar S. Application <strong>of</strong> Box-<br />

Benhken experimental design for optimization<br />

<strong>of</strong> laccase production Coriolus versicolor<br />

MTCC138 in solid-state fermentation. J Sci<br />

Indust Res. 67: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>98-1<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>7, 2008.


<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>Muhammad IMRAN et al.<br />

Mohammadian M, Roudsari MF, Mollania N,<br />

Dalfard AB, Khajeh K. Enhanced expression <strong>of</strong><br />

a recomninant bacterial laccase at low<br />

temperature <strong>and</strong> microacrobic conditions:<br />

purification <strong>and</strong> biochemical characterization. J<br />

Ind Microbiol Biotechnol. 5: 41-45, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Moilanen U, Osma JF, Winquist E, Leisola M,<br />

Couto SR. Decolorization <strong>of</strong> simulated textile<br />

dye baths by crude laccases from Trametes<br />

hirsute <strong>and</strong> Cerrena unicolor. Eng Life Sci.<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(3): 1–6, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Morozova OV, Shumakovich GP, Gorbacheva MA,<br />

Shleev SV, Yaropolov AI. “Blue” Laccases. J<br />

Biochem. 72(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>): 1136-1150, 2007.<br />

Mougin, C., Boyer, F. D., Caminade, E., Rama, R.<br />

Cleavage <strong>of</strong> the diketoni<strong>tr</strong>ilederivative <strong>of</strong> the<br />

herbicide isoxaflutole by ex<strong>tr</strong>a cellular fungal<br />

oxidases. J Agric Food Chem. 48: 4529–4534,<br />

2000.<br />

Ncanana S, Baratto L, Roncaglia L, Riva S, Burton<br />

SG. Laccase mediated oxidation <strong>of</strong> totarol. Adv<br />

Synth Catal. 349 : 1507-1513, 2007.<br />

Nico<strong>tr</strong>a S, Cramarossa MR, Mucci A, Pagnoni UM,<br />

Riva S, Forti L. Bio<strong>tr</strong>ansformation <strong>of</strong><br />

resvera<strong>tr</strong>ol: synthesis <strong>of</strong> <strong>tr</strong>ans-dehydrodimers<br />

catalyzed by laccases from Myceliophtora<br />

thermophyla <strong>and</strong> from Trametes pubescens.<br />

Te<strong>tr</strong>ahedron. 60: 595-600, 2004.<br />

Niladevi KN, Sukumaran RK, Jacob N, Anisha GS,<br />

Prema P. Optimization <strong>of</strong> laccase production<br />

from a novel s<strong>tr</strong>ain-S<strong>tr</strong>eptomyces psammoticus<br />

using response surface methodology. Microbiol<br />

Res. 164: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>5-113, 2009.<br />

P<strong>and</strong>ey A. Solid State Fermentation. P<strong>and</strong>ey A<br />

(Ed). Wiley Eastern Publishers, New Delhi. 3–<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, 1994.<br />

Pilz R, Hammer E, Schauer F, Krag U. Laccasecatalyzed<br />

synthesis <strong>of</strong> coupling products <strong>of</strong><br />

phenolic subs<strong>tr</strong>ates in different reactors. Appl<br />

Microbiol Biotechnol. 60: 708-712, 2003.<br />

Rama R, Mougin C, Boyer FD, Kollmann A,<br />

Malosse C <strong>and</strong> Sigoillot JC. Bio<strong>tr</strong>ansformation<br />

<strong>of</strong> benzo[a]pyrene in bench scale reactor using<br />

laccase <strong>of</strong> Pycnoporus cinnabarinus. Biotechnol<br />

Lett. 20: 1<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>1–1<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4, 1998.<br />

Ranocha P, Chabannes M, Chamayou S, Danoun S,<br />

Jauneau A, Boudet AM. Laccase downregulation<br />

causes alteration in phenolic<br />

metabolism <strong>and</strong> cell wall s<strong>tr</strong>ucture in poplar.<br />

Plant Physiol. 129:1–11, 2002.<br />

Rosana C, Minussi Y, Pastore GM, Durany N.<br />

Potential applications <strong>of</strong> laccase in the food<br />

indus<strong>tr</strong>y. Trends in Food Sci Technol. 13: 205-<br />

216, 2002.<br />

Savoie JM, Mata G, Billette C. Ex<strong>tr</strong>acellular<br />

laccase production during hyphal interactions<br />

between Trichoderma sp. <strong>and</strong> Shiitake,<br />

Lentinula edodes. Appl Microbiol Biotechnol.<br />

49: 589-593, 1998.<br />

Sadhasivam S, Savitha S, Swaminathan K, Lin FH.<br />

Production, purification <strong>and</strong> characterization <strong>of</strong><br />

mid-redox potential laccase from a newly<br />

isolated Trichoderma harzianum WL1. Process<br />

Biochem. 43: 736-742, 2008.<br />

Sharma KK <strong>and</strong> Kuhad RC. Laccase: enzyme<br />

revisited <strong>and</strong> function redefined. Ind J<br />

Microbiol. 48: 309–316, 2008.<br />

Sharma P, Goel R, Caplash N. Bacterial laccases.<br />

World J Microbiol Biotechnol. 23: 823-832,<br />

2007.<br />

Shiba T, Xiao L, Miyakoshi T, Chen CL. Oxidation<br />

<strong>of</strong> isoeugenol <strong>and</strong> coniferyl alcohol catalyzed<br />

by laccase isolated from Rhus vernicifera<br />

Stokes <strong>and</strong> Pycnoporus coccineus. J Mol Catal<br />

Enzym. <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>: 605-615, 2000.<br />

Smith M, Thurston F, Wood DA. Fungal laccases:<br />

role in oxidor<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ctive enzymes. Bioremed J. 3:<br />

1–25, 1997.<br />

Solden DM <strong>and</strong> Dobson DW. Differential<br />

regulation <strong>of</strong> laccase gene expression in<br />

Pleurotus sajor-caju. Microbiol. 147: 1755–<br />

1763, 2001.<br />

Souza D <strong>and</strong> Peralta RM. Production <strong>of</strong> laccase


is<strong>of</strong>orms by Pleurotus pulmonarius in response<br />

to presence <strong>of</strong> phenolic <strong>and</strong> aromatic<br />

compounds. J Basic Microbiol. 44(2): 129–136,<br />

2004.<br />

Souza CGM, Zilly A, Peralta RM. Production <strong>of</strong><br />

laccase as the sole phenoloxidase by a Brazilian<br />

s<strong>tr</strong>ain <strong>of</strong> Pleurotus pulmonarius in solid state<br />

fermentation. J Bas Microbiol. 42: 83–90, 2002.<br />

Souza DDT, Tiwari R, Sah AK, Raghukumara C.<br />

Enhanced production <strong>of</strong> laccase by a marine<br />

fungus during <strong>tr</strong>eatment <strong>of</strong> colored effluents <strong>and</strong><br />

synthetic dyes. Enz Microb Technol. 38: 504-<br />

511, 2006.<br />

Tavares APM, Cristovao RO, Gamelas JAF,<br />

Loureiro JM, Boaventuraa RAR, Macedoa EA.<br />

Sequential decolourization <strong>of</strong> reactive textile<br />

dyes by laccase mediator system. J Chem<br />

Technol Biotechnol. 84: 442–446, 2009.<br />

V<strong>and</strong>evivere PC, Bianchi R, Vers<strong>tr</strong>aete W.<br />

Treatment <strong>and</strong> reuse <strong>of</strong> wastewater from the<br />

textile wet-processing indus<strong>tr</strong>y: review <strong>of</strong><br />

emerging technologies. J Chem Technol<br />

Biotechnol. 72: 289–302, 1998.<br />

Wesenberg D, Kyriakides I, Agathos N. White-rot<br />

fungi <strong>and</strong> their enzymes for the <strong>tr</strong>eatment <strong>of</strong><br />

indus<strong>tr</strong>ial dye effluents. Biotechnol Adv. 22:<br />

161–187, 2003.<br />

Yaropolov AI, Skorobogatko OV, Vartanov SS,<br />

Varfolomeyev SD. Laccase: Properties,<br />

catalytic mechanism <strong>and</strong> applicability. Appl<br />

Biochem Biotechnol. 49: 257–280, 1994.<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase 11


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1):13-18, 2012 Research Article 13<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Isolation <strong>and</strong> biochemical identification <strong>of</strong> Escherichia coli from<br />

wastewater effluents <strong>of</strong> food <strong>and</strong> beverage indus<strong>tr</strong>y<br />

Tasnim FARASAT*, Zubia BILAL, Fakhar-un-Nisa YUNUS<br />

Department <strong>of</strong> Zoology, Lahore College for Women University, Lahore, Pakistan.<br />

(* author for correspondence; tasnimfarasat@hotmail.com)<br />

Received: 20 May 2011; Accepted: 11 May 2012<br />

Abs<strong>tr</strong>act<br />

The aim <strong>of</strong> this study was the isolation <strong>and</strong> biochemical identification <strong>of</strong> E. coli from indus<strong>tr</strong>ial wastewater<br />

effluents. Sixty samples were collected from different sources in Lahore. The results revealed that E.coli was<br />

found in higher concen<strong>tr</strong>ation in wastewater <strong>of</strong> food <strong>and</strong> beverage indus<strong>tr</strong>ies. Wastewater is an important<br />

reservoir for E.coli <strong>and</strong> presented significant acute toxicity if released into the receiving water body without<br />

being adequately <strong>tr</strong>eated. Results revealed the presence <strong>of</strong> both gram negative <strong>and</strong> positive bacteria. There<br />

was nonsignificant variation among all the samples <strong>of</strong> wastewater. The highest concen<strong>tr</strong>ation <strong>of</strong> E.coli was<br />

observed in wastewater <strong>of</strong> food indus<strong>tr</strong>y Site A (Rettigon road) <strong>and</strong> beverage indus<strong>tr</strong>y Site F (Wahdat road).<br />

Biochemical <strong>and</strong> serological tests confirmed the presence <strong>of</strong> E.coli.<br />

Keywords: E .coli, wastewater, food indus<strong>tr</strong>y, beverage indus<strong>tr</strong>y, effluent.<br />

Yiyecek ve içecek endüs<strong>tr</strong>isi atıksu deşarjlarından Escherichia coli eldesi ve biyokimyasal<br />

tanımlanması<br />

Özet<br />

Bu çalışmanın amacı endüs<strong>tr</strong>iyel atıksu deşarjlarından E. coli eldesi ve biyokimyasal tanımlanmasıdır.<br />

Lahor’da farklı kaynaklardan 60 örnek topl<strong>and</strong>ı. Sonuçlar yiyecek ve içecek endüs<strong>tr</strong>isi atıksularında daha<br />

fazla konsan<strong>tr</strong>asyonda E. coli bulunduğunu gösterdi. Atıksu önemli bir E.coli deposudur ve yeterli olarak<br />

muamele edilmeden alıcı su kaynağına salınırsa ileri derecede toksik olabilir. Sonuçlar hem gram pozitif,<br />

hem de gram negatif bakteri varlığını gösterdi. En yüksek E. coli konsan<strong>tr</strong>asyonu A bölgesi (Rettigon yolu)<br />

yiyecek endüs<strong>tr</strong>isinin ve F bölgesi (Wahdat yolu) içecek endüs<strong>tr</strong>isinin atıksularında gözlemlendi. Biyolojik<br />

ve serolojik testler E. coli varlığını doğruladı.<br />

Anahtar kelimeler: E.coli, atıksu, yiyecek endüs<strong>tr</strong>isi, içecek endüs<strong>tr</strong>isi, atıksu deşarjı.<br />

In<strong>tr</strong>oduction<br />

Indus<strong>tr</strong>ial waste is the most common source <strong>of</strong><br />

water pollution in the present day (Ogedengbe <strong>and</strong><br />

Akinbile, 2004) <strong>and</strong> it increases yearly due to the<br />

fact that indus<strong>tr</strong>ies are increasing as most coun<strong>tr</strong>ies<br />

are getting indus<strong>tr</strong>ialized. Indus<strong>tr</strong>ies produce wastes<br />

which are peculiar in terms <strong>of</strong> type, volume <strong>and</strong><br />

frequency depending on the type <strong>of</strong> indus<strong>tr</strong>y <strong>and</strong><br />

population that uses the product (Odumosu, 1992).<br />

Water <strong>and</strong> wastewater management constitutes a<br />

practical problem for the food <strong>and</strong> beverage<br />

indus<strong>tr</strong>y. In spite <strong>of</strong> significant improvement over<br />

the last 20 years, water consumption <strong>and</strong> disposal<br />

remain critical from environmental <strong>and</strong> economic<br />

st<strong>and</strong>point (Fillaudeau et al., 2005).<br />

A food processing indus<strong>tr</strong>y is involved with the<br />

total environment from the farm to the customer.<br />

Water is absolutely necessary for many steps in the<br />

food processing indus<strong>tr</strong>y. At present, there is no<br />

economical substitute <strong>of</strong> water. Consequently water<br />

conservation <strong>and</strong> water reuse are necessary. By


14 Tasnim FARASAT et al.<br />

practicing conservation <strong>and</strong> reuse, the amount <strong>of</strong><br />

liquid waste <strong>and</strong> pollution potential from the food<br />

processing is r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ced (Mercer, 1964).<br />

On a global scale, contamination <strong>of</strong> drinking<br />

water by pathogenic bacteria causes the most<br />

significant health risk to humans, <strong>and</strong> there have<br />

been countless numbers <strong>of</strong> disease outbreaks <strong>and</strong><br />

poisonings resulting from exposure to un<strong>tr</strong>eated or<br />

poorly <strong>tr</strong>eated drinking water. However, significant<br />

risks to human health may also result from<br />

exposure to toxic contaminants that are <strong>of</strong>ten<br />

globally ubiquitous in waters from which drinking<br />

water is derived. The presence <strong>of</strong> E. coli is a<br />

definite indication <strong>of</strong> fecal contamination (WHO,<br />

2004). Some E. coli s<strong>tr</strong>ains can cause a wide variety<br />

<strong>of</strong> intestinal <strong>and</strong> ex<strong>tr</strong>a-intestinal diseases, such as<br />

diarrhea, urinary <strong>tr</strong>act infections, septicemia, <strong>and</strong><br />

neonatal meningitis (Orskov <strong>and</strong> Orskov, 1992).<br />

The magnitude <strong>of</strong> the problem <strong>of</strong> bacterial<br />

contamination deserves more elaborative studies<br />

from the point <strong>of</strong> production <strong>of</strong> waste effluents to<br />

the point <strong>of</strong> consumption at all intermediary levels.<br />

The aim <strong>of</strong> the present research was isolation <strong>and</strong><br />

biochemical identification <strong>of</strong> E.coli from indus<strong>tr</strong>ial<br />

effluents <strong>of</strong> food <strong>and</strong> beverage indus<strong>tr</strong>ies in Lahore.<br />

Material <strong>and</strong> methods<br />

Sample collection<br />

Sampling was completed in two successive months<br />

from March to April for the microbial assessment<br />

<strong>of</strong> waste effluents from food <strong>and</strong> beverage<br />

indus<strong>tr</strong>ies. Total <strong>of</strong> sixty samples were collected. In<br />

March, effluents <strong>of</strong> food indus<strong>tr</strong>ies were collected<br />

from indus<strong>tr</strong>ies near Rettigon road, Township<br />

indus<strong>tr</strong>ial area, Township indus<strong>tr</strong>ial estate. In April,<br />

effluents <strong>of</strong> beverage indus<strong>tr</strong>ies were collected from<br />

indus<strong>tr</strong>ies near Multan road <strong>and</strong> Wahdat road. Data<br />

from each sample was collected <strong>and</strong> recorded in the<br />

data book. Samples were collected in hermetically<br />

sealed, sterilized falcon tubes <strong>and</strong> were kept at 4ºC<br />

until analysis.<br />

Sample processing<br />

The technique described by Theodor Escherich,<br />

1885 was used for isolation <strong>of</strong> E.coli (Escherich,<br />

1885). To prevent contamination, the area was<br />

swabbed with 70% ethanol prior to opening any<br />

sample container. Samples (0.5 ml) were taken in<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> ml LB (Luria Bertani) broth medium in test<br />

tube, <strong>and</strong> vortexed for one minute <strong>and</strong> left for thirty<br />

minutes at room temperature. Then supernatant<br />

(1ml) was taken from this test tube <strong>and</strong> a 2-fold<br />

serial dilution was prepared (Reddy, 2007). After<br />

this, 500 ml from the final dilution tube was<br />

spreaded on the pe<strong>tr</strong>i dishes (Pyrex) <strong>of</strong> MacConkey<br />

medium <strong>and</strong> LB medium. Pe<strong>tr</strong>i dishes were kept in<br />

the incubator for 24 hours at 37ºC (Hajna <strong>and</strong><br />

Perry, 1939). After 24 hours, plates were studied<br />

for the colonies <strong>of</strong> microbes grown on the media.<br />

Microorganisms grown on MacConkey agar are<br />

capable <strong>of</strong> metabolizing lactose which produces<br />

acid by-products that lower the pH <strong>of</strong> the media<br />

which causes the neu<strong>tr</strong>al red indicator to turn red,<br />

<strong>and</strong> if sufficient acid is produced, a zone <strong>of</strong><br />

precipitated bile develops around the colony<br />

(Koneman, 2005). Different biochemical tests<br />

(Werkman, 1930; O'Meara, 1931; Vaughn et al.,<br />

1939; Silva et al., 1980) were performed for the<br />

identification <strong>of</strong> E. coli in the waste effluents <strong>of</strong><br />

food <strong>and</strong> beverage indus<strong>tr</strong>y (Table 1).<br />

Serological tests<br />

Commercial latex kits are available for O157, O26,<br />

<strong>and</strong> H7 s<strong>tr</strong>ains <strong>of</strong> E. coli. O157 antiserum has been<br />

shown to cross-react with other organisms<br />

including E. hermanii (frequently found in foods)<br />

(Hopkins <strong>and</strong> Hilton, 2000; Law, 2000). Tests<br />

incorporated positive <strong>and</strong> negative con<strong>tr</strong>ol<br />

organisms <strong>and</strong> con<strong>tr</strong>ol latex. Test was performed by<br />

a slide agglutination test using somatic (O) or<br />

flagella (H) antisera. Some pathogenic bacteria<br />

were nonmotile.<br />

Results<br />

E. coli was cultured on LB medium <strong>and</strong><br />

MacConkey medium for morphological<br />

characterization. After 24 hrs, two types <strong>of</strong> colonies<br />

were isolated under microscopic examination. All<br />

the isolated colonies were pink on MacConkey<br />

medium, while creamy yellow on LB medium.<br />

E. coli was observed in highest concen<strong>tr</strong>ation<br />

from wastewater samples <strong>of</strong> indus<strong>tr</strong>y (Site A)<br />

whereas in wastewater samples <strong>of</strong> indus<strong>tr</strong>y (Site B)<br />

six samples indicated the presence <strong>of</strong> E. coli which<br />

was confirmed by biochemical <strong>and</strong> serological test.<br />

Four samples were <strong>of</strong> gram positive bacteria which<br />

may be Bacillus subtilus or Bacillus thuringiensis.<br />

In indus<strong>tr</strong>ial effluent (Site C) eight samples were <strong>of</strong><br />

gram negative while two samples were <strong>of</strong> gram<br />

positive bacteria. It was observed that waste<br />

effluents <strong>of</strong> food indus<strong>tr</strong>y (Site A) revealed greater<br />

percentage <strong>of</strong> gram negative bacteria.<br />

In wastewater samples <strong>of</strong> indus<strong>tr</strong>y (Site D) five<br />

were gram negative, while five were gram positive<br />

bacteria. Six samples in indus<strong>tr</strong>ial effluent (Site E)


Samples<br />

Sources<br />

Indus<strong>tr</strong>ial<br />

effluent (A)<br />

Indus<strong>tr</strong>ial<br />

effluent(B)<br />

Indus<strong>tr</strong>ial<br />

effluent(C)<br />

Indus<strong>tr</strong>ial<br />

effluent(D)<br />

Indus<strong>tr</strong>ial<br />

effluent(E)<br />

Indus<strong>tr</strong>ial<br />

effluent(F)<br />

Identification <strong>of</strong> E. coli from wastewater 15<br />

Table 1. Biochemical identification <strong>of</strong> E. coli in indus<strong>tr</strong>ial wastewaters<br />

Indole<br />

Test<br />

Spot<br />

Indole<br />

Test<br />

Kovacs<br />

Indole<br />

Test<br />

Methyl Red<br />

Test<br />

Voges<br />

Proskeur<br />

Test<br />

Ammonium<br />

acetate Test<br />

Simmon's Test<br />

Ammonium<br />

Ci<strong>tr</strong>ate Test<br />

+ + + + - + -<br />

+ + + + - + -<br />

+ + + + - + -<br />

+ + + + - + -<br />

+ + + + - + -<br />

+ + + + - + -<br />

were gram negative <strong>and</strong> four were gram positive<br />

bacteria. In the wastewater samples <strong>of</strong> beverage<br />

indus<strong>tr</strong>y (Site F) all samples were <strong>of</strong> gram negative<br />

bacteria (Figure 1 <strong>and</strong> 2).<br />

The average value <strong>of</strong> gram negative bacteria in<br />

wastewater <strong>of</strong> food indus<strong>tr</strong>y (Site A) was 5.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> ±<br />

0.34. The average value <strong>of</strong> gram negative bacteria<br />

in wastewater <strong>of</strong> food indus<strong>tr</strong>y (Site B) was 4.66 ±<br />

0.66 while in wastewater <strong>of</strong> food indus<strong>tr</strong>y (Site C)<br />

was 4.50 ± 0.50. The average value <strong>of</strong> gram<br />

negative bacteria in wastewater <strong>of</strong> beverage<br />

indus<strong>tr</strong>y (Site D) was 5.0 ± 0.70, whereas in the<br />

wastewater <strong>of</strong> beverage indus<strong>tr</strong>y (Site E) was 3.8 ±<br />

0.60 <strong>and</strong> in the wastewater <strong>of</strong> beverage indus<strong>tr</strong>y<br />

(Site F) was 4.0 ± 0.33. Student’s t-test revealed a<br />

non significant difference (P >0.05) between gram<br />

positive <strong>and</strong> gram negative bacteria.<br />

Figure 1. Percentage <strong>of</strong> gram negative bacteria in all indus<strong>tr</strong>ial wastewater samples. Food Indus<strong>tr</strong>y A:<br />

Rettigon road; Food Indus<strong>tr</strong>y B: Township indus<strong>tr</strong>ial area; Food Indus<strong>tr</strong>y C: Township indus<strong>tr</strong>ial estate;<br />

Beverage indus<strong>tr</strong>y D: Multan Road; Beverage indus<strong>tr</strong>y E: Multan road; Beverage indus<strong>tr</strong>y F: Wahadat road


16 Tasnim FARASAT et al.<br />

Figure 2. Number <strong>of</strong> E.coli colonies (mean ±SE) in wastewater samples <strong>of</strong> indus<strong>tr</strong>ies. Sites A, B, C: Food<br />

indus<strong>tr</strong>ies at Rettigon road, Township indus<strong>tr</strong>ial area, Township indus<strong>tr</strong>ial Estate Sites D, E, F: Beverage<br />

indus<strong>tr</strong>ies at Multan Road <strong>and</strong> Wahadat road.<br />

Discussion<br />

The bacterium E. coli is one <strong>of</strong> the best <strong>and</strong> most<br />

thoroughly studied free-living organisms. It is also<br />

a remarkably diverse species because some E.coli<br />

s<strong>tr</strong>ains live as harmless commensals in animal<br />

intestines. E. coli is a widely used indicator <strong>of</strong> fecal<br />

contamination in water bodies. External contact <strong>and</strong><br />

subsequent ingestion <strong>of</strong> bacteria from fecal<br />

contamination can cause de<strong>tr</strong>imental health effects<br />

(Money et al., 2009).<br />

Stomach cramps, nausea <strong>and</strong> vomiting are the<br />

symptoms caused by E. coli, however serious<br />

complications can also occur. Water samples were<br />

the only nonfecal samples that tested positive for E.<br />

coli. Water has been implicated in human outbreaks<br />

<strong>and</strong> the studies revealed that water may be an<br />

important source <strong>of</strong> 0157:H7 on farms (Karmali,<br />

1989).<br />

The present research work was conducted to<br />

isolate E. coli from food <strong>and</strong> beverage indus<strong>tr</strong>ial<br />

effluents. Effluents are good primary reservoir for<br />

E. coli. Sixty different samples from food <strong>and</strong><br />

beverage indus<strong>tr</strong>ies were processed for the isolation<br />

<strong>of</strong> E. coli. The food <strong>and</strong> beverage indus<strong>tr</strong>ies uses<br />

large volume <strong>of</strong> water as it is suitable, clean, <strong>and</strong> a<br />

quite inexpensive resource, both as a constituent <strong>of</strong><br />

many products, <strong>and</strong> for other production<br />

requirements. Microbial growth in drinks due to<br />

contaminated water supplies or sugar syrups can<br />

cause discoloration, <strong>of</strong>f flavors <strong>and</strong> shortened shelflife,<br />

as well as increasing the risk <strong>of</strong> infection to<br />

consumers (Noronha et al., 2002).<br />

However, selective media are universally used<br />

in water monitoring <strong>and</strong> were employed in the<br />

United States Environmental Protection Agency<br />

epidemiological investigations, suggesting that<br />

culturable fecal indicator counts are valid predictors<br />

<strong>of</strong> disease risk (Sinton et al., 1994). Sewage can<br />

serve as a vehicle for entering into human <strong>and</strong><br />

nonhuman hosts either by direct contact or through<br />

contamination <strong>of</strong> drinking water supplies (Boczek<br />

et al., 2007).<br />

The results revealed that the highest percentage<br />

<strong>of</strong> E. coli was observed in the waste effluents <strong>of</strong><br />

indus<strong>tr</strong>ies (A <strong>and</strong> F). ANOVA showed non<br />

significant (P > 0.05) variation. Student’s t-test also<br />

revealed non significant difference between gram<br />

positive <strong>and</strong> gram negative bacteria.<br />

According to Boczek <strong>and</strong> colleagues (2007) the<br />

occurrence <strong>of</strong> clonal group in wastewater<br />

demons<strong>tr</strong>ates a potential mode for the dissemination<br />

<strong>of</strong> this clonal group in the environment, with<br />

possible secondary <strong>tr</strong>ansmission to human or<br />

animal hosts. Chalmers <strong>and</strong> colleagues (2000)<br />

demons<strong>tr</strong>ated that the effluent had a significant<br />

pollution potential, mainly due to the low pH <strong>and</strong><br />

high concen<strong>tr</strong>ation <strong>of</strong> E. coli. The results also


demons<strong>tr</strong>ated that the wastewater presented<br />

significant acute toxicity, <strong>and</strong> could cause diseases<br />

if released into the receiving body without being<br />

adequately <strong>tr</strong>eated. This represents a dangerous<br />

public health risk, which needs future evaluation<br />

<strong>and</strong> con<strong>tr</strong>ol. Culture-independent analysis in<br />

various environmental samples has been used to<br />

catalog this species <strong>and</strong> also to assess the impact <strong>of</strong><br />

human activity <strong>and</strong> interactions with microbes on<br />

natural microbial communities.<br />

According to Barreto-Rodrigues <strong>and</strong> colleagues<br />

(2008), the objective <strong>of</strong> the work was to<br />

characterize the effluent originating from a<br />

Brazilian TNT production indus<strong>tr</strong>y. Analyses were<br />

performed using physical, chemical, spec<strong>tr</strong>oscopic<br />

<strong>and</strong> ecotoxicological assays, which demons<strong>tr</strong>ated<br />

that the effluent had a significant pollution<br />

potential, mainly due to the low pH <strong>and</strong> high<br />

concen<strong>tr</strong>ation <strong>of</strong> TNT (156 ± <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> mg L −1 ). The<br />

results also demons<strong>tr</strong>ated that the effluent causes<br />

significant acute toxicity, <strong>and</strong> could cause countless<br />

damages if released into the rivers without being<br />

properly <strong>tr</strong>eated. The observed pollution potential<br />

justifies studies to evaluate <strong>tr</strong>eatment technologies<br />

or recover the residue generated in the TNT<br />

indus<strong>tr</strong>y. From a total <strong>of</strong> 149 E. coli s<strong>tr</strong>ains, 87 E.<br />

coli s<strong>tr</strong>ains were from raw wastewater <strong>and</strong> 62<br />

s<strong>tr</strong>ains from <strong>tr</strong>eated wastewater by stabilization<br />

ponds. Within these s<strong>tr</strong>ains two <strong>and</strong> four positive<br />

serological reaction to E. coli 0157 were found for<br />

raw <strong>and</strong> <strong>tr</strong>eated wastewater, respectively.<br />

In the same direction, Muller <strong>and</strong> his colleagues<br />

(2001) carried out a study on E.coli 0157:H7 s<strong>tr</strong>ains<br />

in water sources in South Africa <strong>and</strong> they did not<br />

find any evidence <strong>of</strong> EHEC 0157 while virulence<br />

factors present in the 96% <strong>of</strong> analyzed samples<br />

(196), however 8 isolates from 8 samples<br />

demons<strong>tr</strong>ated the presence <strong>of</strong> Stx1 <strong>and</strong> Stx2.<br />

References<br />

Barreto-Rodrigues M, Silva FT, Paiva TCB.<br />

Characterization <strong>of</strong> wastewater from the<br />

Brazilian TNT indus<strong>tr</strong>y. J Haz Mat. 164: 385-<br />

388, 2008.<br />

Boczek LA, Rice EW, Johnston B, Johnson JR.<br />

Occurrence <strong>of</strong> antibiotic-resistant uropathogenic<br />

Escherichia coli clonal group A in wastewater<br />

effluents. Appl Environ Microbiol. 73: 4180-<br />

4184, 2007.<br />

Identification <strong>of</strong> E. coli from wastewater 17<br />

Chalmers RM, Aird H, Bolton FJ. Waterborne<br />

Escherichia coli 0157. J Appl Microbiol. 88:<br />

124-132, 2000.<br />

Escherich T. Die Darmbakterien des Neugeboren<br />

und Sauglings Fortschr. Med. 3: 515-522, 1885.<br />

Fillaudeau L, Blanpain-Avet P, Daufin G. Water,<br />

wastewater <strong>and</strong> waste management in brewing<br />

indus<strong>tr</strong>ies. J Cle Pro. 14: 463-471, 2005.<br />

Hajna AA, Perry CA. Optimum Temperature for<br />

Differentiation <strong>of</strong> Escherichia coli from Other<br />

Coliform Bacteria. J Bacteriol. 38: 275-283,<br />

1939.<br />

Hopkins KL, Hilton AC. Methods available for the<br />

sub-typing <strong>of</strong> Escherichia coli O157. World J<br />

Microbiol Biotechnol. 16: 741-748, 2000.<br />

Karmali MA. Infection by verocytotoxin-producing<br />

Escherichia coli. Clin Microbiol Rev. 2: 15-38,<br />

1989.<br />

Koneman EW. Color Atlas <strong>and</strong> Textbook <strong>of</strong><br />

Diagnostic Microbiology, Lippincott, JB. (Ed),<br />

Philadelphia. 313-317, 2005.<br />

Law D. Virulence factors <strong>of</strong> Escherichia coli O157<br />

<strong>and</strong> other Shiga toxin-producing E. coli. J Appl<br />

Microbiol. 88: 729-745, 2000.<br />

Mercer WA. Physical Characteristics <strong>of</strong><br />

Recirculated Water as Related to Sanitary<br />

Conditions. Food Technol. 335: 111-115, 1964.<br />

Money ES, Carter GP, Serre ML. Modern<br />

space/time geo statistics using river distances:<br />

data integration <strong>of</strong> turbidity <strong>and</strong> Escherichia<br />

coli measurements to assess fecal contamination<br />

along the Raritan River in New Jersey. Environ<br />

Sci Technol. 43: 3736-3742, 2009.<br />

Müller EE, Ehlers MM, Grabow, WOK. The<br />

occurrence <strong>of</strong> E. coli 0157:H7 in South Africa<br />

water sources intended for direct <strong>and</strong> indirect<br />

human consumption. Wat Res. 35: 3085 -3088,<br />

2001.


18 Tasnim FARASAT et al.<br />

Noronha M, Britz T, Mavrov V, Janke HD, Chmiel<br />

H. Treatment <strong>of</strong> spent process water from a fruit<br />

juice company for purposes <strong>of</strong> reuse: hybrid<br />

process concept <strong>and</strong> on-site test operation <strong>of</strong> a<br />

pilot plant. Desalination. 143: 183-196, 2002.<br />

Odumosu AOT. Management <strong>of</strong> liquid indus<strong>tr</strong>ial<br />

waste. Ind Waste Manage. 55: 6-7, 1992.<br />

Ogedengbe K, Akinbile CO. Impact <strong>of</strong> indus<strong>tr</strong>ial<br />

pollutants on quality <strong>of</strong> ground <strong>and</strong> surface<br />

waters at Oluyole Indus<strong>tr</strong>ial Estate, Ibadan,<br />

Nigeria. J Technol Develop. 4: 139-144, 2004.<br />

O'Meara RAQ. A simple delicate <strong>and</strong> rapid method<br />

<strong>of</strong> detecting the formation <strong>of</strong> acetylmethylcarbinol<br />

by bacteria fermenting<br />

carbohydrate. J Pathol Bacteriol. 34: 401-406,<br />

1931.<br />

Orskov F, Orskov I. Escherichia coli serotyping<br />

<strong>and</strong> disease in man <strong>and</strong> animals. J Microbiol.<br />

38: 699-704, 1992.<br />

Reddy CA. Methods for general <strong>and</strong> molecular<br />

microbiology (Ed). ASM Press, Washington.<br />

447-521, 2007.<br />

Silva RM, Toledo MR, Trabulsi LR.<br />

Biochemical <strong>and</strong> cultural characteristics <strong>of</strong><br />

invasive Escherichia coli. J Clin Microbiol. 11:<br />

441- 444, 1980.<br />

Sinton LW, Davies-Colley RJ, Bell RG.<br />

Inactivation <strong>of</strong> enterococci <strong>and</strong> fecal coliforms<br />

from sewage <strong>and</strong> meatworks effluents in<br />

seawater chambers. Appl Environ Microbiol.<br />

60: 2040-2048, 1994.<br />

Vaughn RH, Mitchell, NB, Levine, M. The Voges-<br />

Proskauer <strong>and</strong> methyl red reactions in the coliaerogenes<br />

group. J Am Water Works Assoc. 31:<br />

993-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>01, 1939.<br />

Werkman CH. An improved technic for the Voges-<br />

Proskauer test. J Bacteriol. 20: 121-125, 1930.<br />

World Health Organization- WHO. Guidelines for<br />

Drinking Water Quality: Recommendations<br />

(Ed). Switzerl<strong>and</strong>. 1: 229-243, 2004.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1):19-26, 2012 Research Article 19<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Investigation <strong>of</strong> the MGP promoter <strong>and</strong> exon 4 polymorphisms in<br />

patients with ischemic s<strong>tr</strong>oke in the Ukrainian population<br />

Alex<strong>and</strong>er V. ATAMAN *1, Victoria Y. GARBUSOVA 2 , Yuri A. ATAMAN 3 , Olga I.<br />

MATLAJ 4 , Olga A. OBUCHOVA 1<br />

1 Sumy State University, Department <strong>of</strong> Physiology, Pathophysiology <strong>and</strong> Medical Biology, Sumy, Ukraine<br />

2 Sumy State University, Scientific Laboratory <strong>of</strong> Molecular Genetic Research, Sumy, Ukraine<br />

3 Sumy State University, Department <strong>of</strong> Internal Medicine, Sumy, Ukraine<br />

4<br />

Sumy Clinical Hospital No.5, Sumy, Ukraine<br />

(*author for correspondence; ataman_av@mail.ru )<br />

Received: 13 February 2012; Accepted: 18 May 2012<br />

Abs<strong>tr</strong>act<br />

Ma<strong>tr</strong>ix γ-carboxyglutamic acid protein (MGP) is a vitamin K-dependent protein playing a pivotal role in<br />

preventing arterial calcification. In the present study, we aimed to investigate the relation between three<br />

single nucleotide polymorphisms <strong>of</strong> MGP gene <strong>and</strong> ischemic s<strong>tr</strong>oke (IS) in the Ukrainian population. 170 IS<br />

patients <strong>and</strong> 124 healthy con<strong>tr</strong>ols were recruited to the study. MGP SNPs were examined by PCR-RFLP<br />

methodology. The dis<strong>tr</strong>ibution <strong>of</strong> homozygous carriers <strong>of</strong> the major allelic variant, <strong>and</strong> heterozygous <strong>and</strong><br />

homozygous minor allele variants <strong>of</strong> the T-138C MGP promoter polymorphism (rs1800802) in patients with<br />

IS was 61.2%, 31.2% <strong>and</strong> 7.6%, respectively. The corresponding dis<strong>tr</strong>ibutions <strong>of</strong> the variants in the con<strong>tr</strong>ol<br />

group were 59.7%, 35.6%, 4.8%. With regard to the G-7A promoter polymorphism (rs1800801), the<br />

respective dis<strong>tr</strong>ibutions were 35.9%, 48.8% <strong>and</strong> 15.3%, compared to 43.5%, 50% <strong>and</strong> 6.5% in the con<strong>tr</strong>ol<br />

group. Finally, the respective dis<strong>tr</strong>ibutions according to the Thr83Ala exon 4 polymorphism (rs4236) were<br />

39.4%, 48.8% <strong>and</strong> 11.8%, compared to 34.7%, 53.2% <strong>and</strong> 12.1% in the con<strong>tr</strong>ol group. Using logistic<br />

regression analysis, it was estimated that A/A genotype (G-7A polymorphism) was significantly (P=0.016)<br />

associated with IS (OR=2.943; 95% CI: 1.218–7.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>9) in the Ukrainian population. A-allele homozygotes <strong>of</strong><br />

female sex had a risk <strong>of</strong> IS more than 7 times higher compared with carriers <strong>of</strong> G/G genotype.<br />

Keywords: Ma<strong>tr</strong>ix Gla protein, single nucleotide polymorphism, ischemic s<strong>tr</strong>oke, arterial calcification,<br />

Ukrainian population.<br />

Ukrayna popülasyonunda iskemik inme hastalarında MGP promotör ve ekzon 4<br />

polimorfizminin araştırılması<br />

Özet<br />

Ma<strong>tr</strong>is γ–karboksiglutamik asit proteini (MGP) vitamin-K bağımlı protein olup arteriyal kalsitleşmeyi<br />

önlemede önemli rol oynar. Bu çalışmada, MGP geninin üç tek nükleotit polimorfizmi (TNP) ile Ukrayna<br />

popülasyonunda iskemik inme (İİ) arasındaki ilişkiyi araştırmayı hedefledik. Çalışmaya 170 İİ hastası ve 124<br />

sağlıklı kon<strong>tr</strong>ol katıldı. MGP TNP’leri PCR-RFLP metodolojisi ile test edildi. İH hastalarında T-138C MGP<br />

promoter polimorfizminin (rs1800802) majör alel varyantının homozigot taşıyıcılarının ve heterozigot ve<br />

homozigot minör alel varyantlarının dağılımları sırası ile, %61.2, %31.2 ve %7.6’dır. Kon<strong>tr</strong>ol grubunda ilgili<br />

varyant dağılımları %59.7, %35.6 ve %4.8’dir. G-7A promoter polimorfizminde (rs1800801) ise ilgili<br />

dağılımlar %43.5, %50 ve %6.5 olan kon<strong>tr</strong>ol grubu ile karşılaştırıldığında %35.9, %48.8 ve %15.3’dir. Son<br />

olarak, Thr83Ala ekzon 4 polimorfizmine (rs4236) göre dağılımlar %34.7, %53.2 ve %12.1 olan kon<strong>tr</strong>ol<br />

grubu ile karşılaştırıldığında %39.4, %48.8 ve %11.8’dir. Lojistik regresyon analizi kullanarak, Ukrayna<br />

popülasyonunda İİ ile A/A genotipinin (G-7A polimorfizmi) anlamlı (P=0.016) olarak ilişkili olduğu<br />

(OR=2.943; 95% CI: 1.218–7.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>9) tahmin edilmiştir.<br />

Anahtar kelimeler: Ma<strong>tr</strong>is Gla protein, tek nükleotid polimorfizmi, iskemik inme, arteriyal kalsifikasyon,<br />

Ukrayna popülasyonu.


20 Alex<strong>and</strong>er V. ATAMAN et al.<br />

In<strong>tr</strong>oduction<br />

Ischemic s<strong>tr</strong>oke (IS) is, in many instances, the<br />

consequence <strong>of</strong> a thrombus forming on a ruptured<br />

atherosclerotic plaque. Ex<strong>tr</strong>acellular ma<strong>tr</strong>ix<br />

calcification is considered to be a novel marker <strong>of</strong><br />

atherosclerosis <strong>and</strong> related to both coronary artery<br />

<strong>and</strong> cerebrovascular disease. It has been shown that<br />

arterial calcification in major vessel beds is<br />

associated with vascular brain disease (Bos et al.,<br />

2011).<br />

Recent studies suggest that in addition to<br />

modifiable risk factors, such as hypertension,<br />

hyperlipidemia, <strong>and</strong> cigarette smoking, there is a<br />

s<strong>tr</strong>ong genetic component to the development <strong>of</strong><br />

arterial calcification. For instance, the heritability<br />

<strong>of</strong> the presence <strong>of</strong> coronary artery calcification has<br />

been estimated to be up to 50% (Post et al., 2007).<br />

Key genes known to be involved in the<br />

regulation <strong>of</strong> the complex process <strong>of</strong> ectopic s<strong>of</strong>t<br />

tissue mineralization are those acting as<br />

calcification inhibitors such as ma<strong>tr</strong>ix γcarboxyglutamic<br />

acid protein (MGP), osteocalcin<br />

(BGP), osteoprotegerin (Opg), <strong>and</strong> fetuin (Abedin<br />

et al., 2004; Doherty et al., 2004; Giachelli, 2004;<br />

Guzman, 2007; Weissen-Plenz et al., 2008).<br />

Among those, MGP, a vitamin K-dependent<br />

protein, is widely accepted as playing a pivotal role<br />

in preventing local mineralization <strong>of</strong> the vascular<br />

wall (Luo et al., 1997; Schurgers et al., 2005;<br />

Proudfoot <strong>and</strong> Shanahan, 2006). It has been shown<br />

that the anticalcifying activity <strong>of</strong> MGP depends<br />

upon the γ-carboxylation <strong>of</strong> specific glutamic acid<br />

(Glu) residues in MGP. This vitamin K-dependent<br />

reaction yields γ-carboxyglutamic acid (Gla)<br />

residues, which are then able to bind calcium<br />

(Murshed et al., 2004).<br />

The human MGP gene is located on<br />

chromosome 12p (Cancela et al., 1990). Among the<br />

large number <strong>of</strong> identified MGP single nucleotide<br />

polymorphisms (SNPs) eight are under the most<br />

intensive investigation: two SNPs are located in<br />

exons, <strong>and</strong> six in the ups<strong>tr</strong>eam region <strong>of</strong> the MGP<br />

gene. In vi<strong>tr</strong>o studies suggest that SNPs in MGP are<br />

associated with altered promoter activity<br />

(Herrmann et al., 2000; Farzaneh-Far et al., 2001;<br />

Kobayashi et al., 2004). In addition, there is some<br />

evidence that MGP SNPs are associated with<br />

arterial calcification (Herrmann et al., 2000;<br />

Brancaccio et al., 2005; Crosier et al., 2009),<br />

although these results are not consistent (Kobayashi<br />

et al., 2004; Taylor et al., 2005).<br />

There are a large number <strong>of</strong> studies in which the<br />

association <strong>of</strong> varies gene polymorphisms with IS<br />

has been investigated (Kubo, 2008; Debette <strong>and</strong><br />

Seshadri, 2009; Matarin et al., 2009; Wang et al.,<br />

2009; Low et al., 2011), but only in one <strong>of</strong> them the<br />

MGP SNPs were a subject <strong>of</strong> interest (del Rio-<br />

Espinola et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

The purpose <strong>of</strong> the present study was to<br />

investigate the association <strong>of</strong> three MGP SNPs (T-<br />

138C, G-7A, Thr83Ala) with IS in the Ukrainian<br />

population.<br />

Materials <strong>and</strong> methods<br />

Study groups<br />

The study recruited 170 IS patients (57,6% men<br />

<strong>and</strong> 42,4% women) 40 to 85 years <strong>of</strong> age (mean age<br />

[± SE] 64,7±0,7) admitted to Sumy Clinical<br />

Hospital No.5. A final diagnosis <strong>of</strong> IS was<br />

established on the basis <strong>of</strong> clinical, computed<br />

tomography <strong>and</strong> magnetic resonance imaging<br />

examinations. Each case <strong>of</strong> IS was assessed<br />

according to TOAST criteria (Adams et al., 1993).<br />

The patients with IS <strong>of</strong> cardioembolic origin <strong>and</strong><br />

undetermined etiology were excluded from the<br />

study group. The con<strong>tr</strong>ol group consisted <strong>of</strong> 124<br />

clinically healthy individuals with the absence <strong>of</strong><br />

cardio- <strong>and</strong> cerebrovascular pathologies, as<br />

confirmed by medical history, ECG, <strong>and</strong><br />

measurement <strong>of</strong> arterial pressure <strong>and</strong> biochemical<br />

data. The study had been previously approved by<br />

the Ethic Committee <strong>of</strong> the Medical Institute <strong>of</strong><br />

Sumy State University. Appropriate informed<br />

consent was obtained from all patients <strong>and</strong> con<strong>tr</strong>ol<br />

subjects. The participants were unrelated Ukrainian<br />

people from the northeastern region <strong>of</strong> Ukraine.<br />

Blood sampling for genotyping was performed<br />

under sterile conditions into 2.7 ml tubes (S-<br />

Monovette [Sarstedt, Germany]) containing EDTA<br />

potassium salt as an anticoagulant, samples were<br />

frozen <strong>and</strong> stored at -20ºC.<br />

Genotyping <strong>of</strong> SNPs<br />

DNA for genotyping was ex<strong>tr</strong>acted from the venous<br />

blood using commercially available kits (Isogene<br />

Lab Ltd, Russia) according to the manufacturer’s<br />

protocol. To identify MGP SNPs the polymerase<br />

chain reaction (PCR) with subsequent res<strong>tr</strong>iction<br />

fragment length polymorphism (RFLP) analysis<br />

was performed as previously described (Garbuzova<br />

et al., 2012). Briefly, specific regions <strong>of</strong> the MGP<br />

gene were amplified using pairs <strong>of</strong> specific primers.


For T-138C polymorphism (rs1800802) they<br />

were (F) 5`-<br />

AAGCATACGАТGGCCAAAACTTCTGCA-3`<br />

<strong>and</strong> (R) 5`-<br />

GAACTAGCAТТGGAACTTTTCCCAACC-3`;<br />

for G-7A polymorphism (rs1800801): (F) 5`-<br />

CTAGTTCAGTGCCAACCCTTCCCCACC-3`<br />

<strong>and</strong> (R) 5`-<br />

TAGCAGCAGTAGGGAGAGAGGCTCCCA-3`;<br />

for Thr83Ala polymorphism (rs4236): (F) 5`-<br />

TCAATAGGGAAGCCTGTGATG-3` <strong>and</strong> (R) 5`-<br />

AGGGGGATACAAAATCAGGTG -3`. PCR<br />

products were digested using res<strong>tr</strong>iction enzymes:<br />

BseNI (for T-138C), NcoI (for G-7A), <strong>and</strong> Eco477<br />

(for Thr83Ala). The res<strong>tr</strong>iction fragments were<br />

separated by elec<strong>tr</strong>ophoresis <strong>and</strong> analysed on an<br />

ethidium bromide-stained 2.5% agarose gel<br />

visualized using ul<strong>tr</strong>aviolet <strong>tr</strong>ansillumination.<br />

Statistical analysis<br />

Using the Pearson χ 2 test, allelic frequencies in<br />

healthy con<strong>tr</strong>ols <strong>and</strong> IS patients were found to be in<br />

Hardy-Weinberg equilibrium. Statistical analysis<br />

was performed to assess the independent main <strong>and</strong><br />

Genotype Con<strong>tr</strong>ol group<br />

(n=124)<br />

MGP polymorphisms in ischemic s<strong>tr</strong>oke 21<br />

joint effects <strong>of</strong> all analyzed SNPs. To detect the<br />

s<strong>tr</strong>ongest main effect <strong>of</strong> three MGP SNPs the<br />

logistic regression method was applied by using<br />

SPSS 17.0. A comparison <strong>of</strong> variables between the<br />

IS subgroups was performed using ANOVA.<br />

Differences were considered statistically significant<br />

with a P-value < 0.05.<br />

Results<br />

Genotypes <strong>of</strong> three studied MGP polymorphisms<br />

are summarized in Table 1. As shown, major allele<br />

homozygous <strong>and</strong> heterozygous, <strong>and</strong> minor allele<br />

homozygous T-138C polymorphisms <strong>of</strong> the MGP<br />

promoter were detected in 61.2%, 31.2% <strong>and</strong> 7.6%<br />

<strong>of</strong> the IS group, respectively (con<strong>tr</strong>ol group: 59.7,<br />

35.5% <strong>and</strong> 4.8%). Analysis <strong>of</strong> the G-7A promoter<br />

polymorphism yielded respective figures <strong>of</strong> 35.9%,<br />

48.8% <strong>and</strong> 15.3% (con<strong>tr</strong>ol group: 43.5%, 50% <strong>and</strong><br />

6.5%). The dis<strong>tr</strong>ibution <strong>of</strong> genotypes when<br />

analyzing Thr83Ala polymorphism (exon 4) was<br />

39.4%, 48.8% <strong>and</strong> 11.8% in IS group (con<strong>tr</strong>ol<br />

group: 34.7%, 53.2% <strong>and</strong> 12.1).<br />

Table 1. Genotypes <strong>of</strong> MGP polymorphisms in patients with ischemic s<strong>tr</strong>oke (IS) <strong>and</strong> con<strong>tr</strong>ol subjects. Data<br />

presented as n (%). A – major allele; a – minor allele<br />

Promoter T-138C Promoter G-7A Exon 4 Thr83Ala<br />

IS group<br />

(n=170)<br />

Con<strong>tr</strong>ol group<br />

(n=124)<br />

IS group<br />

(n=170)<br />

Con<strong>tr</strong>ol group<br />

(n=124)<br />

IS group<br />

(n=170)<br />

AA 74 (59.7) <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4 (61.2) 54 (43.5) 61 (35.9) 43 (34.7) 67 (39.4)<br />

Aa 44 (35.5) 53 (31.2) 62 (50.0) 83 (48.8) 66 (53.2) 83 (48.8)<br />

aa 6 (4.8) 13 (7.6) 8 (6.5) 26 (15.3) 15 (12.1) 20 (11.8)<br />

The differences in the dis<strong>tr</strong>ibution <strong>of</strong> allelic<br />

variants between the con<strong>tr</strong>ol <strong>and</strong> IS groups were<br />

close to the level <strong>of</strong> statistical significance only for<br />

the G-7A promoter polymorphism (P=0,051). In<br />

women, but not in men, the differences between G-<br />

7A genotypes frequency in IS <strong>and</strong> con<strong>tr</strong>ols were<br />

significant as shown in Table 2.<br />

Using logistic regression analysis (Table 3), it<br />

was estimated that A/A genotype (G-7A<br />

polymorphism) was significantly (P=0.016)<br />

associated with IS (OR=2.943; 95% CI, 1.218 –<br />

7.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>9). Respective analysis for male <strong>and</strong> female<br />

subjects is presented in Table 4. Women who were<br />

minor A-allele homozygotes had a risk <strong>of</strong> IS more<br />

then 7 times higher compared with female carriers<br />

<strong>of</strong> G/G genotype.<br />

Some clinical characteristics <strong>of</strong> IS patients with<br />

various MGP genotypes are presented in Table 5.<br />

There were no differences in the studied parameters<br />

between major allele homozygotes, heterozygotes,<br />

<strong>and</strong> minor allele homozygotes for all three<br />

polymorphisms (with the exception <strong>of</strong> sex<br />

dis<strong>tr</strong>ibution for G-7A polymorphism).


22 Alex<strong>and</strong>er V. ATAMAN et al.<br />

Table 2. Genotypes <strong>of</strong> G-7A MGP promoter polymorphism in female <strong>and</strong> male patients with ischemic<br />

s<strong>tr</strong>oke (IS) <strong>and</strong> con<strong>tr</strong>ol subjects. Data presented as n (%).<br />

Table 3. Results <strong>of</strong> logistic regression analysis <strong>of</strong> association between MGP polymorphisms <strong>and</strong> ischemic<br />

s<strong>tr</strong>oke.Homozygotes by major allele were considered as a reference group. SE – st<strong>and</strong>ard error, OR – odds<br />

ratio, CI – confidential interval<br />

SNP Genotype<br />

Women Men<br />

Genotype Con<strong>tr</strong>ol IS Con<strong>tr</strong>ol IS<br />

Coefficient <strong>of</strong><br />

regression<br />

SE<br />

Wald<br />

statistic<br />

Pvalue<br />

OR<br />

%95 CI<br />

Lower<br />

%95 CI<br />

Upper<br />

Promoter T/C -0.186 0.258 0.521 0.470 0.830 0.500 1.377<br />

T-138C C/C 0.382 0.526 0.527 0.468 1.465 0.522 4.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>7<br />

Promoter G/A 0.193 0.253 0.584 0.445 1.213 0.739 1.991<br />

G-7A A/A 1.079 0.450 5.752 0.016 2.943 1.218 7.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>9<br />

Exon 4 Thr/Ala -0.235 0.259 0.824 0.364 0.790 0.476 1.313<br />

Thr83Ala Ala/Ala -0.265 0.402 0.435 0.5<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 0.767 0.349 1.687<br />

Discussion<br />

Arterial calcification is an abnormal process that<br />

can greatly increase morbidity <strong>and</strong> mortality (Lehto<br />

et al., 1996). MGP is considered one <strong>of</strong> the most<br />

relevant physiological inhibitors <strong>of</strong> s<strong>of</strong>t tissue<br />

mineralization known today. In mice, targeted<br />

deletion <strong>of</strong> the MGP gene causes extensive<br />

calcification <strong>of</strong> the elastic lamellae <strong>of</strong> the<br />

abdominal aorta (Luo et al., 1997). Extensive<br />

vascular calcification is also induced when γcarboxylation<br />

<strong>of</strong> MGP is inhibited using the<br />

vitamin K-antagonist, warfarin (Price et al., 1998).<br />

In the present study, we explored association<br />

between genetic variation in the MGP gene <strong>and</strong> the<br />

risk <strong>of</strong> IS development. Analysing MGP SNPs, we<br />

found the G-7A promoter polymorphism to be<br />

associated with IS in Ukrainian population. We did<br />

not revealed statistically significant relation<br />

between the other two studied polymorphisms (T-<br />

138C, Thr83Ala) <strong>and</strong> IS.<br />

Published data on the MGP SNPs association<br />

with MGP serum concen<strong>tr</strong>ation <strong>and</strong> artery<br />

calcification, <strong>and</strong> the consequences <strong>of</strong><br />

G/G 18 (40.0) 21 (29.2) 36 (45.6) 40 (40.8)<br />

G/A 25 (55.6) 34 (47.2) 37 (46.8) 49 (50.0)<br />

A/A 2 (4.4) 17 (23.6) 6 (7.6) 9 (9.2)<br />

Total 45 72 79 98<br />

P-value 0.022 0.798<br />

atherosclerosis (myocardial infarction in<br />

particularly) are con<strong>tr</strong>adictory.<br />

Farzaneh et al. (2001) did not find any<br />

relationship between the G-7A polymorphism <strong>and</strong><br />

serum MGP level in healthy persons (Netherl<strong>and</strong>s),<br />

but did detect the significant association <strong>of</strong> T-138C<br />

polymorphism with above-mentioned parameter.<br />

The highest level <strong>of</strong> serum MGP was revealed in<br />

the C/C homozygotes <strong>and</strong> the lowest one – in T/T<br />

homozygotes.<br />

In con<strong>tr</strong>ast to the above study, Crosier et al.<br />

(2009) found no association <strong>of</strong> the T-138C<br />

polymorphism with serum MGP concen<strong>tr</strong>ation, but<br />

they showed a significant relationship between the<br />

other two polymorphisms (G-7A, Tht83Ala) <strong>and</strong><br />

serum MGP levels in the healthy men <strong>and</strong> women<br />

(USA). In minor allele homozygotes, the serum<br />

MGP concen<strong>tr</strong>ation was the lowest, in major allele<br />

homozygotes the highest, in heterozygotes the<br />

intermediate values were registered.<br />

In the same study, it was shown that all three<br />

MGP SNPs (T-138C, G-7A, Thr83Ala) are related<br />

to the coronary artery calcification (CAC) in men,<br />

but not in women (Crosier et al., 2009).


MGP polymorphisms in ischemic s<strong>tr</strong>oke 23<br />

Table 4. Logistic regression analysis <strong>of</strong> association between G-7A MGP promoter polymorphism <strong>and</strong><br />

ischemic s<strong>tr</strong>oke in male <strong>and</strong> female subjects. OR – odds ratio, CI – confidential interval<br />

Sex Allele OR (CI) P-value<br />

Women A/A vs. G/G 7.286 (1.479-35.895) 0.015<br />

G/A vs. G/G 1.166 (0.516-2.632) 0.712<br />

Men A/A vs. G/G 1.350 (0.437-4.166) 0.602<br />

G/A vs. G/G 1.192 (0.641-2.217) 0.579<br />

Table 5. Clinical characteristics <strong>of</strong> ischemic s<strong>tr</strong>oke patients with respect to genotypes. Data are mean ± SE.<br />

A/A A/a a/a P<br />

T-138C polymorphism<br />

n <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4 53 13<br />

Age, years 65.4±0.92 63.0±1.39 64.7±2.13 0.288<br />

Gender, M/F 58/46 35/18 5/8 0.162*<br />

BMI (M), kg/m 2 27.8±0.56 27.4±0.64 28.1±1.22 0.862<br />

BMI (F), kg/m 2 29.1±0.74 29.4±0.93 29.0±1.17 0.789<br />

Systolic BP, mmHg 168±2.9 165±3.6 168±9.8 0.780<br />

Diastolic BP, mmHg 96±1.7 94±1.8 93±3.8 0.628<br />

Fasting glucose, mmol/L 5.9±0.15 5.9±0.2 6.1±0.53 0.916<br />

G-7A polymorphism<br />

n 61 83 26<br />

Age, years 63.0±1.15 65.3±1.04 66.8±2.09 0.164<br />

Gender, M/F 40/21 49/34 9/17 0.026*<br />

BMI (M), kg/m 2 27.2±0.45 27.9±0.68 28.6±1.53 0.536<br />

BMI (F), kg/m 2 28.3±0.8 29.9±0.86 28.2±1.13 0.315<br />

Systolic BP, mmHg 167±3.7 167±3.3 167±5.2 0.996<br />

Diastolic BP, mmHg 97±2.0 94±1.8 97±2.4 0.593<br />

Fasting glucose, mmol/L 5.8±0.18 6.0±0.17 6.2±0.35 0.481<br />

Thr83Ala polymorphism<br />

n 67 83 20<br />

Age, years 65.1±1.2 64.4±1.0 64.7±2.1 0.912<br />

Gender, M/F 44/23 45/38 9/11 0.176*<br />

BMI (M), kg/m 2 27.6±0.47 27.6±0.67 28.3±1.9 0.891<br />

BMI (F), kg/m 2 29.4±0.84 28.6±0.78 29.9±1.53 0.668<br />

Systolic BP, mmHg 163±3.7 171±3.0 163±6.6 0.252<br />

Diastolic BP, mmHg 95±1.8 96±1.7 95±4.4 0.812<br />

Fasting glucose, mmol/L 5.9±0.2 6.0±0.17 5.9±0.3 0.859


24 Alex<strong>and</strong>er V. ATAMAN et al.<br />

In some studies, MGP polymorphisms were<br />

also shown to be associated with arterial<br />

calcification <strong>and</strong> myocardial infarction (MI)<br />

(Herrmann et al., 2000; Brancaccio et al., 2005),<br />

while in others (Kobayashi et al., 2004; Taylor et<br />

al., 2005) no association between MGP SNPs <strong>and</strong><br />

cardiovascular events was found. Moreover, in the<br />

studies in which such associations were reported,<br />

the relationship between the type <strong>of</strong> MGP<br />

polymorphism <strong>and</strong> arterial calcification was<br />

different. For example, in the AXA study, the<br />

minor alleles -7A <strong>and</strong> 83Ala were associated with<br />

increased femoral artery calcification (Herrmann et<br />

al., 2000), while in the above-mentioned study by<br />

Crosier et al. (2009), the same alleles were linked<br />

to a decreased level <strong>of</strong> CAC.<br />

It should be noted that the majority <strong>of</strong> studies<br />

cited here was devoted to the relation <strong>of</strong> MGP to<br />

CAC <strong>and</strong> MI. As to cerebral artery atherosclerosis<br />

<strong>and</strong> its severe events such as IS, the role <strong>of</strong> arterial<br />

calcification in this disease <strong>and</strong> the association <strong>of</strong><br />

MGP with cerebrovascular pathology were the<br />

subject <strong>of</strong> investigation <strong>and</strong> discussion only in a<br />

few publications. In particular, Bos et al. (2011)<br />

established a close relationship between<br />

calcification in the various vessel beds outside the<br />

brain <strong>and</strong> imaging markers <strong>of</strong> vascular brain<br />

disease. Calcification in each vessel bed was<br />

shown to be associated with the presence <strong>of</strong><br />

cerebral infarcts <strong>and</strong> with larger volume <strong>of</strong> white<br />

matter lesions (WMLs). The most prominent<br />

associations were found between the in<strong>tr</strong>acranial<br />

carotid calcification <strong>and</strong> WML volume <strong>and</strong><br />

between the ex<strong>tr</strong>acranial carotid calcification <strong>and</strong><br />

infarcts.<br />

Acar et al. (2012) studied a relationship <strong>of</strong><br />

serum MGP levels to the development <strong>of</strong><br />

in<strong>tr</strong>acerebral hemorrhages (ICH) <strong>and</strong> found that in<br />

patients with ICH, serum MGP concen<strong>tr</strong>ation was<br />

much lower than in con<strong>tr</strong>ol group. Moreover, in the<br />

non-survivors, the serum MGP levels were<br />

statistically significantly lower in comparison to the<br />

survivors. According to the authors, measurement<br />

<strong>of</strong> this parameter may be <strong>of</strong> value to estimate<br />

mortality.<br />

At present, there are only a few publications<br />

concerning relation <strong>of</strong> the MGP SNPs to<br />

cerebrovascular disease. Analysing 236<br />

polymorphisms, del Rio-Espinola et al. (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>)<br />

showed that only two <strong>of</strong> them (G-7A <strong>of</strong> MGP <strong>and</strong><br />

T-1C <strong>of</strong> CD40) were related to the brain vessel<br />

reocclusion after fibrinolysis in IS patients. In our<br />

study, it was shown that the G-7A polymorphism <strong>of</strong><br />

MGP was associated with IS. In our previous<br />

investigation (Harbusova et al., 2011), this variant<br />

<strong>of</strong> the MGP promoter polymorphism was found to<br />

be in association with the acute coronary syndrome<br />

(ACS). Minor allele homozygotes (A/A) had<br />

significantly higher risk <strong>of</strong> ACS as well as IS. This<br />

could means that there are some common<br />

mechanisms <strong>of</strong> pathogenesis in both ACS <strong>and</strong> IS<br />

concerning to MGP. Those may be atherosclerosis,<br />

arterial calcification, <strong>and</strong> thrombosis.<br />

The relation <strong>of</strong> MGP to blood vessels<br />

calcification is well known (see above). With<br />

respect to coagulation <strong>and</strong> thrombi formation, it can<br />

be suggested that MGP is somehow connected with<br />

these processes (Krueger et al., 2009). Such an<br />

assumption is based on the fact that MGP belongs<br />

to vitamin K-dependent proteins, a large number <strong>of</strong><br />

which are procoagulants (prothrombin, factor V,<br />

etc) <strong>and</strong> can influence blood clotting <strong>and</strong> thrombi<br />

formation in the coronary <strong>and</strong> cerebral arteries. In<br />

some papers (Wallin et al., 2008), an antagonistic<br />

relationship between calcification <strong>and</strong> coagulation<br />

is discussed. Therefore, MGP can be considered as<br />

a connecting link between these two processes.<br />

Certainly, this assumption requires experimental as<br />

well as clinical pro<strong>of</strong>s, <strong>and</strong> research in this<br />

direction should be continued.<br />

References<br />

Abedin M, Tintut Y, Demer LL. Vascular<br />

calcification. Mechanisms <strong>and</strong> clinical<br />

ramifications. Arterioscler Thromb Vasc Biol.<br />

24: 1161-1170, 2004.<br />

Acar A, Cevik MU, Arıkanoglu A, Evliyaoglu<br />

O, Basarılı MK, Uzar E, Ekici F, Yucel<br />

Y, Tasdemir N. Serum levels <strong>of</strong> calcification<br />

inhibitors in patients with in<strong>tr</strong>acerebral<br />

hemorrhage.<br />

232, 2012.<br />

Int J Neurosci. 122: 227-<br />

Adams HP, Bendixen BH, Kappelle LJ, Biller<br />

J, Love BB, Gordon DL, Marsh EE.<br />

Classification <strong>of</strong> subtype <strong>of</strong> acute ischemic<br />

s<strong>tr</strong>oke. Definitions for use in a multicenter<br />

clinical <strong>tr</strong>ial. TOAST. Trial <strong>of</strong> Org <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>172 in<br />

Acute S<strong>tr</strong>oke Treatment. S<strong>tr</strong>oke. 24: 35-41,<br />

1993.<br />

Bos D, Ikram MA, Elias-Smale SE, Krestin<br />

GP, H<strong>of</strong>man A, Witteman JC, van der Lugt<br />

A, Vernooij MW. Calcification in major vessel<br />

beds relates to vascular brain disease.<br />

Arterioscler Thromb Vasc Biol. 31: 2331-2337,<br />

2011.


Brancaccio D, Biondi ML, Gallieni M, Turri O,<br />

Galassi A, Cecchini F, Russo D, Andreucci V,<br />

Cozzolino M. Ma<strong>tr</strong>ix Gla protein gene<br />

polymorphisms: clinical correlates <strong>and</strong><br />

cardiovascular mortality in chronic kidney<br />

disease patients. Am J Nephrol. 25: 548-552,<br />

2005.<br />

Cancela L, Hsiehg CL, Francket U, Price PA.<br />

Molecular s<strong>tr</strong>ucture, chromosome assignment,<br />

<strong>and</strong> promoter organization <strong>of</strong> the human ma<strong>tr</strong>ix<br />

Gla protein gene. J Biol Chem. 265: 15040-<br />

15048, 1990.<br />

Crosier MD, Booth SL, Peter I, Dawson-Hughes B,<br />

Price PA, O'Donnell CJ, H<strong>of</strong>fmann U,<br />

Wiilliamson MK, Ordovas JM. Ma<strong>tr</strong>ix Gla<br />

protein polymorphisms are associated with<br />

coronary artery calcification. J Nu<strong>tr</strong> Sci<br />

Vitaminol. 55: 59-65, 2009.<br />

Debette S, Sechardi S. Genetics <strong>of</strong><br />

atherothrombotic <strong>and</strong> lacunare s<strong>tr</strong>oke. Circ<br />

Cardiovasc Gen. 2: 191-198, 2009.<br />

del Río-Espínola A, Fernández-Cadenas I, Rubiera<br />

M, Quintana M, Domingues-Montanari S,<br />

Mendióroz M, Fernández-Morales J, Giralt D,<br />

Molina CA, Alvarez-Sabín J, Montaner J.<br />

CD40-1C>T polymorphism (rs1883832) is<br />

associated with brain vessel reocclusion after<br />

fibrinolysis in ischemic s<strong>tr</strong>oke.<br />

Pharmacogenomics. 11: 763-772, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Doherty TM, Fitzpa<strong>tr</strong>ick LA, Inoue D, Qiao JH,<br />

Fishbein MC, De<strong>tr</strong>ano RC, Shah PK,<br />

Rajavashisth TB. Molecular, endocrine, <strong>and</strong><br />

genetic mechanisms <strong>of</strong> arterial calcification.<br />

Endocrine Rev. 25: 629-672, 2004.<br />

Farzaneh-Far A, Davies JD, Braam LA, Spronk<br />

HM, Proudfoot D, Chan SW, O'Shaughnessy<br />

KM, Weissberg PL, Vermeer C, Shanaham CM.<br />

A polymorphism <strong>of</strong> the human ma<strong>tr</strong>ix γcarboxyglutamic<br />

acid protein promoter alters<br />

binding <strong>of</strong> an activating protein-1 complex <strong>and</strong><br />

is associated with altered <strong>tr</strong>anscription <strong>and</strong><br />

serum levels. J Biol Chem. 276: 32466-32473,<br />

2001.<br />

Garbuzova VYu, Gurianova VL, Story DA,<br />

Dosenko VE, Parkhomenko AN, Ataman AV<br />

Association <strong>of</strong> ma<strong>tr</strong>ix Gla protein gene allelic<br />

polymorphisms (G -7 →A, T -138 →C <strong>and</strong><br />

Thr83→Ala) with acute coronary syndrome in<br />

the Ukrainian population. Exp Clin Cardiol. 17:<br />

30-33, 2012.<br />

MGP polymorphisms in ischemic s<strong>tr</strong>oke 25<br />

Giachelli CM. Vascular calcification mechanisms.<br />

J Am Soc Nephrol. 15: 2959-2964, 2004.<br />

Guzman RJ. Clinical, cellular, <strong>and</strong> molecular<br />

aspects <strong>of</strong> arterial calcification. J Vasc Surg. 45<br />

(Suppl A): A57-A63, 2007.<br />

Harbusova VYu, Hurianova VL, Parkhomenko<br />

OM, Dosenko VE, Ataman OV. The frequency<br />

<strong>of</strong> allelic polymorphism <strong>of</strong> ma<strong>tr</strong>ix Gla-protein<br />

gene in acute coronary syndrome patients.<br />

Fiziol Zh. 57: 16-24, 2011.<br />

Herrmann SM, Whatling C, Br<strong>and</strong> E, Nikaud V,<br />

Gariepy J, Simon A, Evans A, Ruidavets LB,<br />

Arveiler D, Luc G, Tiret L, Henney A, Cambien<br />

F. Polymorphisms <strong>of</strong> the human ma<strong>tr</strong>ix Gla<br />

protein (MGP) gene, vascular calcification, <strong>and</strong><br />

myocardial infarction. Arterioscler Thromb<br />

Vasc Biol. 20: 2386-2393, 2000.<br />

Kobayashi N, Kitazawa R, Maeda S, Schurgers LJ,<br />

Kitazawa S. T-138C polymorphism <strong>of</strong> ma<strong>tr</strong>ix<br />

Gla protein promoter alters its expression but is<br />

not directly associated with atherosclerotic<br />

vascular calcification. Kobe J Med Sci. 50: 69-<br />

81, 2004.<br />

Krueger T, Westenfeld R, Schurgers LJ,<br />

Br<strong>and</strong>enburg VM. Coagulation meets<br />

calcification: The vitamin K system. Int J Artif<br />

Organs. 32: 67-74, 2009.<br />

Kubo M. Genetic risk factors<br />

<strong>of</strong> ischemic s<strong>tr</strong>oke identified by a genome-wide<br />

association study. Brain Nerve. 60: 1339-1346,<br />

2008.<br />

Lehto S, Niskanen L, Suhonen M, Rönnemaa T,<br />

Laasko M. Medial artery calcification. A<br />

neglected harbinger <strong>of</strong> cardiovascular<br />

complications in non-insulin-dependent diabetes<br />

mellitus. Arterioscler Thromb Vasc Biol. 16:<br />

978-988, 1996.<br />

Low HQ, Chen CP, Kasiman K, Thalamuthu A, Ng<br />

SS, Foo JN, Chang HM, Wong MC, Tai ES, Liu<br />

J. A comprehensive association analysis <strong>of</strong><br />

homocysteine metabolic pathway genes in<br />

Singaporean Chinese with ischemic s<strong>tr</strong>oke.<br />

PLoS One. 6: e24757, 2011.<br />

Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E,<br />

Behringer RR, Karsenty G. Spontaneous<br />

calcification <strong>of</strong> arteries <strong>and</strong> cartilage in mice<br />

lacking ma<strong>tr</strong>ix Gla protein. Nature. 386: 78-81,<br />

1997.


26 Alex<strong>and</strong>er V. ATAMAN et al.<br />

Matarin M, Brown WM, Dena H, Britton A, De<br />

Vrieze FW, Brott TG, Brown RD, Worrall BB,<br />

Case LD, Chanock SJ, Metter EJ, Ferruci L,<br />

Gamble D, Hardy JA, Rich SS, Singleton A,<br />

Meschia JF. C<strong>and</strong>idate gene polymorphisms for<br />

ischemic s<strong>tr</strong>oke. S<strong>tr</strong>oke. 40: 3436-3442, 2009.<br />

Murshed M, Schinke T, McKee MD, Karsenty G.<br />

Ex<strong>tr</strong>a cellular ma<strong>tr</strong>ix mineralization is regulated<br />

locally: different roles <strong>of</strong> two Gla-containing<br />

proteins. J <strong>Cell</strong> Biol. 165: 625-630, 2004.<br />

Post W, Bielak LF, Ryan KA, Cheng YC, Shen H,<br />

Rumberger JA, Sheedy PF, Shuldiner AR,<br />

Peyser PA, Mitchell BD. Determinants <strong>of</strong><br />

coronary artery <strong>and</strong> aortic calcification in the<br />

Old Order Amish. Circulation. 115: 717-724,<br />

2007.<br />

Price PA, Faus SA, Williamson MK. Warfarin<br />

causes rapid calcification <strong>of</strong> the elastic lamellae<br />

in rat arteries <strong>and</strong> heart valves. Arterioscler<br />

Thromb Vasc Biol. 18: 1400-1407, 1998.<br />

Proudfoot D, Shanahan CM. Molecular<br />

mechanisms mediating vascular calcification:<br />

role <strong>of</strong> ma<strong>tr</strong>ix Gla protein. Nephrology<br />

(Carlton). 11: 455-461, 2006.<br />

Schurgers LJ, Teunissen KJF, Knapen MHJ,<br />

Kwaijtaal M, van Diest R, Appels A,<br />

Reutelingsperger CP, Cleutjens JPM, Vermeer<br />

C. Novel conformation-specific antibodies<br />

against ma<strong>tr</strong>ix gamma-carboxyglutamic acid<br />

(Gla) protein. Arterioscler Thromb Vasc Biol.<br />

25: 1629-1633, 2005.<br />

Taylor BC, Schreiner PJ, Doherty TM, Fornage M,<br />

Carr JJ, Sidney S. Ma<strong>tr</strong>ix Gla protein <strong>and</strong><br />

osteopontin genetic associations with coronary<br />

artery calcification <strong>and</strong> bone density: the<br />

CARDIA study. Hum Genet. 116: 525-528,<br />

2005.<br />

Wallin R, Schurgers L, Wajih N. Effects <strong>of</strong> the<br />

blood coagulation vitamin K as an inhibitor <strong>of</strong><br />

arterial calcification. Thromb Res. 122: 411-<br />

417, 2008.<br />

Wang X, Cheng S, Brophy VH, Erlich HA,<br />

Mannhalter C, Berger K, Lalouschek W,<br />

Browner WS, Shi Y, Ringelstein EB, Kessler C,<br />

Luedemann J, Lindpaintner K, Liu L, Ridker<br />

PM, Zee RY, Cook NR. A meta-analysis <strong>of</strong><br />

c<strong>and</strong>idate gene polymorphisms <strong>and</strong> ischemic<br />

s<strong>tr</strong>oke in 6 study populations: association <strong>of</strong><br />

lymphotoxin-alpha in nonhypertensive patients.<br />

S<strong>tr</strong>oke. 40: 683-695, 2009.<br />

Weissen-Plenz G, Nitschke Y, Rutsch F.<br />

Mechanisms <strong>of</strong> arterial calcification: spotlight<br />

on the inhibitors. Adv Clin Chem. 46: 263-293,<br />

2008.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1):27-32, 2012 Research Article 27<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

<br />

Survivin geni -625G/C polimorfizminin Küçük Hücreli Dışı Akciğer<br />

Kanseri ile ilişkisinin araştırılması<br />

Engin AYNACI 1 , Ender COŞKUNPINAR 2 , Ayşe EREN 2 , Onur KUM 1 , Yasemin<br />

MÜŞTERİ OLTULU 2 , Nergiz AKKAYA 2 , Akif TURNA 3 , İlhan YAYLIM 2 , Pınar<br />

YILDIZ *1 .<br />

1 Yedikule Chest Diseases <strong>and</strong> Thoracic Surgery Training Hospital, Istanbul, Turkey<br />

2 Department <strong>of</strong> Molecular Medicine, Institute <strong>of</strong> Experimental Medicine, Istanbul University, Istanbul,<br />

Turkey<br />

3 Cerrahpaşa Medicine Faculty, Department <strong>of</strong> Thoracic Surgery, Istanbul University, Istanbul, Turkey<br />

(*author for correspondence; pinary70@yahoo.com)<br />

Received: 14 February 2012; Accepted: 21 May 2012<br />

Özet<br />

Akciğer kanseri tüm kanser türleri arasında görülme sıklığı olarak ikinci sırada, kanser sebepli ölümler<br />

arasında ise ilk sırada gelmektedir. Survivin geni 17q25 kromozomal bölgesinde lokalizedir ve 142 amino<br />

asitten oluşan bir protein kodlar. Survivin (BIRC5) apoptozu düzenleyen önemli bir protein ailesi olan<br />

apoptoz proteinlerinin inhibitörü (IAPs) olarak ilk bulunan inhibitörlerden biridir ve özellikle kanser<br />

hücrelerinde ifadesi gerçekleşir. Survivin genindeki polimorfizm survivin üretimi ve aktivitesine etki<br />

edebilir, bu nedenle akciğer kanserine hassasiyet sağlar. Survivin genindeki aşırı ifadenin çok çeşitli<br />

maligniteleri içeren kanser türlerinde hastalık gelişimi, nüksü ve prognozu ile ilişkili olduğu bilinmektedir.<br />

Bu çalışmada bir Türk popülasyonunda survivin geni promotör bölgesi üzerinde bulunan -625G/C gen<br />

polimorfizmi ile küçük hücreli dışı akciğer kanseri arasında, hastalığın gelişimi ile ilgili olası ilişkilerin<br />

araştırılması amaçl<strong>and</strong>ı. Çalışmaya 146 hasta, 98 kon<strong>tr</strong>ol olgu dahil edildi. Yöntem olarak PCR-RFLP tekniği<br />

kullanıldı. Sonuç olarak survivin -625G/C genotip dağılımları incelendiğinde hasta ve kon<strong>tr</strong>ol grupları<br />

arasında istatistiksel olarak anlamlı fark olmadığı tespit edilmiştir.<br />

Anahtar kelimeler: Küçük hücreli dışı akciğer kanseri, survivin, gen polimorfizmi, PCR-RFLP, biyobelirteç.<br />

Investigation <strong>of</strong> the association <strong>of</strong> survivin gene -625G/C polymorphism in non-small cell<br />

lung cancer<br />

Abs<strong>tr</strong>act<br />

Lung cancer is the second most common cancer type diagnosed <strong>and</strong> first in cancer related deaths among all<br />

cancers worldwide. The survivin gene is located on human chromosome 17q25, encoding a protein consisting<br />

<strong>of</strong> 142 amino acids. Survivin is one <strong>of</strong> the first reported inhibitors <strong>of</strong> apoptosis proteins, which is an<br />

important family <strong>of</strong> proteins that regulate apoptosis. Survivin gene polymorphism may affect the survivin<br />

production <strong>and</strong> activity, thus providing sensitivity for the development <strong>of</strong> lung cancer. The overexpression <strong>of</strong><br />

survivin gene was found to be associated with disease development, recurrence <strong>and</strong> prognosis in various<br />

malignancies, including cancers. In this study the demons<strong>tr</strong>ation <strong>of</strong> the prognosis related associations<br />

between the -625G/C gene polymorphism located on the survivin promoter region <strong>and</strong> non small cell lung<br />

cancer in a Turkish population was aimed. 146 patients <strong>and</strong> 98 con<strong>tr</strong>ol subjects included to the study. PCR-<br />

RFLP technique was used as the method. According to survivin -625G/C genotype dis<strong>tr</strong>ibution analysis, no<br />

statistically significant difference between patients <strong>and</strong> con<strong>tr</strong>ols were found.<br />

Keywords: Non small cell lung cancer, survivin, gene polymorphism, PCR-RFLP, biomarker.


28 Engin AYNACI et al.<br />

Giriş<br />

Akciğer kanseri tüm dünyada kansere bağlı<br />

ölümlerin önde gelen sebebi olarak bilinmektedir.<br />

Bununla birlikte özellikle Amerika’da kansere bağlı<br />

ölüm oranları arasında akciğer kanseri sıklığı<br />

gitgide azalmakta, fakat Çin gibi sigara tüketiminin<br />

özellikle son 20 yılda arttığı bazı ülkelerde akciğer<br />

kanseri sebepli ölüm oranının arttığı<br />

gözlenmektedir. Amerika’da 2008 yılında 215.020<br />

yeni vaka belirlenirken, 161.840 kişinin bu hastalık<br />

sebebiyle öldüğü, kayıtlarda yer almaktadır.<br />

Akciğer kanserinin küçük hücreli (KHAK) ve<br />

küçük hücreli dışı (KHDAK) olmak üzere iki tipi<br />

vardır. Son 60 yıldır akciğer kanserinde hastalık<br />

gelişiminin kalıtsal bir temele oturduğu<br />

belirtilmektedir. (Julian et al., 2008).<br />

Programlanmış hücre ölümü olarak bilinen apoptoz,<br />

önemli bir hücre büyüme kon<strong>tr</strong>ol mekanizmasıdır<br />

(Yuan-Hung et al., 2009; Thompson, 1995).<br />

Survivin (BIRC5 olarak da bilinir) apoptozu<br />

düzenleyen önemli bir protein ailesi olan apoptoz<br />

proteinlerinin inhibitörü (IAP) olarak ilk bulunan<br />

inhibitörlerden biridir ve özellikle kanser<br />

hücrelerinde ifadesi gerçekleşir (Reed,1997).<br />

Survivin terminal tetikleyici kaspaz-3 ve kaspaz-9<br />

aktivitesini inhibe ederek her iki apoptoz yolunun<br />

baskılanmasını bloke eder (Nicholson <strong>and</strong><br />

Thornberry, 1997). Ayrıca survivin apoptotik<br />

uyarıcıyla indüklenen interlökin (IL-3), Fas<br />

(CD95), Bax, tümör nekroz faktörü α, kaspazlar ve<br />

antikanser ilaçlarınının etkisini yok eder (Chan et<br />

al., 2009; Yun-Hong et al., 2004). Mitozda<br />

düzenleyici rol oynadığı da çeşitli yayınlarda (Chan<br />

et al., 2009) bildirilmiş olan survivin geni 17q25<br />

kromozomal bölgesinde lokalizedir ve 142 amino<br />

asitten oluşan bir protein kodlar (Chiou et al., 2003;<br />

Deveraux et al., 1997; Uren et al., 1998).<br />

Survivin ayrıca mikrotübül dinamiklerinin<br />

düzenlenmesinde de önemli rol oynar (Li et al.,<br />

1998; Li <strong>and</strong> Altieri, 1999; Altieri, 2006; Giodini et<br />

al., 2002). Survivin geni promotör bölgesindeki<br />

polimorfizmler genin <strong>tr</strong>anskripsiyonuna etki ettiği<br />

için gen aktivitesini ve ekspresyonunu değiştirerek<br />

akciğer kanserine yatkınlık sağlayabilir (Jin Sung et<br />

al., 2008).<br />

Survivin hücre döngüsünde G2/M fazında bol<br />

miktarda eksprese olur ve G1 fazında hızlı<br />

regülasyon sergiler (Li et al., 1998). Bu durum<br />

<strong>tr</strong>anskripsiyonel basamakta kon<strong>tr</strong>ol edilir ve hücre<br />

döngüsüne bağlı elementler (CDE) ve hücre<br />

döngüsü homoloji bölgeleri (CHR) survivin<br />

promotörünün proksimal bölgesinde lokalize olur<br />

(Masayuki et al., 2000; Li <strong>and</strong> Altieri, 1999).<br />

Survivin geni ekspresyon düzeylerindeki artışın<br />

bazı hastalıklar için prognostik belirteç olabileceği<br />

düşünülmektedir (Chun-Hua et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Survivin<br />

genellikle embriyonik dokularda ifade olur ve<br />

görülen homozigot mutasyonların erken<br />

embriyonik dönemde ölümle sonuçlanması bu gen<br />

ailesinin hücre gelişimi, farklılaşması ve homeostaz<br />

sürecinde çok önemli rol oynadığını göstermektedir<br />

(Chan et al., 2009).<br />

Çeşitli tek-nükleotit polimorfizmleri survivin<br />

gen bölgesi promotöründe tespit edilmiştir.<br />

Bunlardan en çok bilineni ve literatürde en fazla<br />

çalışması yapılmış olan CDE/CHR reseptör<br />

bağlayıcı bölgede lokalize olan -31G/C gen<br />

polimorfizmidir. Survivin geninin promotör<br />

bölgesindeki bu mutasyon sonucu hücre<br />

döngüsünden bağımsız olarak genin<br />

<strong>tr</strong>anskripsiyonu ve bunun sonucunda da aşırı ifadesi<br />

görülür (Xu et al., 2004).<br />

Bu çalışmada KHDAK hastalarında PCR-RFLP<br />

tekniği kullanılarak survivin geni promotör<br />

bölgesindekiki -625G/C (rs8073069)<br />

polimorfizminin bir Türk popülasyonunda KHDAK<br />

hastalığına yatkınlığı araştırılmıştır.<br />

Akciğer kanseri ile ilgili olarak eldeki verilerin<br />

doğru olarak kullanılması ve buna ek olarak<br />

hastalık oluşumu ya da gelişiminin anlaşılmasına<br />

yönelik belirteçlerin ve genetik mekanizmaların<br />

anlaşılması özellikle hastalığın erken tanısı ve<br />

tedavi sürecinde bu hastalar için anlamlı olacaktır.<br />

Materyal ve metod<br />

Örneklerin tanımı<br />

Çalışma ile ilgili olarak öncelikle İstanbul<br />

Üniversitesi İstanbul Tıp Fakültesi Etik<br />

Değerlendirme Komisyonu’ndan 09.06.20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> tarih<br />

ve 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>/228-36 dosya numarası ile etik kurul onayı<br />

alındı. Çalışmaya Yedikule Göğüs Hastalıkları ve<br />

Göğüs Cerrahisi Eğitim ve Araştırma Hastanesi 3.<br />

Klinikte ve İstanbul Üniversitesi Cerrahpaşa Tıp<br />

Fakültesi Göğüs Cerrahisi Kliniğinde tanı konulan<br />

toplam 146 KHDAK olgusu ile yine aynı<br />

kliniklerde tetkik edilen ve kronik hastalık veya<br />

malignite bulgusu saptanmayan 98 sağlıklı kon<strong>tr</strong>ol<br />

olgusu alındı. Çalışmaya girmeyi kabul edenlere<br />

gönüllü olur imzaladıktan sonra 1 adet EDTA’lı<br />

tüpe <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> ml kanları alınarak soğuk zincirle<br />

laboratuvara ulaştırıldı.<br />

DNA izolasyonu<br />

Gönüllülerden alınan kanlardan High Pure PCR<br />

Template Preparation Kit (Roche, Manheim)<br />

protokolüne uygun olarak genomik DNA


izolasyonu yapıldı ve daha sonra Nano Drop<br />

Spek<strong>tr</strong><strong>of</strong>otome<strong>tr</strong>e kullanılarak, elde edilen<br />

DNA’ların konsan<strong>tr</strong>asyonları ölçüldü. DNA’lar<br />

konsan<strong>tr</strong>asyonları <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 ng/μl olacak şekilde<br />

seyreltildi.<br />

PCR<br />

Survivin geni promotör bölgesindeki -625G/C<br />

polimorfizmine özgü primerler (Tablo 1) dizayn<br />

edildi. PCR, total hacim 25 µl ve <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>X PCR Buffer<br />

(MBI Fermentas), 1mM MgCl2, 0.2 mM dNTP,<br />

<br />

KHDAK’de survivin polimorfizmi 29<br />

0.375 mM her bir primer, <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 ng genomik DNA ve<br />

1 U Taq DNA polimeraz (MBI Fermentas) olacak<br />

şekilde dizayn edildi. Amplifikasyon şartları,<br />

95°C’de <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> dakika ilk denatürasyondan sonra<br />

95°C’de 45 saniye, 72°C’de 60 saniye 5 döngü,<br />

takiben 94°C’de 45 saniye, 60°C’de 45 saniye ve<br />

72°C’de 60 saniye 30 döngü, uzama aşamasında da<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> dakika 72°C’de olacak şekilde düzenlendi.<br />

Optimum amplifikasyon şartları sağlanarak PCR<br />

ürünleri %2 lik agaroz jel elek<strong>tr</strong><strong>of</strong>orezinde<br />

yürütüldü.<br />

Tablo 1. Survivin geni promotör -625 G/C bölgesi primerleri (FP: İleri Primer, RP: Geri Primer)<br />

Polimorfizm Primer Dizileri PCR Ürün boyu<br />

-625C/G<br />

(rs8073069)<br />

Res<strong>tr</strong>iksiyon analizi<br />

FP: 5’-TGTTCATTTGTCCTTCATGCGC-3’<br />

RP: 5’-CCAGCCTAGGCAACAAGAGCAA-3’<br />

Amplifiye olan PCR ürünleri BstUI res<strong>tr</strong>iksiyon<br />

enzimi ile uygun tamponu içeren karışım<br />

hazırl<strong>and</strong>ıktan sonra 37°C de 4 saat inkübe edildi.<br />

Kesim ürünleri % 3’lük agaroz jelde <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 volt<br />

elek<strong>tr</strong>ik altında, 20 dakika yürütüldükten sonra UV<br />

altında incelenerek genotipler tespit edildi.<br />

İstatistiksel analiz<br />

AJJC tarafından yayınlanmış olan evrelendirme<br />

sistemine göre tümör evrelendirmesi yapılan hasta<br />

olguları ve kon<strong>tr</strong>ollere ait veriler SPSS 15.0<br />

programına yüklendi ve kategorik verilerin<br />

karşılaştırılmasında ki-kare testi ve parame<strong>tr</strong>ik ttesti<br />

kullanıldı.<br />

Şekil 1. Survivin geni -625 G/C bölgesi PCR<br />

görüntüsü<br />

Sonuçlar<br />

125 bç<br />

BstUI kesimi sonrası<br />

ürün boyları<br />

CC: 125<br />

CG: 125/<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4/21<br />

GG: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4/21<br />

Çalışmaya 146 KHDAK hastası ve 98 kon<strong>tr</strong>ol olgu<br />

dahil edildi. Hastaları yaş ortalaması 60,41 yaş<br />

(±9,71), kon<strong>tr</strong>ol olgularının yaş ortalaması 55,23<br />

yaş (±8,8.) di. Çalışmaya dahil edilen hastalardan<br />

132’si erkek (%90,4), 14’ü kadın (%9,6), kon<strong>tr</strong>ol<br />

grubu olgularının ise 56’sı erkek (%57,1), 42’si<br />

kadındı (%42,9). Hasta ve kon<strong>tr</strong>ol grubuna ait<br />

genotip ve alel dağılımları Tablo 2’de verilmiştir.<br />

PCR sonucu elde edilen bant boyu 125 baz çifti<br />

büyüklüğünde (Şekil 1); BstUI res<strong>tr</strong>iksiyon enzimi<br />

kesimi sonucu elde edilen bant büyüklükleri ise<br />

125, <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4 ve 21 baz çifti olarak görüntülendi (Şekil<br />

2).<br />

Şekil 2. BstUI kesimi %3’lük<br />

jel elek<strong>tr</strong><strong>of</strong>orezi görüntüsü. M: 50 bp DNA markörü


30 Engin AYNACI et al.<br />

<br />

Tablo 2. Hasta ve kon<strong>tr</strong>ol grubuna ait genotip ve alel dağılımları<br />

Genotipler ve Alel<br />

dağılımları<br />

Kon<strong>tr</strong>ol<br />

Grubu<br />

N=98<br />

Hasta<br />

Grubu<br />

N=146<br />

-625G/C N % N %<br />

GG 56 57.1 72 49.3<br />

GC 32 32.7 57 39.1<br />

CC <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.2 17 11.6<br />

Aleller<br />

P değeri χ2<br />

0.484 1.45<br />

tamamlamış<br />

yapmış<br />

yapmış<br />

G<br />

C<br />

144<br />

52<br />

56.06<br />

43.94<br />

201<br />

91<br />

58.59<br />

41.41<br />

0.27 1.21<br />

Tartışma<br />

düzeyindeki artışın -31G/C polimorfizmi ile ilişkili<br />

olduğunu ve bu artışın hem mRNA düzeyinde hem<br />

de protein düzeyinde meydana geldiğini<br />

Kanser oluşumunda apoptoz mekanizmasındaki<br />

bozukluklar önemli rol oynamaktadır. Apoptoz,<br />

farklı inhibe ve aktive edici ajanlar tarafından<br />

kon<strong>tr</strong>ol altında tutulan önemli bir olaydır. Kanserde<br />

apoptozun çeşitli anti-apoptotik proteinler<br />

tarafından inhibisyonu söz konusudur.<br />

Survivin, hücre döngüsünün düzenlenmesinde<br />

temel rol oynayan başlıca anti-apoptotik faktördür.<br />

Ayrıca survivinin Bcl-2 ve diğer IAPlerin aksine<br />

farklılaşmasını normal dokularda<br />

anlatımı olmayan ancak çeşitli kanser tiplerinde<br />

ifade edilen bir protein olduğu bilinmektedir. Bu<br />

durum survivin genindeki anormal ifadenin<br />

<strong>tr</strong>anskripsiyonel regülasyon bozukluğuna sebep<br />

olduğunun açık bir göstergesidir. Apoptozu inhibe<br />

eden diğer proteinlerde de bulunan BIR<br />

(“Baculovirus IAP Repeat”) bölgesi ile kaspazlara<br />

bağlanarak etkisini göstermektedir. Dai ve ark.<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> yılında yaptıkları çalışmada survivin geni<br />

promotor bölgesindeki polimorfizmlerin<br />

KHDAK’de gen modifikasyonuna neden<br />

olabileceğini ileri sürmüşlerdir.<br />

Jang ve ark. tarafından yapılan çalışmada -31 G<br />

alelinin -31 C aleline göre önemli derecede düşük<br />

<strong>tr</strong>anskripsiyonel aktiveye sahip olduğu ve bu<br />

durumun -31G/C polimorfizminden etkilenerek<br />

ortaya çıktığı ve buna bağlı olarak -31G/C<br />

polimorfizminin akciğer kanserine yatkınlıkta<br />

önemli bir rolü olduğu belirtilmektedir. (Jang et al.,<br />

2008). Xu ve ark. kanser hücre hatları ile<br />

oldukları bir çalışmada survivin gen ifadesi<br />

.<br />

bildirmişlerdir.<br />

Klinik perspektiften bakıldığında kişisel<br />

paternlerle klinik özelliklerin öngörülmesinde<br />

hastaların genetik parmak izinde survivin geni<br />

ifadesi düzeylerinde ve genetik varyantlarda oluşan<br />

değişikliklerin olası tedaviye yanıtta erken bir<br />

belirteç olabileceğini söylemek mümkündür.<br />

Örneğin plevral efüzyondaki yüksek survivin<br />

düzeylerinin kötü prognoz göstergesi olduğu Lan<br />

ve ark. 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> yılındaki yayınında gösterilmiştir.<br />

Yang ve ark 2009 yılında özefagus kanserli<br />

hastalarda yaptıkları bir çalışmada C alleline sahip<br />

olmanın hastalık riskini 1.4 kat arttırdığını<br />

söylemektedirler. Özefagus kanseri hastalarında<br />

survivin -625G/C promotor polimorfizminin p53<br />

düzeyine bağlı olan survivin yüksek ifadesi<br />

olasılığını artırdığı düşünülmektedir.<br />

Sonuç olarak bir Türk popülasyonu üzerinde<br />

olduğumuz bu çalışmada survivin geni -625<br />

G/C bölgesi (rs8073069) polimorfizminin küçük<br />

hücreli dışı akciğer kanseri hastalığına yatkınlık<br />

sağladığına dair herhangi bir bulgu elde edilemedi.<br />

Ancak olgu sayısının artırılması ve polimorfik<br />

bölgenin özellikle <strong>tr</strong>anskripsiyonun aktivitesine etki<br />

eden promotör bölgesinde olmasından dolayı<br />

yapılabilecek ekspresyon çalışmaları ile özellikle<br />

tanı öncesi ve sonrası gen anlatım ifadesine bağlı<br />

değişikliklerin öngörülmesine yardımcı olabilecek<br />

daha anlamlı sonuçlara ulaşılabileceği<br />

kanaatindeyiz.


Kaynaklar<br />

Altieri DC. Survivin apoptosis: an interloper<br />

between cell death <strong>and</strong> proliferation in cancer.<br />

Lab Invest. 79: 1327-1333, 1999.<br />

Altieri DC. The case for survivin as a regulator <strong>of</strong><br />

microtubule dynamics <strong>and</strong> cell-death decisions.<br />

Curr Opin <strong>Cell</strong> Biol. 18: 609-615, 2006.<br />

Chan H. Han, Qingyi Wei, Karen K. Lu,<br />

Zhensheng Liu, Gordon B. Mills, Li-E Wang.<br />

Polymorphisms in the survivin promoter are<br />

associated with age <strong>of</strong> onset <strong>of</strong> ovarian cancer.<br />

Int J Clin Exp Med. 2: 289-299, 2009.<br />

Chiou SK, Jones MK, Tarnawski AS. Survivin an<br />

anti-apoptosis protein: its biological roles <strong>and</strong><br />

implications for cancer <strong>and</strong> beyond. Med Sci<br />

Monit. 9:I25-I29, 2003.<br />

Chun-Hua Dai, Jian Li, Shun- Bing Shi, Li- Chao<br />

Yu, Li-Ping Ge, Ping Chen, Survivin <strong>and</strong> Smac<br />

Gene Expressions but not Livin Are Predictors<br />

<strong>of</strong> Prognosis in Non-small <strong>Cell</strong> Lung Cancer<br />

Patients Treated with Adjuvant Chemotherapy<br />

Following Surgery. Jpn J Clin Oncol. 2-9,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Dai J, Jin G, Dong J, Chen Y, Xu L, Hu Z, Shen H.<br />

Prognostic significance <strong>of</strong> survivin<br />

polymorphisms on non-small cell lung cancer<br />

survival. J Thorac Oncol. 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

Nov;5(11):1748-54. PubMed PMID: 20881643.<br />

Deveraux QL, Takahashi R, Salvesen GS <strong>and</strong> Reed<br />

JC. X-linked IAP is a direct inhibitor <strong>of</strong> celldeath<br />

proteases. Nature. 388: 300-304, 1997.<br />

Giodini A, Kallio MJ, Wall NR, Gorbsky GJ, Tognin<br />

S, Marchisio PC, Symons M <strong>and</strong> Altieri<br />

DC. Regulation <strong>of</strong> microtubule stability <strong>and</strong><br />

mitotic progression by survivin. Cancer Res.<br />

62: 2462-2467, 2002.<br />

Jang JS, Kim KM, Kang KH, Choi JE, Lee WK,<br />

Kim CH, Kang YM, Kam S, Kim IS, Jun JE,<br />

Jung TH, Park JY. Polymorphisms in the<br />

survivin gene <strong>and</strong> the risk <strong>of</strong> lung cancer. Lung<br />

Cancer. Apr;60(1):31-9, 2008.<br />

Jin Sung Jang,,Kyung Mee Kim, Kyung Hee Kang,<br />

Jin Eun Choi, Won Kee Lee, Chang Ho Kim,<br />

Young Mo Kang, Sin Kam, In-San Kim, Jae<br />

Eun Jun, Tae Hoon Jung, Jae Young Park.<br />

Polimorphizms in the survivin gene <strong>and</strong> the risk<br />

<strong>of</strong> lung cancer. Lung Cancer. 60:31-39, 2008.<br />

KHDAK’de survivin polimorfizmi 31<br />

Julian R. Molina, Ping Yang, Stephen D. Cassivi,<br />

Steven E. Schild,, Alex A. Adjei, Non–Small<br />

<strong>Cell</strong> Lung Cancer: Epidemiology, Risk Factors,<br />

Treatment, <strong>and</strong> Survivorship. Mayo Clin<br />

Proc.83(5): 584–594.,2008.<br />

Lan CC, Wu YK, Lee CH, Huang YC, Huang CY,<br />

Tsai YH, Huang SF, Tsao TC. Increased<br />

survivin mRNA in malignant pleural effusion is<br />

significantly correlated with survival. Jpn J Clin<br />

Oncol. Mar;40(3):234-40, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Li F, Ambrosini G, Chu EY, Plescia J, Tognin S,<br />

Marchisio PC <strong>and</strong> Altieri DC. Con<strong>tr</strong>ol <strong>of</strong><br />

apopto-sis <strong>and</strong> mitotic spindle checkpoint by<br />

survivin. Nature. 396: 580-584, 1998.<br />

Li F.,Altieri DC. The cancer antiapoptosis mouse<br />

survivin gene: characterization <strong>of</strong> locus <strong>and</strong><br />

<strong>tr</strong>anscriptional requirements <strong>of</strong> basal <strong>and</strong> cell<br />

cycle-dependent expression. Cancer Res.59:<br />

3143-3151, 1999.<br />

Masayuki Otaki, Masahiko Hatano, Koichi<br />

Kobayashi, Takeshi Ogasawara, Takayuki<br />

Kuriyama, Takeshi Tokuhisa <strong>Cell</strong> cyledependent<br />

regulation <strong>of</strong> TIAP/m-survivin<br />

expression. Biochim Biophys Acta. 1493:188-<br />

194, 2000.<br />

Nicholson DW,Thornberry NA. Caspase:killer<br />

proteases. Trends Biochem Sci. 22:299-306,<br />

1997.<br />

Reed JC. X-linked IAP is a direct inhibitor <strong>of</strong> celldeath<br />

proteases. Nature. 388: 300-304, 1997.<br />

Thompson CB. Apoptosis is the pathogenesis <strong>and</strong><br />

<strong>tr</strong>eatment <strong>of</strong> disease. Science. 5267:1456-1462,<br />

1991.<br />

Uren AG, Coulson EJ <strong>and</strong> Vaux DL. Conserva-tion<br />

<strong>of</strong> baculovirus inhibitor <strong>of</strong> apoptosis repeat<br />

proteins (BIRPs) in viruses, nematodes, vertebrates<br />

<strong>and</strong> yeasts. Trends Biochem Sci. 23: 159-<br />

162, 1998.<br />

Xu Y, Fang F, Ludewig G, Jones G, Jones D. A<br />

mutation found in promoter region <strong>of</strong> the human<br />

survivin gene is correlated to overexpression <strong>of</strong><br />

survivin in cancer cells. DNA <strong>Cell</strong> Biol.<br />

23:419-429, 2004.<br />

Yang X, Xiong G, Chen X, Xu X, Wang K, Fu Y,<br />

Yang K, Bai Y. Polymorphisms <strong>of</strong> survivin<br />

promoter are associated with risk <strong>of</strong> esophageal<br />

squamous cell arcinoma. J Cancer Res Clin<br />

Oncol. Oct;135(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>):1341-9, 2009.


32 Engin AYNACI et al.<br />

Yang X, Xiong G, Chen X, Xu X, Wang K, Fu Y,<br />

Yang K, Bai Y. Survivin expression in<br />

esophageal cancer: correlation with p53<br />

mutations <strong>and</strong> promoter polymorphism. Dis<br />

Esophagus. 2009;22(3):223-30.<br />

Yuan-Hung Wang, Hung-Yi Chiou, Chang-Te Lin,<br />

Hsiao-Yen Hsieh, Chia-Chang Wu, Cheng-Da<br />

Hsu, Cheng-Huang Shen. Association Between<br />

Survivin Gene Promoter -31C/G Polymorphism<br />

<strong>and</strong> Urothelial Carcinoma Risk in Taiwanese<br />

Population. Urology. 73 (3):670-674, 2009.<br />

Yun-Hong Li, Chen Wang, Kui Meng, Long-Bang<br />

Chen, Xiao-Jun Zhou, İnfluence <strong>of</strong> survivin <strong>and</strong><br />

caspase-3 on cell apoptosis <strong>and</strong> prognosis in<br />

gas<strong>tr</strong>ic carcinoma. World J Gas<strong>tr</strong>oenterol.<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(13):1984-1988, 2004


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1):33-40, 2012 Research Article 33<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Effects <strong>of</strong> prenatal <strong>and</strong> neonatal exposure to lead on white blood<br />

cells in Swiss mice<br />

Ragini SHARMA*, Khushbu PANWAR, Sheetal MOGRA<br />

Environmental <strong>and</strong> Developmental Toxicology Research Lab, Department <strong>of</strong> Zoology, M. L. S. University,<br />

Udaipur- 313001 Rajasthan, India<br />

(* author for correspondence; taurasragini@yahoo.com)<br />

Received: 27 August 2011; Accepted: 25 May 2012<br />

Abs<strong>tr</strong>act<br />

Lead exposure is one <strong>of</strong> the major environmental issues for children <strong>and</strong> women <strong>of</strong> child bearing age. It<br />

crosses the placental barrier <strong>and</strong> its greater intestinal absorption in fetus results in developmental defects.<br />

Lead, as one <strong>of</strong> the environmental pollutants, can threat the lives <strong>of</strong> animals <strong>and</strong> human beings in many ways;<br />

especially during developing stages. The present study was carried out to study the alterations in different<br />

types <strong>of</strong> white blood cells (WBC) due to chronic lead acetate toxicity in neonates, which passes from adult<br />

pregnant female during gestation <strong>and</strong> lactation. Lead acetate was administered orally at 8, 16, 32 mg /kg/BW<br />

to pregnant Swiss mice from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>th day <strong>of</strong> gestation to 21th day <strong>of</strong> lactation. Hematopathological <strong>and</strong><br />

numerical alterations in the WBCs were examined in the neonates after birth at postnatal days 1, 7, 14 <strong>and</strong><br />

21. Blood smears examined illus<strong>tr</strong>ate that lead induces disturbances in the development <strong>of</strong> different types <strong>of</strong><br />

WBCs during postnatal development <strong>and</strong> lead to an abrupt neu<strong>tr</strong>ophilic degeneration, immature cells,<br />

abnormal neu<strong>tr</strong>ophils, reactive <strong>and</strong> plasmacytoid lymphocytes. The results <strong>of</strong> the present study emphasize<br />

that prenatal lead exposure is ex<strong>tr</strong>emely dangerous to developing fetus.<br />

Keywords: Lead acetate, Swiss albino mice, prenatal, neonatal, white blood cells.<br />

Swiss farelerde prenatal ve yenidoğan kurşun maruziyetinin beyaz kan hücreleri üzerine<br />

etkileri<br />

Özet<br />

Kurşun maruziyeti çocuklar ve çocuk doğurma çağındaki kadınlar için majör çevresel konulardan birisidir.<br />

Plasental bariyeri geçer ve fetusta barsaklardan emilimi, gelişimsel defektlerle sonuçlanır. Çevresel<br />

kirliliklerden biri olan kurşun, birçok yönden özellikle gelişim çağı boyunca insan ve hayvan hayatını tehdit<br />

etmektedir. Bu çalışma, yetişkin hamile dişilerden gebelik ve laktasyon süresince yenidoğanlara geçen<br />

kurşun asetatın yarattığı kronik toksisite sebebiyle lökositlerin farklı tiplerindeki değişimleri incelemek için<br />

yapılmıştır. Kurşun asetat, hamile Swiss farelere gebeliğin <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. gününden laktasyonun 21. gününe kadar ağız<br />

yoluyla 8, 16, 32 mg /kg//BW şeklinde uygulanmıştır. Yenidoğanlarda doğumdan sonraki 1, 7, 14 ve 21.<br />

günlerde beyaz kan hücrelerindeki hematopatolojik ve sayısal değişiklikler incelenmiştir. Kurşunun doğum<br />

sonrası gelişim sırasında lökositlerin farklı tiplerinin gelişimindeki bozuklukları indüklediğini ve ani<br />

nö<strong>tr</strong><strong>of</strong>ilik olgunlaşmamış dejenerasyona, hücreler, anormal nö<strong>tr</strong><strong>of</strong>illere, reaktif ve plazmasitoid lenfositlere<br />

neden olduğunu göstermek için kan yaymaları incelenmiştir. Bu çalışmanın sonuçları prenatal kurşun<br />

maruziyetinin gelişen fetus için son derece tehlikeli olduğunu vurgulamaktadır.<br />

Anahtar kelimeler: Kurşun asetat, Swiss albino fare, prenatal, yenidoğan, lökosit.


34Ragini SHARMA et al.<br />

In<strong>tr</strong>oduction<br />

Lead has been recognized as a biological toxicant<br />

<strong>and</strong> different doses have been used to study leadinduced<br />

alterations Prenatal exposure to lead<br />

produces toxic effects in the human fetus, including<br />

increased risk <strong>of</strong> preterm delivery, low birth<br />

weight, <strong>and</strong> impaired mental development; because<br />

during the period <strong>of</strong> early organogenesis the onset<br />

<strong>of</strong> greatest susceptibility to teratogenesis occurs<br />

(Falcon et al., 2003). This highly sensitive or<br />

critical period is the time during which a small dose<br />

<strong>of</strong> a teratogen produces high percentage <strong>of</strong> fetuses<br />

that exhibit malformations <strong>of</strong> the organ in question<br />

(Wilson, 1973; Desesso et al., 1996).<br />

Pregnancy <strong>and</strong> breastfeeding can cause a state<br />

<strong>of</strong> physiological s<strong>tr</strong>ess that increases bone turnover<br />

<strong>of</strong> lead. Lead stored in the bone moves into the<br />

blood, increasing the mother’s blood lead level <strong>and</strong><br />

passing to the fetus, affecting fetal development.<br />

Lead is tightly bound to red blood cells, enhancing<br />

<strong>tr</strong>ansfer from maternal circulation through the<br />

placenta to the fetus. Fetus is more sensitive to lead<br />

because the fetal blood-brain barrier is more<br />

permeable. The toxic effects <strong>of</strong> lead on blood<br />

indices are well known.<br />

Lead potentially induces oxidative s<strong>tr</strong>ess <strong>and</strong><br />

evidence is accumulating to support the role <strong>of</strong><br />

oxidative s<strong>tr</strong>ess in the pathophysiology <strong>of</strong> lead<br />

toxicity. Lead is capable <strong>of</strong> inducing oxidative<br />

damage to brain, heart, kidneys, <strong>and</strong> reproductive<br />

organs. The mechanisms for lead-induced oxidative<br />

s<strong>tr</strong>ess include the effects <strong>of</strong> lead on membranes,<br />

DNA, <strong>and</strong> antioxidant defense systems <strong>of</strong> cells<br />

(Ahamed <strong>and</strong> Siddiqui, 2007). Lead interferes with<br />

a variety <strong>of</strong> body processes <strong>and</strong> is toxic to the body<br />

systems including cardiovascular, reproductive,<br />

hematopoietic, gas<strong>tr</strong>ointestinal <strong>and</strong> nervous systems<br />

(Kosnett, 2006), renal functions (Patocka <strong>and</strong><br />

Cerny, 2003) <strong>and</strong> release <strong>of</strong> glutamate (Xu et al.,<br />

2006). It affects the hematological system even at<br />

concen<strong>tr</strong>ations below <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>μg/dl (ATSDR, 2005).<br />

Many reports are available regarding lead<br />

toxicity <strong>and</strong> its deleterious effects in various<br />

species <strong>of</strong> animals <strong>and</strong> there has been lot <strong>of</strong> work<br />

carried out on pharmacokinetics <strong>and</strong> genotoxicity<br />

but very few researchers <strong>tr</strong>ied to correlate<br />

haematopathological alterations <strong>of</strong> lead acetate in<br />

different white blood cells at different dose levels<br />

in laboratory animals, especially in mice.<br />

Therefore the current study was performed to<br />

clarify the lead induced hematological changes,<br />

especially those related to white blood cells, during<br />

gestational <strong>and</strong> lactational exposure to lead in<br />

Swiss mice.<br />

Materials <strong>and</strong> methods<br />

Sexually mature r<strong>and</strong>om bred Swiss mice with the<br />

age <strong>of</strong> 5-6 weeks, weighing 25-30 gm was used for<br />

this study. During the entire experimental period,<br />

the animals were fed on a st<strong>and</strong>ard diet <strong>and</strong> water<br />

ad libitum. Mice were kept in the ratio <strong>of</strong> 1:4 males<br />

<strong>and</strong> females, respectively, <strong>and</strong> females showing<br />

vaginal plugs were separated in the con<strong>tr</strong>ol <strong>and</strong> lead<br />

<strong>tr</strong>eated group. Lead acetate solution was prepared<br />

by dissolving 4gm lead acetate in 12ml distilled<br />

water. Pregnant Swiss mice were given lead acetate<br />

at a concen<strong>tr</strong>ation <strong>of</strong> 8, 16 <strong>and</strong> 32 mg (266.66,<br />

533.33, <strong>and</strong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>66.66 mg/kg/bodyweight) from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> th<br />

day <strong>of</strong> gestation to 21 st day <strong>of</strong> lactation. Blood<br />

samples were obtained from the tail <strong>of</strong> pups from<br />

each litter at days 1,7,14 <strong>and</strong> 21 day after birth. The<br />

tip <strong>of</strong> the tail was cleaned with spirit before being<br />

cut with a sharp blade <strong>and</strong> was not squeezed to<br />

avoid dilution <strong>of</strong> blood by tissue fluid.<br />

Blood cells were studied in smears prepared by<br />

spreading a drop <strong>of</strong> blood thinly over a clean <strong>and</strong><br />

sterilized microscopic slide with the help <strong>of</strong> another<br />

slide moved over the first at the angle <strong>of</strong> 45ᵒ after<br />

discarding first drop <strong>of</strong> blood. These blood films<br />

were air-dried <strong>and</strong> fixed in absolute methanol for<br />

15 minutes by dipping the film briefly in a Coplin<br />

jar containing absolute methanol. After fixation the<br />

slides were removed <strong>and</strong> air-dried. Afterward blood<br />

smears were stained with freshly made Giemsa<br />

stain diluted with water buffered to pH 6.8 or 7.0<br />

(1:9) stain <strong>and</strong> buffer respectively. The slides were<br />

washed by briefly dipping the slide in <strong>and</strong> out <strong>of</strong> a<br />

Coplin jar <strong>of</strong> buffered water <strong>and</strong> air dried again for<br />

taking observations. The erythrocytes appear pink<br />

to purple, whereas leukocytes turned blue black in<br />

color. All the experimental work was approved by<br />

the Institutional Animal Ethics Committee.<br />

No./CS/Res/07/759.<br />

Group 1- Con<strong>tr</strong>ol (distilled water only).<br />

Group 2- Exposure to 8 mg lead acetate (266.66<br />

mg/kg BW) from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>th day <strong>of</strong> gestation up to 21st<br />

day <strong>of</strong> lactation.<br />

Group 3- Exposure to 16 mg lead acetate<br />

(533.33 mg/kg BW) from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>th day <strong>of</strong> gestation up<br />

to 21st day <strong>of</strong> lactation.<br />

Group 4- Exposure to 32 mg lead acetate<br />

(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>66.66 mg/kg BW) from <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>th day <strong>of</strong> gestation up<br />

to 21st day <strong>of</strong> lactation.<br />

The statistical analysis was performed following<br />

t-test for the comparison <strong>of</strong> data between different<br />

experimental groups. The data was calculated using


prism s<strong>of</strong>tware to calculate the p values. <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 WBC<br />

from each group were counted at different weeks,<br />

different cell types were identified <strong>and</strong> % ratio was<br />

calculated. For numerical observation highest dose<br />

level was selected.<br />

Results<br />

In the con<strong>tr</strong>ol group all the WBCs showed normal<br />

appearance. The neu<strong>tr</strong>ophils in con<strong>tr</strong>ol group were<br />

examined by a very characteristic nucleus with<br />

condensed chromatin. It is divided into 3-5 lobes<br />

(Fig.1A, 1, 2, 5 <strong>and</strong> 6) at birth which was observed<br />

with an increase by 5 to 6 lobes (Fig.1B, 1 <strong>and</strong> 3) at<br />

the termination <strong>of</strong> lactation, connected by thin<br />

s<strong>tr</strong><strong>and</strong>s <strong>of</strong> chromatin. Lymphocytes were round or<br />

ovoid at the time <strong>of</strong> birth (Fig. 1A, 3 <strong>and</strong> 4) but<br />

further on they were found notched or slightly<br />

indented (Fig. 1B, 5 <strong>and</strong> 6). The chromatin was<br />

generally diffusely dense. Ordinarily, nucleoli were<br />

not visible. A perinuclear clear zone surrounding<br />

the nucleus was visible after first week <strong>of</strong> lactation<br />

in some cells. The cytoplasm stained light blue <strong>and</strong><br />

ranges from sparse to moderately abundant in<br />

amount. The monocyte in con<strong>tr</strong>ol group were round<br />

with smooth margins, the nucleus was oval,<br />

indented <strong>and</strong> slightly folded (Fig.1B, 4). The<br />

chromatin material was moderately clumped <strong>and</strong><br />

relatively less dense compared to that <strong>of</strong><br />

neu<strong>tr</strong>ophils or lymphocytes. There was no visible<br />

nucleolus with abundant cytoplasm.<br />

The adminis<strong>tr</strong>ation <strong>of</strong> lead acetate altered the<br />

appearance <strong>and</strong> caused s<strong>tr</strong>uctural changes. The<br />

following hematological observations were taken<br />

during postnatal period from birth till the<br />

termination <strong>of</strong> the lactation period upon exposure<br />

<strong>of</strong> different doses <strong>of</strong> lead acetate:<br />

1. At the time <strong>of</strong> birth (PND1)<br />

Abnormal neu<strong>tr</strong>ophils: In lead <strong>tr</strong>eated groups<br />

the neu<strong>tr</strong>ophils showed s<strong>tr</strong>uctural abnormalities in<br />

their nucleus including improper segmentation <strong>and</strong><br />

lesser condensation <strong>of</strong> nucleus. At a lower dose the<br />

chromatin material was condensed, all the lobes<br />

were interconnected with each other <strong>and</strong> form a<br />

nodule like s<strong>tr</strong>ucture at one side (Fig.1C, 1).<br />

Degeneration: In lead <strong>tr</strong>eated group most <strong>of</strong> the<br />

neu<strong>tr</strong>ophils appeared in degenerating state in which<br />

the chromatin material was very less condensed,<br />

fused <strong>and</strong> there was no sign <strong>of</strong> clear lobulization<br />

<strong>and</strong> segmentation (Fig. 1C, 2).<br />

Immature cells: In lead <strong>tr</strong>eated group the<br />

number <strong>of</strong> immature cells was increased (Fig. 1C,<br />

3).<br />

Prenatal <strong>and</strong> neonatal exposure to lead 35 <br />

Ring shaped: In lead <strong>tr</strong>eated groups, some<br />

neu<strong>tr</strong>ophils showed abnormal ring like appearance<br />

<strong>and</strong> diffuse chromatin material, with unclear<br />

cytoplasm. In 32 mg lead <strong>tr</strong>eated group<br />

vacuolization in chromatin material was also<br />

observed ((Fig. 1C, 4).).<br />

Lymphocyte: Reactive (Fig. 1C: 5 <strong>and</strong> 6) <strong>and</strong><br />

cleaved (Fig. C, 5) types <strong>of</strong> lymphocytes were<br />

observed in lead <strong>tr</strong>eated groups.<br />

Monocytes: At postnatal day 1 we cannot<br />

identify any s<strong>tr</strong>uctural change in shape <strong>and</strong> size <strong>of</strong><br />

monocyte as observed on postnatal day 21.<br />

2. During first <strong>and</strong> second week <strong>of</strong> postnatal period<br />

(PND7&14)<br />

The following observations were taken at first to<br />

second week after birth:<br />

Degenerated neu<strong>tr</strong>ophils: In lead <strong>tr</strong>eated group<br />

overall numbers <strong>of</strong> neu<strong>tr</strong>ophils were increased<br />

particularly with degenerated neu<strong>tr</strong>ophils, however,<br />

their number was less than postnatal day 1. In 16<br />

mg lead group on postnatal day 7 the nuclear<br />

material <strong>of</strong> neu<strong>tr</strong>ophil was less condensed <strong>and</strong><br />

nucleus was divided into 2-3 unequal lobes. The<br />

cytoplasm <strong>of</strong> neu<strong>tr</strong>ophil appeared colorless. At the<br />

dose <strong>of</strong> 32mg lead at postnatal day 7, this severity<br />

<strong>of</strong> degeneration was very much increased so that<br />

the lobes were broken into many small fragments.<br />

No sign <strong>of</strong> lobulization <strong>and</strong> appropriate<br />

segmentation <strong>of</strong> neu<strong>tr</strong>ophils were found (Fig. 1D,<br />

1).<br />

Ring shaped neu<strong>tr</strong>ophils: In con<strong>tr</strong>ast to<br />

postnatal day 1, ring like nucleus was not observed<br />

in lead <strong>tr</strong>eated group at postnatal day 7.<br />

Different types <strong>of</strong> neu<strong>tr</strong>ophils: At higher dose<br />

32 mg lead <strong>tr</strong>eated groups apoptotic or necrotic<br />

neu<strong>tr</strong>ophils were more prominent. These<br />

neu<strong>tr</strong>ophils were characterized by 3-4 separate <strong>and</strong><br />

equal lobes with less condensed chromatin <strong>and</strong><br />

diffuse cytoplasmic region (Fig. 1D, 2).<br />

Immature cells: Review <strong>of</strong> the lead <strong>tr</strong>eated<br />

smear revealed that most <strong>of</strong> the leukocytes were<br />

myelocytes, b<strong>and</strong>s, myeloblast <strong>and</strong> other immature<br />

<strong>and</strong> unidentified white blood cells with left shift in<br />

leucocytes. A left shift is an increase in the number<br />

<strong>of</strong> b<strong>and</strong> neu<strong>tr</strong>ophils <strong>and</strong> other immature cell <strong>of</strong> the<br />

granulocytic lineage in the peripheral blood (Fig.<br />

1D, 3).<br />

Various lymphocytes: Adminis<strong>tr</strong>ation <strong>of</strong> lead<br />

acetate produced great variation in lymphocyte<br />

s<strong>tr</strong>ucturally as well as numerically. Various types <strong>of</strong><br />

lymphocytes such as plasmacytoid, reactive, oval,<br />

irregular, binucleated <strong>and</strong> cleaved lymphocytes<br />

were identified, whereas only reactive <strong>and</strong> cleaved


36Ragini SHARMA et al.<br />

lymphocytes were seen in postnatal day 1,<br />

exclusively in lead <strong>tr</strong>eated group.<br />

Lead <strong>tr</strong>eated group with 16 mg lead acetate<br />

produced large lymphocytes <strong>and</strong> most <strong>of</strong> the<br />

lymphocytes were having irregular; clumpy <strong>and</strong><br />

smudgy chromatin material with very dense<br />

nucleus (Fig. 1D, 4). The cytoplasm appeared<br />

completely absent as the nucleus reached its largest<br />

size <strong>and</strong> covered all the cytoplasmic area. Overall,<br />

number <strong>of</strong> lymphocytes decreased in most <strong>of</strong> the<br />

groups. At higher dose (32 mg lead) the<br />

plasmacytoid lymphocytes (eccen<strong>tr</strong>ic nucleus <strong>and</strong><br />

intensely blue / basophilic cytoplasm) (Fig. 1D, 6)<br />

<strong>and</strong> reactive lymphocytes were observed. Reactive<br />

lymphocyte was characterized by relatively very<br />

large, irregular but flattened nucleus with fine<br />

chromatin <strong>and</strong> agranular light blue stained<br />

cytoplasm (Fig. 1D, 5).<br />

3. At the end <strong>of</strong> lactation period (PND21)<br />

Abnormal nuclear segmentation: It includes<br />

abnormal segmentation <strong>of</strong> nucleus, in which the<br />

nuclear lobes were connected with each other. It<br />

gave abnormal appearance <strong>of</strong> nucleus <strong>and</strong><br />

chromatin condensation in most <strong>of</strong> the neu<strong>tr</strong>ophils<br />

(Fig. 1E, 1).<br />

Degeneration: In lower doses <strong>of</strong> lead diffuse<br />

appearance <strong>of</strong> chromatin material was observed in<br />

neu<strong>tr</strong>ophils <strong>and</strong> the lobes were fused with each<br />

other as any segmentation was not observed,<br />

whereas in higher lead <strong>tr</strong>eated group the neu<strong>tr</strong>ophils<br />

presented fragmented chromatin material <strong>and</strong> very<br />

less condensation <strong>of</strong> nucleus which finally leads to<br />

cell lysis (Fig. 1E, 2). The nuclear arrangement was<br />

distorted, as appear that all the lobes were<br />

intermingled with each other <strong>and</strong> in some cases<br />

form a nodule at one side known as sessile nodule<br />

appeared like hypersegmentation (Fig. 1E, 3).<br />

Immature cells: In lead <strong>tr</strong>eated group the<br />

numbers <strong>of</strong> immature cells were increased. A left<br />

shift i.e. presence <strong>of</strong> immature neu<strong>tr</strong>ophils, b<strong>and</strong>s,<br />

metamyelocytes, myelocytes <strong>and</strong> other unidentified<br />

immature cells were observed (Fig. 1F, 1 to 6).<br />

Lymphocytes: As the dose level increased the<br />

number <strong>of</strong> lymphocytes decreased. In higher dose<br />

lead <strong>tr</strong>eated group the lymphocyte appeared large in<br />

size with higher volume <strong>of</strong> cytoplasm. The shape <strong>of</strong><br />

the nucleus also vary from round to elliptical in<br />

s<strong>tr</strong>ucture, termed as reactive lymphocyte (Fig. 1E,<br />

4). Some lymphocytes <strong>tr</strong>ansformed into<br />

plasmocytoid lymphocyte in which the lymphocyte<br />

contains basophilic cytoplasm <strong>and</strong> eccen<strong>tr</strong>ic<br />

nucleus (Fig. 1E, 5).<br />

Monocytes: In lead <strong>tr</strong>eated groups the shape <strong>and</strong><br />

s<strong>tr</strong>ucture <strong>of</strong> the monocyte were modified <strong>and</strong> the<br />

shape <strong>of</strong> the nucleus was also altered from the<br />

normal reniform (kidney shaped) nucleus. The<br />

indentation <strong>of</strong> the nucleus became larger <strong>and</strong><br />

deeper from periphery to center. At higher dose<br />

level intensity <strong>of</strong> the indentation was increased so<br />

that the normal range <strong>of</strong> nucleo-cytoplasmic ratio<br />

was disturbed (Fig. 1E, 6). Numerical changes in<br />

different types <strong>of</strong> WBC <strong>and</strong> percent variations in<br />

different types are incorporated in Table 1 <strong>and</strong> 2<br />

respectively. In present investigation, after<br />

evaluating all the cell types, we can conclude that<br />

lead acetate at PND 1 <strong>and</strong> 14 caused significant<br />

increase in number <strong>of</strong> neu<strong>tr</strong>ophils <strong>and</strong> decrease in<br />

lymphocytes, while there was no significant<br />

difference in the number <strong>of</strong> neu<strong>tr</strong>ophils <strong>and</strong><br />

lymphocytes at PND 7 <strong>and</strong> 21.<br />

Table 1. Various types <strong>of</strong> WBCs at different postnatal days <strong>tr</strong>eated with lead acetate.<br />

Groups Neu<strong>tr</strong>ophils Lymphocytes Monocytes<br />

Con<strong>tr</strong>ol at PND 1 59.25±1.70 38.5±1.29 2.25±1.70<br />

Lead acetate at PND1 66.00±2.16** 28.25±2.06** 5.75±1.70*<br />

Con<strong>tr</strong>ol at PND 7 57.75±2.21 41.75±2.21 0.75±0.95<br />

Lead acetate at PND7 61.75±3.5 37.5±2.88 0.75±0.95<br />

Con<strong>tr</strong>ol at PND 14 55.25±3.40 44.5±3.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 0.25±0.5<br />

Lead acetate at PND14 61.25±1.70** 37.75±1.70** 1.00±0.81<br />

Con<strong>tr</strong>ol at PND 21 47.75±2.5 47.75±2.21 4.5±2.38<br />

Lead acetate at PND21 52.25±4.57 44.00±2.26 3.75±2.75<br />

Values were expressed as means ± S.D.; 4 animals /group;*=p


Prenatal <strong>and</strong> neonatal exposure to lead 37 <br />

Table 2. Percent variation in different types <strong>of</strong> WBCs in lead <strong>tr</strong>eated groups<br />

Lead acetate at PND1<br />

Lead acetate at PND7<br />

Lead acetate at PND14<br />

Lead acetate at PND21<br />

Neu<strong>tr</strong>ophils Lymphocytes Monocytes<br />

Normal 12.3%<br />

Degenerated 12.1%<br />

Ring shaped 8.2%<br />

Immature 4.1%<br />

Abnormal <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.4%<br />

Normal 12.6%<br />

Degenerated 8.4%<br />

Abnormal 16.8%<br />

Immature <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.8%<br />

Ring shaped 6%<br />

Normal 19.2%<br />

Degenerated 19%<br />

Abnormal 9.6%<br />

Immature 6.4%<br />

Apoptotic 6.4%<br />

Normal 6.18%<br />

Degenerated18.5%<br />

Ring shaped 1.5%<br />

Abnormal 17%<br />

Immature 7.4%<br />

Normal 13%<br />

Reactive 17.33%<br />

Cleaved 8.6%<br />

Normal 12.2%<br />

Plasmacytoid 7.4%<br />

Reactive 9.8%<br />

Binucleated 2.4%<br />

Large 4.2%<br />

Normal 4%<br />

Plasmacytoid 4%<br />

Reactive 12.3%<br />

Binucleated 8.2%<br />

Large 4%<br />

Irregular 2%<br />

Oval 2%<br />

Normal <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>%<br />

Abnormal 16.4%<br />

Plasmacytoid1.4%<br />

Reactive 4.4%<br />

Large 5.8%<br />

Irregular 5.86%<br />

Normal 2.0%<br />

Abnormal 3.7%<br />

Abnormal 0.75%<br />

Abnormal 1%<br />

Normal 2%<br />

Abnormal 1.7%<br />

Figure 1. A: Peripheral blood smear <strong>of</strong> con<strong>tr</strong>ol group showing neu<strong>tr</strong>ophil (1-2), lymphocytes (3-4), at the time <strong>of</strong> birth,<br />

neu<strong>tr</strong>ophils (5-6) during second <strong>and</strong> third week <strong>of</strong> lactation. B: Con<strong>tr</strong>ol group showing neu<strong>tr</strong>ophil (1), lymphocyte (2),<br />

during second <strong>and</strong> third week <strong>of</strong> lactation, <strong>and</strong>, neu<strong>tr</strong>ophil (3), lymphocytes (4-5) <strong>and</strong> monocyte (6) at the termination <strong>of</strong><br />

lactation. C: Peripheral blood smear <strong>of</strong> lead <strong>tr</strong>eated group showing abnormal neu<strong>tr</strong>ophil (1), degenerated neu<strong>tr</strong>ophil (2),<br />

immature cell (3), ring like neu<strong>tr</strong>ophil (4), 5 – cleaved (upper WBC) (5) <strong>and</strong> reactive (lower WBC) lymphocyte (5 <strong>and</strong> 6)<br />

at the time <strong>of</strong> birth. D: Lead <strong>tr</strong>eated group showing degenerated neu<strong>tr</strong>ophil (1), necrotic (2), immature cell (3), large<br />

lymphocyte (4), reactive (5) <strong>and</strong> plasmacytoid lymphocyte (6) During first <strong>and</strong> second week <strong>of</strong> postnatal period. E: Lead<br />

<strong>tr</strong>eated group showing - abnormal neu<strong>tr</strong>ophil (1), degenerated neu<strong>tr</strong>ophil (2), hypersegmented neu<strong>tr</strong>ophil (3), reactive<br />

lymphocyte (4), plasmacytoid lymphocyte (5) <strong>and</strong> reactive monocyte (6) at the termination <strong>of</strong> lactation. F: Lead <strong>tr</strong>eated<br />

group showing different immature cells at the termination <strong>of</strong> lactation (1- 6). (All Giemsa stain, 450x).


38Ragini SHARMA et al.<br />

Discussion<br />

Changes in leukocyte parameters are <strong>of</strong>ten one <strong>of</strong><br />

the hallmarks <strong>of</strong> infection. These include changes<br />

in number <strong>and</strong> in cellular morphology. Review <strong>of</strong><br />

the peripheral blood smear can provide significant<br />

insight into the possible presence <strong>of</strong> infection. Early<br />

changes during infection may include an increase in<br />

the number <strong>of</strong> b<strong>and</strong>s, even before the development<br />

<strong>of</strong> leukocytosis. A great shift to immaturity (left<br />

shift) may occur when infection is severe, with<br />

metamylocytes or even earlier forms present on the<br />

peripheral blood smear. There are many evidences<br />

<strong>of</strong> studies conducted on adults <strong>and</strong> RBC concerning<br />

lead toxicity, but very few reports are available<br />

regarding haematopathological alterations <strong>of</strong> lead<br />

acetate in different white blood cells. Significant<br />

decrease in RBC count, hematocrit (Hct) <strong>and</strong><br />

hemoglobin (Hb) were seen in rats <strong>and</strong> human with<br />

high blood lead levels. (Alexa et al., 2002; Noori et<br />

al., 2003; Othman et al., 2004; Toplan et al., 2004)<br />

In our study the con<strong>tr</strong>ol groups showed all the<br />

leukocytes in normal appearance. Still some altered<br />

types <strong>of</strong> WBCs were also observed. The<br />

adminis<strong>tr</strong>ation <strong>of</strong> lead acetate alters the s<strong>tr</strong>ucture<br />

<strong>and</strong> number <strong>of</strong> WBCs. The nuclear arrangement<br />

was also distorted. In lead <strong>tr</strong>eated groups the shape<br />

<strong>and</strong> s<strong>tr</strong>ucture <strong>of</strong> the monocyte was also altered with<br />

reniform (kidney shaped) nucleus. At higher dose<br />

level this intensity <strong>of</strong> indentation was increased so<br />

that the normal range <strong>of</strong> nucleo-cytoplasmic ratio is<br />

disturbed <strong>and</strong> appeared as reactive monocytes. Our<br />

findings are also in support <strong>of</strong> DeNicola et al.<br />

(1991) with the evidence <strong>of</strong> reactive monocytes<br />

enclosing the cytoplasm became more intensely<br />

basophilic <strong>and</strong> vacuolated. This usually indicates a<br />

chronic inflammatory process or may be seen with<br />

hemoplasmas in the cat.<br />

Toxicity in neu<strong>tr</strong>ophils is defined by the<br />

presence <strong>of</strong> Döhle bodies (small, basophilic<br />

aggregates <strong>of</strong> RNA in the cytoplasm), diffuse<br />

cytoplasmic basophilia etc. In our study each lead<br />

<strong>tr</strong>eated group in neonatal period, represents<br />

increased number <strong>of</strong> degenerated neu<strong>tr</strong>ophils<br />

particularly at birth. In the 16 mg lead exposed<br />

group, during first week <strong>of</strong> lactation, the nuclear<br />

material <strong>of</strong> cell was less condensed <strong>and</strong> nucleus<br />

was divided into 2-3 unequal lobes with colorless<br />

cytoplasm. At higher dose <strong>of</strong> 32 mg lead, this<br />

severity <strong>of</strong> degeneration was very much increased<br />

with many small fragments <strong>of</strong> nuclear material <strong>and</strong><br />

no sign <strong>of</strong> lobulization <strong>and</strong> appropriate<br />

segmentation <strong>of</strong> neu<strong>tr</strong>ophils were observed.<br />

In a study performed on young dogs,<br />

development <strong>of</strong> anemia, leukocytosis,<br />

monocytopenia, polychromato-philia, glycosuria,<br />

increased serum urobilinogen, <strong>and</strong> hematuria has<br />

been reported (Zook, 1972). Lead suppresses bone<br />

marrow hematopoiesis, probably through its<br />

interaction with the enteric iron absorption (Klader,<br />

1779; Chnielnika, 1994). In some reports,<br />

leukocytosis has been at<strong>tr</strong>ibuted to the lead-induced<br />

inflammation (Yagminas et al., 1990).<br />

Hogan <strong>and</strong> Adams, (1979) reported a threefold<br />

increase in neu<strong>tr</strong>ophil <strong>and</strong> monocyte count along<br />

with severe leukocytosis in the young rats that were<br />

exposed to lead. The present investigation revealed<br />

that adminis<strong>tr</strong>ation <strong>of</strong> lead acetate alters the<br />

appearance <strong>and</strong> cause s<strong>tr</strong>uctural changes. The<br />

nuclear arrangement was distorted with<br />

intermingled lobes <strong>and</strong> in some cases formed a<br />

sessile nodule.<br />

Con<strong>tr</strong>oversies exist about monocytes; since in<br />

some studies lead-induced monocytopenia<br />

(Xintaras, 1992) <strong>and</strong> in others significant increases<br />

in monocyte count have been reported (Yagminas<br />

et al., 1990). The reason for such difference is<br />

probably due to the extent <strong>of</strong> lead-induced<br />

inflammation.<br />

Mugahi et al. (2003) investigated additional<br />

hematotoxic effects <strong>of</strong> lead on the erythroid cell<br />

lineage <strong>and</strong> leukocytes following long-term<br />

exposure in rats. Wahab et al. (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) showed that<br />

lead caused a significant decrease in hematocrit,<br />

RBC, WBC, hemoglobin concen<strong>tr</strong>ation, mean<br />

corpuscular hemoglobin, mean corpuscular<br />

hemoglobin concen<strong>tr</strong>ation <strong>and</strong> lymphocyte <strong>and</strong><br />

monocyte count; <strong>and</strong> significant increase in<br />

neu<strong>tr</strong>ophil count. The results <strong>of</strong> the present study<br />

are also parallel to the above findings. In lead<br />

exposed pups there was significant increase in the<br />

number <strong>of</strong> neu<strong>tr</strong>ophils at different weeks after birth,<br />

but decrease in the number <strong>of</strong> lymphocytes. The<br />

shortened life span <strong>of</strong> erythrocytes is due to<br />

increased fragility <strong>of</strong> the blood cell membrane <strong>and</strong><br />

r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ced hemoglobin production is due to decreased<br />

levels <strong>of</strong> enzymes involved in hemesynthesis<br />

(Guidotti et al., 2008). It has long been known that<br />

hematopoiesis <strong>and</strong> heme synthesis affected by lead<br />

poisoning (Doull et al., 1980).<br />

In our study reactive <strong>and</strong> cleaved type <strong>of</strong><br />

lymphocyte were observed at the time <strong>of</strong> birth in<br />

lead <strong>tr</strong>eated groups which were reinstated by<br />

increased number <strong>of</strong> plasmacytoid, reactive, large,<br />

oval, irregular, binucleated <strong>and</strong> cleaved<br />

lymphocytes in further days <strong>of</strong> lactation. In the<br />

current investigation at higher dose (32 mg) we


found apoptotic or necrotic neu<strong>tr</strong>ophils were more<br />

prominent in the first <strong>and</strong> second week <strong>of</strong> lactation.<br />

These neu<strong>tr</strong>ophils were characterized by 3-4<br />

separate <strong>and</strong> equal lobes with less condensed<br />

chromatin <strong>and</strong> diffuse cytoplasmic region.<br />

Lead <strong>tr</strong>eated group at the termination <strong>of</strong><br />

lactation, include abnormal nuclear segmentation,<br />

giving abnormal appearance <strong>of</strong> nucleus <strong>and</strong><br />

chromatin condensation in most <strong>of</strong> the neu<strong>tr</strong>ophils<br />

<strong>and</strong> forming a ring like nucleus in some<br />

neu<strong>tr</strong>ophils. Villagra et al., (1997) also postulates<br />

that lead exposure doubles total <strong>and</strong> segmented<br />

neu<strong>tr</strong>ophils in both es<strong>tr</strong>ogens <strong>tr</strong>eated <strong>and</strong> un<strong>tr</strong>eated<br />

rats but causes a three-fold increase in b<strong>and</strong><br />

neu<strong>tr</strong>ophils in animals without es<strong>tr</strong>ogen <strong>tr</strong>eatment,<br />

but not in animals <strong>tr</strong>eated with es<strong>tr</strong>ogen. With a<br />

disappearance <strong>of</strong> non-degranulated eosinophils, the<br />

decrease in non-degranulated eosinophils was<br />

under the effect <strong>of</strong> lead exposure. He also<br />

demons<strong>tr</strong>ates that prepubertal rat exposure to lead<br />

affects blood neu<strong>tr</strong>ophil <strong>and</strong> eosinophil leukocyte<br />

levels <strong>and</strong> induces eosinophil degranulation.<br />

Vyskocil et al., (1991) discovered the effect <strong>of</strong><br />

lead on b<strong>and</strong> neu<strong>tr</strong>ophils reveals an increased<br />

neu<strong>tr</strong>ophilopoiesis rather than release from<br />

in<strong>tr</strong>avascularly sequestered forms in lead-exposed<br />

animals.<br />

In lead <strong>tr</strong>eated group from birth till the<br />

termination <strong>of</strong> lactation, the number <strong>of</strong> immature<br />

cells was increased. There was asynchrony <strong>of</strong><br />

maturation between nucleus <strong>and</strong> cytoplasm. During<br />

normal granulocytopoiesis the lengthening <strong>and</strong><br />

pinching <strong>of</strong> the nucleus were coordinated with<br />

progressive condensation <strong>of</strong> the chromatin with<br />

accelerated maturation nuclear division may be skip<br />

<strong>and</strong> cells retain immature features, because toxic<br />

changes <strong>of</strong> lead accompanies a left shift i.e.<br />

presence <strong>of</strong> immature neu<strong>tr</strong>ophils, b<strong>and</strong>s,<br />

metamyelocytes, myelocytes <strong>and</strong> other unidentified<br />

immature cells. White Blood <strong>Cell</strong>s generally<br />

increase as compared to the con<strong>tr</strong>ol level. The<br />

increase in WBC count indicates the activation <strong>of</strong><br />

defense mechanism <strong>and</strong> immune system <strong>of</strong> gasoline<br />

workers (Whitby, 1980). These findings are also in<br />

confirmations, with our results.<br />

In conclusion, lead exposure leads to various<br />

hematological disorders in white blood cells<br />

including neu<strong>tr</strong>ophilic degeneration, immature<br />

cells, abnormal neu<strong>tr</strong>ophils, reactive <strong>and</strong><br />

plasmacytoid lymphocyte, reactive monocyte etc.<br />

The present study indicates that after adminis<strong>tr</strong>ation<br />

<strong>of</strong> 266.66, 533.33 <strong>and</strong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>66.66 mg/kg/body weight<br />

doses <strong>of</strong> lead acetate WBCs show s<strong>tr</strong>uctural<br />

abnormalities in their nucleus <strong>and</strong> cytoplasm<br />

Prenatal <strong>and</strong> neonatal exposure to lead 39 <br />

including improper segmentation <strong>and</strong> lesser<br />

condensation <strong>of</strong> nucleus. Lead causes fluctuations<br />

in the number <strong>of</strong> various cell types at different<br />

stages <strong>of</strong> postnatal development. The exposure to<br />

lead possesses the potentials to induce hazardous<br />

biological effects during pre <strong>and</strong> postnatal<br />

development in Swiss mice.<br />

References<br />

Ahamed M <strong>and</strong> Siddiqui MKJ. Low level lead<br />

exposure <strong>and</strong> oxidative s<strong>tr</strong>ess: Current opinions.<br />

Clinica Chimica Acta. 383: 57–64, 2007.<br />

Alexa ID, Mihalache IL, Panaghiu L, Palade F.<br />

Chronic lead poisoning- a" forgotten” cause <strong>of</strong><br />

anemia. Rev Med Chir Soc Med Nat Iasi.<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>6(4):825-8, 2002.<br />

Chmielnika J, Zareba G, Nasiadek M. Combined<br />

effect <strong>of</strong> tin <strong>and</strong> lead on heme biosynthesis in<br />

rats. Ecotox Environm Safety. 29: 165-173,<br />

1994.<br />

DeNicola D, Giger U, MacWilliams P <strong>and</strong><br />

Wamsley H. Hematologic Evaluation <strong>of</strong> Cats<br />

<strong>and</strong> Dogs. IDEXX Laboratories. (HO-30b)1991.<br />

Desesso JJ <strong>and</strong> Harris SB. Principles underlying<br />

development toxicity. Toxicology <strong>and</strong> Risk<br />

Assesment. 1996.<br />

Doull J, Klaassen CD <strong>and</strong> Amdur MO. Casaratt<br />

<strong>and</strong> Doulls Toxicology. 2 nd ed. Macmillan<br />

Publishing Co, New York. 415–421, 1980.<br />

Falcon M, Vinas P <strong>and</strong> Luna A. Placental lead <strong>and</strong><br />

outcome <strong>of</strong> pregnancy. Toxicology. 185 (1-<br />

2):59-66, 2003.<br />

Guidotti TL, McNamara J, Moses MS. The<br />

interpretation <strong>of</strong> <strong>tr</strong>ace elements analysis in body<br />

fluids. Indian J Med Res.128:524-53, 2008.<br />

Hogan GR <strong>and</strong> DP Adams. Lead induced<br />

leukocytosis in Female mice. Archive <strong>of</strong><br />

Toxicol. 41:295-300, 1979.<br />

Isha BARBER, Ragini SHARMA, Sheetal<br />

MOGRA, Khushbu PANWAR <strong>and</strong> Umesh<br />

GARU. Lead induced alterations in blood cell<br />

counts <strong>and</strong> hemoglobin during gestation <strong>and</strong><br />

lactation in Swiss albino mice. J <strong>of</strong> <strong>Cell</strong> <strong>and</strong><br />

Mol Biol. 9(1):69-74, 2011.<br />

Klauder DS <strong>and</strong> Petering HG. Anemia <strong>of</strong> lead<br />

intoxication: A role <strong>of</strong> Copper. J Nu<strong>tr</strong>.<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>7(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>):1779-85, 1977.


40Ragini SHARMA et al.<br />

Kosnett. Global approach to r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>cing Lead<br />

exposure <strong>and</strong> poisoning. Mutation Research.<br />

659(1-2): 166-175, 2006.<br />

Mugahi MN, Heiadari Z, Sagheb HM <strong>and</strong><br />

Barbarestani M. Effects <strong>of</strong> chronic lead acetate<br />

intoxication in blood indices <strong>of</strong> male adult rat.<br />

Daru. 11;4: 2003.<br />

Noori MM, Heidari Z, Sagheb H <strong>and</strong> Barbarestani<br />

M. Effects <strong>of</strong> chronic lead acetate intoxication<br />

on blood indices <strong>of</strong> male adult rat. Daru Pharm<br />

J, 11(4): 147-51, 2003.<br />

Othman AI, Sharawy S <strong>and</strong> El-Missiry MA. Role<br />

<strong>of</strong> melatonin in ameliorating lead induced<br />

haematotoxicity. Pharmacol Res. 50(3):301-7,<br />

2004.<br />

Patocka J, Cerný K. Inorganic lead toxicology. Acta<br />

Medica (Hradec Kralove). 46(2):65-72, 2003.<br />

Toplan S, Ozcelik D, Gulyasar T <strong>and</strong> Akyolcu MC.<br />

Changes in hemorheological parameters due to<br />

lead exposure in female rats. J Trace Elem Med<br />

Biol. 18(2):179-82, 2004.<br />

Villagra R, Tchernitchin NN <strong>and</strong> Tchernitchin AN.<br />

Effect <strong>of</strong> Subacute Exposure to Lead <strong>and</strong><br />

Es<strong>tr</strong>ogen on Immature Pre-Weaning Rat<br />

Leukocytes Bull. Environ Contam Toxicol.<br />

58:190-197, 1997.<br />

Vyskocil A, Fiala Z, Tejnorova I, Tusi M. S<strong>tr</strong>ess<br />

reaction in developing rats exposed to 1% lead<br />

acetate. Sb Ved Pr Lek Karlovy University<br />

Hradci Kralove. 34:287-295, 1991.<br />

Wahab AA, Joro JM, Mabrouk MA, Oluwatobi SE,<br />

Bauchi ZM <strong>and</strong> John AA. Ethanolic ex<strong>tr</strong>act <strong>of</strong><br />

Phoenix dactylifera L. prevents lead induced<br />

hematotoxicity in rats. Continental J<br />

Biomedical Sciences. 4: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> - 15, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Whitby LG, Rercy-Robb IW <strong>and</strong> Smith AF.<br />

Chapter 9. Lecture Notes on Clinical Chemis<strong>tr</strong>y.<br />

2nd ed. Blackwell Scientific Publications,<br />

Oxford London Edinburgh Melbourne. 167-<br />

187, 1980.<br />

Wilson JG. Environments <strong>and</strong> birth defects.<br />

Academic Press, New York. 1973.<br />

Xintaras C. Impact <strong>of</strong> Lead contaminated soil on<br />

Public Health. Public Health Service. Agency<br />

for toxic substances <strong>and</strong> Disease Regis<strong>tr</strong>y,<br />

1992.<br />

Xu HH, Chen ZP <strong>and</strong> Shen Y. Meta analysis for<br />

effect <strong>of</strong> lead on male reproductive function. J<br />

<strong>of</strong> Indus<strong>tr</strong>ial hygiene <strong>and</strong> occupational disease.<br />

24(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>): 634-36, 2006.<br />

Yagminas AP, Franklin CA, Villeneuve DC,<br />

Gilman AP, Little PB <strong>and</strong> Valli VE. Subchronic<br />

oral toxicity <strong>of</strong> <strong>tr</strong>iethyl lead in the male<br />

weanling rat: Clinical, biochemical,<br />

hematological, <strong>and</strong> histopathological effects.<br />

Fundam Appl Toxicol. 15: 580-596, 1990.<br />

Zook BC. Lead poisoning in dogs. Am J Vet Res.<br />

33: 981-902, 1972.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1): 41-54, 2012 Research Article 41<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Sulfabenzamide promotes autophagic cell death in T-47D breast<br />

cancer cells through p53/ DRAM pathway<br />

Raziye MOHAMMADPOUR 1 , Shahrokh SAFARIAN *1 , Soroor FARAHNAK 1 , Sana<br />

HASHEMINASL 1 , Nader SHEIBANI 2<br />

1<br />

School <strong>of</strong> Biology, College <strong>of</strong> Science, University <strong>of</strong> Tehran, Tehran, Iran<br />

2<br />

Department <strong>of</strong> Ophthalmology <strong>and</strong> Visual Sciences, School <strong>of</strong> Medicine <strong>and</strong> Public Health, University <strong>of</strong><br />

Wisconsin, Madison, USA<br />

(* author for correspondence; safarian@ibb.ut.ac.ir )<br />

Received: 26 March 2012; Accepted: 29 May 2012<br />

Abs<strong>tr</strong>act<br />

Sulfonamides exhibit their antitumor effects through multiple mechanisms including inhibition <strong>of</strong> membrane<br />

bound carbonic anhydrases, prevention <strong>of</strong> microtubule assembly, cell cycle arrest, <strong>and</strong> inhibition <strong>of</strong> angiogenesis.<br />

Here, sulfabenzamide’s mechanisms <strong>of</strong> action on T-47D breast cancer cells were determined. <strong>Cell</strong>s incubated with<br />

sulfabenzamide exhibited negligible levels <strong>of</strong> apoptosis, necrosis <strong>and</strong> cell cycle arrest when compared to un<strong>tr</strong>eated<br />

cells. These results were confirmed by morphological examinations, DNA fragmentation assays, flow cytome<strong>tr</strong>ic<br />

<strong>and</strong> real time RT-PCR analysis. Surprisingly, despite negligible detection <strong>of</strong> DNA fragmentation, a considerable<br />

increase in caspase-3 activity was observed in cells incubated with sulfabenzamide. The increased expression ratio<br />

<strong>of</strong> DFF-45/DFF-40 indicated that caspase-3-related DNA fragmentation was blocked <strong>and</strong> apoptosis symptoms<br />

could not be seen. However, the effects <strong>of</strong> caspase-3 for PARP1 <strong>and</strong> DNA-PK deactivation resulted in autophagy<br />

induction. The overexpression <strong>of</strong> critical genes involved in autophagy, including ATG5, p53 <strong>and</strong> DRAM, indicated<br />

that in T-47D cells sulfabenzamide-induced antiproliferative effect was mainly exerted through induction <strong>of</strong><br />

autophagy. Furthermore, downregulation <strong>of</strong> AKT1 <strong>and</strong> AKT2 as well as over expression <strong>of</strong> PTEN resulted in<br />

attenuation <strong>of</strong> AKT/mTOR survival pathway showing that death autophagy should be occurred in sulfabenzamide<br />

<strong>tr</strong>eatment.<br />

Keywords: Sulfabenzamide, breast cancer, autophagy, apoptosis, p53.<br />

Sülfobenzamid, T-47D meme kanseri hücrelerinde p53/DRAM yolağı aracılığıyla ot<strong>of</strong>ajik hücre ölümünü<br />

teşvik eder<br />

Sülfonamidler, membrana bağlı karbonik anhidraz inhibisyonunu, mikrotubül toplanmasının engellenmesini, hücre<br />

siklusunun durdurulmasını ve anjiyogenez inhibisyonunu içeren çoklu mekanizmalarla antitümör etkilerini<br />

göstermektedirler. Burada, T-47D meme kanser hücreleri üzerinde sülfobenzamid mekanizmasının etkisi<br />

belirlenmiştir. Sülfobenzamid ile inkübe edilen hücreler yapılmamış uygulama hücrelerle karşılaştırıldıklarında<br />

önemsenmeyecek seviyede apoptoz, nekroz ve hücre siklusunun durmasını ortaya koymuştur. Bu sonuçlar<br />

morfolojik incelemelerle, DNA fragmantasyon analizleriyle, flow sitome<strong>tr</strong>ik ve gerçek zamanlı RT-PCR<br />

analizleriyle doğrulanmıştır. Şaşırtıcı bir şekilde, DNA fragmantasyonunun ihmal edilebilecek tespitine rağmen,<br />

sülfobenzamidle edilmiş inkübe hücrelerde kaspaz 3 aktivitesinde dikkate değer artış bir gözlenmiştir. DFF-45/<br />

DFF-40’ artmış ın ekspresyon oranı, kaspaz 3 ile ilişkili DNA fragmantasyonunun durdurulduğunu ve apoptoz<br />

belirtilerinin görülemeyeceğini işaret etmektedir. Bununla birlikte PARP1 ve DNA-PK deaktivasyonu için kaspaz<br />

3’ün etkileri ot<strong>of</strong>aji indüklenmesiyle sonuçlanmaktadır. ATG5, p53 ve DRAM gibi ot<strong>of</strong>ajide yer alan kritik<br />

genlerin aşırı ekspresyonu T-47D sülfobenzamid-indüklenmiş hücrelerinde antiproliferatif etkinin çoğunlukla<br />

ot<strong>of</strong>aji indüksiyonu aracılığıyla uygul<strong>and</strong>ığını belirtmektedir. Ayrıca, PTEN aşırı ekspresyonu gibi AKT1 ve<br />

AKT’’nin azalarak düzenlenmesi, ot<strong>of</strong>aji ölümünün sülfobenzamid uygulamasıyla meydana geldiğini gösteren<br />

sağ AKT1/mTOR kalım yolağının etkisinin azalmasıyla sonuçlanmaktadır.<br />

Anahtar kelimeler: sülfobenzamid, meme kanseri, ot<strong>of</strong>aji, apoptoz, p53.


42 Raziye MOHAMMADPOUR et al.<br />

In<strong>tr</strong>oduction<br />

Sulfonamides are synthetic antibacterial agents<br />

with diverse pharmacological effects including<br />

antibacterial, antiviral, antidiabetic, antithyroid, <strong>and</strong><br />

diuretic. Their antibacterial effects are con<strong>tr</strong>ibuted<br />

to the interfering with enzyme activities responsible<br />

for folic acid synthesis by competing for para<br />

aminobenzoic acid. These drugs are selectively<br />

toxic for prokaryotes (Owa et al., 1999; Fukuoka et<br />

al., 2001; Yokoi et al., 2002; Supuran 2003). Two<br />

novel sulfonamides, E7070 <strong>and</strong> E70<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, are potently<br />

effective against cancer cells via inhibition <strong>of</strong><br />

tubulin polymerization <strong>and</strong> proliferation. The<br />

ma<strong>tr</strong>ix metalloprotease (MMP) inhibitory effects <strong>of</strong><br />

sulfonamides have been evaluated for <strong>tr</strong>eatment <strong>of</strong><br />

arthritis <strong>and</strong> cancer (Fukuoka et al., 2001; Ozawa et<br />

al., 2001; Supuran et al., 2003; Mohan et al., 2006).<br />

Sulfabenzamide, 4-Amino-N-benzoyl-benzenesulfonamide,<br />

is a sulfonamide derivative used for<br />

<strong>tr</strong>eatment <strong>of</strong> specific vaginal infections in<br />

combination with sulfathiazole <strong>and</strong> sulfacetamide<br />

(Valley <strong>and</strong> Balmer, 1999).<br />

Knowledge regarding alterations in signaling<br />

pathways <strong>and</strong> the type <strong>of</strong> cell death induced by<br />

chemotherapeutic drugs is the first <strong>and</strong> most<br />

important step in design <strong>of</strong> effective <strong>tr</strong>eatments.<br />

Furthermore, manipulation <strong>of</strong> autophagy has the<br />

potential to improve anticancer therapeutics.<br />

Studies have shown that autophagy protects cancer<br />

cells against antitumor effects <strong>of</strong> some drugs by<br />

blocking the apoptotic pathway <strong>and</strong> maintaining<br />

ATP levels. In con<strong>tr</strong>ast, other cancer cells undergo<br />

autophagic cell death (ACD or type II programmed<br />

cell death, PCDII) after anticancer therapies<br />

(Kondo et al., 2005; Kondo <strong>and</strong> Kondo, 2006).<br />

Various anticancer drugs that activate ACD in<br />

breast cancer cells have been reported including<br />

vitamin D analog, EB<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>89, Tamoxifen <strong>and</strong> other<br />

anties<strong>tr</strong>ogen agents (Hoyer-Hansen et al., 2005).<br />

Tamoxifen induced autophagic pathway occurs<br />

through down regulation <strong>of</strong> AKT activity<br />

(Yokoyama et al., 2009). The 3'-methoxylated<br />

analogue isocannflavin B (IsoB) exhibits an<br />

inhibitory effect on T-47D cell proliferation, which<br />

is accompanied by the appearance <strong>of</strong> an intense<br />

in<strong>tr</strong>acytoplasmic vacuolization <strong>of</strong> autophagic origin<br />

(Brunelli et al., 2009).<br />

Here, we choose sulfabenzamide for assessing<br />

its antitumor activity in T-47D breast cancer cell<br />

line. Our main objective was to determine whether<br />

this drug can be used as an antitumor drug in<br />

medicine. From this point <strong>of</strong> view, we could<br />

ascertain that there is a correlation between the<br />

expression level <strong>of</strong> some critical genes <strong>and</strong><br />

induction <strong>of</strong> death autophagy in T-47D cells.<br />

Materials <strong>and</strong> methods<br />

Reagents<br />

Culture medium, RPMI 1640, <strong>and</strong> fetal bovine<br />

serum were from Gibco (Engl<strong>and</strong>); penicillin<br />

s<strong>tr</strong>eptomycin solution, DNA laddering kit,<br />

Annexin-V-FLOUS Staining Kit, Propidium<br />

Iodide (PI) kit, caspase-3 fluorome<strong>tr</strong>ic<br />

immunosorbent enzyme assay kit, 4',6- Diamidino -<br />

2-phenylindole (DAPI) kit were all acquired from<br />

Roche (Germany); MTT was from Sigma<br />

(Engl<strong>and</strong>); sulfabenzamide <strong>and</strong> doxorubicin were<br />

from Sina Darou (Iran) <strong>and</strong> Ebewe Pharma<br />

(Aus<strong>tr</strong>ia), respectively. QuantiFast SYBR Green<br />

PCR master mix <strong>and</strong> RNeasy plus Mini kit were<br />

provided from Qiagen (USA). RevertAidTM M-<br />

MuLV reverse <strong>tr</strong>anscriptase <strong>and</strong> r<strong>and</strong>om hexamer<br />

were purchased from Fermentas (Germany).<br />

<strong>Cell</strong> culture<br />

Epithelial tumor cell line, T-47D, stemmed from<br />

human ductal breast tissue, was provided from<br />

National <strong>Cell</strong> Bank <strong>of</strong> Pasteur Institute (Tehran,<br />

IRAN; ATCC number HTB-133). <strong>Cell</strong>s were<br />

maintained in RPMI 1640 medium supplemented<br />

with heat-inactivated (35 min, 56°C) fetal bovine<br />

serum (<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>% v/v) <strong>and</strong> penicillin s<strong>tr</strong>eptomycin<br />

solution (1% v/v) <strong>and</strong> incubated in humidified<br />

condition; 95% air <strong>and</strong> 5% CO2 at 37°C.<br />

Drug preparation <strong>and</strong> <strong>tr</strong>eatments<br />

Regarding the obtained results from MTT assays,<br />

LC50 for sodium sulfabenzamide <strong>and</strong> doxorubicin<br />

after 48 h were estimated at <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.8 <strong>and</strong> 0.337×<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> -3<br />

mM, respectively. After reaching confluency (~<br />

80%), cells were incubated with freshly prepared<br />

drugs at the LC50 concen<strong>tr</strong>ations, harvested by<br />

<strong>tr</strong>ypsin-EDTA, washed three times by phosphatebuffered<br />

saline, <strong>and</strong> stored at -70°C.<br />

Cytotoxicity/Viability assay<br />

In brief, <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 4 cells/well were seeded in a 96 well<br />

culture plate <strong>and</strong> incubated with different<br />

concen<strong>tr</strong>ations <strong>of</strong> drugs for 24, 48 <strong>and</strong> 72 h. MTT<br />

was then added to the wells (4 mg/ml or <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0<br />

µg/well) <strong>and</strong> the produced formazan was<br />

systematically assessed using Elisa micro plate


eader at the wavelength <strong>of</strong> 570 nm. The percent <strong>of</strong><br />

cell viability related to each drug concen<strong>tr</strong>ation was<br />

estimated in relation to the un<strong>tr</strong>eated sample. All<br />

assays were done at least three times unless stated<br />

otherwise.<br />

Apoptosis quantification<br />

After washing <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 6 cells with PBS, cell pellets were<br />

re-suspended in <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 µl <strong>of</strong> ready to use Annexin/PI<br />

buffer (20 µl <strong>of</strong> each Annexin <strong>and</strong> PI buffer in 1 ml<br />

incubation buffer) for <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>-15 min at 25˚C. Samples<br />

were then diluted in 500 µl <strong>of</strong> incubation buffer <strong>and</strong><br />

analyzed by flow cytome<strong>tr</strong>y (Partech Pass, USA)<br />

using FloMax s<strong>of</strong>tware.<br />

<strong>Cell</strong> cycle analysis<br />

5×<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 5 drug <strong>tr</strong>eated cells were incubated with DAPI<br />

solution (<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> µg/ml <strong>and</strong> 6% Triton X-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 in PBS)<br />

for 30 min in the dark at 4ºC. Using a flow<br />

cytometer fluorescent emission <strong>of</strong> applied indicator<br />

was detected (excitation <strong>and</strong> emission wavelength<br />

<strong>of</strong> 359 nm <strong>and</strong> 461 nm, respectively) <strong>and</strong> the<br />

analysis was performed using FloMax s<strong>of</strong>tware.<br />

Morphological studies <strong>of</strong> the apoptotic cells<br />

<strong>Cell</strong>s were cultured on cover slips coated with Poly<br />

L-lysine <strong>and</strong> exposed to drugs for 48 h. Following<br />

staining with Annexin V-FITC (20 µg/ml) <strong>and</strong> PI<br />

(20 µg/ml) in the dark for <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>-15 min, samples were<br />

examined using a fluorescent microscope (Carl<br />

Zeiss-Germany) using 450-500 nm excitation <strong>and</strong><br />

515-565 nm emission filters.<br />

Measurement <strong>of</strong> caspase-3 activity<br />

Following drug <strong>tr</strong>eatments, cells were harvested<br />

<strong>and</strong> incubated in lysis buffer on ice for 1 minute.<br />

After cen<strong>tr</strong>ifugation, sample supernatants were used<br />

for caspase-3 activity measurements using AC-<br />

DEVED-AFC fluorescent subs<strong>tr</strong>ate as<br />

recommended by the supplier. The concen<strong>tr</strong>ation <strong>of</strong><br />

enzyme-released AFC was estimated using<br />

fluorospec<strong>tr</strong>ophotometer (HITACHI model MPF4-<br />

Japan) at 400 nm excitation <strong>and</strong> 505 nm emission<br />

wavelengths.<br />

DNA laddering assay<br />

2×<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 6 drug <strong>tr</strong>eated cells were lysed with an equal<br />

volume <strong>of</strong> binding/lysis buffer for <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> minutes at 15-<br />

25 º C. The obtained ex<strong>tr</strong>act was processed as<br />

recommended by the supplier. Elec<strong>tr</strong>ophoresis <strong>of</strong><br />

the samples in 1% agarose gel at 75 volt for 90<br />

minutes revealed DNA cleavage pattern <strong>of</strong> cells<br />

Sulfabenzamide promotes autophagic cell death 43<br />

relative to positive con<strong>tr</strong>ol (DNA ex<strong>tr</strong>acted<br />

prepared from U937 cells incubated 3h with 4 µM<br />

camptothecin).<br />

Preparation <strong>of</strong> total RNA, cDNA synthesis <strong>and</strong> real<br />

time RT-PCR<br />

Total RNA was purified using the RNeasy Qiagen<br />

kit according to the manufacturer’s<br />

recommendation. First s<strong>tr</strong><strong>and</strong> cDNA was generated<br />

using RevertAidTM M-MuLV reverse <strong>tr</strong>anscriptase<br />

<strong>and</strong> 5µg <strong>of</strong> RNA with r<strong>and</strong>om hexamer primers.<br />

Real time quantitative RT-PCR was performed<br />

using the QuantiFast SYBR Green PCR Master<br />

Mix under the following program: 95˚C for 5 min<br />

followed by 40 cycles (95˚C for <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> sec, annealing<br />

for 25 sec <strong>and</strong> extension at 72˚C for 30 sec).<br />

Analysis was done using Corbett rotor-gene 6000<br />

s<strong>of</strong>tware based on the comparative Ct method (or<br />

ΔΔCt method). The relative amount <strong>of</strong> target<br />

materials was quantified compared to the reference<br />

gene (GAPDH). Primers were prepared by TAG<br />

(Copenhagen, Denmark) <strong>and</strong> were used to amplify<br />

specific regions <strong>of</strong> cDNA as listed in Table1.<br />

Statistical analysis<br />

For all methods statistical analysis were performed<br />

by the SPSS version 16 <strong>and</strong> Excel 2007 s<strong>of</strong>twares.<br />

Statistical analysis for MTT assay, flow cytome<strong>tr</strong>y,<br />

caspase-3 activity were performed by one way<br />

ANOVA <strong>and</strong> real time RT-PCR methods were<br />

carried out by t-test. All results are presented as<br />

mean ± st<strong>and</strong>ard deviation (p< 0.05 was considered<br />

statistically significant).<br />

Results<br />

Sulfabenzamide inhibits the proliferation <strong>of</strong> T-47D<br />

cells<br />

The MTT assay was used to evaluate the viability<br />

<strong>of</strong> T-47D cells incubated with different<br />

concen<strong>tr</strong>ations <strong>of</strong> sulfabenzamide (0.0-20 mM) or<br />

doxorubicin (0.0-0.6 µM) after 24, 48 <strong>and</strong> 72 h<br />

(chemical s<strong>tr</strong>uctures are shown in Figure 1A). We<br />

checked toxic effects <strong>of</strong> doxorubicin on T-47D<br />

since it had been reported that its anticancer effects<br />

on different cell types exerts through distinct<br />

cellular processes (apoptosis or cell cycle arrest).<br />

Thus, it could be utilized as a con<strong>tr</strong>ol in our<br />

experiments. The 50% growth inhibition (LC50)<br />

concen<strong>tr</strong>ation for sulfabenzamide <strong>and</strong> doxorubicin<br />

after 48 h, were calculated as <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.8 mM <strong>and</strong> 0.33<br />

µM, respectively, <strong>and</strong> utilized in the following<br />

experiments (Figure 1B).


44 Raziye MOHAMMADPOUR et al.<br />

Table 1. List <strong>of</strong> primers. Forward <strong>and</strong> reverse primer pairs for PTEN gene were designed to amplify a region which could<br />

not anneal to PTEN pseudogene. Primer for p53 was designed for the mutant form present in T-47D cells.<br />

Gene Accession number primers<br />

F: CCAGGTGGTCTCCTCTGACTTCAACAG<br />

PCR product(bp)<br />

GAPDH NC_000012.11<br />

R: AGGGTCTCTCTCTTCTTCCTCTTGTGCTCT<br />

F: GTGAGATATGGTTTGAATATGAAGGC<br />

218<br />

ATG5 NC_000006.11<br />

R: CTCTTAAAATGTACTGTGATGTTCCAA<br />

F: GGAGAGGAGCCATTTATTGAAACT<br />

122<br />

beclin1 NC_000017.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: AGAGTGAAGCTGTTGGCACTTTCTG<br />

F: CTTGGATTGGTGGGATGTTTC<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>4<br />

DRAM NC_000012.11<br />

R: GATGATGGACTGTAGGAGCGTGT<br />

F: CCAGATGGAAAGACGTTTTTGTG<br />

135<br />

AKT1 NC_000014.8<br />

R: GAGAACAAACTGGATGAAATAAA<br />

F: CTGCGGAAGGAAGTCATCATTGC<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>6<br />

AKT2 NC_000019.9<br />

R: CGGTCGTGGGTCTGGAAGGCATAC<br />

F: CAAACTTTTTCAGAGGGGATCG<br />

125<br />

caspase-3 NC_000004.11<br />

R: GCATACTGTTTCAGCATGGCAC<br />

F: AAGAAGCTGAGCGAGTGTC<br />

261<br />

bax NC_000019.9<br />

R: GGCCCCAGTTGAAGTTGC<br />

F: ATGGAACTAACTATGTTGGACTATG<br />

157<br />

cyclinB1 NC_000005.9<br />

R: AGTATATGACAGGTAATGTTGTAGAGT<br />

F: AGGGGGAAACACCAGAATCAAGTG<br />

138<br />

bcl-2 NC_000018.9<br />

R: CCCAGAGAAAGAAGAGGAGTTATAA<br />

F: GGTCTTGTGGACAGTAGTTTGCC<br />

113<br />

AIF NC_000023.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: TCTCACTCTCTGATCGGATACCA<br />

F:CCTGTGCAGCTGTGGGTTGATTT<br />

115<br />

p53 NC_000017.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: AGGAGGGGCCAGACCATCGCTAT<br />

F: TTGGAGTCCCGATTTCAGAG<br />

150<br />

DFF40 NC_000001.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: CTGTCGAAGTAGCTGCCATTG<br />

F:TTCTGTGTCTACCTTCCAATACTA<br />

194<br />

DFF45 NC_000001.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R:CTGTCTGTTTCATCTACATCAAAG<br />

F: TAACATTAGTCTGGATGGTGTAGA<br />

127<br />

PARP1 NC_000001.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: TTACCTGAGCAATATCATAGACAAT<br />

F: TGGCATTACAGACATCTTTAGTTT<br />

113<br />

DNA-PK NC_000008.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: ACTTTAGGATTTCTTCTCTACATTCA<br />

F: TGGCTAAGTGAAGATGACAATCATG<br />

111<br />

PTEN NC_0000<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

R: GCACATATCATTACACCAGTTCGT<br />

81


Sulfabenzamide promotes autophagic cell death 45<br />

Figure 1. A) Chemical s<strong>tr</strong>ucture <strong>of</strong> sulfabenzamide <strong>and</strong> doxorubicin. B) Viability curve <strong>of</strong> sodium<br />

sulfabenzamide <strong>and</strong> doxorubicin <strong>tr</strong>eated T-47D cells. Percent viability <strong>of</strong> cells incubated with sodium<br />

sulfabenzamide <strong>and</strong> doxorubicin was calculated relative to the related un<strong>tr</strong>eated con<strong>tr</strong>ols after 24, 48 <strong>and</strong> 72<br />

h. Each point relates to the mean value <strong>of</strong> at least three independent experiments. The related correlation<br />

coefficient (r 2 ) was adjusted until the best fit for the selected mathematical function was used to interpolate<br />

the experimental points.<br />

T-47D cells do not exhibit DNA fragmentation <strong>and</strong><br />

apoptotic morphology in the presence <strong>of</strong><br />

sulfabenzamide or doxorubicin<br />

Unlike DNA fragmentation patterns observed in<br />

DNA ex<strong>tr</strong>acted from U937 cells incubated with<br />

camptothecin (as a positive con<strong>tr</strong>ol <strong>of</strong> DNA<br />

laddering kit), the gel elec<strong>tr</strong>ophoresis <strong>of</strong> DNA<br />

prepared from cells incubated with sulfabenzamide<br />

(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.8 mM) or doxorubicin (0.33 µM) showed no<br />

DNA ladder or smear pattern confirming lack <strong>of</strong><br />

apoptosis or necrosis in these cells (Figure 2A).<br />

Morphological analysis <strong>of</strong> sulfabenzamide <strong>and</strong><br />

doxorubicin <strong>tr</strong>eated cells, double stained with<br />

Annexin-FITC <strong>and</strong> PI, evaluated by fluorescent<br />

microscopy <strong>and</strong> confirmed the results <strong>of</strong> DNA<br />

laddering analysis. There were few cells having<br />

morphological characteristics <strong>of</strong> apoptotic <strong>and</strong><br />

necrotic cells (Figures 2B, 2C). Early (young)<br />

apoptotic cells have rounded shape <strong>and</strong> shiny green<br />

membrane because PI cannot pene<strong>tr</strong>ate into the<br />

cells <strong>and</strong> Annexin-FITC binds to the externally<br />

membrane-exposed phosphatidylserines (Figures<br />

2B, 2C). Late apoptotic <strong>and</strong> necrotic cells have<br />

membrane permeability for PI so their nuclei are<br />

stained red (Figure 2C). The main difference<br />

between necrotic <strong>and</strong> late apoptotic cells is the<br />

potency <strong>of</strong> late apoptotic cells for simultaneous<br />

staining <strong>of</strong> nuclei <strong>and</strong> membrane-exposed<br />

phosphatidylserines with PI <strong>and</strong> Annexin-FITC,<br />

respectively. Membrane blebbing, which is a<br />

common feature <strong>of</strong> apoptotic cells was seen in<br />

Figure 2B. Evidently, healthy cells cannot be seen<br />

under fluorescent microscope since they were not<br />

stained with either <strong>of</strong> the fluorescent dyes (Figure<br />

2E).


46 Raziye MOHAMMADPOUR et al.<br />

Figure 2. A) DNA laddering analysis. 1-3 µg DNA prepared from 2×<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 6 cells was resolved by<br />

elec<strong>tr</strong>ophoresis in a 1% agarose gel. DNA fragmentation was observed only in positive con<strong>tr</strong>ol (camptothecin<br />

<strong>tr</strong>eated) cells, but it was not detected in con<strong>tr</strong>ol or cells incubated with doxorubicin or sodium<br />

sulfabenzamide. B) Observation <strong>of</strong> the morphology <strong>of</strong> early apoptotic cells using fluorescent microscopy<br />

following double staining with Annexin V-FITC <strong>and</strong> PI. Morphological characteristics <strong>of</strong> early apoptotic<br />

cells (rounded green shiny cells showing membrane blebbing) in sulfabenzamide <strong>tr</strong>eated cells. C)<br />

Observation <strong>of</strong> the morphology <strong>of</strong> late apoptotic <strong>and</strong> necrotic cells using fluorescent microscopy following<br />

double staining with Annexin V-FITC <strong>and</strong> PI. Morphological characteristics <strong>of</strong> late apoptotic (flattened green<br />

shiny cells showing red dense nuclei) <strong>and</strong> necrotic cells (red dense spheres lacking green shiny membrane) in<br />

sulfabenzamide <strong>tr</strong>eated cells. Similar results were observed for doxorubicin (not shown). Living cells due to<br />

lack <strong>of</strong> staining with dyes are not detectable in fluorescent visual field (E) but are visible using phase con<strong>tr</strong>ast<br />

microscopy (D).


Sulfabenzamide promotes autophagic cell death 47<br />

Figure 3. Caspase-3 activity was increased in cells incubated with sulfabenzamide or doxorubicin. Enzyme<br />

activity in the con<strong>tr</strong>ol, sodium sulfabenzamide, or doxorubicin <strong>tr</strong>eated cells were 1.308±0.115, 2.07±0.08,<br />

<strong>and</strong> 2.496±0.11 nM.h -1 , respectively. St<strong>and</strong>ard curve based on emission (Y axis) <strong>of</strong> different concen<strong>tr</strong>ation <strong>of</strong><br />

free AFC (nM) is plotted (inset). Diagram <strong>of</strong> free AFC is plotted in 400 nm excitation <strong>and</strong> 505 nm emission<br />

wavelengths.<br />

Table 2. Numerical results <strong>of</strong> flow cytome<strong>tr</strong>y analysis. Results are the mean value ± SD for at least three<br />

replicated experiments. Each column named with Qi which includes data related to the quadrant that are Q1<br />

(PI + <strong>and</strong> Annexin V-FITC - ) or Q1+Q2 (Q2 is the region for PI + <strong>and</strong> Annexin V-FITC + ) indicated percent value<br />

<strong>of</strong> necrotic cells, <strong>and</strong> columns Q4 (PI - <strong>and</strong> Annexin V-FITC + ) or Q2+Q4 show percent values <strong>of</strong> apoptotic cells<br />

(see text). Column Q3 (PI - <strong>and</strong> Annexin V-FITC - ) indicates percent value <strong>of</strong> normal cells. Column <strong>of</strong> G1, S<br />

<strong>and</strong> G2/M represent the percent value <strong>of</strong> the cells placed in each related phase <strong>of</strong> cell cycle. NC, Dox <strong>and</strong> SU<br />

are abbreviations for Negative Con<strong>tr</strong>ol, Doxorubicin <strong>and</strong> Sulfabenzamide, respectively.<br />

Treated<br />

cells<br />

Q3 Q1 Q2 Q4 Q1+Q2 Q2+Q4 G1<br />

S G2<br />

NC 98.94±0.72 0.90±0.46 0.05±0.04 0.35±0.09 0.96±0.50 0.40±0.11 67.06±5.79 16.39±4.27 16.54±3.20<br />

DOX 97.60±1.12 1.33±0.68 0.015±0.02 1.05±0.90 1.34±0.67 1.06±0.90 30.58±1.14 40.55±4.65 28.86±3.51<br />

SU 98.58±0.56 0.27±0.19 0.09±0.08 0.86±0.57 0.37±0.1 0.96±0.54 48.80±4.28 27.47±4.39 22.70±3.79


48 Raziye MOHAMMADPOUR et al.<br />

Caspase-3 activity was increased in the<br />

sulfabenzamide <strong>and</strong> doxorubicin <strong>tr</strong>eated cells<br />

Using caspase-3 specific subs<strong>tr</strong>ate, subsequent<br />

releasing <strong>of</strong> the fluorescent product (AFC) was<br />

measured <strong>and</strong> average enzymatic velocity was<br />

calculated (three independent experiments) as<br />

16.6±1.42, 26.2±1.3 <strong>and</strong> 38.3±0.85 (∆F.h -1 , ∆F<br />

means fluorescent intensity alteration) for un<strong>tr</strong>eated<br />

cell, sulfabenzamide or doxorubicin <strong>tr</strong>eated cells,<br />

respectively. Using the st<strong>and</strong>ard curve <strong>of</strong> free AFC,<br />

enzymatic activity was calculated as 1.308±0.115,<br />

2.07± 0.08 <strong>and</strong> 2.496± 0.11nM.h -1 , respectively<br />

(Figure 3).<br />

Comparing with un<strong>tr</strong>eated cells, caspase-3<br />

activity was increased in drug <strong>tr</strong>eated samples.<br />

Elevated activity <strong>of</strong> caspase-3, which is a sign <strong>of</strong><br />

apoptosis induction, is in con<strong>tr</strong>ast with the DNA<br />

laddering results <strong>and</strong> is further discussed below.<br />

Sulfabenzamide did not induce apoptosis but<br />

induced a minimal shift from G1 to S <strong>and</strong> G2/M<br />

phases <strong>of</strong> the cell cycle<br />

Using flow cytome<strong>tr</strong>ic analysis <strong>and</strong> Annexin-FITC<br />

<strong>and</strong> PI staining, the incidence <strong>of</strong> apoptosis <strong>and</strong><br />

necrosis in un<strong>tr</strong>eated, sulfabenzamide, or<br />

doxorubicin <strong>tr</strong>eated cells were quantified (Figure<br />

4A <strong>and</strong> Table 2).<br />

Congruent with graph interpretation methods<br />

applied in most publications, the sum <strong>of</strong> cell<br />

populations in regions Q2 (PI + <strong>and</strong> Annexin V-<br />

FITC + ) <strong>and</strong> Q4 (PI - <strong>and</strong> Annexin V-FITC + ) were<br />

considered as early <strong>and</strong> late apoptotic cells (Hsu et<br />

al., 2006; Tyagi et al., 2006; Dowejko et al., 2009;<br />

LaPensee et al., 2009). In addition, regions Q1 (PI +<br />

<strong>and</strong> Annexin V-FITC - ) <strong>and</strong> Q3 (PI - <strong>and</strong> Annexin V-<br />

FITC - ) indicated necrotic <strong>and</strong> unscathed<br />

populations, respectively. In some publications, cell<br />

percentages located in Q1 <strong>and</strong> Q2 (Q2 is the region<br />

for PI + <strong>and</strong> Annexin V-FITC + ) quarters are<br />

considered as necrotic cells (Davis et al., 2000). In<br />

these studies, Q4 quarter (PI - <strong>and</strong> Annexin V-<br />

FITC + ) represented the percentage <strong>of</strong> apoptotic<br />

cells. Therefore, in Table 2 determination <strong>of</strong><br />

necrotic cells was performed separately via Q1, as<br />

well as Q1+Q2, <strong>and</strong> the estimation for apoptotic<br />

cells was carried out as Q2+Q4 as well as Q4, in<br />

order to indicate that the low percentages <strong>of</strong><br />

apoptotic <strong>and</strong> necrotic cells observed was not<br />

influenced by the applied analytical methods.<br />

Flow cytome<strong>tr</strong>y is useful for calculating the<br />

percentages <strong>of</strong> cells existing in various stages <strong>of</strong> the<br />

cell cycle including G1, S <strong>and</strong> G2/M. To make a<br />

practical use <strong>of</strong> this technique, cells were stained<br />

with DAPI, which enters the nucleus <strong>and</strong> binds to<br />

DNA <strong>and</strong> emanates fluorescent emission.<br />

Although, no significant change in the normal<br />

pattern <strong>of</strong> cell dis<strong>tr</strong>ibution throughout the cell cycle<br />

was observed for sulfabenzamide <strong>tr</strong>eated cells (18%<br />

shift from G1 to S <strong>and</strong> G2/M) a considerable<br />

<strong>tr</strong>ansition (37%) was detected from G1 to S (main<br />

<strong>tr</strong>ansition) <strong>and</strong> G2/M in cells incubated with<br />

doxorubicin as positive con<strong>tr</strong>ol (Figure 4B <strong>and</strong><br />

Table 2).<br />

Alterations in expression <strong>of</strong> proapoptotic,<br />

prosurvival <strong>and</strong> autophagic genes in<br />

sulfabenzamide <strong>and</strong> doxorubicin <strong>tr</strong>eated cells<br />

The changes in expression level <strong>of</strong> apoptotic, cell<br />

survival <strong>and</strong> autophagic genes were evaluated using<br />

real time RT-PCR. With respect to the results<br />

shown in Figure 5 as well as its insets it can be seen<br />

that in sulfabenzamide <strong>tr</strong>eatments some apoptotic<br />

genes (DFF-45 <strong>and</strong> DNA-PK ) were over expressed<br />

while some others were down regulated (PARP1,<br />

Bax, Bcl-2 <strong>and</strong> AIF) or retained their expression<br />

level in a constant condition (DFF-40 <strong>and</strong> caspase-<br />

3). Moreover, some critical genes which are<br />

important in cell survival pathway were also down-<br />

regulated (AKT1 <strong>and</strong> AKT2) or over expressed<br />

(PTEN). Alterations in gene expression were<br />

evaluated for some autophagic genes such as<br />

ATG5, p53 <strong>and</strong> DRAM indicating higher amounts<br />

<strong>of</strong> the related <strong>tr</strong>anscripts in drug <strong>tr</strong>eated cells<br />

relative to the un<strong>tr</strong>eated ones. In doxorubicin<br />

<strong>tr</strong>eated cells some apoptotic genes were focused<br />

<strong>and</strong> their alterations including over expression <strong>of</strong><br />

caspase-3, DNA-PK, DFF-45 <strong>and</strong> Bax; down<br />

regulation <strong>of</strong> DFF-40 <strong>and</strong> constant expression <strong>of</strong><br />

AIF <strong>and</strong> PARP1 were evaluated (Figure 5).


Sulfabenzamide promotes autophagic cell death 49<br />

Figure 4. A) Two dimensional plots <strong>of</strong> Annexin V-FITC against PI related to the flow cytome<strong>tr</strong>ic<br />

experiments. Two dimensional diagrams from flow cytome<strong>tr</strong>ic studies showed that the percentage <strong>of</strong><br />

apoptotic cells (cells located in the Q4 area or total cells in Q2 + Q4) <strong>and</strong> necrosis (cell located in Q1 or in<br />

Q1+Q2) do not show dramatic differences compared with con<strong>tr</strong>ol cells. B) Effects <strong>of</strong> sodium sulfabenzamide<br />

<strong>and</strong> doxorubicin on the cell cycle dis<strong>tr</strong>ibution. FL4-A indicates the area under the registered elec<strong>tr</strong>ical signal<br />

<strong>of</strong> each stained cell. The curves from left to right relate to G1, S, G2/M phases <strong>of</strong> the cell cycle in con<strong>tr</strong>ol,<br />

doxorubicin or sodium sulfabenzamide <strong>tr</strong>eated samples.


50 Raziye MOHAMMADPOUR et al.<br />

Figure 5. Quantitative real time RT-PCR analysis histograms. Real time RT-PCR for the selected genes for<br />

sulfabenzamide (A) <strong>and</strong> Doxorubicin (B) <strong>tr</strong>eated T-47D cells were determined as described in Methods. The<br />

relative amount <strong>of</strong> target material was quantified compared to the reference gene using the comparative Ct<br />

(ΔΔCt) method. The statistical significant differences are indicated with * <strong>and</strong> ** for 0.01


independent <strong>of</strong> changes in the related mRNA level<br />

(Figures 3 <strong>and</strong> 5). The increased activity <strong>of</strong><br />

caspase-3 was negated via overexpression <strong>of</strong> DFF-<br />

45. DFF-45 is the natural inhibitor <strong>of</strong> DFF-40<br />

(CAD) (Liu et al., 1997). In addition, the increased<br />

expression <strong>of</strong> DFF-45, along with a modest<br />

increase (for sulfabenzamide) <strong>and</strong> a significant<br />

decrease (for doxorubicin) in DFF-40 expression<br />

(Figure 5), indicated that the increased activity <strong>of</strong><br />

caspase-3 could be blocked by the increased<br />

expression ratio <strong>of</strong> DFF-45/DFF-40. This r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ces<br />

the level <strong>of</strong> active DFF-40 to <strong>tr</strong>igger DNA<br />

fragmentation <strong>and</strong> appearance <strong>of</strong> apoptotic<br />

symptoms. Furthermore, it has been reported that<br />

caspases are activated during autophagy in dying<br />

cells <strong>and</strong> are suppressed for apoptosis induction<br />

(Martin et al., 2004; Yu et al., 2004). Therefore, it<br />

can be d<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ced that during autophagy, the effects<br />

<strong>of</strong> activated caspase-3 on their downs<strong>tr</strong>eam<br />

subs<strong>tr</strong>ates (like DFF-40) should be suppressed by<br />

special factors (e.g. DFF-45 in T-47D cells) only in<br />

those cellular routes which are involved in the<br />

appearance <strong>of</strong> apoptosis symptoms (e.g. DNA<br />

fragmentation).<br />

<strong>Cell</strong> cycle arrest, an important cellular target<br />

affected by sulfabenzamide <strong>and</strong> doxorubicin, was<br />

analyzed using flow cytome<strong>tr</strong>y. Incubation <strong>of</strong> T-<br />

47D cells with 0.33 µM doxorubicin resulted in a<br />

significant accumulation <strong>of</strong> cells in S phase, <strong>and</strong> to<br />

a lesser extent in G2/M phase <strong>of</strong> the cell cycle<br />

(Figure 4B <strong>and</strong> Table 2). Thus, doxorubicin exerts<br />

its antiproliferative action mainly through cell cycle<br />

arrest. Induced mitotic catas<strong>tr</strong>ophe following<br />

increased activation <strong>of</strong> cyclinB1/Cdc2 may occur<br />

while cells are delayed, particularly in G2 phase <strong>of</strong><br />

the cell cycle (Lindqvist et al., 2007). The induced<br />

G2/M arrest along with down regulation <strong>of</strong><br />

cyclinB1 expression confirmed that anticancer<br />

activity <strong>of</strong> doxorubicin is not via mitotic<br />

catas<strong>tr</strong>ophe (Figure 5 <strong>and</strong> Table 2). In con<strong>tr</strong>ast to<br />

doxorubicin, minimal cell cycle arrest in S <strong>and</strong><br />

G2/M phases (totally 18%) was observed in T-47D<br />

cells incubated with <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.8 mM sulfabenzamide<br />

(Figure 4B <strong>and</strong> Table2). Thus, cell cycle arrest<br />

could not be mainly responsible for a 50%<br />

r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ction in cell viability in the presence <strong>of</strong><br />

sulfabenzamide.<br />

As we know, when apoptosis is blocked or<br />

delayed autophagy <strong>tr</strong>iggered <strong>and</strong> vice versa. These<br />

possibilities are consistent with our findings<br />

regarding lack <strong>of</strong> apoptosis in drug <strong>tr</strong>eated cells <strong>and</strong><br />

induction <strong>of</strong> autophagy. The induced<br />

overexpression <strong>of</strong> ATG5 supported that autophagy<br />

Sulfabenzamide promotes autophagic cell death 51<br />

<strong>tr</strong>iggered in the presence <strong>of</strong> sulfabenzamide (Figure<br />

5). This could be probably occurred through the<br />

increase in Bax activity working on mitochondrial<br />

membrane to result in activation <strong>of</strong> caspase-3 for<br />

PARP1 <strong>and</strong> DNA-PK deactivation <strong>and</strong> autophagy<br />

induction. It has been reported that induction <strong>of</strong><br />

autophagy by PUMA (the p53-inducible BH3-only<br />

protein) depends on Bax/Bak <strong>and</strong> can be<br />

reproduced by overexpression <strong>of</strong> Bax (Yee et al.,<br />

2009). Here, in doxorubicin <strong>tr</strong>eatment, increase in<br />

Bax activity could be occurred in parallel with the<br />

increment <strong>of</strong> Bax <strong>tr</strong>anscripts affecting on the cells<br />

for caspase-3 activation <strong>and</strong> changing the cell's<br />

destiny toward autophagy (Figure 5). This notion<br />

could be also supplied in sulfabenzamide <strong>tr</strong>eatment<br />

aside from the mild decrease in Bax expression<br />

because activation <strong>of</strong> the existed Bax molecules in<br />

the cells could be happened for caspase-3 activation<br />

<strong>and</strong> autophagy induction (Figure 5). It has been<br />

also reported that proteolytic cleavage <strong>of</strong> PARP1,<br />

performed by caspase-3, produces specific<br />

proteolytic cleavage fragments which are involved<br />

in the cell’s decision to change its fate from<br />

apoptosis toward autophagy (Munoz-Gamez et al.,<br />

2009; Chaitanya et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Induction <strong>of</strong><br />

autophagic cell death is dependent on DNA-PK<br />

inhibition (Daido et al., 2005). Thus, the increased<br />

activity <strong>of</strong> caspase-3 could finally deactivate<br />

PARP1 (has a decreased <strong>and</strong> constant expression<br />

level in sulfabenzamide <strong>and</strong> doxorubicin<br />

<strong>tr</strong>eatments, respectively) <strong>and</strong> DNA-PK (has an<br />

increased <strong>and</strong> invariable expression level in<br />

sulfabenzamide <strong>and</strong> doxorubicin <strong>tr</strong>eatments,<br />

respectively) until apoptosis was blocked <strong>and</strong><br />

autophagy induced (Figures 3 <strong>and</strong> 5).<br />

Despite the existence <strong>of</strong> some con<strong>tr</strong>oversies<br />

regarding the possible role <strong>of</strong> autophagy in tumor<br />

progression by promoting cell survival, autophagy<br />

can exist as a backup mechanism promoting<br />

cellular death when other mortality mechanisms are<br />

not functional. Hyperactivation <strong>of</strong> autophagy above<br />

the threshold point leads to unlimited self-eating <strong>of</strong><br />

the cells causing autophagy or type II programmed<br />

cell death (Hoyer-Hansen et al., 2005; Maiuri et al.,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Based on our data, downregulation <strong>of</strong> AKT1<br />

<strong>and</strong> AKT2 as well as upregulation <strong>of</strong> PTEN in<br />

sulfabenzamide <strong>tr</strong>eated cells indicated that cell<br />

survival pathways were slowed down (Figure 5). In<br />

addition, down regulation <strong>of</strong> bcl-2 was happened<br />

along with the induction <strong>of</strong> autophagy (Figure 5). It<br />

has been reported that targeted silencing <strong>of</strong> bcl-2<br />

expression (an anti-autophagic gene) in human<br />

breast cancer cells with RNA-interference has


52 Raziye MOHAMMADPOUR et al.<br />

promoted autophagic cell death <strong>and</strong> thus presents a<br />

therapeutic potential (Akar et al., 2008).<br />

p53 is involved in decreasing cell survival<br />

potency through inactivation <strong>of</strong> AKT/mTOR<br />

pathways, <strong>and</strong> stimulation <strong>of</strong> autophagy via<br />

<strong>tr</strong>ansactivation <strong>of</strong> DRAM (Maiuri et al., 2007).<br />

Thus, the observed increased expression level <strong>of</strong><br />

DRAM <strong>and</strong> p53 genes support our conclusion that<br />

the repression <strong>of</strong> AKT/mTOR survival pathway<br />

(via p53 overexpression) <strong>and</strong> autophagy induction<br />

(via increased DRAM <strong>tr</strong>anscripts) are responsible<br />

for r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>ced viability <strong>of</strong> T-47D cells <strong>and</strong> induction<br />

<strong>of</strong> death inducing autophagy in the presence <strong>of</strong><br />

sulfabenzamide (Figure 5). T -47D cells contain<br />

only a single copy <strong>of</strong> the p53 missense mutation<br />

(Schafer et al., 2000). It has been reported by<br />

various studies that mutant p53 may lose its natural<br />

antitumor activity (Lim et al., 2009). Interestingly,<br />

in the presence <strong>of</strong> sulfabenzamide the antitumor<br />

activities <strong>of</strong> mutant form <strong>of</strong> p53 should return to the<br />

normal activities <strong>of</strong> the wild type form to induce<br />

autophagic cell death. This is very similar to the<br />

mechanism <strong>of</strong> action for some antitumor drugs<br />

reactivating mutant p53 to kill cancerous cells<br />

(Lambert et al., 2009).<br />

Evidently, checking <strong>of</strong> the protein expression<br />

levels using other supplementary methods such as<br />

western blotting could provide us better documents<br />

to support the presented real time RT-PCR data.<br />

But, in our work, we found that the registered<br />

alterations for the level <strong>of</strong> RNA <strong>tr</strong>anscripts were in<br />

a good consistence with the expected cellular<br />

behaviors when the proteins' expression levels or<br />

their activities were theoretically going to become<br />

changed in parallel with the RNA levels in the<br />

cells. Therefore, regardless <strong>of</strong> some exceptions,<br />

evaluating RNA <strong>tr</strong>anscripts could provide us an<br />

adequate image illus<strong>tr</strong>ating the changes in the<br />

proteins’ expression levels in the cells.<br />

Conclusions<br />

In summary, we showed that cell cycle arrest (<strong>and</strong><br />

possibly autophagy) may play a role in action <strong>of</strong><br />

doxorubicin on T-47D cells. However, the<br />

con<strong>tr</strong>ibution <strong>of</strong> apoptosis <strong>and</strong> cell cycle arrest<br />

antiproliferative effect <strong>of</strong> sulfabenzamide on T-47D<br />

cells is minimal. These observations are in con<strong>tr</strong>ast<br />

to many reports in which the mechanism <strong>of</strong> action<br />

<strong>of</strong> sulfonamide derivatives on cancer cells<br />

at<strong>tr</strong>ibuted to the conventional processes <strong>of</strong><br />

apoptosis <strong>and</strong> cell cycle arrest. We believe that<br />

induction <strong>of</strong> autophagic cell death in T-47D cells is<br />

<strong>tr</strong>iggered through p53/DRAM pathway (occurred<br />

along with decreasing <strong>of</strong> Akt/mTOR pathway) <strong>and</strong><br />

this is a reasonable cellular axis to justify our<br />

results.<br />

Abbreviations<br />

AKT: v-akt murine thymoma viral oncogene<br />

homolog, mTOR: Mechanistic Target Of<br />

Rapamycin, PTEN: Phosphatase <strong>and</strong> Tensin<br />

homolog, DRAM: Damage Regulated Autophagy<br />

Modulator, ATG5:Autophagy related gene 5,<br />

Beclin1: Bcl2 Interacting protein 1, PARP1: Poly<br />

ADP-Ribose Polymerase 1, DFF-40/CAD: DNA<br />

Fragmentation Factor 40/ Caspase-Activated<br />

DNase, Bax: Bcl2-Associated X protein, Bcl-2: B-<br />

<strong>Cell</strong> Lymphoma 2, AIF: Apoptosis Inducing<br />

Factor, DFF-45/iCAD: DNA Fragmentation<br />

Factor 45/inhibitor <strong>of</strong> Caspase-Activated DNase,<br />

Cdc2: <strong>Cell</strong> Division Cycle protein 2, ARF: ADP<br />

Ribosylation Factor, GAPDH: Glyceraldehyde-3-<br />

Phosphate Dehydrogenase, ACD: Autophagic <strong>Cell</strong><br />

Death, PCDII: type II Programmed <strong>Cell</strong> Death,<br />

RPMI: Roswell Park Memorial Institute.<br />

Conflict <strong>of</strong> interest<br />

The authors declare that they have no competing<br />

interest.<br />

Authors' con<strong>tr</strong>ibutions<br />

SS designed the study <strong>and</strong> experiments, analyzed<br />

<strong>and</strong> interpreted data <strong>and</strong> also prepared the<br />

manuscript. RM carried out the experiments <strong>and</strong><br />

participated in data analysis as well as writing the<br />

initial draft <strong>of</strong> the manuscript. SH <strong>and</strong> SF<br />

participated in performing the experiments. NS<br />

con<strong>tr</strong>ibuted on giving scientific comments <strong>and</strong> also<br />

carried out final editing <strong>of</strong> the manuscript.<br />

Acknowledgements<br />

Iran National Science Foundation (INSF) <strong>and</strong><br />

Research Council <strong>of</strong> University <strong>of</strong> Tehran have<br />

been gratefully appreciated by the authors because<br />

<strong>of</strong> their foundational supports for this work.<br />

References<br />

Akar U, Chaves-Reyez A, Barria M, Tari A,<br />

Sanguino A, Kondo Y, et al. Silencing <strong>of</strong> Bcl-2<br />

expression by small interfering RNA induces<br />

autophagic cell death in MCF-7 breast cancer<br />

cells. Autophagy. 4: 669–679, 2008.<br />

Alberts B, Johnson A, Lewis J, Raff M, Roberts K,<br />

Walter P. Molecular Biology <strong>of</strong> the <strong>Cell</strong>.


Garl<strong>and</strong> science Taylor & Francis Group, LLC,<br />

UK, 1115-1130, 2008.<br />

Brunelli E, Pinton G, Bellini P, Minassi A,<br />

Appendino G, Moro L. Flavonoid-induced<br />

autophagy in hormone sensitive breast cancer<br />

cells. Fitoterapia. 80: 327-332, 2009.<br />

Chaitanya GV, Steven AJ, Babu PP. PARP-1<br />

cleavage fragments: signatures <strong>of</strong> cell-death<br />

proteases in neurodegeneration. <strong>Cell</strong> Commun<br />

Signal. 8:31-41, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Daido S, Yamamoto A, Fujiwara K, Sawaya R,<br />

Kondo S, Kondo Y. Inhibition <strong>of</strong> the DNAdependent<br />

protein kinase catalytic subunit<br />

radiosensitizes malignant glioma cells by<br />

inducing autophagy. Cancer Res. 65: 4368-<br />

4375, 2005.<br />

Davis JW, Melendez K, Salas VM, Lauer FT,<br />

Burchiel SW. 2,3,7,8-Te<strong>tr</strong>achlorodibenzo-pdioxin<br />

(TCDD) inhibits growth factor<br />

withdrawal-induced apoptosis in the human<br />

mammary epithelial cell line, MCF-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>A.<br />

Carcinogenesis. 21: 881-886, 2000.<br />

Dowejko A, Bauer RJ, Muller-Richter UDA,<br />

Reichert TE. The human homolog <strong>of</strong> the<br />

Drosophila headcase protein slows down cell<br />

division <strong>of</strong> head <strong>and</strong> neck cancer cells.<br />

Carcinogenesis. 30: 1678-1685, 2009.<br />

Fukuoka K, Usuda J, Iwamoto Y, Fukumoto H,<br />

Nakamura T, Yoneda T, et al. Mechanisms <strong>of</strong><br />

action <strong>of</strong> the novel sulfonamide anticancer<br />

agents E7070 on cell cycle progression in<br />

human non-small cell lung cancer cells. Inves<br />

New Drugs. 19: 219-227, 2001.<br />

Hoyer-Hansen M, Bastholm L, Mathiasen IS,<br />

Elling F, Jaattela M. Vitamin D analog EB<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>89<br />

<strong>tr</strong>iggers dramatic lysosomal changes <strong>and</strong> Beclin<br />

1-mediated autophagic cell death. <strong>Cell</strong> Death<br />

Differ. 12: 1297–1309, 2005.<br />

Hsu CL, Yen GC. Induction <strong>of</strong> cell apoptosis in<br />

3T3-L1 pre-adipocytes by flavonoids is<br />

associated with their antioxidant activity. Mol<br />

Nu<strong>tr</strong> Food Res. 50: <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>72-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>79, 2006.<br />

Kondo Y, Kanzawa T, Sawaya R, Kondo S. The<br />

role <strong>of</strong> autophagy in cancer development <strong>and</strong><br />

response to therapy. Nat Rev Mol <strong>Cell</strong> Biol. 5:<br />

726-734, 2005.<br />

Kondo Y, Kondo S. Autophagy <strong>and</strong> cancer therapy.<br />

Autophagy. 2: 85-90, 2006.<br />

Sulfabenzamide promotes autophagic cell death 53<br />

Lambert JMR, Gorzov P, Veprintsev DB,<br />

Söderqvist M, Segerbäck, D, Bergman J et al.<br />

PRIMA-1 reactivates mutant p53 by covalent<br />

binding to the core domain. Cancer <strong>Cell</strong>. 15:<br />

376-388, 2009.<br />

LaPensee EW, Schwemberger SJ, LaPensee CR,<br />

Bahassi E, Afton SE, Ben-Jonathan N. Prolactin<br />

confers resistance against cisplatin in breast<br />

cancer cells by activating glutathione-S<strong>tr</strong>ansferase.<br />

Carcinogenesis. 30: 1298-1304,<br />

2009.<br />

Lim LY, Vidnovic N, Ellisen LW, Leong C-O.<br />

Mutant P53 mediates survival <strong>of</strong> breast cancer<br />

cells. Brit J Cancer. <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>1: 1606 – 1612, 2009.<br />

Lindqvist A, Van Zon W, Karlsson Rosenthal C,<br />

Wolthuis RMF. Cyclin B1–Cdk1 activation<br />

continues after cen<strong>tr</strong>osome separation to con<strong>tr</strong>ol<br />

mitotic progression. PLoS Biol. 5: 1127-1137,<br />

2007.<br />

Liu X, Zou H, Slaughter C, Wang X. DFF, a<br />

heterodimeric protein that functions<br />

downs<strong>tr</strong>eam <strong>of</strong> caspase-3 to <strong>tr</strong>igger DNA<br />

fragmentation during apoptosis. <strong>Cell</strong>. 8: 175-<br />

184, 1997.<br />

Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik<br />

SA, Kroemer G. Autophagy regulation by p53.<br />

Curr Opin <strong>Cell</strong> Biol. 22: 181–185, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Maiuri MC, Zalckvar E, Kimchi A, Kroemer G.<br />

Self-eating <strong>and</strong> self-killing: crosstalk between<br />

autophagy <strong>and</strong> apoptosis. Nat Rev Mol <strong>Cell</strong><br />

Biol. 8: 741-752, 2007.<br />

Martin DN, Baehrecke E. Caspases function in<br />

autophagic programmed cell death in<br />

Drosophila. Development. 131: 275- 284, 2004.<br />

Mohan R, Banerjee M, Ray A, Manna T, Wilson L,<br />

Owa T et al. Antimitotic sulfonamides inhibit<br />

microtubule assembly dynamics <strong>and</strong> cancer cell<br />

proliferation. Biochemis<strong>tr</strong>y. 45: 5440-5449,<br />

2006.<br />

Munoz-Gamez A, Rodriguez-Vargas JM, Quiles-<br />

Perez R, Aguilar-Quesada R, Martin-Oliva D,<br />

de Murcia G et al. PARP-1 is involved in<br />

autophagy induced by DNA damage.<br />

Autophagy. 5: 61-74, 2009.<br />

Owa T, Yoshino H, Okauchi T, Yoshimatsu K,<br />

Ozawa Y, Sugi NH, et al. Discovery <strong>of</strong> novel<br />

antitumor sulfonamides targeting G1 phase <strong>of</strong>


54 Raziye MOHAMMADPOUR et al.<br />

the cell cycle. J Med Chem. 42:3789-3799,<br />

1999.<br />

Ozawa Y, Sugi NH, Nagasu T, Owa T, Watanabe<br />

T, Koyanagi N et al. E7070, a novel<br />

sulphonamide agent with potent antitumour<br />

activity in vi<strong>tr</strong>o <strong>and</strong> in vivo. Eur J Cancer. 37:<br />

2275-2282, 2001.<br />

Schafer JM, Lee ES, O'Regan RM, Yao K, Jordan<br />

VC. Rapid development <strong>of</strong> tamoxifenstimulated<br />

mutant p53 Breast Tumors (T47D) in<br />

athymic mice. Clin Cancer Res. 6: 4373-4380,<br />

2000.<br />

Supuran CT, Casini A, Scozzafava A. Protease<br />

inhibitors <strong>of</strong> the sulfonamide type: Anticancer,<br />

antiinfammatory, <strong>and</strong> antiviral agents. Med Res<br />

Rev. 23: 535-558, 2003.<br />

Supuran CT. Indisulam: an anticancer sulfonamide<br />

in clinical development. Expert Opin Investig<br />

Drugs. 12: 283-287, 2003.<br />

Tyagi A, Singh RP, Agarwal C, Agarwal R.<br />

Silibinin activates p53-caspase2 pathway <strong>and</strong><br />

causes caspase-mediated cleavage <strong>of</strong> Cip1/p21<br />

in apoptosis induction in bladder <strong>tr</strong>ansitionalcell<br />

papilloma RT4 cells: evidence for a<br />

regulatory loop between p53 <strong>and</strong> caspase 2.<br />

Carcinogenesis. 27: 2269-2280, 2006.<br />

Valley AW, Balmer CM. Pharmacotherapy: A<br />

Pathophysiologic Approach. Appleton &<br />

Lange, CT. 1957-2012, 1999.<br />

Yee KS, Wilkinson S, James J, Ryan KM, Vousden<br />

KH. PUMA <strong>and</strong> Bax-induced autophagy<br />

con<strong>tr</strong>ibutes to apoptosis. <strong>Cell</strong> Death Differ. 16:<br />

1135–1145, 2009.<br />

Yokoi A, Kuromitsu J, Kawai T, Nagas T, Sugi<br />

NH, Yoshimatsu K, et al. Pr<strong>of</strong>iling novel<br />

sulfonamide antitumor agents with cell-based<br />

phenotypic screens <strong>and</strong> array-based gene<br />

expression analysis. Mol Cancer Ther. 1: 275-<br />

286, 2002.<br />

Yokoyama T, Kondo Y, Bogler O, Kondo S. Drug<br />

Resistance in Cancer <strong>Cell</strong>s (Mehta, K. <strong>and</strong><br />

Siddik, Z.H., eds). Springer Science+Business<br />

Media, LLC: PA. 53-71, 2009.<br />

Yu L, Lenardo MJ, EH Baehrecke Autophagy <strong>and</strong><br />

caspases: a new cell death program. <strong>Cell</strong> Cycle.<br />

3:1124-1126, 2004.<br />

Yu SW, Wang H, Poi<strong>tr</strong>as MF, Coombs C, Bowers<br />

WJ, Feder<strong>of</strong>f HJ et al. Mediation <strong>of</strong> poly (ADPribose)<br />

polymerase-1-dependent cell death by<br />

apoptosis-inducing factor. Science. 297: 259-63,<br />

2002.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>(1): 55-64, 2012 Research Article 55<br />

Haliç University, Printed in Turkey.<br />

http://<s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

Media optimization for amylase production in solid state<br />

fermentation <strong>of</strong> wheat bran by fungal s<strong>tr</strong>ains<br />

Muhammad IRFAN*, Muhammad NADEEM, Quratualain SYED<br />

Food & Biotechnology Research Center (FBRC), Pakistan Council <strong>of</strong> Scientific & Indus<strong>tr</strong>ial Research<br />

(PCSIR) Laboratories Complex, Ferozpure Road Lahore, Pakistan.<br />

(* author for correspondence; mirfanashraf@yahoo.com)<br />

Received: 02 April 2012; Accepted: 30 May 2012<br />

Abs<strong>tr</strong>act<br />

The present study is concerned with the optimization <strong>of</strong> environmental <strong>and</strong> cultural conditions for the<br />

production <strong>of</strong> α-amylase from wheat bran in solid state fermentation by locally isolated s<strong>tr</strong>ains <strong>of</strong> Aspergillus<br />

niger- ML-17 <strong>and</strong> Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> . The whole fermentation process was carried out in 250 ml<br />

Erlenmeyer flask. Different parameters were optimized for each s<strong>tr</strong>ain to obtain maximum enzyme yield. For<br />

Aspergillus niger-ML-17, incubation period <strong>of</strong> 96 h, initial diluent pH <strong>of</strong> 5.0, 30°C incubation temperature,<br />

inoculum size <strong>of</strong> 5% were found to be optimum for the production <strong>of</strong> α-amylase. Amylase production was<br />

enhanced from 2.3 ± 0.014 IU to 4.4 ± 0.042 IU by supplementing the fermentation media with maltose<br />

(0.25%), yeast ex<strong>tr</strong>act (0.25%), NaNO3 (0.25%), MgSO4 (0.2%), NaCl (0.5%), Tween-80 (0.001%) <strong>and</strong><br />

Asparginine (0.0001%) . In case <strong>of</strong> Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, the optimized cultural conditions for the<br />

production <strong>of</strong> 2.5 ±0.023 IU were inoculum size <strong>of</strong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>%, initial pH <strong>of</strong> the diluent 6.0, incubation temperature<br />

<strong>of</strong> 35 o C for 96h. Further addition <strong>of</strong> maltose (25%), yeast ex<strong>tr</strong>act (0.25%), NH4NO3 (0.25%), MgSO4 (0.2%),<br />

NaCl (0.75%), Tween soluble starch (0.001%) <strong>and</strong> asparginine (0.0001%) to the medium significantly<br />

enhance the enzyme production up to 3.2 ± 0.027 IU.<br />

Keywords: Amylase, wheat bran, A.niger, R.oligosporus, solid state fermentation<br />

Buğday kepeği katı hal fermentasyonunda mantar suşlarıyla amilaz üretimi için besiyeri<br />

optimizasyonu<br />

Özet<br />

Bu çalışma yerel olarak izole edilen Aspergillus niger- ML-17 ve Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> suşları<br />

tarafından buğday kepeği katı hal fermentasyonunda amilaz üretimi için çevre ve kültür koşullarının<br />

optimizasyonuyla ilgilidir. Tüm fermentasyon süreci 250 ml erlende yapılmıştır. Maksimum enzim ürünü<br />

elde etmek amacıyla her suş bir için farklı parame<strong>tr</strong>eler optimize edilmiştir. Aspergillus niger- ML-17 için 96<br />

saat inkübasyon süresi, çözücünün başlangıç pH’sı olarak 5.0, 30°C inkübasyon sıcaklığı, % 5 ekim<br />

büyüklüğü α- amilaz üretimi için optimum bulunmuştur. Amilaz üretimi fermentasyon ortamına maltoz<br />

(%0,25), maya özütü (% 0,25), NaNO3 (% 0,25), MgSO4 (% 0,2), NaCl (% 0,5), Tween-80 (% 0,001) ve<br />

asparajin (% 0,0001) eklenmesiyle 2,3 ± 0,014 IU’ dan 4,4 ± 0,042 IU’ ya artmıştır. Rhizopus oligosporus-<br />

ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> için ise; 2,5 ± 0,023 IU üretim için optimize edilen kültür koşulları %<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> ekim büyüklüğü, çözücünün<br />

başlangıç pH’sı 5,0, inkübasyon sıcaklığı 35°C, 96 saat olacak şekildedir. Besiyerine maltoz (25%), maya<br />

özütü (0.25%), NH4NO3 (0.25%), MgSO4 (0.2%), NaCl (0.75%), Tween çözünür nişasta (0.001%) ve<br />

Asparginine (0.0001%) eklenmesi enzim üretimini önemli ölçüde artırarak 3.2 ± 0.027 IU seviyesine<br />

ulaştırmıştır.<br />

Anahtar kelimeler: Amilaz, buğday kepeği, A.niger, R.oligosporus, katı hal fermentasyonu


56 Muhammad IRFAN et al.<br />

In<strong>tr</strong>oduction<br />

Amylases are a group <strong>of</strong> hydrolases that can<br />

specifically cleave the O-glycosidic bonds in<br />

starch. Two important groups <strong>of</strong> amylases are<br />

glucoamylase <strong>and</strong> α-amylase. Glucoamylase (exo-<br />

1,4-α-D-glucan glucanohydrolase, E.C. 3.2.1.3)<br />

hydrolyzes single glucose units from the nonr<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>cing<br />

ends <strong>of</strong> amylose <strong>and</strong> amylopectin in a<br />

stepwise manner (Anto et al., 2006). Whereas αamylases<br />

(endo-1,4-α-D-glucan glucohydrolase,<br />

E.C. 3.2.1.1) are ex<strong>tr</strong>acellular enzymes that<br />

r<strong>and</strong>omly cleave the 1,4-α-D-glucosidic linkages<br />

between adjacent glucose units inside the linear<br />

amylose chain (Anto et al., 2006, Cas<strong>tr</strong>o et al.,<br />

20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, P<strong>and</strong>ey et al., 2005).<br />

Alpha-amylases are widely dis<strong>tr</strong>ibuted in nature<br />

<strong>and</strong> can be derived from various sources such as<br />

plants, animals <strong>and</strong> microorganisms (P<strong>and</strong>ey et al.,<br />

2005, Reddy et al., 2003 3-4). However, fungal <strong>and</strong><br />

bacterial amylases have predominant applications<br />

in the indus<strong>tr</strong>ial sector. Major advantage <strong>of</strong> using<br />

fungi for the production <strong>of</strong> amylases is the<br />

economical bulk production capacity <strong>and</strong> ease <strong>of</strong><br />

manipulation. Many species <strong>of</strong> Aspergillus <strong>and</strong><br />

Rhizopus are used as a source <strong>of</strong> fungal α-amylase<br />

(P<strong>and</strong>ey et al., 2005).<br />

Usually amylase production from fungi has<br />

been carried out using well defined chemical media<br />

by submerged fermentation (SMF) <strong>and</strong> solid state<br />

fermentation (SSF) in recent times (Mir<strong>and</strong>a et al.,<br />

1999). The economics <strong>of</strong> enzyme production using<br />

inexpensive raw materials can make an indus<strong>tr</strong>ial<br />

enzyme process competitive (Couto <strong>and</strong> Sanroman,<br />

2006).<br />

For the microbial α-amylase production, two<br />

types <strong>of</strong> fermentation methods are mainly used i.e.<br />

submerged <strong>and</strong> solid state (Norouzian et al., 2006).<br />

Submerged fermentation (SmF) is comparatively<br />

advanced <strong>and</strong> commercially important enzymes are<br />

<strong>tr</strong>aditionally produced by this method (Hashemi et<br />

al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>). Whereas, solid state fermentation (SSF)<br />

is an old technology <strong>and</strong> has been used since 2600<br />

BC. However, in recent year SSF has emerged as a<br />

well developed biotechnological tool for the<br />

production <strong>of</strong> enzymes (Bhatnagar et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>).<br />

Nowadays, spec<strong>tr</strong>um <strong>of</strong> applications <strong>of</strong> αamylase<br />

is also extending in many other areas such<br />

as analytical chemis<strong>tr</strong>y, clinical <strong>and</strong> medicinal<br />

diagnosis e.g. diagnosis <strong>of</strong> acute inflammation <strong>of</strong><br />

pancreas, macroamylasemia, perforated pelvic ulcer<br />

<strong>and</strong> mumps (Anto et al., 2006, Nimkar et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>,<br />

Chimata et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, Muralikrishna et al., 2005).In<br />

this study we reported here the process<br />

optimization for amylase production from two<br />

fungal species i.e. Aspergillus niger-ML-17 <strong>and</strong><br />

Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> using wheat bran as a<br />

solid subs<strong>tr</strong>ate fermentation.<br />

Materials <strong>and</strong> Methods<br />

Subs<strong>tr</strong>ate<br />

Wheat bran was procured from local market <strong>of</strong><br />

Lahore city <strong>and</strong> was used as a subs<strong>tr</strong>ate for amylase<br />

production in solid state fermentation.<br />

Microorganism <strong>and</strong> culture maintenance<br />

Fungal s<strong>tr</strong>ain <strong>of</strong> Aspergillus niger-ML-17 <strong>and</strong><br />

Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> was obtained from<br />

the Microbiology Laboratory <strong>of</strong> Food <strong>and</strong><br />

Biotechnology Research Center (FBRC), PCSIR<br />

Laboratories Complex, Lahore. The culture was<br />

maintained on Potato-Dex<strong>tr</strong>ose-Agar (PDA) slants.<br />

The slants were grown at 30°C for 5 days <strong>and</strong><br />

stored at 4°C.<br />

Inoculum preparation<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> mL <strong>of</strong> sterilized distilled water was added to a<br />

sporulated 5 days old PDA slant culture. An<br />

inoculum needle was used to dislodge the spore<br />

clusters under sterilized conditions <strong>and</strong> then it was<br />

shaken thoroughly to prepare homogenized spore<br />

suspension.<br />

Solid-state fermentation<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> g wheat bran amended with <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> mL <strong>of</strong> mineral<br />

salt solution containing (g/L) KH2PO4 <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, MgSO4 2,<br />

NaCl 2 <strong>and</strong> MnSO4 0.5 was taken in 250 mL cotton<br />

plugged Erlenmeyer flask, mixed homogenously<br />

<strong>and</strong> sterilized at 121°C for 15 min in an autoclave.<br />

Thereafter, the flask material was cooled at room<br />

temperature <strong>and</strong> inoculated with 1 mL spore<br />

suspensions <strong>of</strong> Aspergillus niger-ML-17 <strong>and</strong><br />

Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. The flasks were then<br />

incubated at 30°C for 5 days.<br />

Optimization <strong>of</strong> cultural <strong>and</strong> nu<strong>tr</strong>itional parameters<br />

Various process parameters were optimized for<br />

maximal enzyme production such as fermentation<br />

period (24-168 h), incubation temperature (20-<br />

40°C), initial pH (4-8), inoculum size (2, 5, 7, <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>,<br />

13, 15, 17%). Experiments were also performed to<br />

evaluate the influence <strong>of</strong> different carbon sources<br />

(maltose, glucose, galactose, lactose, sucrose,<br />

arabinose, cellulose, soluble starch) <strong>and</strong> ni<strong>tr</strong>ogen<br />

sources (yeast ex<strong>tr</strong>act, peptone, <strong>tr</strong>yptone, urea,


ammonium ci<strong>tr</strong>ate, ammonium phosphate,<br />

NH4NO3, (NH4)2SO4, NH4Cl <strong>and</strong> NaNO3) different<br />

metal salts (MnCl2, ZnCl2, CaCl2, MgSO4, FeSO4),<br />

NaCl concen<strong>tr</strong>ation (0.25-2.0%), surfactants<br />

(Tween-80, Triton-X-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0, sodium dodecyl<br />

sulphate, sodium lauryl sulphate) <strong>and</strong> different<br />

amino acids (asparginine, aspartic acid, proline,<br />

cystine, arginine ) on α-amylase production under<br />

the optimized fermentation conditions.<br />

Recovery <strong>of</strong> enzyme<br />

After the specified incubation period (in each case),<br />

50 mL <strong>of</strong> distilled water was added in each flask<br />

containing fermented mash <strong>and</strong> placed on a shaker<br />

at 200 rpm for 60 min. Afterward, the mixture was<br />

filtered <strong>and</strong> cen<strong>tr</strong>ifuged at 8,000 rpm for 15 min at<br />

4°C to remove the fungal spores <strong>and</strong> unwanted<br />

particles. The clear supernatant thus obtained after<br />

cen<strong>tr</strong>ifugation was used as a source <strong>of</strong> crude<br />

enzyme.<br />

Alpha amylase activity<br />

The activity <strong>of</strong> α-amylase was assayed as described<br />

earlier (Irfan et al., 2011) by incubating 0.5 mL <strong>of</strong><br />

the diluted enzyme with 0.5 mL soluble starch (0.5<br />

%, w/v) prepared in 0.1 M sodium Phosphate<br />

buffer, pH= 7. After incubation at 60 ºC for <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

minutes the reaction was stopped <strong>and</strong> the r<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>cing<br />

sugars released were assayed colorime<strong>tr</strong>ically by<br />

the addition <strong>of</strong> 1 mL <strong>of</strong> 3-5-dini<strong>tr</strong>osalicylic acid<br />

reagent. One enzyme activity unit (U) was defined<br />

as the amount <strong>of</strong> enzyme releasing 1 µmol <strong>of</strong><br />

maltose from the subs<strong>tr</strong>ate in 1 minute at 60 ºC.<br />

Statistical analysis<br />

All the data was statistically (SD) analyzed by<br />

using Micros<strong>of</strong>t excel computer programme.<br />

Results<br />

Amylase production in solid state fermentation 57<br />

The most widely used enzyme in the indus<strong>tr</strong>y for<br />

starch hydrolysis is α-amylase. These enzymes<br />

account for 65 % <strong>of</strong> enzyme market in the world<br />

(Muralikrishna et al., 2005). For the production <strong>of</strong><br />

commercially important enzymes, selection <strong>of</strong> a<br />

particular s<strong>tr</strong>ain remains a tedious task. Amylolytic<br />

enzymes are commonly produced by filamentous<br />

fungi preferably from species <strong>of</strong> Aspergillus <strong>and</strong><br />

Rhizopus (P<strong>and</strong>ey et al., 2005).<br />

Time course study for the production <strong>of</strong> αamylase<br />

Figure 1 depicts the time course study (24-120 h)<br />

for the production <strong>of</strong> α-amylase by Aspergillus<br />

niger-ML-17 <strong>and</strong> Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

using solid state fermentation. Optimum<br />

fermentation period <strong>of</strong> 96 h was best for both<br />

Aspergillus niger-ML-17 (4.7 ±0.14 IU) <strong>and</strong><br />

Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> (2.7 ±0.08 IU) in<br />

solid state fermentation. Further increase in the<br />

incubation period decreased the enzyme secretion.<br />

Therefore, incubation time <strong>of</strong> 96 h was selected as<br />

optimum time for the production <strong>of</strong> α-amylase in<br />

the subsequent experimental work. Maximum<br />

accumulation <strong>of</strong> α-amylase occurs during stationary<br />

phase. Further increase in incubation period<br />

decreased the production <strong>of</strong> α-amylase. It might be<br />

due to the deficiency <strong>of</strong> nu<strong>tr</strong>ients, accumulation <strong>of</strong><br />

toxic substances <strong>and</strong> proteolysis <strong>of</strong> α-amylase as<br />

interpreted by many workers (Chamber et al., 1999,<br />

Shafique et al., 2009). Abu et al., (2005) also<br />

reported maximum α-amylase production by<br />

Aspergillus niger after an incubation period <strong>of</strong> 96 h.<br />

Figure 1. Time course study <strong>of</strong> amylase production (Error bars represent the SD among replicates).


58 Muhammad IRFAN et al.<br />

Effect <strong>of</strong> initial pH <strong>of</strong> diluent on α-amylase<br />

production<br />

The effect <strong>of</strong> different initial pH (4-6.5) <strong>of</strong> the<br />

diluent on α-amylase production by Aspergillus<br />

niger-ML-17 <strong>and</strong> Rhizopus oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong><br />

using SSF is shown in figure 2. Enzyme production<br />

was maximum (3.7±0.015 IU) when initial pH <strong>of</strong><br />

the diluent was adjusted at 5.0 using s<strong>tr</strong>ains <strong>of</strong><br />

A.niger-ML-17 in SSF. When s<strong>tr</strong>ain <strong>of</strong><br />

R.ologosporus –ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> was employed for amylase<br />

production, it gave better yield (2.7 ± 0.016 IU) at<br />

6.0 initial pH <strong>of</strong> the diluent. Further increase in the<br />

initial pH <strong>of</strong> the diluent resulted decreased in the<br />

enzyme activity. It is due to the fact that fungal<br />

growth was optimum at this pH <strong>and</strong> hence the<br />

enzyme production. Initial pH <strong>of</strong> the medium is<br />

known to affect the synthesis <strong>and</strong> secretion <strong>of</strong> αamylase.<br />

Alpha amylase production by microbial<br />

s<strong>tr</strong>ains s<strong>tr</strong>ongly depends on the ex<strong>tr</strong>acellular pH as<br />

it influences many enzymatic reactions as well as<br />

the <strong>tr</strong>ansport <strong>of</strong> various components across the cell<br />

membrane (Ellaiah et al., 2002). In con<strong>tr</strong>ast to the<br />

present findings, Alva et al. (2007) achieved the<br />

optimal α-amylase production at initial pH 5.8 by<br />

Aspergillus sp. Conversely, this might be because<br />

the requirement <strong>of</strong> slightly acidic pH for optimum<br />

growth <strong>of</strong> fungi (Liu et al., 2008, Sun et al., 2009).<br />

Figure 2. Effect <strong>of</strong> initial pH <strong>of</strong> diluents on amylase production (Error bars represent the SD among<br />

replicates)<br />

Effect <strong>of</strong> temperature on the production <strong>of</strong> αamylase<br />

Figure 3 showed the effect <strong>of</strong> varying incubation<br />

temperature (20-40ºC) on the production <strong>of</strong> αamylase<br />

by Aspergillus niger-ML-17 <strong>and</strong><br />

R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> using SSF. Maximal enzyme<br />

production (3.5 ±0.034 IU) was obtained in<br />

fermentation flask that was incubated at 30ºC after<br />

the conidial inoculation <strong>of</strong> A.niger-ML-17. On the<br />

other h<strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> gave better<br />

enzyme production (2.5 ±0.023 IU) at 35 o C. All the<br />

other flasks that were incubated on temperatures<br />

other than these gave comparatively less production<br />

<strong>of</strong> α-amylase. Alpha amylase production by fungi is<br />

related to the growth which sequentially depends<br />

upon the incubation temperature. Many other<br />

researchers have also reported 30°C as optimum<br />

temperature for the fungal growth <strong>and</strong> enzyme<br />

production. This is because the enzyme production<br />

is growth associated <strong>and</strong> 30°C is optimum<br />

temperature for fungi <strong>and</strong> subsequently α-amylase<br />

production (Shafique et al., 2009, Dakhmouche et<br />

al., 2006).


Amylase production in solid state fermentation 59<br />

Figure 3. Effect <strong>of</strong> incubation temperature on amylase production (Error bars represent the SD among<br />

replicates).<br />

Effect <strong>of</strong> inoculum size on the production <strong>of</strong> αamylase<br />

Effect <strong>of</strong> inoculum size was checked by varying the<br />

concen<strong>tr</strong>ation <strong>of</strong> spores <strong>of</strong> A.niger-ML-17 <strong>and</strong><br />

R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> in solid state fermentation <strong>of</strong><br />

wheat bran. Optimum inoculum size <strong>of</strong> 5% (3.5<br />

±0.014 IU) <strong>and</strong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>% (2.9 ±0.011 IU) <strong>of</strong> A.niger-<br />

ML-17 <strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> gave highest<br />

yield <strong>of</strong> enzyme production respectively as shown<br />

in figure 4. By increasing the size <strong>of</strong> inoculum<br />

resulted in decreased enzyme production. Increased<br />

inoculum size resulted in increases moisture level<br />

which ultimately decreased the fungal growth <strong>and</strong><br />

enzyme production (Sharma et al., 1996). Ammar<br />

<strong>and</strong> El-Safey (2003) obtained highest yield <strong>of</strong><br />

amylase production from A. flavus var columnaris<br />

using inoculum size <strong>of</strong> 0.0637 x <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 6 /ml -1 . In<br />

another study 5 x <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> 6 spores per flask gave<br />

maximum enzyme production by Aspergillus niger<br />

ATCC 16404 (Dakhmouche et al., 2006). Zambare<br />

(20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) obtained highest enzyme production (1672-<br />

1693 U/gdfs) at inoculum level <strong>of</strong> 5-8% (v/w) in<br />

solid state fermentation using s<strong>tr</strong>ain <strong>of</strong> A.oryzae.<br />

Figure 4. Effect <strong>of</strong> inoculum size on amylase production (Error bars represent the SD among replicates).<br />

Effect <strong>of</strong> different carbon sources on the<br />

production <strong>of</strong> α-amylase<br />

Different carbon sources i.e. soluble starch,<br />

glucose, galactose, lactose, arabinose, cellulose,<br />

maltose <strong>and</strong> sucrose were also evaluated for the<br />

production <strong>of</strong> α-amylase (Figure 5). A.niger-ML-<br />

17 better used the maltose as a carbon source <strong>and</strong><br />

improved enzyme production (4.4 ± 0.042 IU) as<br />

compared to con<strong>tr</strong>ol while soluble starch (3.2 ±<br />

0.027 IU) was found best carbon source for<br />

amylase production in case <strong>of</strong> R.oligosporus-ML-<br />

<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. All the other tested carbon sources gave<br />

comparatively less enzyme production which is<br />

supplemented to the fermentation medium at<br />

concen<strong>tr</strong>ation <strong>of</strong> 0.25% (w/v). Therefore, soluble<br />

starch <strong>and</strong> maltose was optimized as a carbon<br />

source in the further experimental work<br />

R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> <strong>and</strong> A.niger-ML-17<br />

respectively. Many other workers also reported<br />

starch as the best carbon source for the production<br />

<strong>of</strong> alpha amylase (Gigras et al., 2002, Dharani<br />

2004). It is because α-amylase is an ex<strong>tr</strong>acellular<br />

enzyme <strong>and</strong> its production is increased by its<br />

subs<strong>tr</strong>ate (Chimata et al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>; Varalakshmi et al.,<br />

2009).


60 Muhammad IRFAN et al.<br />

Figure 5. Effect <strong>of</strong> different carbon sources on amylase production (Error bars represent the SD among<br />

replicates).<br />

production by employing s<strong>tr</strong>ains <strong>of</strong> A.niger-ML-17<br />

Effect <strong>of</strong> different ni<strong>tr</strong>ogen sources on the<br />

<strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. Thus, yeast ex<strong>tr</strong>act was<br />

production <strong>of</strong> α-amylase<br />

used as an optimized organic ni<strong>tr</strong>ogen sources in<br />

Figure 6 depicts the effect <strong>of</strong> ni<strong>tr</strong>ogen sources this further research. Hashemi et al., (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) also<br />

(peptone, urea, <strong>tr</strong>yptone, casein, skimmed milk <strong>and</strong> obtained maximum α-amylase production (140<br />

yeast ex<strong>tr</strong>act NH4SO4, NH4NO3, NaNO3, U/g) with NH4NO3 but at a level <strong>of</strong> 1% (w/v).<br />

ammonium ci<strong>tr</strong>ate & ammonium phosphate) on the Amylase production is enhanced with the addition<br />

production <strong>of</strong> α-amylase by Aspergillus niger-ML- <strong>of</strong> organic ni<strong>tr</strong>ogen sources (Hamilton et al., 1999,<br />

17 <strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> using SSF. Among all Hayashida et al., 1998 28,29). Many workers (Anto<br />

the selected inorganic ni<strong>tr</strong>ogen sources maximum et al., 2006, Pederson <strong>and</strong> Neilson 2000, Oshoma et<br />

amylase production (3.9 ±0.1IU) was obtained, al., 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>, Valaparla 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) reported that yeast<br />

when NaNO3 (0.25%, w/v) was used in medium ex<strong>tr</strong>act as an organic ni<strong>tr</strong>ogen source produces<br />

inoculated with spores <strong>of</strong> A.niger-ML-17 while the maximum amylase production. Pederson <strong>and</strong><br />

s<strong>tr</strong>ain R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> best utilized (2.6 ±0.08 Neilson (2000) optimized (NH4)2SO4 for maximum<br />

IU) NH4NO3 at concen<strong>tr</strong>ation <strong>of</strong> 0.25% for amylase amylase productivity by A. oryzae.<br />

production. In case <strong>of</strong> organic ni<strong>tr</strong>ogen sources<br />

yeast ex<strong>tr</strong>act was found better for amylase<br />

Figure 6. Effect <strong>of</strong> ni<strong>tr</strong>ogen sources on amylase production (Error bars represent the SD among replicates).<br />

Effect <strong>of</strong> different metal salts on amylase<br />

production in SSF<br />

Different metal salts (MnCl2, ZnCl2, CaCl2, MgSO4<br />

<strong>and</strong> FeSO4) were added to the fermentation<br />

medium to enhance the amylase yield by A.niger-<br />

ML-17 <strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> in solid state<br />

fermentation. Results (Fig. 7) revealed that addition<br />

<strong>of</strong> MgSO4 at 0.1% concen<strong>tr</strong>ation to the medium<br />

favored the enzyme production by both tested<br />

fungi. Of all the metal salts FeSO4 lowers the<br />

enzyme production as compared to con<strong>tr</strong>ol.<br />

Rameshkumar <strong>and</strong> Sivasudha (2011) reported that<br />

supplementation <strong>of</strong> 0.1% CaCl2 as a mineral source<br />

to the medium effectively increased the amylase<br />

production by B.subtilis in solid state fermentation.<br />

According to Negi <strong>and</strong> Banerjee (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) addition <strong>of</strong><br />

HgCl2 to the medium increases the amylase<br />

production up to 2.44 folds. Most <strong>of</strong> the study<br />

indicated that the enzyme did not require a specific<br />

ion for their proper functioning (Reyed 2007).<br />

Sanghvi et al., (2011) produced amylase from<br />

Chrysosporium asperatum in submerged<br />

fermentation <strong>and</strong> reported that supplementation <strong>of</strong><br />

FeCl3 in the medium as a mineral source slightly<br />

increased the amylase production.


Amylase production in solid state fermentation 61<br />

Figure 7. Effect <strong>of</strong> different metal salts on amylase production (Error bars represent the SD among<br />

replicates).<br />

Effect <strong>of</strong> different concen<strong>tr</strong>ation <strong>of</strong> NaCl on<br />

amylase production in SSF<br />

In this experiment, different concen<strong>tr</strong>ations <strong>of</strong> NaCl<br />

(0.25-2.0 %) were employed to check the effect <strong>of</strong><br />

different concen<strong>tr</strong>ation <strong>of</strong> NaCl on amylase<br />

production by A.niger-ML-17 <strong>and</strong> R.oligosporus-<br />

ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. Results indicated (Fig. 8) that A.niger-ML-<br />

17 showed maximum (3.6 ±0.17 IU) enzyme<br />

production at 0.5% concen<strong>tr</strong>ation <strong>of</strong> NaCl in the<br />

medium while R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> gave<br />

maximum titer <strong>of</strong> amylase (2.5± 0.13 IU) at 0.75%<br />

concen<strong>tr</strong>ation <strong>of</strong> NaCl. By increasing the NaCl<br />

concen<strong>tr</strong>ation beyond this decline in enzyme<br />

production was observed. Kokab et al., (2003)<br />

produced amylase from Bacillus subtilis in solid<br />

state fermentation having medium containing 1.5%<br />

concen<strong>tr</strong>ation <strong>of</strong> NaCl. Patel et al., (2005) purified<br />

<strong>and</strong> characterized the amylase enzyme from<br />

A.oryzae in SSF having medium with 0.1%<br />

concen<strong>tr</strong>ation <strong>of</strong> NaCl.<br />

Figure 8. Effect <strong>of</strong> different concen<strong>tr</strong>ations <strong>of</strong> NaCl on amylase production (Error bars represent the SD<br />

among replicates).<br />

Effect <strong>of</strong> surfactants on amylase production<br />

Figure 9 illus<strong>tr</strong>ated the effect <strong>of</strong> different<br />

surfactants on amylase production by A.niger –ML-<br />

17 <strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. Result showed that<br />

addition <strong>of</strong> Tween 80 (0.05 v/w) to the medium is<br />

effective in enzyme production by both A.niger-<br />

ML-17 (3.7 IU) <strong>and</strong> R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> (2.5 IU)<br />

in SSF. SDS <strong>and</strong> SLS had no s<strong>tr</strong>ong influence on<br />

enzyme production in solid state fermentation by<br />

tested fungi. Negi <strong>and</strong> Banerjee (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>) reported<br />

that Triton-X-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0 <strong>and</strong> sodium laurate sulphate are<br />

the stimulator for enzyme production but sodium<br />

laurate sulphate increased amylase production by<br />

1.28 folds. Gupta et al. (2008) also reported that<br />

different surfactants like Tween-80, Triton X-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>0<br />

<strong>and</strong> SDS had s<strong>tr</strong>ong influence on amylase<br />

production in submerged fermentation using<br />

Aspergillus niger. Vu et al. (2011) stated that use <strong>of</strong><br />

Tween-80 as a surfactant effectively enhances the<br />

cellulose production in solid state fermentation.<br />

Production <strong>of</strong> hydrolytic enzymes can be enhanced<br />

by the surfactants <strong>and</strong> fatty acids (Singh et al.,<br />

1991). When surfactants are added, they enhance<br />

the microbial growth in SSF by promoting the<br />

pene<strong>tr</strong>ation <strong>of</strong> water into the solid subs<strong>tr</strong>ate ma<strong>tr</strong>ix,<br />

leading in an increase <strong>of</strong> surface area (Asgher et al.,<br />

2006).


62 Muhammad IRFAN et al.<br />

Figure 9. Effect <strong>of</strong> different surfactants on amylase production (Error bars represents the SD among<br />

replicates).<br />

Effect <strong>of</strong> different amino acids on amylase<br />

production in SSF<br />

To check the effect <strong>of</strong> different amino acids on<br />

amylase production, various amino acids like<br />

asparaginine, aspartic acid, praline, cysteine <strong>and</strong><br />

arginine were evaluated by A.niger –ML-17<strong>and</strong><br />

R.oligosporus-ML-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> in SSF. Results (Fig. <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>)<br />

revealed that supplementation <strong>of</strong> asparginine with<br />

concen<strong>tr</strong>ation <strong>of</strong> 0.0001% favored enzyme<br />

production in solid state fermentation. Rest <strong>of</strong> the<br />

amino acids showed no significant effect on<br />

enzyme production.<br />

Sidkey et al. (20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>), isolated different s<strong>tr</strong>ains<br />

from natural environment <strong>and</strong> screened for amylase<br />

production. Among various screened s<strong>tr</strong>ains<br />

Aspergillus flavus was found to be potent amylase<br />

producer when supplementations <strong>of</strong> methionine as<br />

an amino acid cotent to the medium. Some workers<br />

(Moustafa, 2002; Sidkey et al., 1996) reported that<br />

acidic amino acids like glutamic <strong>and</strong> aspartic acids<br />

are the best inducers for amylase production.<br />

Figure <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>. Effect <strong>of</strong> different amino acids on amylase production (Error bars represent the SD among<br />

replicates).<br />

References<br />

Abu EA, Ado SA, James DB. Raw starch<br />

degrading amylase production by mixed culture<br />

<strong>of</strong> Aspergillus niger <strong>and</strong> Saccharomyces<br />

cerevisiae grown on Sorghum pomace. Afr J<br />

Biotechnol. 4(8): 785- 790, 2005.<br />

Alva S, Anumpama J, Savla J, Chiu YY, Vyshali<br />

P, Shruti M, Yogeetha BS, Bhavya D, Purvi J,<br />

Ruchi K, Kumudini BS, Varalakshmi KN.<br />

Production <strong>and</strong> characterization <strong>of</strong> fungal<br />

amylase enzyme isolated from Aspergillus sp.<br />

JGI 12 in solid state culture. Afri J Biotechnol.<br />

6(5):576-581, 2007.<br />

Ammar MS <strong>and</strong> El-Safey EM. Production <strong>of</strong> αamylase<br />

enzyme produced by Aspergillus flavus<br />

var. columnaris, S-9KP from maize meal <strong>and</strong><br />

rice husk under solid-state fermentation (SSF)<br />

conditions in open air. International Conference<br />

<strong>of</strong> Enzymes in the Environment, Activity,<br />

Ecology <strong>and</strong> Applications, Praha, Czech<br />

Republic, July 14-17, pp.33, 2003.<br />

Anto H, Trivedi UB <strong>and</strong> Patel KC. Glucoamylase<br />

production by solid-state fermentation using<br />

rice flake manufacturing waste products as


subs<strong>tr</strong>ate. Bioresource Technol. 97(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>):1161-<br />

1166, 2006.<br />

Asgher M, Asad MJ, Legge RL. Enhanced lignin<br />

peroxidase synthesis by Phanerochaete<br />

chrysosporium in solid state bioprocessing <strong>of</strong> a<br />

lignocellulosic subs<strong>tr</strong>ate. World J Microb<br />

Biotechnol. 22:449-53, 2006.<br />

Bhatnagar D, Joseph L, Raj RP. Amylase <strong>and</strong> acid<br />

protease production by solid state fermentation<br />

using Aspergillus niger from mangrove swamp.<br />

Indian J Fish. 57(1):45-51, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Cas<strong>tr</strong>o AM, Carvalho DF, Freire DMG, Castilho<br />

LR. Economic analysis <strong>of</strong> the production <strong>of</strong><br />

amylases <strong>and</strong> other hydrolases by Aspergillus<br />

awamori in solid-state fermentation <strong>of</strong> babassu<br />

cake. SAGE-Hindawi Access to Research<br />

Enzyme Research, 1, 9, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Chamber R, Haddaoui E, Petitgla<strong>tr</strong>an MF, Lindy O,<br />

Sarvas M. Bacillus subtilis α-amylase. The rate<br />

limiting step <strong>of</strong> secretion is growth phase in<br />

dependent. FEMS Microbiol Lett. 173 (1):127-<br />

131, 1999.<br />

Chimata MK, Sasidhar P, Challa S. Production <strong>of</strong><br />

ex<strong>tr</strong>acellular amylase from agricultural residues<br />

by a newly isolated Aspergillus species in solid<br />

state fermentation. Afri J Biotechnol.<br />

9(32):5162-5169, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Couto SR <strong>and</strong> Sanroman MA. Application <strong>of</strong> solidstate<br />

fermentation to food indus<strong>tr</strong>y. J Food Eng.<br />

76:291-302, 2006.<br />

Dakhmouche S, Gheribi-Aoulmi Z, Meraihi Z,<br />

Bennamoun L. Application <strong>of</strong> a statistical<br />

design to the optimization <strong>of</strong> culture medium<br />

for a-amylase production by Aspergillus niger<br />

ATCC 16404 grown on orange waste powder. J<br />

Food Eng. 73 (2):190-197, 2006.<br />

Dharani APV. Effect <strong>of</strong> C:N ratio on alpha amylase<br />

production by Bacillus licheniformis SPT 27<br />

Afr. J. Biotech., 3: 519-522, 2004.<br />

Ellaiah PK, Adinarayana Y, Bhavani P <strong>and</strong><br />

Padmaja B. Optimization <strong>of</strong> process parameters<br />

for glucoamylase production under solid state<br />

fermentation by a newly isolated Aspergillus<br />

species. Process Biochem. 38:615–620, 2002.<br />

Gigras P, Sahai V, Gupta R. Statistical media<br />

optimization <strong>and</strong> production <strong>of</strong> ITS alpha<br />

amylase from Aspergillus oryzae in a<br />

bioreactor. Current Microbiol. 45:203–208,<br />

2002.<br />

Amylase production in solid state fermentation 63<br />

Gupta A, Gupta VK, Modi DR, Yadava LP.<br />

Production <strong>and</strong> characterization <strong>of</strong> alpha<br />

amylase from Aspergillus niger. Biotechnology.<br />

7(3):551-556, 2008.<br />

Hamilton LH, Kelly CT, Fogarty WM. Production<br />

<strong>and</strong> properties <strong>of</strong> the raw starch-digesting αamylase<br />

<strong>of</strong> Bacillus species IMD 435. Process<br />

Biochem. 35(1–2):27–31, 1999.<br />

Hashemi M, Shojaosadati SA, Razavi SH, Mousavi<br />

SM, Khajeh K, Safari M. The efficiency <strong>of</strong><br />

temperature shift s<strong>tr</strong>ategy to improve the<br />

production <strong>of</strong> α-Amylase by Bacillus sp. in a<br />

solid-state fermentation system. Food <strong>and</strong><br />

Bioprocess Technol. 5(3): <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>93-<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>99, 2012.<br />

Hayashida S, Teamoto Y, Inove T. Production <strong>and</strong><br />

characteristics <strong>of</strong> raw potato Starch digesting<br />

amylase from Bacillus subtilis. 65. Appl<br />

Environ Microbiol. 54: 1516-1522, 1998.<br />

Irfan M, Nadeem M, Syed Q, Baig S. Production<br />

<strong>of</strong> thermostable α-amylase from Bacillus sp. in<br />

solid state fermentation. J Appl Sci Res.<br />

7(5):607-617, 2011.<br />

Kokab S, Asghar M, Rehman K, Asad MJ, Adedyo<br />

O. Bio-Processing <strong>of</strong> Banana Peel for α-<br />

Amylase Production by Bacillus subtilis. Int J<br />

Agr Biol. 5, 1, 2003.<br />

Liu XD <strong>and</strong> Xu Y. A novel raw starch digesting αamylase<br />

from a newly isolated Bacillus sp. YX-<br />

1, Purification <strong>and</strong> characterization.<br />

Bioresource Technol. 99: 4315-4320, 2008.<br />

Mir<strong>and</strong>a OA, Salgueiro AA, Pimental NCB,<br />

Limafilho JJ, Melo EHM, Duran N. Lipase<br />

production by a Brazilian s<strong>tr</strong>ain <strong>of</strong> Penicillium<br />

ci<strong>tr</strong>inium using indus<strong>tr</strong>ial residue. Bioresource<br />

Technology 69 : 145-149, 1999.<br />

Moustafa OA. Thermostable alpha-amylase(s) from<br />

irradiated microbial origin utilizing agricultural<br />

<strong>and</strong> environmental wastes under solid state<br />

fermentation conditions. M.Sc. Thesis. Al-Azhar<br />

University, 2002.<br />

Muralikrishna G <strong>and</strong> Nirmala M. Cereal αamylases-an<br />

overview. Carbohydrate Polym.<br />

60: 163-173, 2005.<br />

Negi S <strong>and</strong> Banerjee R. Optimization <strong>of</strong> culture<br />

parameters to enhance production <strong>of</strong> amylase<br />

<strong>and</strong> protease from Aspergillus awamori in a<br />

single fermentation. Afric J Biochem Res.<br />

2(3):73-80, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.


64 Muhammad IRFAN et al.<br />

Nimkar MD, Deogade NG, Kawale M. Production<br />

<strong>of</strong> alpha-amylase from Bacillus subtilis &<br />

Aspergillus niger using different agro waste by<br />

solid state fermentation. Asiatic J Biotechnol<br />

Res. 01:23-28, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Norouzan D, Akbarzadeh A, Scharer JM, Young<br />

MM. Fungal glucoamylases. Biotechnol Adv.<br />

24(1): 80-85, 2006.<br />

Oshoma CE, Imarhiagbe EE, Ikenebomeh MJ,<br />

Eigbaredon HE. Ni<strong>tr</strong>ogen supplements effect on<br />

amylase production by Aspergillus niger using<br />

cassava whey medium. Afri J Biotechnol. 9<br />

(5):682-686, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

P<strong>and</strong>ey A, Webb C, Soccol CR, Larroche C.<br />

Enzyme Technology, New Delhi, Asiatech<br />

publishers, Inc. 197, 2005.<br />

Pederson H <strong>and</strong> Nielsen J. The influence <strong>of</strong><br />

ni<strong>tr</strong>ogen sources on the α-amylase productivity<br />

<strong>of</strong> Aspergillus oryzae in continuous cultures.<br />

Appl Microb Biotechnol. 53(3): 278-281, 2000.<br />

Patel AK, Nampoothiri MK, Ramach<strong>and</strong>aran S.<br />

Partial purification <strong>and</strong> characterization <strong>of</strong> αamylase<br />

produced by Aspergillus oryzae using<br />

spent brewing grains. Indian J Biotechnol.<br />

4:336-341, 2005.<br />

Rameshkumar A, Sivasudha T. Optimization <strong>of</strong><br />

Nu<strong>tr</strong>itional Constitute for Enhanced Alpha<br />

amylase Production Using by Solid State<br />

Fermentation Technology. Int J Microb Res. 2<br />

(2):143-148, 2011.<br />

Reddy AS, Jharat R, Byrne N. Purification <strong>and</strong><br />

properties <strong>of</strong> amylase from A review. J Food<br />

Biochem. 21:281-302, 2003.<br />

Reyed RM. Biosynthesis <strong>and</strong> properties <strong>of</strong><br />

ex<strong>tr</strong>acellular amylase by encapsulation<br />

Bifidoba<strong>tr</strong>ium bifidum in batch culture.<br />

Aus<strong>tr</strong>alian J Basic Appl Sci. 1: 7-14, 2007.<br />

Sanghvi GV, Rina DK, Kishore SR. Isolation,<br />

Optimization, <strong>and</strong> Partial Purification <strong>of</strong><br />

Amylase from Chrysosporium asperatum by<br />

Submerged Fermentation. J Microb Biotechnol.<br />

21(5):470–476, 2011.<br />

Shafique S, Bajwa R, Shafique S. Screening <strong>of</strong><br />

Aspergillus niger <strong>and</strong> A. flavus s<strong>tr</strong>ains for ex<strong>tr</strong>a<br />

cellular α-amylase activity. Pak J Bot.<br />

41(2):897-905, 2009.<br />

Sharma DK, Tiwari M, Behere BK. Solid state<br />

fermentation <strong>of</strong> new subs<strong>tr</strong>ates for production <strong>of</strong><br />

cellulase <strong>and</strong> other biopolymer hydrolyzing<br />

enzymes. Appl Biochem Biotechnol. 15:495-<br />

500, 1996.<br />

Sidkey NM, Abo-Shadi MA, Al-Mu<strong>tr</strong>afy AM,<br />

Sefergy F, Al-Reheily N. Screening <strong>of</strong><br />

Microorganisms Isolated from some Enviro-<br />

Agro-Indus<strong>tr</strong>ial Wastes in Saudi Arabia for<br />

Amylase Product. J American Sci. 6(<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>):926-<br />

939, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Sidkey NM, Shash SM, Ammar MS. Regulation <strong>of</strong><br />

α-amylase biosynthesis by Aspergillus sp. ,S-7<br />

attaching the Nile Hyacinth homogenate<br />

produced under laboratory scale fermentation<br />

conditions. Al-Azhar Bullutin Sci. 7(1):437-488,<br />

1996.<br />

Singh A, Abidi AB, Darmwal NS, Agrawal AK.<br />

Influence <strong>of</strong> nu<strong>tr</strong>itional factors <strong>of</strong> cellulase<br />

production from natural lignocellulosic residues<br />

by Aspergillus niger. Agri Biol Res. 7:19-27,<br />

1991.<br />

Sun H, Ge X, Wang L, Zhao P, Peng M.<br />

Microbial production <strong>of</strong> raw starch digesting<br />

enzymes. Afr J Biotechnol. 8 (9):1734-1739,<br />

2009.<br />

Varalakshmi KN, Kumudini BS, N<strong>and</strong>ini BN,<br />

Solomon J, Suhas R, Mahesh B, Kavitha AP.<br />

Production <strong>and</strong> characterization <strong>of</strong> α-amylase<br />

from Aspergillus niger JGI 24 isolated in<br />

Bangalore. Polish J Microbiol. 58: 29-36,<br />

2009.<br />

Valaparla VK. Purification <strong>and</strong> properties <strong>of</strong> a<br />

thermostable α-amylase by Acremonium<br />

Sporosulcatum. Int J Biotechnol Biochem.<br />

6(1):25–34, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.<br />

Vu VH, Pham TA, Kim K. Improvement <strong>of</strong> fungal<br />

cellulase production by mutation <strong>and</strong><br />

optimization <strong>of</strong> solid state fermentation.<br />

Mycobiology. 39(1): 20-25, 2011.<br />

Zambare V. Solid state fermentation <strong>of</strong> Aspergillus<br />

oryzae for Glucoamylase Production on Agro<br />

residues. Int J Life Sci. 4:16-25, 20<s<strong>tr</strong>ong>10</s<strong>tr</strong>ong>.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology - GUIDELINES for AUTHORS<br />

General<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology<br />

(J<strong>Cell</strong>MolBiol) is an international journal which<br />

covers original works in the field <strong>of</strong> cell biology,<br />

molecular biology, genetics, microbiology,<br />

neurobiology, bioinformatics <strong>and</strong> related topics.<br />

The <strong>of</strong>ficial language <strong>of</strong> the journal is English,<br />

however manuscripts in Turkish are accepted as<br />

well.<br />

Conditions for publication<br />

This journal publishes research articles, review<br />

articles, short communications, book/s<strong>of</strong>tware<br />

reviews, case reports <strong>and</strong> letters to the editor.<br />

Research articles: Only original con<strong>tr</strong>ibutions will<br />

be accepted which have not been published<br />

previously. Manuscripts should not exceed 15<br />

papers <strong>of</strong> printed text, including tables, figures <strong>and</strong><br />

references<br />

Review articles: Reviews <strong>of</strong> recent developments in<br />

a research field <strong>and</strong> ideas will be accepted.<br />

Manuscripts should not exceed 15 papers <strong>of</strong> printed<br />

text. Illus<strong>tr</strong>ations are encouraged.<br />

Short communications: These include small-scale<br />

investigations or innovative methods, techniques,<br />

clinical <strong>tr</strong>ials <strong>and</strong> epidemiological studies. It should<br />

not exceed 3 pages.<br />

Letters to editor: These include opinions, news <strong>and</strong><br />

suggestions. Letters should not exceed 2 papers <strong>of</strong><br />

printed text.<br />

Case Reports: These include individual<br />

observations based on small numbers <strong>of</strong> subjects.<br />

This type <strong>of</strong> research cannot indicate causality but<br />

may indicate areas for further research.<br />

REVISED<br />

December 2011<br />

Manuscripts should be submitted by e-mail to:<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Molecular Biology<br />

Haliç Üniversitesi<br />

Fen Edebiyat Fakültesi<br />

Moleküler Biyoloji ve Genetik Bölümü<br />

Sıracevizler Cad. No:29<br />

Bomonti-Şişli 34381, İstanbul-TÜRKİYE<br />

Tel: +90 212 343 08 87, Fax: +90 212 231 06 31<br />

E-Mail: <s<strong>tr</strong>ong>jcmb</s<strong>tr</strong>ong>@<s<strong>tr</strong>ong>halic</s<strong>tr</strong>ong>.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.<strong>tr</strong><br />

65<br />

Book/s<strong>of</strong>tware reviews: Short but concise<br />

description <strong>of</strong> the book/s<strong>of</strong>tware, not exceeding a<br />

page. Book/s<strong>of</strong>tware reviews are not peer reviewed.<br />

Presentation<br />

Papers should be typed clearly, double-spaced with<br />

3 cm wide margins.<br />

Manuscripts should be prepared using Word<br />

Processor.<br />

Cover Letter: You may briefly explain your work<br />

<strong>and</strong> its con<strong>tr</strong>ibution to present knowledge.<br />

Title Page: The first page <strong>of</strong> your manuscript<br />

should be a title page containing the type <strong>of</strong> paper;<br />

the title; all authors' full names, <strong>and</strong> affiliations;<br />

<strong>and</strong> the corresponding author's contact address<br />

(including phone <strong>and</strong> fax numbers) <strong>and</strong> e-mail<br />

address. The title should be as short as possible, but<br />

should give adequate information regarding the<br />

contents. Authors should also state a running title<br />

<strong>of</strong> no more than 50 characters including spaces.<br />

All pages must be numbered.<br />

<s<strong>tr</strong>ong>Full</s<strong>tr</strong>ong> Paper<br />

The full paper should be divided into the following<br />

parts in the order indicated:


66<br />

Abs<strong>tr</strong>act: A brief, informative abs<strong>tr</strong>act, not<br />

exceeding 200 words, should be provided in<br />

English <strong>and</strong> in Turkish. For authors who are not<br />

native Turkish speakers, J<strong>Cell</strong>MolBiol can provide<br />

the Turkish abs<strong>tr</strong>act.<br />

Keywords: Immediately following the abs<strong>tr</strong>act,<br />

authors should provide 5 keywords or phrases that<br />

reflect the content <strong>of</strong> the article.<br />

In<strong>tr</strong>oduction should include theory, hypotheses,<br />

prior work<br />

Material <strong>and</strong> methods may include subheadings<br />

Results: If the study consists <strong>of</strong> different parts,<br />

subheadings in this section should be consistent<br />

with subheadings in the methods.<br />

Discussion<br />

Acknowledgements should precede the list <strong>of</strong><br />

references<br />

References: Papers cited in the manuscript should<br />

be listed in alphabetical order according to the first<br />

author's surname.<br />

Tables <strong>and</strong> Figures<br />

• Tables <strong>and</strong> figures should both be embedded<br />

within the text in their appropriate positions <strong>and</strong> be<br />

submitted separately.<br />

• Elec<strong>tr</strong>onically submitted figures are preferred in<br />

*.jpg or *.tiff (min. 300 dpi) formats. Bar scales<br />

should be drawn directly on the figures when<br />

necessary. Figure legends should not be included in<br />

the *jpg or *tif files.<br />

• Each table should be accompanied by a short<br />

ins<strong>tr</strong>uctive title line plus an explanatory caption at<br />

the top. Indicate footnotes within tables by<br />

superscript letters <strong>and</strong> type footnotes below the<br />

table.<br />

• All the tables <strong>and</strong> figures must be referred to<br />

within the text.<br />

Units, Abbreviations <strong>and</strong> Scientific Names<br />

• Only SI units should be used. Current<br />

abbreviations can be used without explanation,<br />

others must be explained.<br />

• All acronyms/abbreviations must be explained<br />

in parenthesis after their first occurrence. If many<br />

unfamiliar acronyms/abbreviations are used, please<br />

REVISED<br />

December 2011<br />

compile them in an "Abbreviations" section at the<br />

end <strong>of</strong> the paper.<br />

• Latin expressions should be typed in italics.<br />

Referencing<br />

• In the text, citations with two authors should<br />

take the form: Smith <strong>and</strong> Robinson,1990. If several<br />

papers are cited by the same author in the same<br />

year, they should be lettered in sequence (1990a),<br />

(1990b), etc. When papers are by more then two<br />

authors they should be cited as Smith et al.,1990. In<br />

cases where more than one reference is written for<br />

the same sentence, they should appear in ascending<br />

publication order, e.g. (Jones et al., 2005; Smith et<br />

al., 2007; Brown et al., 2009).<br />

• In the list, references must be placed in<br />

alphabetical order. The following models for the<br />

reference list cover all situations. The punctuation<br />

given must be exactly followed. The journal titles<br />

should be abbreviated appropriately.<br />

Redford IR. Evidence for a general relationship<br />

between the induced level <strong>of</strong> DNA double<br />

s<strong>tr</strong><strong>and</strong> breakage <strong>and</strong> cell killing after Xirradiation<br />

<strong>of</strong> mammalian cells. Int J Radiat<br />

Biol. 49: 611- 620, 1986.<br />

Tccioli CE, Cottlieb TM, Blund T. Product <strong>of</strong> the<br />

XRCCS gene <strong>and</strong> its role in DNA repair <strong>and</strong><br />

V(D)J recombination. Science. 265: 1442-1445,<br />

1994<br />

Ohlrogge JB. Biochemis<strong>tr</strong>y <strong>of</strong> plant acyl carrier<br />

proteins. The Biochemis<strong>tr</strong>y <strong>of</strong> Plants: A<br />

Comprehensive Treatise. Stumpf PK <strong>and</strong> Conn<br />

EE (Ed). Academic Press, New York. 137-157,<br />

1987.<br />

Brown LA. How to cope with your supervisor. PhD<br />

Thesis. University <strong>of</strong> New Orleans, 2005.<br />

Web document with no author: Leafy seadragons<br />

<strong>and</strong> weedy seadragons 2001. Re<strong>tr</strong>ieved<br />

November 13, 2002, from http:// www.<br />

windspeed.net.au/jenny/seadragons/<br />

Web document with author: Dawson J, Smith L,<br />

Deubert K. Referencing, not plagiarism.<br />

Re<strong>tr</strong>ieved October 31, 2002 from http:<br />

//study<strong>tr</strong>ekk.lis.curtin.<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>.au/<br />

• Only papers published or in press should be<br />

cited in the literature list. Unpublished results,<br />

including submitted manuscripts <strong>and</strong> those in<br />

preparation, should be indicated as unpublished<br />

data in the text.


Submission Policies <strong>and</strong> Authorship<br />

Upon submission <strong>of</strong> a manuscript, it is accepted<br />

that all co-authors have approved the contents <strong>of</strong><br />

the manuscript <strong>and</strong> its submission by the<br />

corresponding author, <strong>and</strong> that the corresponding<br />

author is authorized to represent all co-authors in<br />

pre-publication discussions with J<strong>Cell</strong>MolBiol.<br />

The corresponding author is responsible for<br />

ensuring that all the con<strong>tr</strong>ibutors to the relevant<br />

work are listed as authors <strong>and</strong> that all authors have<br />

aggreed to the manuscript’s content <strong>and</strong> its<br />

submission to the J<strong>Cell</strong>MolBiol. In case the <strong>Journal</strong><br />

happens to be aware <strong>of</strong> an authorship dispute,<br />

authorship must be approved in writing by all <strong>of</strong> the<br />

parties.<br />

Cost<br />

There are no submission fees or page charges.<br />

Criteria for the Selection <strong>of</strong> Manuscripts<br />

Manuscripts should meet the following criteria: The<br />

study conducted is material is original <strong>and</strong> ethical,<br />

the writing is clear; the study methods are<br />

appropriate, the data are valid, the conclusions are<br />

reasonable <strong>and</strong> supported by the data; the<br />

information is important; <strong>and</strong> the topic is<br />

interesting to our readership.<br />

Editorial Processes<br />

Researchers may request informal feedback from<br />

the editors in a particular manuscript. The<br />

presubmission process aids in the submission<br />

decision for authors.<br />

When J<strong>Cell</strong>MolBiol receives a manuscript, the<br />

Editor-in-Chief will first decide whether the<br />

manuscript meets the formal criteria specified with<br />

“Guidelines for Authors” <strong>and</strong> whether it fits within<br />

the scope <strong>of</strong> the <strong>Journal</strong>. In case <strong>of</strong> doubt on the<br />

basis <strong>of</strong> initial review, the Editor-in-Chief will<br />

consult other members <strong>of</strong> the Editorial Board.<br />

Manuscripts that are found suitable for peer review<br />

will be assigned to two expert reviewers. Reviewers<br />

may either be Editorial/Advisory Board members<br />

or external experts selected by the Editorial Board.<br />

The corresponding author is notified by e-mail<br />

when the editor decides to send a paper for review.<br />

The reviewers will have up to three weeks to<br />

review the submitted article. After peer review, the<br />

editor will contact the author. If the author is<br />

required to submit a revised version, the revised<br />

version has to be submitted by the author within<br />

REVISED<br />

December 2011<br />

67<br />

two weeks. Otherwise, the manuscript will be<br />

removed from the manuscript submission queue<br />

<strong>and</strong> will be considered rejected.<br />

In cases where the referees have requested welldefined<br />

changes to the manuscript, editors may<br />

request a revised manuscript that addresses to<br />

referees’ concerns. The revised version is sent back<br />

to the original referees for re-review. In cases<br />

where the referees’ concerns are more wideranging,<br />

editors may reject the manuscript. The<br />

revised manuscript should be accompanied by a<br />

cover letter that includes a point-by-point response<br />

to referees’ comments <strong>and</strong> an explanation <strong>of</strong> how<br />

the manuscript has been changed.<br />

As a matter <strong>of</strong> policy, we do not suppress referees’<br />

reports, any comments directed to authors are<br />

<strong>tr</strong>ansmitted regardless <strong>of</strong> what we may think <strong>of</strong> the<br />

content. On rare occasions, we may edit a report to<br />

remove <strong>of</strong>fensive language or comments to reveal<br />

confidentiality.<br />

The final decision to accept or reject a manuscript<br />

will be made by the Editor-in-Chief. If it becomes<br />

apparent that there are serious problems with the<br />

scientific content or with violations <strong>of</strong> our<br />

publishing policies, the Editor-in-Chief also<br />

reserves the right to reject a paper even after it has<br />

been accepted.<br />

After acceptance, the Editor-in-Chief may make<br />

further changes to the text <strong>and</strong> figures so that the<br />

manuscript is readable <strong>and</strong> clear. Page pro<strong>of</strong>s will<br />

be sent to the corresponding author via email for<br />

checking before publication. Corresponding authors<br />

are sent pro<strong>of</strong>s <strong>and</strong> are welcome to discuss<br />

proposed changes with the Editor-in-Chief, but<br />

J<strong>Cell</strong>MolBiol reserves the right to make the final<br />

decision about the style. Corrected pro<strong>of</strong>s should be<br />

sent back within three days <strong>of</strong> receipt, otherwise the<br />

Editor-in-Chief reserves the rights to correct the<br />

pro<strong>of</strong>s himself <strong>and</strong> to send the material for<br />

publication. In cases where the authors do not<br />

submit the appropriately signed Publication<br />

Agreement Form, the manuscript is drawn from<br />

publication process even if it is accepted.<br />

Appeals<br />

Authors have the right to ask the Editor-in-Chief to<br />

reconsider a rejection decision, which is considered<br />

an appeal. Decisions are reversed only if the Editor<br />

is convinced that the original decision was a serious<br />

mistake. If an appeal merits further consideration,<br />

the Editor may send the author’s response or the<br />

revised paper to one or more referees, or Editor


68<br />

may ask one referee to comment on the concerns<br />

raised by another referee.<br />

Advance Online Publication<br />

J<strong>Cell</strong>MolBiol provides Advance Online Publication<br />

<strong>of</strong> articles, which benefit authors with an earlier<br />

publication date <strong>and</strong> allows the readers’ access to<br />

accepted papers several weeks before they appear<br />

in print<br />

Ethical Issues<br />

For manuscripts reporting experiments on live<br />

vertebrates or higher invertebrates, authors must<br />

declare that the study was approved by the<br />

institutional ethics committee. Papers describing<br />

investigations on human subjects must include a<br />

statement that informed consent was obtained from<br />

all subjects.<br />

Plagiarism<br />

If portions <strong>of</strong> the manuscript have already been<br />

published by the author on other journals or<br />

websites, J<strong>Cell</strong>MolBiol Editorial Board needs to<br />

know which portions <strong>of</strong> the manuscript have been<br />

previously published <strong>and</strong> where. The author should<br />

include a note in the cover letter indicating which<br />

portions have been published elsewhere.<br />

In case <strong>of</strong> any suspicion on scientific misconduct or<br />

dishonesty in research, J<strong>Cell</strong>MolBiol reserves the<br />

right to forward any submitted manuscript to an<br />

appropriate authority for investigation.<br />

Copyright Notice<br />

It is the responsibility <strong>of</strong> the submitting author to<br />

ensure that the authorship <strong>of</strong> the paper reflects the<br />

con<strong>tr</strong>ibutions <strong>of</strong> the authors to the work described,<br />

<strong>and</strong> that all listed authors have agreed to the<br />

submission <strong>of</strong> the manuscript in its current form.<br />

Conditions <strong>of</strong> publication in J<strong>Cell</strong>MolBiol are that<br />

the paper has not already been published elsewhere;<br />

that it is not currently being considered for<br />

publication else-where; all persons designated as<br />

authors should qualify for authorship, <strong>and</strong> all those<br />

who qualify should be listed. If accepted, Haliç<br />

University <strong>and</strong> J<strong>Cell</strong>MolBiol have the exclusive<br />

license to publish.<br />

J<strong>Cell</strong>MolBiol is freely available to individuals <strong>and</strong><br />

institutions. Copies <strong>of</strong> this <strong>Journal</strong> <strong>and</strong> articles in<br />

this journal may be dis<strong>tr</strong>ibuted for research or for<br />

<s<strong>tr</strong>ong>edu</s<strong>tr</strong>ong>cational purposes free <strong>of</strong> charge. However,<br />

REVISED<br />

December 2011<br />

commercial use <strong>of</strong> articles contained herein is<br />

prohibited without the written consent <strong>of</strong> the<br />

Editor-in-Chief.<br />

Publication Agreement<br />

The corresponing author is required to assign the<br />

Publication Agreement Form in order to publish the<br />

submitted manuscript in J<strong>Cell</strong>MolBiol.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong><br />

<s<strong>tr</strong>ong>Volume</s<strong>tr</strong>ong> <s<strong>tr</strong>ong>10</s<strong>tr</strong>ong> · No 1 · June 2012<br />

Review Article<br />

Molecular Biology<br />

Production <strong>and</strong> indus<strong>tr</strong>ial applications <strong>of</strong> laccase enzyme<br />

M. IMRAN, M.J. ASAD, S.H. HADRI, S. MEHMOOD<br />

Research Articles<br />

Isolation <strong>and</strong> biochemical identification <strong>of</strong> Escherichia coli from wastewater effluents <strong>of</strong> food<br />

<strong>and</strong> beverage indus<strong>tr</strong>y<br />

T. FARASAT, Z. BILAL, F. YUNUS<br />

Investigation <strong>of</strong> the MGP promoter <strong>and</strong> exon 4 polymorphisms in patients with ischemic<br />

s<strong>tr</strong>oke in the Ukrainian population<br />

A.V. ATAMAN, V.Y. GARBUSOVA, Y.A. ATAMAN, O.I. MATLAJ, O.A. OBUCHOVA<br />

Investigation <strong>of</strong> the association <strong>of</strong> survivin gene -625G/C polymorphism in non-small cell<br />

lung cancer<br />

E. AYNACI, E. COŞKUNPINAR, A. EREN, O. KUM, Y. M. OLTULU, N. AKKAYA, A.<br />

TURNA, İ. YAYLIM, P. YILDIZ<br />

Effects <strong>of</strong> prenatal <strong>and</strong> neonatal exposure to lead on white blood cells in Swiss mice<br />

R. SHARMA, K. PANWAR, S. MOGRA<br />

Sulfabenzamide promotes autophagic cell death in T-47D breast cancer cells through p53/<br />

DRAM pathway<br />

R. MOHAMMADPOUR, S. SAFARIAN, S. FARAHNAK, S. HASHEMINASL, N. SHEIBANI<br />

Media optimization for amylase production in solid state fermentation <strong>of</strong> wheat bran by<br />

fungal s<strong>tr</strong>ains<br />

M. IRFAN, M. NADEEM, Q. SYED<br />

Guidelines for Authors<br />

1<br />

13<br />

19<br />

27<br />

33<br />

41<br />

55<br />

65

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!