16.07.2013 Views

10 2 Full Volume (PDF) - Journal of Cell and Molecular Biology ...

10 2 Full Volume (PDF) - Journal of Cell and Molecular Biology ...

10 2 Full Volume (PDF) - Journal of Cell and Molecular Biology ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

•Circadian rhythm genes in cancer<br />

•Tunneling nanotubes<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong><br />

<strong>Molecular</strong> <strong>Biology</strong><br />

•Genetic screening <strong>of</strong> Turkish barley genotypes<br />

•Strontium ranelate induces genotoxicity<br />

<strong>Volume</strong> <strong>10</strong> · No 2 · December 2012<br />

http://jcmb.halic.edu.tr


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong><br />

<strong>Molecular</strong> <strong>Biology</strong><br />

<strong>Volume</strong> <strong>10</strong> · Number 2<br />

December 2012<br />

İstanbul-TURKEY


Haliç University<br />

Faculty <strong>of</strong> Arts <strong>and</strong> Sciences<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong><br />

Founder<br />

Gündüz GEDİKOĞLU<br />

Our Children Leukemia Foundation<br />

Rights held by<br />

A. Sait SEVGENER<br />

Rector<br />

Correspondence Address:<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong><br />

Haliç Üniversitesi<br />

Fen-Edebiyat Fakültesi,<br />

Sıracevizler Cad. No:29 Bomonti 34381 Şişli<br />

İstanbul-Turkey<br />

Phone: +90 212 343 08 87<br />

Fax: +90 212 231 06 31<br />

E-mail: jcmb@halic.edu.tr<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong> is<br />

indexed in<br />

ULAKBIM, EBSCO,<br />

DOAJ, EMBASE,<br />

CAPCAS, EM<strong>Biology</strong>,<br />

Socolar, Index COPERNICUS,<br />

Open J-Gate, Chemical Abstracts<br />

<strong>and</strong><br />

Genamics <strong>Journal</strong>Seek<br />

ISSN 1303-3646<br />

Printed at MART Printing House<br />

Editor-in-Chief<br />

Nagehan ERSOY TUNALI<br />

Editorial Board<br />

M. Baki YOKEŞ<br />

Kürşat ÖZDİLLİ<br />

Nural BEKİROĞLU<br />

Emel BOZKAYA<br />

M.Burcu IRMAK YAZICIOĞLU<br />

Mehmet OZANSOY<br />

Editorial Assistance<br />

Ozan TİRYAKİOĞLU<br />

Özlem KURNAZ<br />

Advisory Board<br />

A. Nur BUYRU, İstanbul, Turkey<br />

Adil Meriç ALTINÖZ, Istanbul, Turkey<br />

Adile ÇEVİKBAŞ, İstanbul, Turkey<br />

Aglaia ATHANASSIADOU, Patras, Greece<br />

Aglika EDREVA, S<strong>of</strong>ia, Bulgaria<br />

Anne FRARY, İzmir, Turkey<br />

Asım KADIOĞLU, Trabzon, Turkey<br />

Ayla ÇELİK, Mersin, Turkey<br />

Ayşe ÖZDEMİR, İstanbul, Turkey<br />

Beyazıt ÇIRAKOĞLU, İstanbul, Turkey<br />

Canan ARKAN, Munich, Germany<br />

E. Zerrin BAĞCI, Tekirdağ, Turkey<br />

Fatma Neşe KÖK, İstanbul, Turkey<br />

Ferruh ÖZCAN, İstanbul, Turkey<br />

Fevzi DALDAL, Pennsylvania, USA<br />

Gizem DİNLER DOĞANAY, İstanbul, Turkey<br />

H<strong>and</strong>e ÇAĞLAYAN, İstanbul, Turkey<br />

H<strong>and</strong>e GÜRER ORHAN, İzmir, Turkey<br />

İlhan YAYLIM ERALTAN, İstanbul, Turkey<br />

İsmail ÇAKMAK, İstanbul, Turkey<br />

İsmail TÜRKAN, İzmir, Turkey<br />

Kemal BÜYÜKGÜZEL, Zonguldak, Turkey<br />

Maria V. KALEVITCH, Pennsylvania, USA<br />

Mehmet TOPAKTAŞ, Adana, Turkey<br />

Meral KENCE, Ankara, Turkey<br />

Meral ÜNAL, İstanbul, Turkey<br />

Müge TÜRET SAYAR, İstanbul, Turkey<br />

Mustafa DJAMGÖZ, London, UK<br />

Nermin GÖZÜKIRMIZI, İstanbul, Turkey<br />

Nevin Gül KARAGÜLER, İstanbul, Turkey<br />

Nihat BOZCUK, Ankara, Turkey<br />

Pınar SAİP, Istanbul, TURKEY<br />

Rezan FAHRİOĞLU YAMACI, Nicosia, Cyprus<br />

Şehnaz BOLKENT, İstanbul, Turkey<br />

Selma YILMAZER, İstanbul, Turkey<br />

Sevtap SAVAŞ, Toronto, Canada<br />

Uğur ÖZBEK, İstanbul, Turkey<br />

Ünal EGELİ, Bursa, Turkey<br />

Valentine KEFELİ, Pennsylvania, USA<br />

Zihni DEMİRBAĞ, Trabzon, Turkey<br />

Ziya ZİYLAN, İstanbul, Turkey


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong><br />

CONTENTS<br />

<strong>Volume</strong> <strong>10</strong> · Number 2 · December 2012<br />

Review Articles<br />

Transforming acidic coiled-coil proteins <strong>and</strong> spindle assembly<br />

S. TRIVEDI<br />

Marker Systems <strong>and</strong> Applications in Genetic Characterization Studies<br />

Y. ÖZŞENSOY, E. KURAR<br />

Research Articles<br />

COX5B <strong>and</strong> COX2 gene expressions in Multiple Sclerosis<br />

N. SAFAVIZADEH, S. A. RAHMANI , M. ZAEFIZADEH<br />

Curcumin rendered protection against cadmium chloride induced<br />

testicular damage in Swiss albino mice<br />

P. SINGH, K. DEORA, V. SANKHLA, P. MOGRA<br />

Study <strong>of</strong> Klebsiella pneumoniae isolates with ESBL activity, from ICU<br />

<strong>and</strong> Nurseries, on the isl<strong>and</strong> <strong>of</strong> Mauritius<br />

S.K. MUNGLOO-RUJUBALI, M.I. ISSACK, Y. JAUFEERALLY-FAKIM<br />

HIV-1 reverse transcriptase inhibition by Vitex negundo L. leaf extract<br />

<strong>and</strong> quantification <strong>of</strong> flavonoids in relation to anti-HIV activity<br />

M. KANNAN, P. RAJENDRAN, V. VEDHA, G. ASHOK, S. ANUSHKA,<br />

P. CHANDRAN RAMACHANDRAN NAIR<br />

Genetic characterization <strong>and</strong> bottleneck analysis <strong>of</strong> Korki Jonub<br />

Khorasan goats by microsatellite markers<br />

B. MAHMOUDI, O. ESTEGHAMAT, A. SHARIYAR. M.Sh. BABAYEV<br />

Low-Stringency Single-Specific-Primer PCR as a tool for detection <strong>of</strong><br />

mutations in the matK gene <strong>of</strong> Phaseolus vulgaris exposed to<br />

paranitrophenol<br />

Mohamed R. ENAN<br />

Short Communication<br />

Characterization <strong>of</strong> Paenibacillus larvae isolates from Brazil<br />

S.S. CHAGAS, R.A. VAUCHER, A. BRANDELLI<br />

Guidelines for Authors<br />

1<br />

11<br />

21<br />

31<br />

39<br />

53<br />

61<br />

71<br />

79<br />

83


Front cover image: “<strong>Cell</strong> division”<br />

Shutterstock image ID: 4099351


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong> <strong>10</strong>(2):1-<strong>10</strong>, 2012 Review Article 1<br />

Haliç University, Printed in Turkey.<br />

http://jcmb.halic.edu.tr<br />

Transforming acidic coiled-coil proteins <strong>and</strong> spindle assembly<br />

Seema TRIVEDI*<br />

(* author for correspondence; svtrived@hotmail.com)<br />

Received: 2 January 2012; Accepted: 5 November 2012<br />

Abstract<br />

Transforming acidic coiled-coil proteins (TACC) are essential for mitosis not only by their association<br />

with the centrosome <strong>and</strong> assembly <strong>of</strong> spindle microtubules, but also by involvement in cell cycle<br />

checkpoints. In order to stabilize spindle fibers, TACCs interact with other microtubule-associated<br />

proteins (MAPs). Dysregulation <strong>of</strong> TACCs may lead to abnormal cell division that may result in<br />

chromosomal abnormality or tumorigenesis. This review focuses on facts known so far regarding<br />

TACC proteins, their interactions <strong>and</strong> their involvement in spindle microtubule stability in higher<br />

eukaryotes.<br />

Keywords: Cancer, microtubules, centrosome, spindle fibers, transforming acidic coiled-coil proteins<br />

Özet<br />

Dönüştürücü asidik sarmalanmış sarmal proteinleri ve iğ iplikçiğinin birleşmesi<br />

Dönüştürücü asidik sarmalanmış sarmal proteinleri (TACC) sadece sentrozomlarla ve iğ iplikçiği<br />

mikrotübülleriyle birleşmesiyle olan ilişkileri açısından değil, ayrıca hücre döngüsü kontrol<br />

noktalarına dahil olmaları açısından da mitoz için gereklidir. İğ iplikçiklerini stabilize etmek amacıyla,<br />

TACC’ler diğer mikrotübül ilişkili proteinlerle (MAP) etkileşime girer. TACC’lerin yanlış<br />

düzenlenmesi kromozomal anormallikler ya da tümörigenez ile sonuçlanan anormal hücre<br />

bölünmelerine neden olabilir. Bu derleme, bugüne kadar TACC proteinleri, etkileşimleri ve yüksek<br />

ökaryotlarda iğ iplikçiği kararlılığına katkıları ile ilgili bilinen gerçekler üzerinde durmaktadır.<br />

Anahtar Kelimeler: Kanser, Mikrotübüller, Sentrozom, İğ iplikçikleri, Dönüştürücü asidik<br />

sarmalanmış sarmal proteinleri<br />

Abbreviations<br />

TACC = Transforming Acidic Coiled-coil, MAP = Microtubule Associated Protein, Msps = Mini<br />

spindles, MT = Microtubule, ch-TOG = Colonic–hepatic Tumour-Overexpressed Gene, AAK =<br />

Aurora A Kinase<br />

Introduction<br />

Transforming acidic coiled-coil protein (TACC) is<br />

a family <strong>of</strong> the microtubule associated proteins<br />

(MAPs) that is crucial for spindle assembly,<br />

maintaining bipolarity <strong>and</strong> microtubule (MT)<br />

stability during mitosis (Still et al., 2004; Brittle<br />

<strong>and</strong> Ohkura, 2005; Pearson et al., 2005). TACCs<br />

are even important in acentrosomal (acentriolar or<br />

anastral) meiosis in females <strong>of</strong> many animal<br />

species where spindle formation is<br />

chromosome centric (Pearson et al., 2005).<br />

TACCs do not have microtubule<br />

stabilizing activity on their own. Instead,<br />

they form complexes with other MAPs to<br />

stabilize spindle fibers. TACC/MAP<br />

complex provides stable association <strong>of</strong> MTs<br />

with centrosomes at the minus end (Albee<br />

<strong>and</strong> Wiese, 2008) possibly after release from


2 Seema TRIVEDI<br />

the nucleation site from kinetochores (reviewed in<br />

Raff, 2002). The complex associates at the plus<br />

ends <strong>of</strong> the MTs growing out from the centrosome<br />

during nucleation (reviewed in Raff, 2002).<br />

However, the exact mechanism by which TACC<br />

interacts with other MAPs <strong>and</strong> recruits them to the<br />

centrosome is not clearly understood. In<br />

Drosophila, D-TACC recruits Mini spindles protein<br />

(Msps; a conserved family <strong>of</strong> MAP) (reviewed in<br />

Raff, 2002) <strong>and</strong> in Xenopus, maskin (TACC3) form<br />

a complex with XMAP215 (Albee <strong>and</strong> Wiese,<br />

2008). However, the XMAP215 complex may<br />

associate with both plus <strong>and</strong> minus ends <strong>of</strong> the MT.<br />

Similarly, human TACCs <strong>and</strong> ch-TOG (colonic–<br />

hepatic tumour-overexpressed gene) (homologue <strong>of</strong><br />

Msps) possibly form a structural lattice at<br />

centrosomes to maintain the integrity <strong>of</strong> spindle<br />

poles <strong>and</strong> to stabilize spindle MTs (reviewed in<br />

Raff, 2002; Gergely et al., 2003). However, it is not<br />

known why in cultured human cells TACC3 <strong>and</strong>, in<br />

Drosophila D-TACC, these proteins are apparently<br />

not essential for recruitment <strong>of</strong> XMAP215 analogue<br />

(Brittle <strong>and</strong> Ohkura, 2005). This review focuses on<br />

genomic locations, protein characteristics <strong>and</strong><br />

interactions <strong>of</strong> TACC proteins in humans <strong>and</strong><br />

general aspects <strong>of</strong> role <strong>of</strong> TACC proteins in spindle<br />

dynamics in higher eukaryotes.<br />

TACC genes <strong>and</strong> proteins<br />

Three TACC proteins have been identified in<br />

humans, namely TACC1, 2 <strong>and</strong> 3. The three human<br />

TACCs are related by ~200-amino-acid C-terminal<br />

region (the ‘TACC domain’), which is predicted to<br />

form a coiled coil domain (reviewed in Raff, 2002).<br />

Besides TACC domain, these proteins share<br />

homology (except Drosophila D-TACC) in the<br />

SDP domain as well (Lauffart et al., 2002; Still et<br />

al., 2004). SDP domain is composed <strong>of</strong> functionally<br />

conserved repeats <strong>of</strong> 33 amino acids, though the<br />

numbers <strong>of</strong> repeats are different in different TACC<br />

proteins. Interaction <strong>of</strong> SDP domain with<br />

transcription factor GAS41/NuBI1 (also known as<br />

YEATS4) has been established (Lauffart et al.,<br />

2002) but this interaction possibly does not directly<br />

affect spindle formation.<br />

Genomic locations <strong>of</strong> human TACC<br />

reference gene sequences as per NCBI <strong>and</strong><br />

details <strong>of</strong> proteins obtained from SwissProt<br />

are given in Table 1.<br />

Though implicated in several cancers, no<br />

mutations have been reported in the TACC1<br />

gene (Still et al., 2008). TACC1 mRNA<br />

exon 3 contains a predicted nuclear<br />

localization signal (Still et al., 2008), shows<br />

ubiquitous expression <strong>and</strong> encodes a<br />

cytoplasmic protein which is mainly<br />

perinuclear protein (molecular mass <strong>of</strong> 125<br />

kDa) (Conte et al., 2002) but different<br />

is<strong>of</strong>orms in different cells may be localized<br />

in the cytoplasm as well (Lauffart et al.,<br />

2006).<br />

TACC1 protein does not show<br />

compositional bias whereas TACC2 has<br />

poly-lysine <strong>and</strong> poly-proline rich regions<br />

<strong>and</strong> TACC3 has poly-serine regions (Table<br />

1). In addition, different sites in the TACC<br />

proteins show post translational covalent<br />

modifications (Table 2). Phosphotyrosine is<br />

seen only in TACC1, while N6-acetyl lysine<br />

is seen only in TACC3 <strong>and</strong><br />

phosphothreonine is not seen in TACC1. It<br />

is also pertinent to note that TACC1<br />

phosphorylation varies in different is<strong>of</strong>orms<br />

(Still et al., 2008).<br />

TACC2 concentration at the centrosome<br />

has been observed even during interphase<br />

unlike TACC1 <strong>and</strong> TACC3 proteins<br />

(Gergley et al., 2000a). TACC3, also known<br />

as ERIC1 (Still et al., 2004; Eslinger et al.,<br />

2009) a non-motor MAP, was also identified<br />

as an ARNT interacting protein (Aint1) in<br />

mice (Aitola et al., 2003) <strong>and</strong> is expressed in<br />

proliferative tissues (Aitola et al., 2003;<br />

reviewed in Hood <strong>and</strong> Royle, 2011). During<br />

mitosis, TACC3 is localized to centrosome<br />

but during interphase, TACC3 is seen in<br />

cytoplasmic or perinuclear regions (Piekorz<br />

et al., 2002). The TACC3 gene has five<br />

reported mutations: CAG to CGG, TCG to<br />

TTG, CGT to TGT, CAG to TAG <strong>and</strong> TCA<br />

to TTA (Eslinger et al., 2009).


TACC proteins in spindles 3<br />

Table 1. Human TACC Genomic Location (as per NCBI + ), Introns, mRNA And Splice Variants (as per NCBI AceView + )<br />

<strong>and</strong> Protein Details (as per SwissProt * ).<br />

Official Symbol TACC1 TACC2 TACC3<br />

Genomic Location 8p11.22 <strong>10</strong>q26 4p16.3<br />

Genomic Sequence<br />

NC_000008.<strong>10</strong><br />

38585704..387<strong>10</strong>546<br />

NC_0000<strong>10</strong>.<strong>10</strong><br />

123748689..124014057<br />

NC_000004.11<br />

1723266..1746898<br />

Number <strong>of</strong> Introns + 44 49 23<br />

mRNA + 38 (7 unspliced) 35 (7 unspliced) 16 (3 unspliced)<br />

Protein *<br />

TACC1 (O754<strong>10</strong><br />

TACC1_HUMAN)<br />

TACC2 (O95359<br />

TACC2_HUMAN)<br />

TACC3 (Q9Y6A5<br />

TACC3_HUMAN)<br />

Length (number <strong>of</strong> amino acids) 805 2948 838<br />

Number <strong>of</strong> Is<strong>of</strong>orms + 27 26 15<br />

Features Description<br />

Coiled coil Potential<br />

Compositional<br />

bias<br />

Domain<br />

Motif<br />

Region<br />

TACC1<br />

6<strong>10</strong> - 805<br />

Position<br />

TACC2 TACC3<br />

2675 - 2703 637 - 837<br />

2746 - 2947<br />

Poly-Lys 2420 - 2423<br />

Poly-Ser 155 - 160<br />

Pro-rich 1956 - 2016<br />

482 - 549<br />

SPAZ 2315 - 2403<br />

SPAZ 1 215 - 297<br />

SPAZ 2 359 - 507<br />

Bipartite<br />

nuclear<br />

localization<br />

226 - 241<br />

signal 1<br />

Potential<br />

Bipartite<br />

nuclear<br />

localization<br />

455 - 471<br />

signal 2<br />

Potential<br />

Interaction<br />

with CH-TOG<br />

Interaction<br />

with LSM7<br />

<strong>and</strong> SNRPG<br />

Interaction<br />

with TDRD7<br />

Interaction<br />

with YEATS4<br />

701 - 805<br />

1 - 55<br />

152 - 259<br />

206 - 427<br />

+ Thierry-Mieg <strong>and</strong> Thierry-Mieg 2006, AceView-Dec 2009


4 Seema TRIVEDI<br />

Table 2. Modification types <strong>and</strong> positions <strong>of</strong> modifications in TACC proteins as per SwissProt.*<br />

Protein Position<br />

TACC1<br />

TACC2<br />

TACC3<br />

44<br />

50<br />

52<br />

54<br />

55<br />

57<br />

228<br />

276<br />

406<br />

533<br />

197<br />

201<br />

493<br />

571<br />

575<br />

758<br />

962<br />

<strong>10</strong>25<br />

1267<br />

1313<br />

1426<br />

1562<br />

1946<br />

1949<br />

2072<br />

2073<br />

2226<br />

2246<br />

2256<br />

2317<br />

2321<br />

2359<br />

2389<br />

2390<br />

2392<br />

2394<br />

2403<br />

2512<br />

2884<br />

N6-acetyl<br />

lysine<br />

Phosphoserine Phosphothreonine Phosphotyrosine<br />

25<br />

59<br />

71<br />

175<br />

317<br />

434<br />

558<br />

*Grey cells indicate presence <strong>and</strong> blank cells indicate absence or not known.<br />

Spindle assembly <strong>and</strong> TACC proteins<br />

TACC proteins interact with MTs (particularly at<br />

the minus end) <strong>and</strong> are mainly associated with<br />

centrosome (Gergely et al., 2000a <strong>and</strong> 2000b). The<br />

distribution <strong>and</strong> concentrations <strong>of</strong> TACC proteins<br />

during spindle formation vary. TACC1<br />

concentration at centrosome is weak <strong>and</strong> is seen<br />

only during mitosis. TACC2 concentration is strong<br />

at centrosome throughout the cell cycle. TACC3 is<br />

strongly concentrated in a more diffused region<br />

around<br />

centrosomes (during G2 phase) at the minus<br />

end <strong>of</strong> spindle MTs (Gergely et al., 2000a;<br />

Gergely et al., 2000b; Barr et al., 20<strong>10</strong>).<br />

Once the spindle has formed, TACC3<br />

protein is not found at astral MTs (reviewed<br />

in Raff, 2002; Hood <strong>and</strong> Royle, 2011).<br />

TACC3 protein is localized at centrosomes<br />

with γ-tubulin <strong>and</strong> spindle MTs with αtubulin<br />

(Piekorz et al., 2002, reviewed in<br />

(Raff, 2002; Hood <strong>and</strong> Royle, 2011),<br />

particularly during S, G2 <strong>and</strong> M phases <strong>of</strong><br />

cell cycle (Piekorz et al., 2002). TACC3/ch-


TOG/clathrin complex increases the stability <strong>of</strong> Kfibers<br />

during early mitosis. This is achieved by<br />

reduction in MT catastrophe by anchoring to the<br />

spindle <strong>and</strong> establishing short bridges. Involvement<br />

<strong>of</strong> TACC proteins in formation <strong>of</strong> long bridges is<br />

not known but possibly HURP <strong>and</strong> the kinesinrelated<br />

protein HSET/KIFC1 may be involved in<br />

longer bridges (Booth et al., 2011).<br />

TACC3 depleted cells do not show proper<br />

metaphase alignment; therefore it is possible that<br />

TACC3 protein may be essential for chromosome<br />

alignment (Gregely et al., 2003). TACC3 may also<br />

affect early mitotic checkpoint by associating with<br />

pS939-TSC2 (tuberous sclerosis complex 2) <strong>and</strong><br />

regulating its localization at spindle poles <strong>and</strong> also<br />

possibly affect nuclear envelope (Gomez-Baldo et<br />

al., 20<strong>10</strong>). TACC3 affects spindle checkpoint by<br />

affecting SAC (spindle assembly checkpoint<br />

assembly) by stabilizing spindle <strong>and</strong> is important<br />

for microtubule-kinetochore interaction. Depletion<br />

<strong>of</strong> TACC3 results in activation <strong>of</strong> the SAC (spindle<br />

assembly checkpoint protein), which prevents<br />

degradation <strong>of</strong> cyclin B1 <strong>and</strong> anaphase transition.<br />

Cyclin B1 is present in cells from late G2 to<br />

metaphase <strong>and</strong> is degraded prior to anaphase.<br />

TACC3 depletion increases the levels <strong>of</strong> cyclin B1<br />

but not cyclin A (S/G2) (Schneider et al., 2007),<br />

thus presence <strong>of</strong> TACC3 would affect degradation<br />

<strong>of</strong> cyclin B1 <strong>and</strong> help in anaphase transition.<br />

These observations indicate differences in roles<br />

<strong>of</strong> different types <strong>of</strong> TACC proteins during mitosis.<br />

For proper assembly <strong>and</strong> stability <strong>of</strong> spindle<br />

fibers <strong>and</strong> minus end <strong>of</strong> centrosome associate MT,<br />

phosphorylation <strong>of</strong> TACC is essential which is<br />

mediated by mitotic kinases (e.g. Aurora A kinase<br />

i.e. AAK) (Barros et al., 2005, Peset et al., 2005).<br />

Absence <strong>of</strong> phosphorylated TACC may result in<br />

either shorter centrosomal MT or absence <strong>of</strong> these<br />

spindle fibers (Peset et al., 2005, Kinoshita et al.,<br />

2005). Phosphorylation occurs at different sites in<br />

different animals. In Xenopus TACC3/Maskin, at<br />

least two residues (main site is Ser626) are<br />

phosphorylated; in Drosophila D-TACC Ser863 is<br />

phosphorylated exclusively at centrosomes <strong>and</strong> in<br />

human Ser558 is phosphorylated in TACC3<br />

(reviewed in Raff, 2002; Brittle <strong>and</strong> Ohkura, 2005;<br />

LeRoy et al., 2007). Phosphorylation <strong>of</strong> TACCs<br />

may also help G2/M checkpoint by proper<br />

microtubule assembly, thus the control <strong>of</strong> mitosis<br />

by affecting G2/M transition (Conte et al., 2002;<br />

reviewed in Bettencourt-Dias <strong>and</strong> Glover, 2007),<br />

TACC proteins in spindles 5<br />

particularly via spindle checkpoint<br />

(Schneider et al., 2007).<br />

However, AAK itself must be activated<br />

prior to being able to phosphorylate the<br />

TACC proteins. In humans, AAK is<br />

activated by binding with TPX2 [Targeting<br />

Protein for Xklp2 (Xenopus plus enddirected<br />

kinesin-like protein)]. AAK-TPX2<br />

binding is activated by HURP (Human<br />

hepatoma up-regulated protein) which is a<br />

MAP protein that can also bind directly to<br />

MTs. However, HURP itself needs<br />

activation by Ran (RAs-related Nuclear<br />

protein) (Sato et al., 2009; Sato <strong>and</strong> Toda,<br />

20<strong>10</strong>).<br />

On the other h<strong>and</strong>, dephosphorylation <strong>of</strong><br />

TACC proteins may also affect spindle<br />

stability. In this regard, Mars (a D.<br />

melanogaster sequence homologue <strong>of</strong><br />

HURP) mediates spatially controlled<br />

dephosphorylation <strong>of</strong> TACC for spindle<br />

stability, perhaps only at the centrosome.<br />

Dephosphorylated TACC establishes lateral<br />

interactions with MT or with plus ends<br />

which may be impaired due to TACC<br />

phosphorylation at Ser863 (Tan et al.,<br />

2008).<br />

Spindle fibers <strong>and</strong> proteins interacting<br />

with TACC proteins<br />

Minimal interactions <strong>of</strong> TACCs with other<br />

proteins or lig<strong>and</strong>s were determined using<br />

the STRING web interface (Jensen et al.,<br />

2009), <strong>and</strong> are shown in Figure1. As<br />

previously stated, TACC1 <strong>and</strong> TACC3 bind<br />

with ch-TOG (clathrin, colonic <strong>and</strong> hepatic<br />

tumor overexpressed gene) (Conte et al.,<br />

2002; Lauffart et al., 2002); however, from<br />

the interaction shown in Figure 1 it appears<br />

that all three TACC proteins interact with<br />

CKAP5 (homologue XMAP215 or ch-<br />

TOG). The other two common interactions<br />

<strong>of</strong> the three TACC proteins are YEATS4<br />

(also called YAF9; GAS41; NUBI-1)<br />

(transcription factor, protein located in<br />

nucleoli) <strong>and</strong> LSM7 (a conserved subfamily<br />

<strong>of</strong> Sm-like small proteins). LSM7 associates<br />

with U6 snRNPs <strong>and</strong> plays a role in several<br />

aspects <strong>of</strong> mRNA processing (Conte et al.,<br />

2002; Lauffart et al., 2002).


6 Seema TRIVEDI<br />

TACC1 may also be involved in gene regulation by<br />

affecting mRNA translation by interaction with<br />

TDRD7 (tudor domain containing 7) (Figure 1).<br />

TDRD7 protein is a part <strong>of</strong> cytoplasmic RNA<br />

granules involved in mRNA regulation. It is not<br />

known whether the involvement <strong>of</strong> TACCs in RNA<br />

processing or interaction with transcription factors<br />

has any role in MT dynamics during cell division.<br />

As per Figure 1, TACC1 <strong>and</strong> 3 also interact<br />

with AURKB <strong>and</strong> AURKA. These two proteins<br />

also interact with Cyclin B1 (which controls entry<br />

in mitosis) (Conte et al., 2002). Studies have shown<br />

that TACC3 is involved in localization <strong>of</strong> the<br />

mitotic kinase Aurora B <strong>and</strong> the checkpoint protein<br />

BubR1 at kinetochores thus affecting MT<br />

attachment (Schneider et al., 2007).<br />

TACC2 protein also directly interacts with<br />

SMYD2 (SET- <strong>and</strong> MYND-containing protein 2)<br />

(Figure 1). SMYD2 activates TACC2 gene by<br />

methylation <strong>of</strong> H3K4 in the promoter region <strong>of</strong><br />

TACC2 gene besides the involvement <strong>of</strong> SMYD2<br />

in some protein-protein interactions. These protein<br />

interactions may have roles in centrosomal MT<br />

formation (Abu-Farha et al., 2008) but apparently<br />

not by directly interacting with TACC2 protein.<br />

Phosphorylated TACC3 also directly interacts<br />

with clathrin heavy chain (CLTC) that promotes<br />

accumulation <strong>of</strong> other complex members at the<br />

mitotic spindle (reviewed in Hood <strong>and</strong> Royle,<br />

2011). Another direct interaction <strong>of</strong> TACC3 protein<br />

with septin-7 (SEPT7, CDC<strong>10</strong> protein homolog) is<br />

shown in Figure 1. SEPT7 associates with the<br />

mitotic spindle <strong>and</strong> the kinetochore. It has also been<br />

shown that SEPT7 is needed for stable localization<br />

<strong>of</strong> CENP-E (centromere-associated protein E) at<br />

kinetochore besides affecting spindle checkpoint<br />

(Zhu et al., 2008). Association <strong>of</strong> SEPT7 <strong>and</strong><br />

MAPs, particularly MAP4, in MT dynamics both<br />

during interphase <strong>and</strong> mitosis has been established<br />

(Silverman-Gavrila et al., 2008), <strong>and</strong> it is possible<br />

that similar interaction <strong>of</strong> SEPT7 with TACC<br />

proteins may affect MT stability.<br />

Expression <strong>of</strong> TACC3 is high in hematopoietic<br />

tissue unlike TACC1 <strong>and</strong> TACC2. Apparently<br />

higher levels <strong>of</strong> TACC3 proteins are not for<br />

proliferation <strong>of</strong> tissue but for direct or indirect<br />

regulation <strong>of</strong> p53 levels to prevent apoptosis<br />

although not true for other tissue (Piekorz et al.,<br />

2002). Other study confirmed direct interaction <strong>of</strong><br />

TACC3 with p53 (that is also concentrated at<br />

centrosomes) possibly to keep it inactive during<br />

mitosis (reviewed in Raff, 2002) (not seen in<br />

Figure 1).<br />

TACC3 is necessary for proper<br />

localization <strong>of</strong> phosphorylated TSC2<br />

(Tuberous sclerosis proteins, tuberin) to the<br />

mitotic apparatus <strong>and</strong> cytokinetic structures.<br />

This interaction may be through the TSC2-<br />

HBD domain (TSC2 hamartin-binding<br />

domain) <strong>and</strong> result in promotion <strong>of</strong><br />

cytoskeletal remodeling (Gómez-Baldó et<br />

al., 20<strong>10</strong>).<br />

Though little is known about the factors<br />

that control or regulate length <strong>of</strong> spindle<br />

fibers, TACC3 may be one <strong>of</strong> the proteins<br />

that control length <strong>of</strong> MTs <strong>and</strong> time for<br />

chromosome alignment at metaphase plate<br />

(reviewed in Raff, 2002). AAK may also<br />

regulate MT length, as seen in Drosophila<br />

embryos, where AAK function disturbance<br />

leads to abnormal shortening <strong>of</strong> centrosomal<br />

MTs. This disturbance also leads to<br />

inefficient concentration <strong>of</strong> D-TACC at<br />

centrosomes (reviewed in Raff, 2002).<br />

TACCs dysregulation <strong>and</strong> cancer<br />

Human TACC 1, 2 <strong>and</strong> 3 are present in<br />

genomic regions that are rearranged in<br />

certain cancer cells (reviewed in Raff, 2002;<br />

Stewart et al., 2004; Still et al., 1999).<br />

Aberrations <strong>of</strong> TACC genes (TACC3 in<br />

particular) contribute to<br />

tumorigenesis/cancer (reviewed in Raff,<br />

2002; Lauffart et al., 2005).<br />

Since TACC proteins are also involved<br />

in centrosomal dynamics, cell cycle<br />

checkpoints (Schneider et al., 2007) <strong>and</strong> can<br />

form multiple complexes, any dysregulation<br />

in these proteins may be important during<br />

tumorigenesis (Lauffart et al., 2002). It has<br />

been noted that increase or decrease in<br />

levels <strong>of</strong> the TACCs can lead to impairment<br />

<strong>of</strong> spindle functions (reviewed in Raff,<br />

2002). Disruption <strong>of</strong> spindle function can<br />

then lead to misalignment <strong>of</strong> chromosomes<br />

<strong>and</strong> or abnormalities in chromosome<br />

separation. Altered levels <strong>of</strong> TACC proteins<br />

can lead to abnormal mitosis although next<br />

p53 dependent checkpoint should eliminate<br />

such cells. However, if there is simultaneous<br />

alteration in TACC levels <strong>and</strong> p53 is either<br />

absent or depleted, then such cells would not


TACC proteins in spindles 7<br />

Figure 1. Predicted functional partnes (minimum interaction) <strong>of</strong> the three TACC proteins (as per<br />

STRING Jensen et al., 1999)<br />

undergo elimination, resulting in genetic instability<br />

that could contribute to the development <strong>of</strong> cancer<br />

(reviewed in Raff, 2002).<br />

Some studies show that TACC3 may enhance<br />

stability <strong>of</strong> tumors. This can be achieved by<br />

TACC3 <strong>and</strong> ch-TOG in clustering <strong>of</strong> multipolar<br />

spindles in tumor cells into two poles that may lead<br />

to somewhat ‘normal’ division (reviewed in Hood<br />

<strong>and</strong> Royle, 2011). However, TACC2 may be a<br />

potential tumour suppressor (reviewed in Raff,<br />

2002) contrary to studies that suggest no role <strong>of</strong><br />

TACC2 in tumor suppression (Schuendeln et al.,<br />

2004).<br />

Unanswered questions<br />

Though much is known regarding TACC function<br />

in spindle <strong>and</strong> microtubule dynamics, there are few<br />

aspects that still remain unknown. These are<br />

summarized below:<br />

Roles <strong>of</strong> TACCs in regulation/control <strong>of</strong><br />

spindle fiber lengths are not fully<br />

understood. Though the levels <strong>of</strong> TACC <strong>and</strong><br />

particularly roles <strong>of</strong> TACC3 <strong>and</strong> AAK are<br />

indicated in control <strong>of</strong> MT length (reviewed<br />

in Raff, 2002), the precise mechanism by<br />

which this is achieved is not known.<br />

Though TACC proteins are present in<br />

cytoplasm during interphase, their fate at the<br />

end <strong>of</strong> mitosis is not known with respect to<br />

their redistribution to cytoplasm <strong>of</strong> the<br />

daughter cells. If there is<br />

exclusion/reduction in amount <strong>of</strong> TACC<br />

proteins from nucleoplasm, the mechanism<br />

remains elusive. Further, it is not known<br />

whether destruction/recycling/decrease in


8 Seema TRIVEDI<br />

expression <strong>of</strong> all TACCs (like cyclins) is important<br />

for ending anaphase.<br />

It is known that TACC3 associates with<br />

kinetochore MTs (K fibers), but association with<br />

interpolar MTs (reviewed in Hood <strong>and</strong> Royle,<br />

2011) or astral MTs is not confirmed. It is also not<br />

known whether all three TACCs associate with<br />

kinetochore MTs (K fibers), interpolar MTs <strong>and</strong><br />

astral MTs or there are different TACC for each<br />

fiber type.<br />

If different TACCs are involved in K-fibers,<br />

interpolar <strong>and</strong> astral MTs; it is not known how this<br />

association difference is achieved.<br />

Different interaction partners at different<br />

subcellular locations <strong>of</strong> each splice variant <strong>of</strong><br />

TACC1 protein have been reported during different<br />

stages <strong>of</strong> embryonic development. This may be<br />

possible due to retention <strong>of</strong> coiled coil domain in<br />

each splice variant but there are differences in<br />

interaction motifs at N-terminus (Lauffart et al.,<br />

2006). However, it is not known whether different<br />

is<strong>of</strong>orms <strong>of</strong> TACC proteins have different roles in<br />

spindle assembly during mitosis.<br />

Conclusion<br />

It is known that TACCs are important in<br />

maintaining bipolarity <strong>and</strong> stability <strong>of</strong> spindle fibers<br />

through their association with other<br />

binding/interacting partners. TACCs also play a<br />

role in cell cycle checkpoints due to their<br />

association with centrosomes <strong>and</strong> p53. However,<br />

there are many unresolved functional <strong>and</strong> structural<br />

aspects <strong>of</strong> the three TACC proteins. Further<br />

advancement in studies with respect to the unsolved<br />

facets <strong>of</strong> these proteins may help in enhancing basic<br />

underst<strong>and</strong>ing <strong>of</strong> spindle MT dynamics <strong>and</strong> related<br />

disorders.<br />

Acknowledgements<br />

I am extremely indebted to Pr<strong>of</strong>. S. D. Kapoor,<br />

former Head, Department <strong>of</strong> English, JN Vyas<br />

University, Jodhpur (Raj.) <strong>and</strong> Emeritus Fellow <strong>of</strong><br />

UGC (University Grants Commission) <strong>of</strong> India, for<br />

correcting the language <strong>and</strong> expression in the<br />

manuscript.<br />

References<br />

Aitola M, Sadek CM, Gustafsson JA, Pelto-Huikko<br />

M. Aint/Tacc3 is highly expressed in<br />

proliferating mouse tissues during development,<br />

spermatogenesis, <strong>and</strong> oogenesis. J<br />

Histochem Cytochem. 51(4): 455-69,<br />

2003.<br />

Albee AJ, Wiese C. Xenopus<br />

TACC3/maskin is not required for<br />

microtubule stability but is required for<br />

anchoring microtubules at the<br />

centrosome. Mol Biol <strong>Cell</strong>. 19(8): 3347-<br />

56, 2008.<br />

Barr AR, Kilmartin JV, Gergely F.<br />

CDK5RAP2 functions in centrosome to<br />

spindle pole attachment <strong>and</strong> DNA<br />

damage response. J <strong>Cell</strong> Biol. 189(1):<br />

23–39, 20<strong>10</strong>.<br />

Barros TP, Kinoshita K, Hyman AA, Raff<br />

JW. Aurora A activates D-TACC-Msps<br />

complexes exclusively at centrosomes to<br />

stabilize centrosomal microtubules. J<br />

<strong>Cell</strong> Biol. 170(7): <strong>10</strong>39-46, 2005.<br />

Bettencourt-Dias M <strong>and</strong> Glover DM.<br />

Centrosome biogenesis <strong>and</strong> function:<br />

centrosomics brings new underst<strong>and</strong>ing.<br />

Nat Rev Mol <strong>Cell</strong> Bio. 8(6):451-63,<br />

2007.<br />

Booth DG, Hood FE, Prior IA, Royle SJ. A<br />

TACC3/ch-TOG/clathrin complex<br />

stabilises kinetochore fibers by intermicrotubule<br />

bridging. EMBO J. 30(5):<br />

906-19, 2011.<br />

Brittle AL, Ohkura H. Centrosome<br />

maturation: Aurora lights the way to the<br />

poles. Curr Biol. 15(21): R880-2, 2005.<br />

Conte N, Charafe-Jauffret E, Delaval B,<br />

Adélaïde J, Ginestier C, Geneix J,<br />

Isnardon D, Jacquemier J, Birnbaum D.<br />

Carcinogenesis <strong>and</strong> translational<br />

controls: TACC1 is down-regulated in<br />

human cancers <strong>and</strong> associates with<br />

mRNA regulators. Oncogene. 21(36):<br />

5619-30, 2002.<br />

Eslinger MR, Lauffart B, Still IH. 2009.<br />

TACC3 (transforming, acidic coiled-coil<br />

containing protein 3). Atlas Genet<br />

Cytogenet Oncol Haematol. Retrieved<br />

December 25, 2011 from<br />

http://AtlasGeneticsOncology.org/Genes<br />

/TACC3ID42458ch4p16.html


Gergely F, Draviam VM, Raff JW. The ch-<br />

TOG/XMAP215 protein is essential for spindle<br />

pole organization in human somatic cells. Genes<br />

Dev. 17(3): 336-41, 2003.<br />

Gergely F, Karlsson C, Still I, Cowell J, Kilmartin<br />

J, Raff JW. The TACC domain identifies a<br />

family <strong>of</strong> centrosomal proteins that can interact<br />

with microtubules. Proc Natl Acad Sci USA.<br />

97(26): 14352-7, 2000a.<br />

Gergely F, Kidd D, Jeffers K, Wakefield JG, Raff<br />

JW. D-TACC: a novel centrosomal protein<br />

required for normal spindle function in the early<br />

Drosophila embryo. EMBO J. 19(2): 241-52,<br />

2000b.<br />

Gómez-Baldó L, Schmidt S, Maxwell CA, Bonifaci<br />

N, Gabaldón T, Vidalain PO, Senapedis W,<br />

Kletke A, Rosing M, Barnekow A, Rottapel R,<br />

Capellá G, Vidal M, Astrinidis A, Piekorz RP,<br />

Pujana MA. TACC3-TSC2 maintains nuclear<br />

envelope structure <strong>and</strong> controls cell division.<br />

<strong>Cell</strong> Cycle. 9(6): 1143-55, 20<strong>10</strong>.<br />

Hood FE, Royle SJ. Pulling it together: The mitotic<br />

function <strong>of</strong> TACC3. Bioarchitecture. 1(3):<strong>10</strong>5-<br />

<strong>10</strong>9, 2011.<br />

Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey<br />

C, Muller J, Doerks T, Julien P, Roth A,<br />

Simonovic M, Bork P, von Mering C. STRING<br />

8--a global view on proteins <strong>and</strong> their functional<br />

interactions in 630 organisms. Nucleic Acids<br />

Res. 37(Database issue): D412-6, 2009.<br />

Lauffart B, Dimatteo A, Vaughan MM, Cincotta<br />

MA, Black JD, Still IH. Temporal <strong>and</strong> spatial<br />

expression <strong>of</strong> TACC1 in the mouse <strong>and</strong> human.<br />

Dev Dyn. 235(6):1638-47, 2006.<br />

Lauffart B, Sondarva GV, Gangisetty O, Cincotta<br />

M, Still IH. Interaction <strong>of</strong> TACC proteins with<br />

the FHL family: implications for ERK<br />

signaling. J <strong>Cell</strong> Commun Signal. 1(1):5-15,<br />

2007.<br />

Lauffart B, Vaughan MM, Eddy R, Chervinsky D,<br />

DiCioccio RA, Black JD, Still IH. Aberrations<br />

<strong>of</strong> TACC1 <strong>and</strong> TACC3 are associated with<br />

ovarian cancer. BMC Womens Health. 5: 8,<br />

2005.<br />

LeRoy PJ, Hunter JJ, Hoar KM, Burke KE, Shinde<br />

V, Ruan J, Bowman D, Galvin K, Ecsedy JA.<br />

Localization <strong>of</strong> human TACC3 to mitotic<br />

TACC proteins in spindles 9<br />

spindles is mediated by phosphorylation<br />

on Ser558 by Aurora A: a novel<br />

pharmacodynamic method for measuring<br />

Aurora A activity. Cancer Res. 67(11):<br />

5362-70, 2007.<br />

Pearson NJ, Cullen CF, Dzhindzhev NS,<br />

Ohkura H. A pre-anaphase role for a<br />

Cks/Suc1 in acentrosomal spindle<br />

formation <strong>of</strong> Drosophila female meiosis.<br />

EMBO Rep. 6(11): <strong>10</strong>58-63, 2005.<br />

Peset I, Seiler J, Sardon T, Bejarano LA,<br />

Rybina S, Vernos I. Function <strong>and</strong><br />

regulation <strong>of</strong> Maskin, a TACC family<br />

protein, in microtubule growth during<br />

mitosis. J <strong>Cell</strong> Biol. 170(7):<strong>10</strong>57-66,<br />

2005<br />

Piekorz RP, H<strong>of</strong>fmeyer A, Duntsch CD,<br />

McKay C, Nakajima H, Sexl V, Snyder<br />

L, Rehg J, Ihle JN. The centrosomal<br />

protein TACC3 is essential for<br />

hematopoietic stem cell function <strong>and</strong><br />

genetically interfaces with p53-regulated<br />

apoptosis. EMBO J. 21(4): 653-64, 2002.<br />

Raff JW. Centrosomes <strong>and</strong> cancer: lessons<br />

from a TACC. Trends <strong>Cell</strong> Biol. 12(5):<br />

222-5, 2002.<br />

Sato M, Okada N, Kakui Y, Yamamoto M,<br />

Yoshida M, Toda T. Nucleocytoplasmic<br />

transport <strong>of</strong> Alp7/TACC organizes<br />

spatiotemporal microtubule formation in<br />

fission yeast. EMBO Rep. <strong>10</strong>(<strong>10</strong>): 1161-<br />

7, 2009.<br />

Sato M, Toda T. Space shuttling in the cell:<br />

Nucleocytoplasmic transport <strong>and</strong><br />

microtubule organization during the cell<br />

cycle. Nucleus. 1(3): 231-6, 20<strong>10</strong>.<br />

Schneider L, Essmann F, Kletke A, Rio P,<br />

Hanenberg H, Wetzel W, Schulze-<br />

Osth<strong>of</strong>f K, Nürnberg B, Piekorz RP. The<br />

transforming acidic coiled coil 3 protein<br />

is essential for spindle-dependent<br />

chromosome alignment <strong>and</strong> mitotic<br />

survival. J Biol Chem. 282(40): 29273-<br />

83, 2007.<br />

Schuendeln MM, Piekorz RP, Wichmann C,<br />

Lee Y, McKinnon PJ, Boyd K,<br />

Takahashi Y, Ihle JN. The centrosomal,


<strong>10</strong> Seema TRIVEDI<br />

putative tumor suppressor protein TACC2 is<br />

dispensable for normal development, <strong>and</strong><br />

deficiency does not lead to cancer. Mol <strong>Cell</strong><br />

Biol. 24(14):6403-9, 2004.<br />

Silverman-Gavrila RV, Silverman-Gavrila LB.<br />

Septins: new microtubule interacting partners.<br />

Scientific World <strong>Journal</strong>. 8:611-20, 2008.<br />

Stewart JP, Thompson A, Santra M, Barlogie B,<br />

Lappin TR, Shaughnessy J Jr: Correlation <strong>of</strong><br />

TACC3, FGFR3, MMSET <strong>and</strong> p21 expression<br />

with the t(4;14)(p16.3;q32) in multiple<br />

myeloma. British J Haematology. 126(1): 72-<br />

76, 2004.<br />

Still I, Eslinger MR, Lauffart B. TACC1<br />

(transforming, acidic coiled-coil containing<br />

protein 1). Atlas Genet Cytogenet Oncol<br />

Haematol. December 2008. Retrieved<br />

December 25, 2011 URL:<br />

http://AtlasGeneticsOncology.org/Genes/TACC<br />

1ID42456ch8p11.html<br />

Still IH, Hamilton M, Vince P, Wolfman A, Cowell<br />

JK. Cloning <strong>of</strong> TACC1, an embryonically<br />

expressed potentially transforming coiled coil<br />

containing gene from the 8p11 breast cancer<br />

amplicon. Oncogene. 18(27): 4032-4038, 1999.<br />

Still IH, Vettaikkorumakankauv AK,<br />

DiMatteo A, Liang P. Structure-function<br />

evolution <strong>of</strong> the transforming acidic<br />

coiled coil genes revealed by analysis <strong>of</strong><br />

phylogenetically diverse organisms.<br />

BMC Evol Biol. 4: 16, 2004.<br />

Tan S, Lyulcheva E, Dean J, Bennett D.<br />

Mars promotes dTACC<br />

dephosphorylation on mitotic spindles to<br />

ensure spindle stability. J <strong>Cell</strong> Biol.<br />

182(1): 27-33, 2008.<br />

Thierry-Mieg D, Thierry-Mieg J. AceView:<br />

a comprehensive cDNA-supported gene<br />

<strong>and</strong> transcripts annotation, Genome Biol,<br />

7(Suppl 1):S12, 2006.<br />

Zhu M, Wang F, Yan F, Yao PY, Du J, Gao<br />

X, Wang X, Wu Q, Ward T, Li J, Kioko<br />

S, Hu R, Xie W, Ding X, Yao X. Septin<br />

7 interacts with centromere-associated<br />

protein E <strong>and</strong> is required for its<br />

kinetochore localization. J Biol Chem.<br />

283(27):18916-25, 2008.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong> <strong>10</strong>(2):11-19, 2012 Review Article 11<br />

Haliç University, Printed in Turkey.<br />

http://jcmb.halic.edu.tr<br />

Markör Sistemleri ve Genetik Karakterizasyon Çalışmalarında<br />

Kullanımları<br />

Marker Systems <strong>and</strong> Applications in Genetic Characterization<br />

Studies<br />

Yusuf ÖZŞENSOY* 1,2 , Ercan KURAR 2<br />

1 Bitlis Eren Üniversitesi Sağlık Yüksekokulu, 13000, Bitlis<br />

2 Selçuk Üniversitesi Veteriner Fakültesi Genetik Anabilim Dalı, 42031, Konya<br />

(* author for correspondence; yusufozsensoy@yahoo.com)<br />

Received: 18 September 2012; Accepted: 20 December 2012<br />

Abstract<br />

Nowadays, owing to the developments in molecular biology, genetic markers are generally used to<br />

describe specific regions <strong>of</strong> the genome. Three different marker systems, namely, protein <strong>and</strong> DNA<br />

markers, are used in genome analyses <strong>and</strong> in various genetic studies. Following the discovery <strong>of</strong><br />

polymerase chain reaction (PCR), PCR-based marker systems are widely preferred in genetic studies.<br />

Genetic characterization studies are critically important to determine the level <strong>of</strong> genetic diversity<br />

between <strong>and</strong> within populations, origin <strong>of</strong> domestication <strong>and</strong> migration <strong>and</strong> development <strong>of</strong><br />

conservation programs. Different biochemical marker systems, alloenzymes, mitochondrial DNA <strong>and</strong><br />

Y chromosome are used for genetic characterization studies. DNA markers, especially the<br />

polymorphic microsatellite markers, are the most preferable marker systems in PCR applications.<br />

Recent progresses in molecular biology techniques allow rapid <strong>and</strong> economical identification <strong>of</strong> single<br />

nucleotide polymorphisms analyses <strong>and</strong> their applications along with microsatellites.<br />

Keywords: Genetic Characterization; Marker systems, Microsatellite, SNP, RFLP<br />

Özet<br />

Moleküler biyoloji alanındaki gelişmeler sonucunda günümüzde markörler genel olarak genomun<br />

özgün bir bölgesini tanımlamak amacıyla kullanılmaktadır. Genom analizleri ve genetik çalışmalarda<br />

morfolojik, protein ve DNA markörleri olmak üzere üç tip markör kullanılmaktadır. Polimeraz zincir<br />

reaksiyonunun (PZR) keşfinden sonra genetik çalışmalarda PZR-temelli markörler daha fazla tercih<br />

edilmeye başlanmıştır. Genetik karakterizasyon çalışmaları, popülasyon içi ve popülasyonlar arası<br />

genetik çeşitlilik seviyesinin belirlenmesi, koruma programlarının geliştirilmesi, evcilleştirilme ve göç<br />

yollarının tespiti gibi çalışmalar için oldukça önemlidir. Genetik karakterizasyon çalışmalarında farklı<br />

biyokimyasal markör sistemleri, alloenzimler, mitokondriyal DNA ve Y kromozomuna özgün<br />

markörler kullanılmaktadır. DNA markörleri, özellikle polimorfik mikrosatellit markörleri, PZR<br />

uygulamalarında en çok tercih edilen markör sistemini oluşturmaktadır. Son zamanlarda geliştirilen<br />

yeni moleküler biyoloji teknikleri tek nükleotid polimorfizmleri analizinin daha hızlı ve ekonomik<br />

olarak yapılabilmesine ve mikrosatellitler ile birlikte kullanılmasına olanak sağlamaktadır.<br />

Anahtar Kelimeler: Genetik karakterizasyon, Markör Sistemleri, Mikrosatellit, SNP, RFLP<br />

GİRİŞ<br />

Genomun özgün bir bölgesini tanımlamak amacıyla<br />

birçok markör sistemi kullanılmaktadır. Genom<br />

analizleri ve genetik çalışmalar başta olmak<br />

üzere moleküler çalışmalarda morfolojik,


12 Yusuf ÖZŞENSOY ve Ercan KURAR<br />

protein ve DNA markörleri olmak üzere 3 tip<br />

markör kullanılmaktadır (Liu, 1998).<br />

Morfolojik Markörler<br />

Çok sayıdaki morfolojik markör insan, hayvan ve<br />

bitki genetik çalışmalarında kullanılmaktadır.<br />

Genler ve kromozomlar hakkındaki bilgi<br />

eksikliğinden dolayı ilk çalışmalar, göz rengi, kanat<br />

yapısı, boynuzluluk, deri rengi gibi basit Mendel<br />

kalıtımı gösteren özellikler üzerinde yapılmıştır. Bu<br />

gibi morfolojik karakterler, özgün genler için<br />

güvenilir indikatörler olarak kullanılabilirler ve bu<br />

özellikleri kodlayan genlerin kromozom üzerinde<br />

yerlerinin tanımlanmasında faydalı olmaktadırlar.<br />

Morfolojik markörlerin gözlenmesi kolay olmasına<br />

rağmen alel sayılarının nispeten az olmasından<br />

dolayı kullanımı kısıtlı kalmaktadır (Liu, 1998).<br />

Protein Markörleri<br />

Amino asit bileşimi, moleküler ağırlıkları ve<br />

antikor-antijen ilişkilerindeki farklılıklar nedeniyle<br />

proteinler için farklı aleller bulunabilmektedir.<br />

Moleküler büyüklük ve amino asit bileşimi<br />

farklılıklardan dolayı proteinler, jel elektr<strong>of</strong>orez<br />

yöntemi kullanılarak kolaylıkla ortaya çıkarılabilir<br />

ve genetik markör olarak kullanılabilirler. Genetik<br />

çalışmalarda ilk zamanlarda protein<br />

polimorfizmlerinin araştırılması amacıyla kan<br />

antijenleri ve izoenzim markörleri yaygın olarak<br />

kullanılmıştır. İzoenzimler, bir enzimin alternatif<br />

bir formudur ve aynı enzim aktivitesine sahip<br />

olmalarına rağmen elektr<strong>of</strong>oretik hareketleri<br />

farklılık göstermektedir (Liu, 1998). Genetik<br />

çalışmalarda kan ve doku proteinleri markör olarak<br />

yaygın bir şekilde kullanılmaktadır. Fakat özellikle<br />

kan grubu ve protein markör sistemlerinin genomun<br />

bazı bölgelerinde toplanmış bulunmaları,<br />

polimorfizm değerlerinin nispeten düşük olması,<br />

özgün olarak kan örneklerine gereksinim<br />

duyulması, iş yükünün ağır olması ve analizlerin<br />

uzun zaman alması nedeniyle ve moleküler<br />

biyolojideki gelişmelere bağlı olarak yerini DNA<br />

temelli markörlere bırakmıştır (Kurar, 2001).<br />

DNA Temelli Markörler<br />

DNA markörleri, bir tür içerisindeki farklı<br />

bireylerde dizi polimorfizmi gösteren DNA<br />

bölgeleridir ve varyasyonun belirlenmesinde<br />

günümüzde en sık kullanılan yöntemdir (Liu,<br />

1998). Polimeraz Zincir Reaksiyonunun (PZR)<br />

keşfinden sonra genetik çalışmalarda PZR temelli<br />

markörler daha çok tercih edilmeye<br />

başlanmıştır. Karry Mullis tarafından 1985<br />

yılında ilk kez ortaya konulan bu teknoloji<br />

sayesinde genomun özgün bölgelerinin in<br />

vitro şartlarda çoğaltılabilmesi ve<br />

elektr<strong>of</strong>orez teknikleri ile görüntülenmesi<br />

mümkün hale gelmiştir. DNA teknolojisi ve<br />

moleküler biyolojideki hızlı gelişmeye<br />

paralel olarak daha ekonomik, kolay ve<br />

polimorfik olmalarından dolayı özellikle<br />

PZR temelli DNA markör sistemleri (RFLP,<br />

RAPD, EST, STS, SSCP, AFLP, STR ve<br />

SNP) genetik çalışmalarda daha yaygın<br />

olarak kullanılmaya başlanmıştır (Weber<br />

<strong>and</strong> May, 1989; Liu, 1998).<br />

Restriksiyon parça uzunluk<br />

polimorfizmleri<br />

Restriksiyon endonükleaz (RE) enzim<br />

kesimleri ile oluşturulan farklı DNA parça<br />

uzunlukları restriksiyon parça uzunluk<br />

polimorfizmleri (RFLP-“Restriction<br />

fragment length polymorphism”) olarak<br />

adl<strong>and</strong>ırılmaktadır. RE’leri, DNA<br />

diziliminde belirli sırayla bulunan<br />

nükleotidlerden kendisine özgü özel tanıma<br />

dizilimi bölgelerini tanıyarak bu dizilimin<br />

belli bir noktasından keserek DNA’yı ikiye<br />

ayırmaktadır. Her bir RE’nin kendisine özel<br />

kesim bölgeleri bulunmaktadır.<br />

RFLP teknolojisi ile DNA dizisinde<br />

bulunan dizilim farklılıkları kolayca tespit<br />

edilebilmektedir. RFLP’lerin<br />

belirlenmesinde DNA öncelikle bir RE<br />

enzimi ile kesilerek DNA parçacıkları<br />

agaroz jel elektr<strong>of</strong>orezinde ayrıştırılır. DNA<br />

dizilim farklılıklarına göre genom<br />

bölgesinde farklı RE kesim alanları ve<br />

dolayısıyla bireyler arasında farklı DNA<br />

fragman pr<strong>of</strong>illeri oluşacaktır. Alkali jelde<br />

denatüre olmuş DNA fragmanları Southern<br />

blot yöntemi ile nitroselüloz kâğıdı üzerine<br />

alınır. Radyoaktif işaretli bir DNA probu<br />

kullanılarak özgün DNA fragmanları ve<br />

pr<strong>of</strong>ili tespit edilebilir (Botstein et al.,<br />

1980).<br />

RFLP markörlerin en önemli avantajı<br />

özgün dizi bilgisine ihtiyaç bulunmamasıdır.<br />

RFLP yöntemi, türler, cinsler hatta büyük<br />

popülasyonların analizinde<br />

kullanılabilmektedir. Polimorfizm oranı çok


yüksek olmasından dolayı aile ağacı ve haritalama<br />

analizlerinde tercih edilen markör sistemi olmuştur.<br />

RFLP markör sisteminin dezavantajları ise; analizin<br />

yapılabilmesi için yeterli miktarda DNA’ya ihtiyaç<br />

duyulması ile birlikte teknolojik olarak pahalı, uzun<br />

ve yorucu bir yöntem olmasıdır (Botstein et al.,<br />

1980).<br />

Tek zincir konformasyon polimorfizmleri<br />

Tek zincir konformasyon polimorfizmi (SSCP-<br />

“Single-str<strong>and</strong> conformational polymorphism”)<br />

markörleri, bir DNA dizilim bölgesindeki (<strong>10</strong>00<br />

baz çiftinden daha kısa) dizi varyantları ve<br />

mutasyonları (özellikle nokta mutasyonları)<br />

belirlemede kullanılan bir markör sistemidir (Orita<br />

et al., 1989). PZR ile çoğaltılan bir genom bölgesi,<br />

uygun ısıda denatürasyona tabi tutularak mutasyon<br />

bölgesinde II. ve III. DNA konformasyonlarının<br />

oluşturulması esasına dayanmaktadır. Varyasyona<br />

bağlı olarak oluşan II. ve III. konformasyondaki<br />

DNA molekülleri jel elektr<strong>of</strong>orezinde farklı bant<br />

pr<strong>of</strong>illeri oluşturarak varyantların tespitine olanak<br />

sağlamaktadır. Teknoloji olarak basit olmasına<br />

rağmen, her bir mutasyon için farklı ortamların<br />

oluşturulması gerekliliği, bu tekniğin uygulamasını<br />

kısıtlayan en önemli etkendir (Liu, 1998).<br />

Rastgele çoğaltılmış polimorfik DNA<br />

Rastgele çoğaltılmış polimorfik DNA (RAPD-<br />

“R<strong>and</strong>omly amplified polymorphic DNA”)<br />

markörleri, PZR tabanlı olup ilk kez Williams et<br />

al., (1990) tarafından geliştirilmiştir. Rastgele<br />

nükleotid dizilimine sahip olan tek bir primerin<br />

kullanılmasıyla DNA parçaları çoğaltılmakta ve<br />

oluşan farklı bant pr<strong>of</strong>iline göre DNA polimorfizmi<br />

tespit edilebilmektedir. Bu markör kullanılarak<br />

yapılan çalışmalarda, aynı lokustaki iki farklı alel<br />

belirli büyüklükteki bantların varlığıyla ya da<br />

yokluğuyla ayırt edilebilmektedir (Liu, 1998).<br />

RAPD markörlerinin avantajları, DNA dizi<br />

bilgisine ihtiyacın olmaması, diğer markörlere göre<br />

ucuz ve daha az miktarda DNA ile kısa sürede<br />

sonuçlar alınabilmesi olması rağmen en önemli<br />

dezavantajı diğer markörlere göre özelliklede<br />

RFLP’ye göre güvenilirliğinin düşük olmasıdır.<br />

Bundan dolayı genellikle RFLP ile birlikte<br />

değerlendirmeye alınırlar (Williams et al., 1990).<br />

Çoğaltılmış parça uzunluk polimorfizmi<br />

Çoğaltılmış parça uzunluk polimorfizmi (AFLP-<br />

“Amplified fragment length polymorphism”)<br />

Markör Sistemleri 13<br />

tekniği, RE enzimleri ile kesilmiş genomik<br />

DNA parçalarının seçici PZR ile<br />

çoğaltılması temeline dayanmaktadır. Bu<br />

teknik, DNA’nın enzimlerle kesilmesi ve<br />

oligonükleotid adaptörlerin bağlanması,<br />

kesilen bölgelerin seçici PZR yöntemiyle<br />

çoğaltılması ve çoğalan bölgenin<br />

poliakrilamid jelde analiz edilmesi olmak<br />

üzere 3 temel aşamadan meydana<br />

gelmektedir. RE ile kesilen parça bölgeleri<br />

nükleotid dizilimi bilinmeden jel<br />

elektr<strong>of</strong>orez yöntemi ile<br />

görüntülenebilmektedir. Parmak izi<br />

analizlerinde ağırlıklı olarak kullanılan<br />

AFLP markör sistemi, RFLP markörüne<br />

benzer özelliklere sahip olmakla birlikte<br />

RFLP’ye göre analizi daha kolaydır ve daha<br />

az miktarda DNA’ya gereksinim<br />

duymaktadır (Vos et al., 1995).<br />

Tek nükleotid polimorfizmleri<br />

Tek nükleotid polimorfizmleri (SNP-“Single<br />

nucleotide polymorphism”) genomun<br />

herhangi bir bölgesindeki tek nükleotid<br />

dizilim farklılıklarıdır. Genomda oldukça<br />

yaygın bulunan bu markörlere intron ve<br />

ekzon bölgelerinde, 500–<strong>10</strong>00 bç sıklıkta<br />

rastlanılabilir (Wang et al., 1998).<br />

Genellikle iki alele sahip olan SNP<br />

markörlerinin polimorfizmleri daha düşük<br />

kalmakta, veri tabanı katalog bilgisine ve<br />

polimorfizm dizi bilgisine ihtiyaç<br />

duyulmaktadır (Smigielski et al., 2000).<br />

SNP’ler araştırmacıların ihtiyaçlarına göre<br />

çalışmaları kolaylaştırmak için dizi konumu,<br />

fonksiyonu, türler arası homoloji ve<br />

heterozigotluk derecesi olmak üzere 4 büyük<br />

bilgi ekseni tek veya daha fazlası bir arada<br />

olmak üzere düzenlenebilmektedir<br />

(Smigielski et al., 2000). Genomda bilinen<br />

1.42 milyon SNP’nin her 1.91 Kbç başına 1<br />

SNP yoğunlukta bulunduğu bilinmekle<br />

birlikte ekson gen bölgelerinde 60 000 SNP<br />

bulunduğu ve eksonun %85’inin SNP’nin 5<br />

Kbç yakınında yer aldığı belirlenmiştir (The<br />

International SNP Map Working Group,<br />

2001). SNP bilgilerine ulaşmak için;<br />

GenBank, PubMed, LocusLink ve Genome<br />

Sequence gibi kaynak bilgiler ile NCBI veri<br />

tabanındaki bilgiler kullanılmaktadır<br />

(Smigielski et al., 2000). Geliştirilen yeni


14 Yusuf ÖZŞENSOY ve Ercan KURAR<br />

moleküler biyoloji teknikleri (mikrodizin, gerçek<br />

zamanlı PCR) ile çok sayıda SNP’nin analizi daha<br />

hızlı ve ekonomik olarak yapılabilmektedir.<br />

SNP’ler genetik çeşitlilik, popülasyon yapısı,<br />

kantitatif özellik lokusları (QTL), markör destekli<br />

seleksiyon (MAS) çalışmalarında ve ailesel<br />

ilişkilerin araştırılmasında yaygın kullanılmaktadır.<br />

Mitokondriyal DNA<br />

Maternal kalıtım gösteren mitokondrial DNA<br />

(mtDNA), çift zincirli, halkasal yapıda ve aerobik<br />

solunumu destekleyen genleri içermektedir.<br />

mtDNA toplam genetik materyalin %0.3’ünü<br />

oluşturmaktadır (Rokas et al., 2003; Başaran,<br />

2004). Tipik bir somatik hücre 500-<strong>10</strong>00<br />

mitokondri içermektedir (Rokas et al., 2003).<br />

mtDNA’da gözlenen mutasyon oranı nükleer<br />

DNA’ya (nDNA) göre daha hızlıdır. Bu durumun<br />

sebebi olarak, mtDNA’da meydana gelen<br />

mutasyonların nDNA’da meydana gelen<br />

mutasyonlardan yaklaşık <strong>10</strong>–20 kat daha fazla<br />

olması ve mtDNA’nın tamir mekanizmasının<br />

bulunmaması olduğu gösterilmektedir. Sonuçta<br />

oluşan mutasyon oranı, mtDNA’nın baz diziliminde<br />

çok farklı varyasyonların oluşmasına yol<br />

açmaktadır (Başaran, 2004). mtDNA, canlıların<br />

orjinleri, göç haritalarının çıkarılması, adli tıp,<br />

dejeneratif hastalıkların sebebinin araştırılmasında<br />

ve kanser çalışmalarında kullanılmaktadır. mtDNA,<br />

rekombinasyon eksikliğinin tespiti ve genetik<br />

olarak klonlanan canlıların kalıtımının tespit<br />

edilmesinde yaygın kullanılmaktadır (Rokas et al.,<br />

2003). mtDNA’nın kodlanan bölgesindeki<br />

varyasyonun iyi anlaşılması popülasyonların<br />

genetik sonucunun (filogenetik geçmişinin)<br />

belirlenmesinde yararlı olacaktır (Finnilä et al.,<br />

2001).<br />

Mikrosatellitler<br />

Genomda bir lokusta arka arkaya gelen rastgele<br />

tekrar dizilerine kısa ardışık tekrarlar (STR-“Short<br />

T<strong>and</strong>em Repeat”) denilmektedir. STR’lerin 1–6 bç<br />

tekrarlarından oluşmuş markörlere mikrosatellit<br />

markörler veya basit dizi tekrarları (SSR-“Simple<br />

Sequence Repeat”) olarak isimlendirilmektedir<br />

(Weber <strong>and</strong> May, 1989; Liu, 1998). Genomda 9–<br />

<strong>10</strong>0 bç arasında değişen rastgele dizi tekrarları ise<br />

minisatellit markörler veya değişken ardışık<br />

nükleotid tekrarlar (VNTR-“Variable Number <strong>of</strong><br />

T<strong>and</strong>em Repeats) olarak tanımlanmaktadır.<br />

Mikrosatellitlerin tekrar sayısı genelde <strong>10</strong>0’den,<br />

minisatellitlerin tekrar sayısı ise <strong>10</strong>00’den<br />

daha azdır (Liu, 1998). Mikrosatellitler<br />

prokaryot ve ökaryot genomun herhangi bir<br />

bölgesinde bulunabilmektedir.<br />

Prokaryotlarda birçok biyolojik fonksiyona<br />

sahip olduğu halde ökaryot hücrelerde rolü<br />

tam olarak bilinmemektedir (Bennett, 2000).<br />

Mikrosatellit markörler, yaygın olarak 2<br />

nükleotidli tekrarlardan [(CA)n] oluşmakla<br />

birlikte farklı formlarda da (AC, AT, AAC,<br />

AAT, CCG vb) bulunabilmektedir (Ellegren<br />

et al., 1997; Orti et al., 1997; Bruford et al.,<br />

2003).<br />

STR markörleri, PZR teknolojisinin<br />

yardımıyla genetik çalışmalarda en çok<br />

tercih edilen markör sistemini<br />

oluşturmaktadır (Weber <strong>and</strong> May, 1989;<br />

Liu, 1998). Mikrosatellitlerde tekrar<br />

bölgelerini kuşatan DNA dizileri bir türün<br />

bireylerinde aynı olmasına rağmen tekrar<br />

dizilim sayıları bireyler hatta bireyin<br />

homolog kromozomları arasında dahi<br />

farklılık gösterebilmektedir. Üç nükleotid<br />

tekrarlı mikrosatellit bölgelerinin %60<br />

oranında polimorfik olduğu, 2 bç tekrarlı<br />

mikrosatellitlerin ise %<strong>10</strong>0 polimorfik<br />

özelliğe sahip olduğu belirlenmiştir (Metta<br />

et al., 2004). Mikrosatellitler, genomda<br />

yaygın olarak bulunmaları, polimorfizm<br />

oranının yüksek olması ve kullanımının<br />

kolay olması nedeniyle birçok moleküler<br />

biyoloji çalışmasında rahatlıkla kullanımı<br />

tercih edilmektedir.<br />

GENETİK ÇEŞİTLİLİK VE GENETİK<br />

KARAKTERİZASYON<br />

Hayvansal üretimde genetik çeşitlilik, ıslah<br />

programlarının temelini oluşturmaktadır.<br />

Genetik çeşitlilik, belli bir coğrafik bölgeye<br />

uyum sağlamış, ilgili bölgede yaygın olarak<br />

yetiştirilen canlı türlerinin, bu türlere ait<br />

ırkların genetik niteliklerini (kalıtsal bilginin<br />

zenginliğini) ve içinde yaşadıkları<br />

ekosistemde birbirleri ile ilişkilerinin<br />

niteliğini ifade eder. Evcil hayvanlarda<br />

genetik çeşitlilik, ırk içi ve ırklar arası olmak<br />

üzere iki çeşittir.<br />

Genetik karakterizasyon çalışmaları,<br />

ırklar arası ve ırk içi genetik çeşitliliğin<br />

belirlenmesi ve ırkların tanımlanması<br />

amacıyla önemli bir yere sahiptir. Dünyada


ve Türkiye’de 1980’li yıllarda yerli ırkların genetik<br />

yapıları ve bazı verim özellikleri ile olan ilişkileri<br />

kan ve süt protein polimorfizmi (Ceriotti et al.,<br />

2003; Ibeagha-Awemu <strong>and</strong> Erhardt, 2005)<br />

kullanılarak incelenirken en son gelişmelerle<br />

birlikte mikrosatellit markörler ve SNP’ler (Cañón<br />

et al., 2001; Li et al., 2006; McKay et al., 2008;<br />

Kang et al., 2009; Molaee et al., 2009) daha yaygın<br />

olarak kullanılmaya başlanmıştır.<br />

Irkların kökeni ve evcilleştirilme bölgelerinin<br />

tespit edilmesi amacıyla genetik karakterizasyon ve<br />

arkeolojik çalışmalar yapılmaktadır. Avrupa<br />

ırklarının göç yollarının Tuna Nehri boyunca<br />

Kuzeyden Merkezi Avrupa’ya ve Akdeniz kıyısı<br />

boyunca olmak üzere iki farklı göç yolu izlediği,<br />

sığır, koyun, keçi, domuz ve m<strong>and</strong>anın iki farklı<br />

Asya Bölgesi’nde ilk evcilleştirilmeye başl<strong>and</strong>ığı<br />

bildirilmektedir (Bruford et al., 2003). Bu<br />

merkezlerden en eski olanı Doğu-Güneydoğu<br />

Anadolu bölgesini kapsamaktadır ve ırkların bu<br />

bölgeden tüm Dünya’ya özellikle Anadolu’dan<br />

Avrupa’ya yayıldığı belirtilmektedir (L<strong>of</strong>tus et al.,<br />

1994; 1999; Luikart et al., 2001; Troy et al., 2001;<br />

Hiendleder et al., 2002; Cymbron et al., 2005).<br />

Genetik karakterizasyon çalışmalarında<br />

mikrosatellitler, insan (Bowcock et al., 1994; Deka<br />

et al., 1995), sığır (MacHugh et al., 1997; L<strong>of</strong>tus et<br />

al., 1999; Edwards et al., 2000; Cañón et al., 2001),<br />

keçi (Luikart et al., 2001; Maudet et al., 2002),<br />

koyun (Mukesh et al., 2006; Lawson H<strong>and</strong>ley et<br />

al., 2007; Molaee et al., 2009), köpek (Boyko et al.,<br />

2009; Kang et al., 2009), at (Luís et al., 2007), eşek<br />

(Aranguren-Méndez et al., 2002), domuz (Behl et<br />

al., 2006; Sollera et al., 2009), m<strong>and</strong>a (Flam<strong>and</strong> et<br />

al., 2003) ve diğer birçok hayvan türlerinde (Cosse<br />

et al., 2007; Vijh et al., 2007; Li et al., 2009)<br />

kullanılmaktadır.<br />

Genetik karakterizasyon çalışmalarında<br />

mikrosatellitler dışında farklı biyokimyasal markör<br />

sistemleri de (Moazami-Goudarzi et al., 1997;<br />

Kantanen et al., 1999; 2000; Ceriotti et al., 2003;<br />

Ibeagha-Awemu <strong>and</strong> Erhardt, 2005) kullanılmıştır.<br />

AFLP (Negrini et al., 2007), mtDNA (L<strong>of</strong>tus et al.,<br />

1994; Bradley et al., 1996; Finnilä et al., 2001;<br />

Mannen et al., 2004), Y kromozomuna özgün<br />

mikrosatellitler (Edwards et al., 2000; Cai et al.,<br />

2006; Li et al., 2007; Kantanen et al., 2009)<br />

ağırlıklı olarak kullanılmakla birlikte SNP (Li et<br />

al., 2006; McKay et al., 2008) markörleri de<br />

kullanılmaya başlanmıştır. Ayrıca genetik<br />

karakterizasyon çalışmalarında markör sistemleri<br />

Markör Sistemleri 15<br />

dışında aile ağacı kayıtlarından da<br />

yararlanılmaktadır (Trinderup et al., 1999;<br />

Honda et al., 2006).<br />

Sığır ırkları üzerinde yapılan<br />

mikrosatellit markörler ile yapılan<br />

analizlerinde Taurin ve Zebu karışımı<br />

bulunmamışken diğer markör sistemlerinden<br />

olan Y kromozomu ve mtDNA ile yapılan<br />

çalışmalar birlikte değerlendirildiği zaman Y<br />

kromozomu markörü verilerinde bu ırklarda<br />

Zebu karışımının olduğu belirlenmiştir<br />

(Lirón et al., 2006).<br />

SNP’ler ise bitkiler, deniz ürünleri ve<br />

birçok hayvan türünde moleküler<br />

çalışmalarda aynı <strong>and</strong>a sayıca fazla miktarda<br />

kullanılmaktadır (Muir et al., 2008;<br />

Matukumalli et al., 2009; Yan et al., 2009;<br />

Zhu et al., 2012).<br />

Sonuç olarak markör sistemlerinde PZR<br />

teknolojisi öncesi birçok markör sistemi<br />

kullanılırken, PZR teknolojisi ile birlikte<br />

mikrosatellitler ağırlıklı kullanılmaya<br />

başlanmıştır. Son yıllarda ise SNP<br />

markörleri üzerinde çalışmalar artmış ve<br />

SNP çipleri oluşturulmaya başlanmıştır.<br />

KAYNAKLAR<br />

Aranguren-Méndez J, Jordana J, Gomez M.<br />

Genetic conservation <strong>of</strong> five endangered<br />

Spanish donkey breeds. J Anim Breed<br />

Genet. 119(4): 256–263, 2002.<br />

Başaran A. Tıbbi biyoloji ders kitabı. Güneş<br />

& Nobel Tıp Kitapevleri, 7. Baskı.<br />

Bursa. 2004.<br />

Behl R, Sheoran N, Behl J, Vijh RK.<br />

Genetic analysis <strong>of</strong> Ankamali pigs <strong>of</strong><br />

India using microsatellite markers <strong>and</strong><br />

their comparison with other<br />

domesticated Indian pig types. J Anim<br />

Breed Genet. 123(2): 131–135, 2006.<br />

Bennett P. Demystified… Microsatellites.<br />

<strong>Journal</strong> <strong>of</strong> Clinical Pathology. Mol<br />

Pathol. 53: 177–183, 2000.<br />

Botstein D, White RL, Skolnick M, Davis<br />

RW. Construction <strong>of</strong> a genetic linkage<br />

map in man using restriction fragment


16 Yusuf ÖZŞENSOY ve Ercan KURAR<br />

length polymorphisms. Am J Hum Genet. 32:<br />

314–331, 1980.<br />

Bowcock AM, Ruiz-Linares A, Tomfohrde J,<br />

Minch E, Kidd JR, Cavalli-Sforza LL. High<br />

resolution <strong>of</strong> human evolutionary trees with<br />

polymorphic microsatellites. Nature. 368(6470):<br />

455–457, 1994.<br />

Boyko AR, Boyko RH, Boyko CM, Parker HG,<br />

Castelhano M, Corey L, Degenhardt JD, Auton<br />

A, Hedimbi M, Kityo R, Ostr<strong>and</strong>er EA,<br />

Schoenebeck J, Todhunter RJ, Jones P,<br />

Bustamante CD. Complex population structure<br />

in African village dogs <strong>and</strong> its implications for<br />

inferring dog domestication history. Proc Natl<br />

Acad Sci USA. <strong>10</strong>6(33): 13903–13908, 2009.<br />

Bradley DG, MacHugh DE, Cunningham P, L<strong>of</strong>tus<br />

RT. Mitochondrial diversity <strong>and</strong> the origins <strong>of</strong><br />

African <strong>and</strong> European cattle. Proc Natl Acad<br />

Sci USA. 93(<strong>10</strong>): 5131–5135, 1996.<br />

Bruford MW, Bradley DG, Luikart G. DNA<br />

markers reveal the complexity <strong>of</strong> livestock<br />

domestication. Nat Rev Genet. 4(11): 900–9<strong>10</strong>,<br />

2003.<br />

Cai X, Chen H, Wang S, Xue K, Lei C.<br />

Polymorphisms <strong>of</strong> two Y chromosome<br />

microsatellites in Chinese cattle. Genet Sel<br />

Evol. 38: 525–534, 2006.<br />

Cañón J, Alex<strong>and</strong>rino P, Bessa I, Carleos C,<br />

Carretero Y, Dunner S, Ferran N, Garcia D,<br />

Jordana J, Laloë D, Pereira A, Sanchez A,<br />

Moazami-Goudarzi K. Genetic diversity<br />

measures <strong>of</strong> local European beef cattle breeds<br />

for conservation purposes. Genet Sel Evol.<br />

33(3): 311–332, 2001.<br />

Ceriotti G, Caroli A, Rizzi R, Crimella C. Genetic<br />

relationships among taurine (Bos taurus) <strong>and</strong><br />

zebu (Bos indicus) populations as revealed by<br />

blood groups <strong>and</strong> blood proteins. J Anim Breed<br />

Genet. 120: 57–67, 2003.<br />

Cosse M, González S, Maldonado JE. Crossamplification<br />

tests <strong>of</strong> ungulate primers in the<br />

endangered Neotropical pampas deer<br />

(Ozotoceros bezoarticus). Genet Mol<br />

Res. 6(4): 1118–1122, 2007.<br />

Cymbron T, Freeman AR, Isabel Malheiro<br />

M, Vigne JD, Bradley DG.<br />

Microsatellite diversity suggests<br />

different histories for Mediterranean <strong>and</strong><br />

Northern European cattle populations.<br />

Proc Biol Sci. 272(1574): 1837–1843,<br />

2005.<br />

Deka R, Jin L, Shriver MD, Yu LM, DeCroo<br />

S, Hundrieser J, Bunker CH, Ferrell RE,<br />

Chakraborty R. Population genetics <strong>of</strong><br />

dinucleotide (dC-dA)n.(dG-dT)n<br />

polymorphisms in world populations.<br />

Am J Hum Genet. 56(2): 461–474, 1995.<br />

Edwards CJ, Gaillard C, Bradley DG,<br />

MacHugh DE. Y-specific microsatellite<br />

polymorphisms in a range <strong>of</strong> bovid<br />

species. Anim Genet. 31: 127–130, 2000.<br />

Ellegren H, Moore S, Robinson N, Byrne K,<br />

Ward W, Sheldon BC. Microsatellite<br />

evolution-a reciprocal study <strong>of</strong> repeat<br />

lengths at homologous loci in cattle <strong>and</strong><br />

sheep. Mol Biol Evol. 14(8): 854–860,<br />

1997.<br />

Finnilä S, Lehtonen MS, Majamaa K.<br />

Phylogenetic Network for European<br />

mtDNA. Am J Hum Genet. 68: 1475–<br />

1484, 2001.<br />

Flam<strong>and</strong> JRB, Vankan D, Gairhe KP,<br />

Duong H, Barker JSF. Genetic<br />

identification <strong>of</strong> wild Asian water<br />

Buffalo in Nepal. Anim Cons. 6: 265–<br />

270, 2003.<br />

Hiendleder S, Kaupe B, Wassmuth R, Janke<br />

A. <strong>Molecular</strong> analysis <strong>of</strong> wild <strong>and</strong><br />

domestic sheep questions current<br />

nomenclature <strong>and</strong> provides evidence for<br />

domestication from two different<br />

subspecies. Proc Biol Sci. 269(1494):<br />

893–904, 2002.


Honda T, Fujii T, Nomura T, Mukai F. Evaluation<br />

<strong>of</strong> genetic diversity in Japanese Brown cattle<br />

population by pedigree analysis. J Anim Breed<br />

Genet. 123: 172–179, 2006.<br />

Ibeagha-Awemu EM, Erhardt G. Genetic structure<br />

<strong>and</strong> differentiation <strong>of</strong> 12 African Bos indicus<br />

<strong>and</strong> Bos taurus cattle breeds, inferred from<br />

protein <strong>and</strong> microsatellite polymorphisms. J<br />

Anim Breed Genet. 122(1): 12–20, 2005.<br />

Kang BT, Kim KS, Min MS, Chae YJ, Kang JW,<br />

Yoon J, Choi J, Seong JK, Park HC, An J, Lee<br />

MH, Park HM, Lee H. Microsatellite loci<br />

analysis for the genetic variability <strong>and</strong> the<br />

parentage test <strong>of</strong> five dog breeds in South<br />

Korea. Genes Genet Syst. 84(3): 245–251, 2009.<br />

Kantanen J, Olsaker I, Adalsteinsson S, S<strong>and</strong>berg<br />

K, Eythorsdottir E, Pirhonen K, Holm LE.<br />

Temporal changes in genetic variation <strong>of</strong> north<br />

European cattle breeds. Anim Genet. 30(1): 16–<br />

27, 1999.<br />

Kantanen J, Olsaker I, Holm LE, Lien S, Vilkki J,<br />

Brusgaard K, Eythorsdottir E, Danell B,<br />

Adalsteinsson S. Genetic diversity <strong>and</strong><br />

population structure <strong>of</strong> 20 North European<br />

cattle breeds. J Hered. 91(6): 446–457, 2000.<br />

Kantanen J, Edwards CJ, Bradley DG, Viinalass H,<br />

Thessler S, Ivanova Z, Kiselyova T, Cinkulov<br />

M, Popov R, Stojanović S, Ammosov I, Vilkki<br />

J. Maternal <strong>and</strong> paternal genealogy <strong>of</strong> Eurasian<br />

taurine cattle (Bos taurus). Heredity. <strong>10</strong>3(5):<br />

404–415, 2009.<br />

Kurar E. Comparative physical <strong>and</strong> linkage<br />

mapping <strong>of</strong> bovine chromosome 24 with human<br />

chromosome 18. Doktora Tezi (PhD Thesis).<br />

University <strong>of</strong> Wisconsin-Madison, 2001.<br />

Lawson H<strong>and</strong>ley L-J, Byrne K, Santucci F,<br />

Townsend S, Taylor M, Bruford MW, Hewitt<br />

GM. Genetic structure <strong>of</strong> European sheep<br />

breeds. Heredity. 99: 620–631, 2007.<br />

Li J, Wang G, Bai Z. Genetic variability in four<br />

wild <strong>and</strong> two farmed stocks <strong>of</strong> the Chinese<br />

Markör Sistemleri 17<br />

freshwater pearl mussel (Hyriopsis<br />

cumingii) estimated by microsatellite<br />

DNA markers. Aquaculture. 287: 286–<br />

291, 2009.<br />

Li MH, Adamowicz T, Switonski M,<br />

Ammosov I, Ivanova Z, Kiselyova T,<br />

Popov R, Kantanen J. Analysis <strong>of</strong><br />

population differentiation in North<br />

Eurasian cattle (Bos taurus) using single<br />

nucleotide polymorphisms in three genes<br />

associated with production traits. Anim<br />

Genet. 37(4): 390–392, 2006.<br />

Li MH, Zerabruk M, Vangen O, Olsaker I,<br />

Kantanen J. Reduced genetic structure <strong>of</strong><br />

north Ethiopian cattle revealed by Ychromosome<br />

analysis. Heredity. 98:<br />

214–221, 2007.<br />

Lirón JP, Peral-Garcia P, Giovambattista G.<br />

Genetic characterization <strong>of</strong> Argentine<br />

<strong>and</strong> Bolivian Creole cattle breeds<br />

assessed through microsatellites. J<br />

Hered. 97(4): 331–339, 2006.<br />

Liu BH. Statistical genomics: Linkage,<br />

mapping, <strong>and</strong> QTL analysis. CRC Press<br />

LLC, Boca Raton New York. 1998.<br />

L<strong>of</strong>tus RT, MacHugh DE, Bradley DG,<br />

Sharp PM, Cunningham P. Evidence for<br />

two independent domestications <strong>of</strong><br />

cattle. Proc Natl Acad Sci USA. 91(7):<br />

2757–2761, 1994.<br />

L<strong>of</strong>tus RT, Ertuğrul O, Harba MH, El-<br />

Barody AA, MacHugh DE, Park SDE,<br />

Bradly DG. A microsatellite survey <strong>of</strong><br />

cattle from a centre <strong>of</strong> origin: The Near<br />

East. Mol Ecol. 8: 2015–2022, 1999.<br />

Luikart G, Gielly L, Exc<strong>of</strong>fier L, Vigne JD,<br />

Bouvet J, Taberlet P. Multiple maternal<br />

origins <strong>and</strong> weak phylogeographic<br />

structure in domestic goats. Proc Natl<br />

Acad Sci USA. 98(<strong>10</strong>): 5927–5932, 2001.


18 Yusuf ÖZŞENSOY ve Ercan KURAR<br />

Luís C, Juras R, Oom MM, Cothran EG. Genetic<br />

diversity <strong>and</strong> relationships <strong>of</strong> Portuguese <strong>and</strong><br />

other horse breeds based on protein <strong>and</strong><br />

microsatellite loci variation. Anim Genet. 38(1):<br />

20–27, 2007.<br />

MacHugh DE, Shriver MD, L<strong>of</strong>tus RT,<br />

Cunningham P, Bradley DG. Microsatellite<br />

DNA variation <strong>and</strong> the evolution, domestication<br />

<strong>and</strong> phylogeography <strong>of</strong> taurine <strong>and</strong> zebu cattle<br />

(Bos taurus <strong>and</strong> Bos indicus). Genetics. 146(3):<br />

<strong>10</strong>71–<strong>10</strong>86, 1997.<br />

Mannen H, Kohno M, Nagata Y, Tsuji S, Bradley<br />

DG, Yeo JS, Nyamsamba D, Zagdsuren Y,<br />

Yokohama M, Nomura K, Amano T.<br />

Independent mitochondrial origin <strong>and</strong> historical<br />

genetic differentiation in North Eastern Asian<br />

cattle. Mol Phylogenet Evol. 32(2): 539–544,<br />

2004.<br />

Matukumalli LK, Lawley CT, Schnabel RD, Taylor<br />

JF, Allan MF, Heaton MP, O'Connell J, Moore<br />

SS, Smith TPL, Sonstegard TS, Van Tassell CP.<br />

Development <strong>and</strong> characterization <strong>of</strong> a high<br />

density SNP genotyping assay for cattle. PLoS<br />

One. 4(4): e5350, 2009.<br />

Maudet C, Miller C, Bassano B, Breitenmoser-<br />

Würsten C, Gauthier D, Obexer-Ruff G,<br />

Michallet J, Taberlet P, Luikart G.<br />

Microsatellite DNA <strong>and</strong> recent statistical<br />

methods in wildlife conservation management:<br />

Applications in Alpine ibex [Capra ibex(ibex)].<br />

Mol Ecol. 11(3): 421–436, 2002.<br />

McKay SD, Schnabel RD, Murdoch BM,<br />

Matukumalli LK, Aerts J, Coppieters W, Crews<br />

D, Dias Neto E, Gill CA, Gao C, Mannen H,<br />

Wang Z, Van Tassell CP, Williams JL, Taylor<br />

JF, Moore SS. An assessment <strong>of</strong> population<br />

structure in eight breeds <strong>of</strong> cattle using a whole<br />

genome SNP panel. BMC Genetics. 9: 37. 2008<br />

from http://www.biomedcentral.com/1471–<br />

2156/9/37<br />

Metta M, Kanginakudru S, Gudiseva N, Nagaraju J.<br />

Genetic characterization <strong>of</strong> the Indian cattle<br />

breeds, Ongole <strong>and</strong> Deoni (Bos indicus), using<br />

microsatellite markers – a preliminary study.<br />

BMC Genetics. 5(16): 2004 from<br />

http://www.biomedcentral.com/1471–<br />

2156/5/16<br />

Moazami-Goudarzi K, Laloë D, Furet JP,<br />

Grosclaude F. Analysis <strong>of</strong> genetic<br />

relationships between <strong>10</strong> cattle breeds<br />

with 17 microsatellites. Anim Genet.<br />

28(5): 338–345, 1997.<br />

Molaee V, Osfoori R, Esk<strong>and</strong>ari Nasab MP,<br />

Qanbari S. Genetic relationships among<br />

six Iranian indigenous sheep populations<br />

based on microsatellite analysis. Small<br />

Rum Res. 84: 121–124, 2009.<br />

Muir WM, Wong GKS, Zhang Y, Wang J,<br />

Groenen MAM, Crooijmans RPMA,<br />

Megens HJ, Zhang H, Okimoto R,<br />

Vereijken A, Jungerius A, Albers GAA,<br />

Lawley CT, Delany ME, MacEachern S,<br />

Cheng HH. Genome-wide assessment <strong>of</strong><br />

worldwide chicken SNP genetic<br />

diversity indicates significant absence <strong>of</strong><br />

rare alleles in commercial breeds. Proc<br />

Natl Acad Sci USA. <strong>10</strong>5(45): 17312-<br />

17317, 2008.<br />

Mukesh M, Sodhi M, Bhatia S.<br />

Microsatellite-based diversity analysis<br />

<strong>and</strong> genetic relationships <strong>of</strong> three Indian<br />

sheep breeds. J Anim Breed Genet.<br />

123(4): 258–264, 2006.<br />

Negrini R, Nijman IJ, Milanesi E, Moazami-<br />

Goudarzi K, Williams JL, Erhardt G,<br />

Dunner S, Rodellar C, Valentini A,<br />

Bradley DG, Olsaker I, Kantanen J,<br />

Ajmone-Marsan P, Lenstra JA, European<br />

Cattle Genetic Diversity Consortium.<br />

Differentiation <strong>of</strong> European cattle by<br />

AFLP fingerprinting. Anim Genet. 38(1):<br />

60–66, 2007.<br />

Orita M, Iwahana H, Kanazawa H, Hayashi<br />

K, Sekiya T. Detection <strong>of</strong><br />

polymorphisms <strong>of</strong> human DNA by gel<br />

electrophoresis as single-str<strong>and</strong><br />

conformation polymorphisms. Proc Natl<br />

Acad Sci USA. 86: 2766–2770, 1989.


Orti G, Pearse DE, Avise JC. Phylogenetic<br />

assessment <strong>of</strong> length variation at a<br />

microsatellite locus. Proc Natl Acad Sci USA.<br />

94(20): <strong>10</strong>745–<strong>10</strong>749, 1997.<br />

Rokas A, Ladoukakis E, Zouros E. Animal<br />

mitochondrial DNA recombination revisited.<br />

Trends Ecol Evol. 18(8): 411-417, 2003.<br />

Smigielski EM, Sirotkin K, Ward M, Sherrry ST.<br />

dbSNP: a database <strong>of</strong> single nucleotide<br />

polymorphisms. Nucl Acids Res. 28(1): 352-<br />

355, 2000.<br />

Sollera BP, Paiva SR, Faria DA, Guimarães SEF,<br />

Castro STR, Egito AA, Albuquerque MSM,<br />

Piovezan U, Bertani GR, Mariante AD. Genetic<br />

diversity <strong>of</strong> Brazilian pig breeds evidenced by<br />

microsatellite markers. Livest Sci. 123: 8–15,<br />

2009.<br />

The International SNP Map Working Group. A<br />

map <strong>of</strong> human genome sequence variation<br />

containing 1.42 million single nucleotide<br />

polymorphisms. Nature. 409: 928-933, 2001.<br />

Trinderup M, Jørgensen JN, Hansen M.<br />

Conservation considerations on Danish<br />

Shorthorn Cattle using pedigree analysis. AGRI.<br />

26: 27–33, 1999.<br />

Troy CS, MacHugh DE, Bailey JF, Magee DA,<br />

L<strong>of</strong>tus RT, Cunningham P, Chamberlain AT,<br />

Sykes BC, Bradley DG. Genetic evidence for<br />

Near-Eastern origins <strong>of</strong> European cattle. Nature.<br />

4<strong>10</strong>(6832): <strong>10</strong>88–<strong>10</strong>91, 2001.<br />

Vijh RK, Tantia MS, Mishra B, Kumar ST. Genetic<br />

diversity <strong>and</strong> differentiation <strong>of</strong> dromedarian<br />

camel <strong>of</strong> India. Anim Biotechnol. 18(2): 81–90,<br />

2007.<br />

Vos P, Hogers R, Bleeker M, Reijans M, van de<br />

Lee T, Hornes M, Frijters A, Pot J, Peleman J,<br />

Kuiper M, Zabeau M. AFLP: A new technique<br />

for DNA fingerprinting. Nucl Acids Res. 23(21):<br />

4407–4414, 1995.<br />

Markör Sistemleri 19<br />

Wang DG, Fan JB, Siao CJ, Berno A,<br />

Young P, Sapolsky R, Gh<strong>and</strong>our G,<br />

Perkins N, Winchester E, Spencer J,<br />

Kruglyak L, Stein L, Hsie L, Topaloglou<br />

T, Hubbell E, Robinson E, Mittmann M,<br />

Morris MS, Shen N, Kilburn D, Rioux J,<br />

Nusbaum C, Rozen S, Hudson TJ,<br />

Lipshutz R, Chee M, L<strong>and</strong>er ES. Largescale<br />

identification, mapping, <strong>and</strong><br />

genotyping <strong>of</strong> single-nucleotide<br />

polymorphisms in the human genome.<br />

Science. 280(5366): <strong>10</strong>77–<strong>10</strong>82, 1998.<br />

Weber JL, May PE. Abundant class <strong>of</strong><br />

human DNA polymorphisms which can<br />

be typed using the polymerase chain<br />

reaction. Am J Hum Genet. 44: 388–396,<br />

1989.<br />

Williams JGK, Kubelik AR, Livak KJ,<br />

Rafalski JA, Tingey SV. DNA<br />

polymorphisms amplified by arbitrary<br />

primers are useful as genetic markers.<br />

Nucl Acids Res. 18(22): 6531–6535,<br />

1990.<br />

Yan J, Shah T, Warburton ML, Buckler ES,<br />

McMullen MD, Crouch J. Genetic<br />

characterization <strong>and</strong> linkage<br />

disequilibrium estimation <strong>of</strong> a global<br />

maize collection using SNP markers.<br />

PLoS One. 4(12): e8451, 2009.<br />

Zhu C, Cheng L, Tong J, Yu X.<br />

Development <strong>and</strong> Characterization <strong>of</strong><br />

New Single Nucleotide Polymorphism<br />

Markers from Expressed Sequence Tags<br />

in Common Carp (Cyprinus carpio). Int<br />

J Mol Sci. 13(6): 7343-7353, 2012.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong> <strong>10</strong>(2):21-30, 2012 Research Article 21<br />

Haliç University, Printed in Turkey.<br />

http://jcmb.halic.edu.tr<br />

COX5B <strong>and</strong> COX2 gene expressions in Multiple Sclerosis<br />

Naeimeh SAFAVIZADEH 1 , Seyed Ali RAHMANI 1 , Mohamad ZAEFIZADEH 2*<br />

1 Department <strong>of</strong> Science, Ahar Branch, Islamic Azad University- Ahar- Iran.<br />

2 Department <strong>of</strong> Science, Ardabil Branch, Islamic Azad University- Ardabil- Iran.<br />

(* author for correspondence; m.zaefi@gmail.com)<br />

Received: 8 June 2012; Accepted: 14 August 2012<br />

Abstract<br />

Multiple Sclerosis (MS) is an autoimmune inflammatory disease which affects the Central Nervous<br />

System (CNS) <strong>and</strong> leads to the destruction <strong>of</strong> myelin <strong>and</strong> atrophy <strong>of</strong> the axons. Genetic factors, in<br />

addition to environmental ones, seem to play a role in MS. Numerous studies have reported<br />

mitochondrial defects including a reduction in COX complex function related to the decrease <strong>of</strong><br />

mitochondrial gene expression in the cortex tissue <strong>of</strong> MS patients. This study aimed to assess COX5B<br />

<strong>and</strong> COX2 gene expression in MS patients <strong>and</strong> controls. By using Real-Time PCR method, expression<br />

levels <strong>of</strong> the COX5B <strong>and</strong> COX2 were determined, with reference to ß-actin <strong>and</strong> GAPDH. The results<br />

showed that COX5B gene expression is significantly reduced in MS patients compared to control<br />

(P


22 Naeimeh SAFAVIZADEH et al.<br />

Introduction<br />

Multiple Sclerosis (MS) is an inflammatory<br />

demyelinating disease <strong>of</strong> the central nervous system<br />

with axonal degeneration (Frohman et al., 2006).<br />

The loss <strong>of</strong> myelin in MS may be the result <strong>of</strong><br />

direct damage to myelin through immune mediated<br />

processes <strong>and</strong> dysfunction <strong>of</strong> oligodendrocytes<br />

(Vercellino et al., 2009). Approximately 15–20%<br />

<strong>of</strong> MS patients have a family history <strong>of</strong> MS, but<br />

large extended pedigrees are uncommon, with most<br />

MS families having no more than two or three<br />

affected individuals. Studies in twins (Calabresi,<br />

2007) <strong>and</strong> conjugal pairs indicate that much <strong>of</strong> this<br />

familial clustering was the result <strong>of</strong> shared genetic<br />

risk factors, while studies <strong>of</strong> migrants<br />

(Ramagopalan et al., 20<strong>10</strong>) <strong>and</strong> apparent epidemics<br />

(Koch et al., 2008) indicated a clear role for<br />

environmental factors. Mitochondrial defects are<br />

known to occur during aging, cancer, heart disease,<br />

<strong>and</strong> a wide variety <strong>of</strong> degenerative diseases, such as<br />

Alzheimer’s disease (AD), Parkinson’s disease<br />

(PD), Huntington’s Disease (HD) <strong>and</strong> MS<br />

(Henchcliffe et al., 2008). Mitochondria contain the<br />

respiratory chain where energy in the form <strong>of</strong> ATP<br />

is most efficiently produced (Damiano et al., 20<strong>10</strong>).<br />

The mitochondrial respiratory chain is located in<br />

the inner mitochondrial membrane <strong>and</strong> consists <strong>of</strong><br />

four complexes (complexes I–IV), whilst complex<br />

V is directly involved in ATP synthesis. The<br />

complexes <strong>of</strong> the mitochondrial respiratory chain<br />

include multiple subunits; all but complex II (which<br />

is entirely encoded by nuclear DNA) contain<br />

proteins encoded by nuclear <strong>and</strong> mitochondrial<br />

DNA (mtDNA). The final respiratory chain<br />

complex [complex IV or cytochrome-c oxidase<br />

(COX)] is the site at which over 90% <strong>of</strong> oxygen is<br />

consumed. This complex is also involved in proton<br />

pumping, essential for ATP synthesis (Alston et al.,<br />

2011). The mammalian COX is composed <strong>of</strong> 13<br />

subunits, <strong>of</strong> which the three largest are encoded by<br />

the mtDNA <strong>and</strong> form the catalytic core <strong>of</strong> the<br />

enzyme. The remaining ten, evolutionary younger,<br />

nuclear-encoded subunits are involved in assembly<br />

<strong>and</strong> regulation <strong>of</strong> the enzyme (Zee et al., 2006).<br />

The function <strong>of</strong> mammalian COX can be<br />

physiologically modulated <strong>and</strong> the enzyme<br />

represents one <strong>of</strong> the key regulatory sites <strong>of</strong> energy<br />

metabolism (Fern<strong>and</strong>es-Vizarra et al., 2009). COX<br />

transfers electrons from cytochrome-c to molecular<br />

oxygen, which is reduced to water. The electrons<br />

pass from cytochrome-c, binding at subunit II,<br />

through Cu (A) <strong>and</strong> heme as c<strong>of</strong>actors, to<br />

the binuclear center buried inside subunit I<br />

<strong>and</strong> composed <strong>of</strong> heme a3 <strong>and</strong> Cu (B), where<br />

the incoming four electrons together with<br />

four protons from the matrix are sequentially<br />

used for oxygen reduction. This exergonic<br />

redox reaction is coupled with proton<br />

pumping across the inner mitochondrial<br />

membrane, but the coupling <strong>of</strong> the two<br />

processes (H + /e - stoichiometry) can be<br />

modulated. In addition to Mitchell’s<br />

chemiosmotic theory, a “second mechanism<br />

<strong>of</strong> respiratory control” has been proposed<br />

that involves the binding <strong>of</strong> adenine<br />

nucleotides to nuclear-encoded COX<br />

subunits. The key event is the<br />

phosphorylation <strong>of</strong> subunit IV. Activity <strong>of</strong><br />

phosphorylated COX is regulated by<br />

ATP/ADP ratio <strong>and</strong> respiratory rate is<br />

precisely controlled according to the ATP<br />

utilization. The membrane potential is kept<br />

low (<strong>10</strong>0-150 mV) <strong>and</strong> COX works at high<br />

efficiency <strong>of</strong> proton translocation (H + /e - = 1).<br />

The COX biosynthesis <strong>and</strong> assembly is<br />

timely <strong>and</strong> complicated process involving<br />

several rate-limiting steps reflecting the<br />

sequential incorporation <strong>of</strong> the subunits<br />

from either the cytosol (nuclearly coded<br />

subunits) or from the mitochondrial matrix<br />

(subunits I, II <strong>and</strong> III). The majority <strong>of</strong> COX<br />

defects thus originate from mutations in<br />

nuclear genes (Acin-Perez et al., 2009).<br />

Mutations in the genes encoding several<br />

COX assembly factors have been described<br />

as a frequent cause <strong>of</strong> mitochondrial<br />

diseases <strong>and</strong> have been assigned with<br />

specific clinical symptoms. The dysfunction<br />

<strong>of</strong> COX in these cases is mostly caused by<br />

structural changes rather than by the changes<br />

in amount <strong>of</strong> the enzyme (Galati et al.,<br />

2009). Cytochrome-c oxidase subunit II,<br />

abbreviated as CoxII, is the second subunit<br />

<strong>of</strong> cytochrome-c oxidase subunit 2 (CO II)<br />

transfers the electrons from cytochrome-c to<br />

the catalytic subunit 1. It contains two<br />

adjacent transmembrane regions in its Nterminus<br />

<strong>and</strong> the major part <strong>of</strong> the protein is<br />

exposed to the periplasmic or to the<br />

mitochondrial intermembrane space,<br />

respectively. CO II provides the substratebinding<br />

site <strong>and</strong> contains a Cu centre called


Cu(A), probably the primary acceptor in<br />

cytochrome-c oxidase. An exception is the<br />

corresponding subunit <strong>of</strong> the cbb3-type oxidase<br />

which lacks the Cu(A) redox-centre. Several<br />

bacterial CO II have a C-terminal extension that<br />

contains a covalently bound heme c (Barrientos et<br />

al., 2009). Subunit Vb <strong>of</strong> mammalian cytochrome c<br />

oxidase is encoded by a nuclear gene <strong>and</strong><br />

assembled with the other 12 COX subunits encoded<br />

in both mitochondrial <strong>and</strong> nuclear DNA. This gene<br />

located on chromosome 2, region cen-q13<br />

(Williams et al., 2005). There is a common<br />

symptom <strong>of</strong> MS with mitochondrial diseases such<br />

as AD <strong>and</strong> PD, <strong>and</strong> also the point mutations in<br />

mtDNA can cause damage to the myelin (DiMauro<br />

et al., 2008). In this study, we compared COX5B<br />

<strong>and</strong> COX2 gene expression among MS patients<br />

with controls. In regard to the importance <strong>of</strong><br />

mitochondria in MS, we mainly centralized our<br />

study on quantifying the expressions <strong>of</strong> COX5B<br />

<strong>and</strong> COX2 using Real-Time PCR.<br />

Materials <strong>and</strong> Methods<br />

Subjects<br />

Thirty-six patients (16 male, 20 female) <strong>and</strong> 30<br />

controls (14 male, 16 female) took part in this<br />

study. Written informed consent was obtained from<br />

each individual. Peripheral blood samples (5ml)<br />

were obtained from the cubital vein <strong>and</strong> collected in<br />

cell preparation tubes containing an anticoagulant<br />

(EDTA). Peripheral blood mononuclear cells<br />

(PBMC) were isolated by EDTA density<br />

centrifugation.<br />

Table 1. Sequences <strong>of</strong> the primers used for RT-PCR<br />

Gene name Primer sequence<br />

COX5B<br />

COX2<br />

GAPDH<br />

ß-actin<br />

Cox Expression in MS 23<br />

RNA Extraction<br />

Total RNA was isolated by using a<br />

RNAeasy kit from Roche (Germany),<br />

according to the manufacturer’s<br />

recommendations. The RNAsamples were<br />

incubated with RNAse-free DNAse I at<br />

37°C for 15 min. RNA samples were<br />

purified with a RNAeasy kit. It is possible to<br />

preserve extracted RNA for months under<br />

−80 °C. Total RNA quality <strong>and</strong> quantity<br />

were assessed in 2 ways. In the first method,<br />

we estimated the RNA concentration by<br />

ultraviolet absorbance at 260 nm (1<br />

absorbance unit at 260 nm = 40 ng/μL RNA)<br />

<strong>and</strong> the RNA purity by measuring the ratio<br />

<strong>of</strong> absorbance at 260 nm <strong>and</strong> 280 nm (1.8 <<br />

A260/A280


24 Naeimeh SAFAVIZADEH et al.<br />

cDNA Synthesis<br />

Total RNA from each sample was used to generate<br />

cDNA with a Reverse Transcriptase cDNA<br />

synthesis kit (Roche, Germany) with oligo (dT)<br />

primers, according to the manufacturer’s protocol.<br />

Briefly RNA <strong>and</strong> 1 μL oligo (dT) were mixed <strong>and</strong><br />

then heated at 70°C for 5 min. They were chilled on<br />

ice until the other components were added. Then,<br />

we added 2μL dNTP, 4 μL <strong>of</strong> buffer, <strong>and</strong> 1 μL <strong>of</strong><br />

ribolack (RNase inhibition). The samples were<br />

mixed <strong>and</strong> incubated at 37°C for 5 min. Then 1 μL<br />

<strong>of</strong> Reverse Transcriptase was added, <strong>and</strong> the<br />

samples were mixed <strong>and</strong> incubated at 42°C for 60<br />

min. The reaction was inactivated at 70°C for <strong>10</strong><br />

min. Finally, cDNA was stored at -20°C.<br />

Quantitative Real-Time PCR<br />

Amplification was performed over 30 cycles on the<br />

MJ Research PTC-200 Gradient Cycler (MJ<br />

Research, Waltham Mass, USA). The annealing<br />

temperature was 54°C, extension occurred at 72°C,<br />

<strong>and</strong> denaturation occurred at 94°C. After<br />

completion <strong>of</strong> PCR, the product was separated by<br />

electrophoresis in 1% agarose gel <strong>and</strong> detected by<br />

ethidium bromide staining. cDNAs testing positive<br />

for ß-actin <strong>and</strong> GAPDH expression was used in the<br />

Real-Time PCR. Relative expressions <strong>of</strong> COX2 <strong>and</strong><br />

COX5B in the blood samples was carried out by<br />

Real-Time PCR analysis using the ABI PRISM<br />

7700 Sequence Detection System (Applied<br />

Biosystems, Darmastadt, Germany) <strong>and</strong> the SYBR<br />

Green PCR Kit (Qiagene). The data were evaluated<br />

by the CT method, which measures the<br />

expression level <strong>of</strong> the target genes normalized to a<br />

reference gene <strong>and</strong> relative to the expression <strong>of</strong> the<br />

genes in the calibrator samples. After efficiency<br />

testing, ß-actin <strong>and</strong> GAPDH were chosen as the<br />

reference housekeeping genes <strong>and</strong> the same primer<br />

pairs used for the st<strong>and</strong>ard PCR were utilized for<br />

the Real-Time PCR. Amplification was performed<br />

over 45 cycles. The annealing temperature was<br />

54°C, extension occurred at 70°C, <strong>and</strong> denaturation<br />

occurred at 94°C. Every cDNA samples were<br />

measured in four separate preparations to correct<br />

for minor variations. Melting curve analyses were<br />

carried out after completion to confirm the presence<br />

<strong>of</strong> single amplified species. The transcript levels <strong>of</strong><br />

COX2 <strong>and</strong> COX5B in the samples were normalized<br />

to the transcriptional level <strong>of</strong> the housekeeping<br />

genes ß-actin <strong>and</strong> GAPDH, <strong>and</strong> calculated relative<br />

to the expression levels <strong>of</strong> the target genes in a<br />

calibrator blood samples. The arithmetic<br />

mean <strong>of</strong> the relative expression levels <strong>of</strong><br />

COX2 <strong>and</strong> COX5B for each group <strong>of</strong><br />

patients <strong>and</strong> controls were calculated.<br />

Statistical analysis<br />

Statistically significant differences were<br />

calculated by the Student’s t-test, using the<br />

SPSS 18.0 <strong>and</strong> Excel. Finally a Pvalue0.05<br />

was accepted as the level <strong>of</strong> significance.<br />

Results<br />

To determine the role <strong>of</strong> mitochondriaencoded<br />

gene <strong>and</strong> nuclear-encoded gene in<br />

MS pathogenesis, using quantitative Real-<br />

Time PCR analysis with SYBR-Green<br />

fluorescent dye, we calculated the mRNA<br />

fold change for one mitochondria-encoded<br />

gene in complex IV (COX2) <strong>and</strong> one<br />

nuclear-encoded gene in complex IV<br />

(COX5B) <strong>of</strong> oxidative phosphorylation.<br />

Real-Time PCR data analysis for genes<br />

expression<br />

Quantitative measurement <strong>of</strong> (COX2,<br />

COX5B) gene expression was investigated<br />

in 36 MS patients. Five different st<strong>and</strong>ard<br />

concentrations were used to draw a st<strong>and</strong>ard<br />

curve (Figure 1). Quantitative measurement<br />

<strong>of</strong> gene expressions, achieved in the PCR <strong>of</strong><br />

the cycles, was done in the progressive<br />

phase. Real-Time PCR S<strong>of</strong>tware can<br />

determine the threshold cycle automatically<br />

(Figure 2). In addition, due to temperature<br />

changes in the melting curve analysis, there<br />

is only one peak associated with the COX5B<br />

<strong>and</strong> COX2 genes, which is a symptom <strong>of</strong><br />

lack <strong>of</strong> cases such as nonspecific products<br />

<strong>and</strong> primer dimer (Figure 3). Then PCR,<br />

st<strong>and</strong>ard curve, as a template st<strong>and</strong>ard DNA<br />

<strong>of</strong> successive dilutions, was plotted for the<br />

COX5B <strong>and</strong> COX2 genes (Figure 4).<br />

St<strong>and</strong>ard curve for the COX5B gene st<strong>and</strong>s<br />

for index (R 2 )=0.98 <strong>and</strong> also st<strong>and</strong>ard curve<br />

<strong>of</strong> obtained COX2 gene st<strong>and</strong>s for index<br />

(R 2 )=0.95.


Figure 1. Amplification plots for MS COX5B<br />

Figure 2. Ct values <strong>of</strong> COX5B in subjects<br />

Cox expression in MS 25<br />

Figure 3. Melting curve for COX 5b gene<br />

Figure 4. St<strong>and</strong>ard curve for COX5B gene<br />

(determination <strong>of</strong> index R 2 =0.98).


26 Naeimeeh<br />

SAFAVIZAADEH<br />

et al.<br />

St<strong>and</strong>arddized<br />

results Ct<br />

Accordinng<br />

to the studiies<br />

that were ddone<br />

after Real<br />

Time PCRR<br />

test, the aveerage<br />

<strong>of</strong> st<strong>and</strong>dardized<br />

Ct in<br />

regard to the state <strong>of</strong> -actin<br />

<strong>and</strong> GAPDH<br />

genes in<br />

COX5B among controol<br />

<strong>and</strong> patientts<br />

affected with<br />

MS are 6.21, 6.71 a<strong>and</strong><br />

3.95, 5.446<br />

respectiveely<br />

(Figures 55).<br />

In additionn,<br />

the average <strong>of</strong> st<strong>and</strong>ardizzed<br />

Ct in regard<br />

to state o<strong>of</strong><br />

-actin <strong>and</strong>d<br />

GAPDH gennes<br />

in COX2 among controls<br />

<strong>and</strong> patiennts<br />

affected with<br />

MS are 4.86,<br />

4.38 <strong>and</strong> 4.84, 4.12 resspectively.<br />

Figure 5.<br />

The Ct COOX5B<br />

gene, sta<strong>and</strong>ardized<br />

wiith<br />

ß-actin<br />

Table<br />

2. COX55B<br />

<strong>and</strong> COX22<br />

genes expresssion<br />

(Ct) on n based <strong>of</strong> B-aactin<br />

referencee<br />

gene<br />

GGene<br />

CCompare<br />

COOX5B<br />

CCOX2<br />

Taable<br />

3. COX5BB<br />

<strong>and</strong> COX2 ggenes<br />

expresssion<br />

(Ct) on based b <strong>of</strong> GAPPDH<br />

referencee<br />

gene.<br />

Gene<br />

COX5BB<br />

COX22<br />

Patieent<br />

Vs Controll<br />

6.71<br />

Patieent<br />

vs Controll<br />

4.38<br />

Compare<br />

Patiient<br />

vs Controol<br />

Patiient<br />

vs Controol<br />

Means (Ct)<br />

Std. Er rror mean d<br />

6.21<br />

4.86<br />

Comp parison betweeen<br />

the statisttical<br />

analysis<br />

<strong>of</strong> CO OX5B t-test annd<br />

the resultss<br />

showed that<br />

there are meaningfful<br />

differencees<br />

in COX5B<br />

gene (P0.05). Onn<br />

the other hannd,<br />

decreased<br />

gene expression iin<br />

COX5B wwas<br />

observed<br />

amon ng MS patiennts<br />

rather thhan<br />

controls,<br />

howe ever, the resullts<br />

showed noo<br />

meaningful<br />

differ rences for the COX2 gene. For equality<br />

<strong>of</strong> va ariances, t-tesst<br />

<strong>and</strong> Levenee’s<br />

test were<br />

perfo ormed. The results<br />

showed that the data<br />

relate ed to Ct was not significanntly<br />

different<br />

COX X5B gene amoong<br />

patients <strong>and</strong> control.<br />

Ct comparison c was<br />

performed with t-test in<br />

patien nts <strong>and</strong> contrrols.<br />

The ressults<br />

showed<br />

that th he measured t is significantt<br />

for COX5B<br />

gene (Pvalue=0.0168)<br />

<strong>and</strong> (PPvalue=0.005),<br />

while e the data related too<br />

Ct has<br />

signif ficantly diffferent<br />

COX22<br />

gene in<br />

patien nts <strong>and</strong> contrrol.<br />

Ct commparison<br />

was<br />

perfo ormed with t-teest<br />

in pateintss<br />

<strong>and</strong> control.<br />

The results showwed<br />

that meeasured<br />

t is<br />

signif ficant for COOX2<br />

gene ( (Pvalue=0.117)<br />

<strong>and</strong> (Pvalue=0.124)<br />

(<br />

(Table 2, 3) ). Generally,<br />

the re esults showedd<br />

that actin a<strong>and</strong><br />

GAPDH<br />

genes s are similaar<br />

among ccontrol<br />

<strong>and</strong><br />

patien nts.<br />

0.1 19746<br />

0. 1314<br />

0.88 0<br />

Means<br />

(Ct) Std.Error S meean<br />

df Tva<br />

5.46<br />

3.95<br />

4.12<br />

4.84<br />

1.6<br />

0.89<br />

0.78<br />

1.44<br />

0.69<br />

df Tvalue<br />

664<br />

2.69 00.0168<br />

664<br />

-1.67<br />

Pvalue<br />

0.117<br />

alue<br />

Pvalue<br />

64 2.991<br />

0.005<br />

64 -1. 52 0.124


Determination <strong>of</strong> changes in gene expression<br />

levels<br />

To determine changes in the expressions COX5B<br />

<strong>and</strong> COX2 genes Livak formula was used (Livak<br />

<strong>and</strong> Schmittgen, 2001).<br />

-actin gene: COX5B = 2 -CT = 2 -(6.21- 6.71) = 2 0.5 =<br />

1.41<br />

COX2 = 2 -CT = 2 -(4.86-4.38) = 2 -0.48<br />

GAPDH gene: COX5B = 2 -CT = 2 -(3.95 - 5.46) = 2 1.51 =<br />

2.84<br />

COX2 = 2 -CT = 2 -(4.84-4.12) = 2 -0.72<br />

Total results <strong>of</strong> the Real-Time PCR<br />

According to the results obtained, it seems that<br />

COX2 gene has no effect on MS patients; but<br />

COX5B gene expression was decreased in MS<br />

patients <strong>and</strong> this gene could play an important role<br />

in neurodegenerative diseases. Correlation between<br />

COX5B <strong>and</strong> COX2 gene expression turned out to<br />

be R=0.92 in control. This correlation was R=0.84<br />

in patients, who, despite being significant, was<br />

lower compare to control. This difference, if<br />

verified with further subjects <strong>and</strong> studies, can be<br />

considered as a hypothesis about this disease.<br />

Discussion<br />

In this study, the expression levels <strong>of</strong> COX5B <strong>and</strong><br />

COX2 genes in MS patients <strong>and</strong> controls were<br />

compared. The results showed that COX5B gene<br />

expression in MS patients was significantly lower<br />

compared to controls (P=0.0168) <strong>and</strong> (P=0.005). In<br />

the case <strong>of</strong> Cox5B gene expression, a highly<br />

significant difference between controls <strong>and</strong><br />

patients, despite the low number <strong>of</strong> samples,<br />

indicates the role <strong>of</strong> this gene in patients, but it is<br />

not clear that reduced expression <strong>of</strong> this gene is one<br />

<strong>of</strong> the causes <strong>of</strong> disease, or when the disease<br />

induces, the gene expression will be reduced. While<br />

there was no significant differences in the COX2<br />

gene expression between controls <strong>and</strong> patients,<br />

differences between P=0.117 <strong>and</strong> P=0.124 was not<br />

significant. One <strong>of</strong> the reasons that Cox2 gene is<br />

not significant, it can be due to the low number <strong>of</strong><br />

samples <strong>and</strong> low df, it is necessary to consider the<br />

mentioned term to report the more accurate results.<br />

Degeneration <strong>of</strong> chronically demyelinated axons is<br />

a major cause <strong>of</strong> the continuous, irreversible<br />

neurological disability that occurs in the chronic<br />

stages <strong>of</strong> MS (Aschrafi et al., 2008). Microarray<br />

studies from cortical <strong>and</strong> white matter tissue <strong>of</strong><br />

Cox Expression in MS 27<br />

patients with progressive MS showed upregulation<br />

<strong>of</strong> genes involved in hypoxic<br />

preconditioning <strong>and</strong> decreased expression <strong>of</strong><br />

mRNA for mitochondrial proteins (Lin et<br />

al., 2006). The dominant loss <strong>of</strong> small axons<br />

in MS lesions suggests energy deficiency as<br />

a major mechanism included in axonal<br />

degeneration (Stys, 2005). The newly<br />

reported research provides evidence that<br />

neurons in MS are respiratory-deficient due<br />

to mtDNA deletions, which are extensive in<br />

GM <strong>and</strong> may be induced by inflammation.<br />

They propose induced multiple deletions <strong>of</strong><br />

mtDNA as an important contributor to<br />

neurodegeneration in MS (Campbell et al.,<br />

20<strong>10</strong>). This presents a unique challenge to<br />

neurologists wanting to identify, diagnose,<br />

<strong>and</strong> manage patients <strong>and</strong> families with<br />

mitochondrial disease (Druzhyna et al.,<br />

2008). Clonally exp<strong>and</strong>ed multiple deletions<br />

<strong>of</strong> mtDNA causing respiratory deficiency<br />

are well recognized in neurodegenerative<br />

disorders <strong>and</strong> aging. Given the vulnerability<br />

<strong>of</strong> mtDNA to oxidative damage <strong>and</strong> the<br />

extent <strong>of</strong> inflammation in MS, <strong>of</strong>ten starting<br />

with a preclinical phase <strong>and</strong> remaining<br />

throughout the disease course, mtDNA<br />

deletions might be expected in MS<br />

(Nicholas et al., 2009). Repair <strong>of</strong> damaged<br />

mtDNA rather than oxidative damage to<br />

mtDNA per se is the most likely mechanism<br />

by which mtDNA deletions are formed, <strong>and</strong><br />

clonal expansion is regarded as the<br />

mechanism responsible for causing<br />

respiratory deficiency. Where respiratory<br />

deficiency is caused by induced multiple<br />

DNA deletions, cells will have initially<br />

contained deletions with different<br />

breakpoints, one <strong>of</strong> which then clonally<br />

exp<strong>and</strong>s to high levels over time (Krishnan<br />

et al., 2008). Clonally exp<strong>and</strong>ed multiple<br />

deletions <strong>of</strong> mtDNA are reported in<br />

inclusion body myositis, a condition<br />

associated with chronic inflammation.<br />

Decrease in density <strong>of</strong> respiratory-deficient<br />

neurons in lesions is a likely reflection <strong>of</strong><br />

mtDNA deletion-mediated cell loss as well<br />

as increase in susceptibility to other insults<br />

because <strong>of</strong> the clonally exp<strong>and</strong>ed mtDNA<br />

deletions. The extent <strong>of</strong> mtDNA deletions<br />

identified using long-range PCR on a global


28 Naeimeh SAFAVIZADEH et al.<br />

scale regardless <strong>of</strong> cell type, <strong>and</strong> even in neurons<br />

with intact complex IV activity, reflects the<br />

potential <strong>of</strong> cells in MS to become respiratory<br />

deficient through clonal expansion over the course<br />

<strong>of</strong> the disease. By isolating individual neurons at a<br />

single time point we identified high levels <strong>of</strong><br />

multiple mtDNA deletions within respiratorydeficient<br />

cells. In contrast, mtDNA deletions<br />

detected by long range PCR within respiratoryefficient<br />

neurons in MS <strong>and</strong> controls were not<br />

exp<strong>and</strong>ed to high levels (Micu et al., 2006).<br />

Mitochondrial defects are increasingly recognized<br />

to play a role in the pathogenesis <strong>of</strong> MS. Energy in<br />

the form <strong>of</strong> ATP is most efficiently produced by<br />

mitochondria, which also play a role in calcium<br />

h<strong>and</strong>ling, production <strong>of</strong> reactive oxygen species<br />

(ROS), <strong>and</strong> apoptosis (Lin et al., 2006). It is known<br />

that mitochondria are intrinsically involved in the<br />

cellular production <strong>of</strong> oxygen radicals <strong>and</strong> are<br />

believed to play an important part in oxygen<br />

radical-mediated cell damage in neurodegenerative<br />

diseases. The investigations are in complete<br />

agreement with the occurrence <strong>of</strong> activity defects <strong>of</strong><br />

COX in single muscle fibres. The mitochondrial<br />

impairment is not to age or denervation-associated<br />

muscular changes since the functional impairment<br />

<strong>of</strong> mitochondria (Dutta et al., 2006). While<br />

numerous pathogenetic mutations are routinely<br />

detected in isolated COX deficiencies, the protocols<br />

for characterizing the functional impact <strong>of</strong> these<br />

mutations are still in early stages <strong>of</strong> development.<br />

The integrative approach combining multiple<br />

bioenergetic analyses performed in whole cells is<br />

particularly promising, as the best way to<br />

investigate the resulting pathogenetic changes<br />

occurring in situ. The general severity <strong>of</strong> the<br />

functional changes in COX defects suggests that<br />

the development <strong>of</strong> effective drugs is very unlikely,<br />

<strong>and</strong> that only gene therapy might lead to efficient<br />

treatment <strong>of</strong> these diseases in the future (Smith et<br />

al., 2005). Measurement <strong>of</strong> the threshold for<br />

specific mtDNA mutations has been performed in<br />

cultured cells elsewhere. The microphotometric<br />

enzyme–assay system for measurement <strong>of</strong> COX<br />

activity within individual muscle fibers is used in<br />

conjunction with demonstration <strong>of</strong> my<strong>of</strong>ibrillar<br />

ATPase in serial sections, so that a normal range <strong>of</strong><br />

COX activity in individual muscle fibers <strong>of</strong> each<br />

fiber type is defined in control samples. In previous<br />

studies, a good correlation between<br />

microphotometric enzyme analysis <strong>and</strong> biochemical<br />

studies has been shown in patients with<br />

Leigh syndrome (Ogbi et al., 2006). The<br />

newly reported four proteins in particular<br />

were responsible for distinguishing diseased<br />

from healthy. Peptide fingerprint mapping<br />

unambiguously identified these<br />

differentially expressed proteins. Three<br />

proteins identified are involved in<br />

respiration including cytochrome c oxidase<br />

subunit 5b (COX5b), the brain specific<br />

isozyme <strong>of</strong> creatine kinase <strong>and</strong> hemoglobin<br />

β-chain (Horváth et al., 2005). In previous<br />

studies six genes, involved in energy<br />

metabolism pathways, also had increased<br />

transcript levels in the skeletal muscle <strong>of</strong> CR<br />

rats compared with muscle <strong>of</strong> control rats.<br />

These include genes associated with<br />

mitochondrial ATP production, such as six<br />

subunits <strong>of</strong> cytochrome c oxidase (COX I,<br />

II, III, IV, Va, <strong>and</strong> VIII) <strong>and</strong> NADH<br />

dehydrogenase (Kalman et al., 2007). All<br />

mitochondria <strong>of</strong> the progeny are inherited<br />

from the mother; <strong>and</strong> all 13 polypeptides<br />

encoded by the mitochondrial genome are<br />

located in the respiratory chain (complexes<br />

I, III, IV <strong>and</strong> V). These biological principles<br />

are helpful in underst<strong>and</strong>ing the clinical<br />

syndromes <strong>and</strong> patterns <strong>of</strong> inheritance<br />

associated with the mitochondrial<br />

myopathies <strong>and</strong> encephalomyopathies<br />

(Broadwater et al., 2011). <strong>Cell</strong>ular injury<br />

<strong>of</strong>ten has been associated with disturbances<br />

in mitochondrial function. Interestingly, our<br />

analysis indicated a pronounced increase in<br />

the expression <strong>of</strong> mitochondrial cytochrome<br />

c oxidase subunits IV <strong>and</strong> Vb, a finding that<br />

was validated further by RT PCR.<br />

Cytochrome c oxidase has been used<br />

frequently as a marker for neuronal<br />

metabolic activity, especially in pathological<br />

conditions involving oxidative stress.<br />

Neurons subject to oxidative damage show<br />

abnormalities in mitochondrial dynamics<br />

even in the absence <strong>of</strong> any apparent<br />

indication <strong>of</strong> degeneration (Hamblet et al.,<br />

2006). Elevations in cytochrome c oxidase<br />

expression or function in vulnerable<br />

neuronal subpopulations in AD, following<br />

traumatic brain injury <strong>and</strong> preceding<br />

apoptotic death <strong>of</strong> spinal cord motor neurons<br />

after sciatic nerve avulsion, have been


eported. Thus, an increase in cytochrome c oxidase<br />

expression may reflect aberrant energy metabolism<br />

<strong>and</strong> oxidative damage in the spinal cord during<br />

EAE (Fukui et al., 2007).<br />

With due attention to the results <strong>of</strong> correlation<br />

between COX2 <strong>and</strong> COX5B gene expressions with<br />

nuclear DNA <strong>and</strong> mitochondrial DNA source, we<br />

can claim that there is an interaction between two<br />

COX gene expressions <strong>of</strong> genome <strong>and</strong><br />

mitochondria source <strong>and</strong> the effectiveness is <strong>of</strong><br />

COX enzymes in the MS patients. While the<br />

number <strong>of</strong> selected samples were not more than 36,<br />

the state <strong>of</strong> COX5B between patient <strong>and</strong> control<br />

groups was meaningful. This means that in a group<br />

<strong>of</strong> a number <strong>of</strong> members, there is no impact on its<br />

meaninglessness. In COX2, the main reason for<br />

meaninglessness may relate to the low number <strong>of</strong><br />

samples. Therefore, it would be better to reproduce<br />

the experiments with an exp<strong>and</strong>ed sample size.<br />

References<br />

Acin-Perez R, Salazar E, Kamenetsky M, Buck J,<br />

Levin LR, Manfredi G. Cyclic AMP Produced<br />

inside Mitochondria Regulates Oxidative<br />

Phosphorylation. <strong>Cell</strong> Metabolism. 9: 265-76,<br />

2009.<br />

Alston LC, He L, Morris A, Hughes I, Taylor R, et<br />

al. Maternally inherited mitochondrial DNA<br />

disease in consanguineous families. European<br />

<strong>Journal</strong> <strong>of</strong> Human Genetics. 19: 1226-29, 2011.<br />

Aschrafi A, Schwechter AD, Mameza MG, Natera-<br />

Naranjo O, Gioio EA, Kaplan BB. MicroRNA-<br />

338 regulates local cytochrome c oxidase IV<br />

mRNA levels <strong>and</strong> oxidative phosphorylation in<br />

the axons <strong>of</strong> sympathetic neurons. J Neurosci.<br />

28: 12581-90, 2008.<br />

Barrientos A, Gouget K, Horn D, Soto IC,<br />

Fontanesi F. Suppression mechanisms <strong>of</strong> COX<br />

assembly defects in yeast <strong>and</strong> human: insights<br />

into the COX assembly process. Biochim<br />

Biophys Acta. 1793: 97-<strong>10</strong>7, 2009.<br />

Broadwater L, P<strong>and</strong>it A, Clements R, Azzam S, et<br />

al. Analysis <strong>of</strong> the mitochondrial proteome in<br />

multiple sclerosis cortex. Biochem Biophys<br />

Acta. 1812(5): 630-41, 2011.<br />

Calabresi P. Multiple sclerosis <strong>and</strong> demyelinating<br />

conditions <strong>of</strong> the central nervous system. In:<br />

Goldman L, Ausiello D, eds. Cecil Medicine.<br />

Cox Expression in MS 29<br />

23rd ed. Philadelphia, Pa: Saunders<br />

Elsevier chap 436, 2007.<br />

Campbell GR, Ziabreva I, Reeve AK,<br />

Krishnan KJ, et al. Mitochondrial DNA<br />

deletions <strong>and</strong> neurodegeneration in<br />

multiple sclerosis. Ann Neurol. 69: 481-<br />

92, 20<strong>10</strong>.<br />

Damiano M, Galvan L, Deglon N, Brouillet<br />

E. Mitochondria in Huntington’s disease.<br />

Biochim Biophys Acta. 1802: 52-61,<br />

20<strong>10</strong>.<br />

DiMauro S, Schon EA. Mitochondrial<br />

disorders in the nervous system. Annu<br />

Rev Neurosci. 31: 91-123, 2008.<br />

Druzhyna NM, Wilson GL, LeDoux SP.<br />

Mitochondrial DNA repair in aging <strong>and</strong><br />

disease. Mech Ageing Dev.129: 383-90,<br />

2008.<br />

Dutta R, McDonough J, Yin X, Peterson J,<br />

Chang A, Torres T, et al. Mitochondrial<br />

dysfunction as a cause <strong>of</strong> axonal<br />

degeneration in multiple sclerosis<br />

patients. Ann Neurol. 59: 478-89, 2006.<br />

Fern<strong>and</strong>ez-Vizarra E, Tiranti V, Zeviani M.<br />

Assembly <strong>of</strong> the oxidative<br />

phosphorylation system in humans: what<br />

we have learned by studying its defects.<br />

Biochim Biophys Acta. 1793: 200-11,<br />

2009.<br />

Frohman EM, Racke MK, Raine CS.<br />

Multiple sclerosis–the plaque <strong>and</strong> its<br />

pathogenesis. N Engl J Med. 354: 942-<br />

55, 2006.<br />

Fukui H, Diaz F, Garcia S, Moraes CT.<br />

Cytochrome c oxidase deficiency in<br />

neurons decreases both oxidative stress<br />

<strong>and</strong> amyloid formation in a mouse model<br />

<strong>of</strong> Alzheimer's disease. Proc Natl Acad<br />

Sci USA. <strong>10</strong>4:14163-8, 2007.<br />

Galati G, Srinivasan S, Raza H, Prabu SK,<br />

Hardy M, Ch<strong>and</strong>ran K, Lopez M,<br />

Kalyanaraman B, Avadhani NG. Role <strong>of</strong><br />

nuclear-encoded subunit Vb in the<br />

assembly <strong>and</strong> stability <strong>of</strong> cytochrome c<br />

oxidase complex: implications in<br />

mitochondrial dysfunction <strong>and</strong> ROS


30 Naeimeh SAFAVIZADEH et al.<br />

production. Biochem J. 420: 439-49, 2009.<br />

Hamblet NS, Ragl<strong>and</strong> B, Ali M, Conyers B,<br />

Castora FJ. Mutations in mitochondrial-encoded<br />

cytochrome c oxidase subunits I, II, <strong>and</strong> III<br />

genes detected in Alzheimer's disease using<br />

single-str<strong>and</strong> conformation polymorphism.<br />

Electrophoresis. 27: 398-408, 2006.<br />

Henchcliffe C, Beal MF. Mitochondrial biology<br />

<strong>and</strong> oxidative stress in Parkinson disease<br />

pathogenesis. Nat Clin Pract Neurol. 4: 600-09,<br />

2008.<br />

Horváth R, Schoser BG, Müller-Höcker J, Völpel<br />

M, Jaksch M, Lochmüller H. Mutations in<br />

mtDNA-encoded cytochrome c oxidase subunit<br />

genes causing isolated myopathy or severe<br />

encephalomyopathy. Neuromuscular Disorders.<br />

15: 851-57, 2005.<br />

Kalman B, Laitinen K, Komoly S. The involvement<br />

<strong>of</strong> mitochondria in the pathogenesis <strong>of</strong> multiple<br />

sclerosis. J Neuroimmunol. 188: 1-12, 2007.<br />

Koch M, Uyttenboogaart M, van Harten A, De<br />

Keyser J. Factors associated with the risk <strong>of</strong><br />

secondary progression in multiple sclerosis.<br />

Multiple Sclerosis. 14: 799-803, 2008.<br />

Krishnan KJ, Reeve AK, Samuels DC, et al. What<br />

causes mitochondrial DNA deletions in human<br />

cells? Nat Genet. 40: 275-79, 2008.<br />

Lin MT, Beal MF. Mitochondrial dysfunction <strong>and</strong><br />

oxidative stress in neurodegenerative diseases.<br />

Nature. 443: 787-95, 2006.<br />

Livak KJ, Schmittgen TD. Analysis <strong>of</strong> relative gene<br />

expression data using real-time quantitative<br />

PCR <strong>and</strong> the 2(-Delta DeltaC(T)) Method.<br />

Methods. 25(4): 402-8, 2001.<br />

Micu I, Jiang Q, Coderre E, et al. NMDA receptors<br />

mediate calcium accumulation in myelin during<br />

chemical ischaemia. Nature. 439: 988-92, 2006.<br />

Nicholas A, Kraytsberg Y, Guo X, Khrapko K. On<br />

the timing <strong>and</strong> the extent <strong>of</strong> clonal expansion <strong>of</strong><br />

mtDNA deletions: evidence from singlemolecule<br />

PCR. Exp Neurol. 218: 316-19,<br />

2009.<br />

Ogbi M, Johnson JA. Protein kinase<br />

Cepsilon interacts with cytochrome c<br />

oxidase subunit IV <strong>and</strong> enhances<br />

cytochrome c oxidase activity in<br />

neonatal cardiac myocyte<br />

preconditioning. Biochem J. 393: 191-9,<br />

2006.<br />

Ramagopalan SV, Dobson R, Meier UC,<br />

Giovannoni G. Multiple sclerosis: risk<br />

factors, prodromes, <strong>and</strong> potential causal<br />

pathways. Lancet Neurol. 9: 727-39,<br />

20<strong>10</strong>.<br />

Smith D, Gray J, Mitchell L, Antholine WE,<br />

Hosler JP. Assembly <strong>of</strong> Cytochrome-c<br />

Oxidase in the Absence <strong>of</strong> Assembly<br />

Protein Surf1p Leads to Loss <strong>of</strong> the<br />

Active Site Heme. J Biol Chem. 280:<br />

17652-56, 2005.<br />

Stys PK. General mechanisms <strong>of</strong> axonal<br />

damage <strong>and</strong> its prevention. J NeurolSci.<br />

233: 3-13, 2005.<br />

Vercellino M, Romagnolo A, Mattioda A,<br />

Masera S, et al. Multiple sclerosis<br />

relapses: a multivariable analysis <strong>of</strong><br />

residual disability determinants. Acta<br />

Neurologica Sc<strong>and</strong>inavica. 119(2): 126-<br />

30, 2009.<br />

Williams JC, Sue C, Banting GS, Yang H,<br />

Glerum DM, Hendrickson WA, Schon<br />

EA. Crystal structure <strong>of</strong> human SCO1:<br />

implications for redox signaling by a<br />

mitochondrial cytochrome c oxidase<br />

"assembly" protein. J Biol Chem. 280:<br />

15202-11, 2005.<br />

Zee JM, Glerum DM. Defects in cytochrome<br />

oxidase assembly in humans: lessons<br />

from yeast. Biochem <strong>Cell</strong> Biol. 84:859-<br />

69, 2006.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong> <strong>10</strong>(2):31-38, 2012 Research Article 31<br />

Haliç University, Printed in Turkey.<br />

http://jcmb.halic.edu.tr<br />

Curcumin rendered protection against cadmium chloride induced<br />

testicular damage in Swiss albino mice<br />

Preeti SINGH * , Kanchan DEORA, V<strong>and</strong>ana SANKHLA, Priya MOGRA<br />

Department <strong>of</strong> Zoology, College <strong>of</strong> Science, M.L.S. University, Udaipur-Rajasthan, 313001 India.<br />

(* author for correspondence; priti1960@yahoo.co.in )<br />

Received: 04 August 2011; Accepted: 01 November 2012<br />

Abstract<br />

Fertility interference, regulation <strong>and</strong> control have become a matter <strong>of</strong> global concern in order to maintain adequate,<br />

sustainable <strong>and</strong> healthy population. Cadmium is known to interfere with reproductive physiology <strong>and</strong> adversely<br />

affects the process <strong>of</strong> spermatogenesis, whereas curcumin is known to be a potent, protective herbal derivative,<br />

which renders protection at the physiological, metabolic <strong>and</strong> cellular levels against numerous toxicants. In the<br />

present research, four groups <strong>of</strong> Swiss albino mice, each group consisting <strong>of</strong> six mice, were treated with cadmium<br />

chloride <strong>and</strong> curcumin. Group 1 was the control group, where mice were administered only vehicle. In the second<br />

group, mice were administered only curcumin. In the third group mice were administered single oral dose <strong>of</strong> CdCl2,<br />

50mg/kg/animal/day, for a day <strong>and</strong> were left for 15 days. The fourth group was pre-treated with curcumin<br />

(<strong>10</strong>mg/animal/day) for 15 days <strong>and</strong> on the 16 th day they were administered with single oral dose <strong>of</strong> CdCl2<br />

(50mg/kg/animal). In animals administered only cadmium, significant perturbations were observed in the process <strong>of</strong><br />

spermatogenesis. In the seminiferous tubules there is loss <strong>of</strong> cellular contact <strong>and</strong> associations, as manifested by loss<br />

<strong>of</strong> germ cells. In organisms pre-treated with curcumin, marked decline in histopathological damage was observed,<br />

where the loss <strong>of</strong> germ cells was not so pronounced. Hence, the present research categorically elucidates the<br />

protective effect <strong>of</strong> curcumin against a single high dose <strong>of</strong> cadmium chloride induced perturbation in the process <strong>of</strong><br />

spermatogenesis .<br />

Keywords: Curcumin, cadmium chloride, testicular damage, spermatogenesis, reproduction<br />

Özet<br />

Zerdeçal Swiss albino farelerde kadmiyum klorür ile indüklenmiş testiküler hasara karşı<br />

koruma sağlar<br />

Fertilitenin engellenmesi, düzenlenmesi ve kontrolü, syeterli, devamlı ve sağlıklı bir populasyonun sağlanması için<br />

dünyanın ilgilendiği bir sorun haline gelmektedir. Kadmiyumun üreme fizyolojisini engellediği ve spermatogenez<br />

sürecini ters olarak etkilediği bilinirken, fizyolojik, metabolik ve hücresel, seviyelerde pek çok toksik maddeye karşı<br />

koruyucu olan zerdeçalın güçlü, koruyucu bir bitki türevi olduğu bilinmektedir. Bu araştırmada, her bir grupta altı<br />

fare bulunan dört grup Swiss albino fareye kadmiyum klorür ve zerdeçal uygulanmıştır. Sadece distile su verilen<br />

Grup1, kontrol grubunu oluşturmaktadır. İkinci grupta farelere sadece zerdeçal verilirken üçüncü gruptaki farelere<br />

bir gün için 50mg/kg/hayvan/gün CdCl2 tek doz oral olarak uygulanmış ve 15 gün boyunca beklenmiştir. Dördüncü<br />

gruba önceden 15 gün boyunca (<strong>10</strong>mg/hayvan/gün) zerdeçal uygulanmış ve 16. günde farelere tek doz oral olarak<br />

50mg/kg/hayvan CdCl2 uygulanmıştır. Sadece kadmiyum uygulanan hayvanlarda spermatogenez sürecinde belirgin<br />

bir düzensizlik gözlenmiştir ve germ hücre hasarıyla açıkça gösterildiği gibi seminifer tübüllerde hücresel iletişim ve<br />

birliktelik kaybı gözlenmiştir. Önceden zerdeçal uygulanan organizmalarda germ hücre hasarının bildirilmediği<br />

yerlerde histopatolojik hasarlarda belirgin bir düşüş görülmüştür. Bunun sonucu olarak bu araştırma çalışması<br />

yüksek tek doz kadmiyum klorürün spermatogenez sürecindeki düzensizliği indüklemesine karşın, zerdeçalın<br />

koruyucu etkisini kategorik olarak açığa kavuşturmaktadır.<br />

Anahtar Kelimeler: Zerdeçal, kadmiyum klorür, testiküler hasar, spermatogenez, üreme


32 Preeti SINGH et al.<br />

Introduction<br />

In order to maintain adequate, sustainable <strong>and</strong><br />

healthy population; fertility interference, regulation<br />

<strong>and</strong> control have become a matter <strong>of</strong> global<br />

concern. Exposure to metals is a common<br />

phenomenon due to their environmental<br />

pervasiveness. Some metals are essential for life,<br />

others have unknown biological functions, either<br />

favorable or toxic, <strong>and</strong> some others have the<br />

potential to cause toxicity (Col et al., 1999; Ben<strong>of</strong>f<br />

et al., 2000; Suwazono et al., 2000). Overexposure<br />

<strong>of</strong> metals is in fact, one <strong>of</strong> the oldest environmental<br />

problems since they are widely distributed in the<br />

environmental workplace. Heavy metals are<br />

persistent environmental contaminants since they<br />

cannot be degraded or destroyed easily. These are<br />

chemical elements capable <strong>of</strong> spreading in the<br />

environmental compartments <strong>and</strong> circulating<br />

between them. These metals are emitted in to the<br />

atmosphere with the composition <strong>of</strong> fine particles<br />

or in the gaseous form <strong>and</strong> are transported by<br />

atmospheric fluxes to considerable distances where<br />

they enter ecosystems <strong>of</strong> remote regions. However,<br />

many heavy metals are urgently necessary for<br />

functioning <strong>of</strong> the human body <strong>and</strong> other living<br />

organisms in small amounts <strong>and</strong> belong to the range<br />

<strong>of</strong> nutrients. Others, when passed on to the living<br />

organisms cause poisoning or death (Danielyan,<br />

20<strong>10</strong>). Some toxic heavy metals are cadmium (Cd),<br />

arsenic (As), nickel (Ni), mercury (Hg), lead (Pb),<br />

zinc (Zn), chromium (Cr) etc. A substantial number<br />

<strong>of</strong> couples seek fertility treatment due to poor<br />

semen quality <strong>and</strong> there is evidence in the literature<br />

that male reproductive function seems to have<br />

deteriorated considerably in the past four-five<br />

decades due to multifaceted reasons being<br />

psychological, physical , physiological, or due to<br />

the effect <strong>of</strong> certain hazardous substances. One <strong>of</strong><br />

the hazardous substances is cadmium, the 48 th<br />

element in the periodic table with an atomic weight<br />

<strong>of</strong> 112.4 <strong>and</strong> is present in all components <strong>of</strong> our<br />

environment viz. air, water <strong>and</strong> soil. It is used in<br />

various industrial processes as an anti-corrosive<br />

agent stabilizer in PVC products, as a color<br />

pigment, <strong>and</strong> in fabrication <strong>of</strong> nickel-cadmium<br />

batteries (Friberg et al., 1974; Fox, 1983; Elinder,<br />

1985; Morrow, 1990). It serves no physiological<br />

function within the mammalian system. The<br />

Agency for Toxic Substances <strong>and</strong> Disease Registry<br />

(ATSDR) has listed cadmium as number 7 in its top<br />

20 list <strong>of</strong> hazardous substances <strong>and</strong> International<br />

Agency for Research on Cancer (IARC) has<br />

classified cadmium as a group 1 carcinogen. It has<br />

extremely long biological half-life in mammals,<br />

which is estimated to be about 17 years or longer in<br />

humans (Nordberg, 1972; IARC, 1992)<br />

Cadmium is highly toxic to various biological systems,<br />

e.g. kidney (Friberg et al., 1974; Buchet et al., 1980;<br />

Goyer, 1991), male <strong>and</strong> female reproductive systems<br />

(Ferm <strong>and</strong> Carpenter, 1967; Massanyi et al., 2007; Wu et<br />

al., 2008; Monsefi et al., 20<strong>10</strong>), brain (Beton et al., 1966;<br />

Taylor et al., 1984; Bernard <strong>and</strong> Lauwerys,1986),<br />

gastrointestinal tract (Sugawara <strong>and</strong> Sugawara, 1974),<br />

liver , circulatory system (Stowe et al., 1972) <strong>and</strong> skeletal<br />

system (Kawamura et al., 1978; Blumenthal et al., 1995;<br />

Staessen et al.,1999). Due to the rapid industrialization <strong>and</strong><br />

overgrowing urbanization, the toxic effects <strong>of</strong> cadmium on<br />

male reproduction is to be assessed <strong>and</strong> monitored <strong>and</strong> an<br />

effort has to be made to check, counter balance or nullify<br />

its toxicity .<br />

India has a rich history <strong>of</strong> using plants for<br />

medicinal purposes. Turmeric derived from Curcuma as a<br />

medicine is used as home remedy for various diseases<br />

(Ammon <strong>and</strong> Wahl, 1991; Eigner <strong>and</strong> Scholz, 1999).<br />

Curcumin has been considered as a potent healing herbal<br />

formulation, a strong antioxidant, which has been<br />

considered to be more than three hundred times more<br />

potent than vitamin E (Rao et al., 1982; Dikshit et al.,<br />

1995). Curcumin is also reported to have anti-bacterial,<br />

anti-amoebic, antifungal, anti-viral <strong>and</strong> anti-HIV activities<br />

(Ammon et al., 1992; Azuine <strong>and</strong> Bhide, 1992; Ruby <strong>and</strong><br />

Kuttan, 1995 <strong>and</strong> Mortellini et al., 2000).<br />

Hence, in the present study an effort has been made to<br />

assess <strong>and</strong> monitor cadmium-induced reproductive toxicity<br />

as after one single chance exposure <strong>and</strong> to observe whether<br />

curcumin, derived from Curcuma longa has the potential<br />

to protect <strong>and</strong> prevent testes from such toxicity.<br />

Materials <strong>and</strong> methods<br />

32-50 days old adult Swiss albino mice, weighing around<br />

30-40 g, were maintained in plastic cages under controlled<br />

lighting conditions (12 h light/12 h dark regime), relative<br />

humidity (50 ± 5%) <strong>and</strong> temperature (37 ± 2°C). The<br />

animals were fed on st<strong>and</strong>ard mice feed. Food <strong>and</strong> water<br />

were given ad libitum. Each batch comprised <strong>of</strong> 6 mice<br />

<strong>and</strong> their dose protocol was as follows-<br />

Group 1 - Mice were administered the vehicle (distilled<br />

water) for 16 days.<br />

Group 2- Mice were administered curcumin <strong>10</strong>mg/animal<br />

for 16 days.<br />

Group 3- Mice were administered single oral dose <strong>of</strong><br />

CdCl2 50mg/kg/animal/day for a day <strong>and</strong> left for 15 days.<br />

Group 4- Mice were pretreated with curcumin<br />

(<strong>10</strong>mg/animal/day) for 15 days <strong>and</strong> on the 16 th day mice<br />

were administered with single oral dose <strong>of</strong> CdCl2<br />

(50mg/kg/animal).<br />

Twenty-four hours after administration <strong>of</strong> the last dose,<br />

control <strong>and</strong> experimental animals were sacrificed. Testes<br />

were excised <strong>and</strong> subsequently fixed in Bouins solutions.<br />

After fixation testes were processed, wax blocks were<br />

made. Wax sections were cut <strong>and</strong> slides were prepared,


then stained in haematoxylin <strong>and</strong> eosin for<br />

histopathological studies (Kiernan, 2008).<br />

For statistical evaluation <strong>of</strong> significance, <strong>10</strong>0<br />

seminiferous tubules (‘a’ <strong>and</strong> ‘c’), per group were<br />

assessed <strong>and</strong> X 2 (Chi Square) test was conducted<br />

using the formula as per the two by two table.<br />

Results<br />

In the present study the testes <strong>of</strong> cadmium <strong>and</strong><br />

curcumin treated animals were assessed using the<br />

following parameters: Changes in morphology,<br />

testicular pathology, <strong>and</strong> cytostatic <strong>and</strong> cytotoxic<br />

changes in the germ <strong>and</strong> Leydig cells.<br />

The testes <strong>of</strong> control group mice administered only<br />

vehicle showed normal pathology with distinct<br />

seminiferous tubules undergoing different stages <strong>of</strong><br />

spermatogenesis. The interstitium was compact<br />

with distinct Leydig cells (Fig.1). Spermatogonial<br />

mother cells, primary <strong>and</strong> secondary spermatocytes,<br />

maturing spermatids <strong>and</strong> spermatozoons embedded<br />

in Sertoli cells were clearly visible (Fig.2).<br />

Histopathological evaluation <strong>of</strong> only curcumin<br />

treated mice testes showed normal structures<br />

similar to control group. Testes <strong>of</strong> the cadmium<br />

treated animals exhibited hemorrhage <strong>of</strong> its<br />

vasculature, but the overall shape was not altered.<br />

Seminiferous tubules appeared to lose their typical<br />

spherical shape <strong>and</strong> tunica propria manifested<br />

thickening <strong>and</strong> was irregularly <strong>and</strong> r<strong>and</strong>omly<br />

broken at places. Leydig cells were entrapped in the<br />

degenerated interstitium (Fig. 3). There was general<br />

derangement <strong>of</strong> morphology <strong>of</strong> spermatogonia,<br />

Curcumin protects against cadmium chloride 33<br />

where ‘b’ the Observed Frequency for category ‘a’<br />

‘d’ is the Expected Frequency in the corresponding<br />

category ‘c’<br />

This experimental study was done after taking approval<br />

from the Institutional Animal Ethics Committee<br />

(No.Cs\Res\07\759).<br />

a b a+b<br />

c d c+d<br />

a+c b+d N<br />

;<br />

X 2 = N (ad-bc) 2<br />

(a+c ) ( b+d) ( a+b) (c+d)<br />

spermatocytes <strong>and</strong> differentiating spermatids in the<br />

seminiferous tubules (Fig. 4). In most <strong>of</strong> the peripheral<br />

seminiferous tubules, the germ cells were seen to break<br />

free end appeared in the lumen as puffs (Fig. 5). The cell<br />

types which appeared to be most affected were<br />

spermatocytes <strong>and</strong> spermatids. Tubular lumens were filled<br />

with degenerated germ cells <strong>and</strong> multinucleated spermatid<br />

aggregates (Fig. 3). Vacuolization <strong>of</strong> the seminiferous<br />

epithelium was also observed (Fig. 6). The results show<br />

that a single dose <strong>of</strong> cadmium causes a sudden increase in<br />

testicular damage, apparently overpowering this tissue’s<br />

natural defenses. Also, most <strong>of</strong> the seminiferous tubules <strong>of</strong><br />

testes in this group showed complete absence <strong>of</strong> primary<br />

spermatocytes, secondary spermatocytes, spermatids <strong>and</strong><br />

spermatozoa <strong>and</strong> loss <strong>of</strong> spermatogenesis process (Fig. 6)<br />

in comparison with normal structure <strong>of</strong> seminiferous<br />

tubules in control mice. The seminiferous tubules <strong>of</strong><br />

experimental group animals pre-treated with curcumin for<br />

15 days <strong>and</strong> cadmium chloride on 16 th day showed very<br />

slight histopathological damage in the peripheral tubules<br />

<strong>and</strong> the inner tubules appeared to be normal showing all<br />

stages <strong>of</strong> spermatogenesis viz. spermatoginal mother cells,<br />

primary <strong>and</strong> secondary spermatocytes, maturing<br />

spermatids <strong>and</strong> spermatozoons embedded in Sertoli cells<br />

(Fig.7 <strong>and</strong> 8).


34 Preeti SINGH et al.<br />

Figure 1. 1) Photomicrograph <strong>of</strong> testis <strong>of</strong> control group mice administered only vehicle. Normal seminiferous<br />

tubules (ST) <strong>and</strong> Leydig cell (LC) are clearly visible (20X). 2) Testis <strong>of</strong> control group mice administered only<br />

vehicle. Seminiferous tubule with distinct spermatogonial mother cells (SMC), primary spermatocyte (PS),<br />

secondary spermatocytes (SS), maturing spermatids (MS) <strong>and</strong> spermatozoa (S) are seen (40X). 3) Testis <strong>of</strong> cadmium<br />

chloride (50mg/kg) treated group mice. Degenerate seminiferous tubules(ST) are clearly visible (20x). 4) Testis <strong>of</strong><br />

cadmium chloride(50mg/kg) treated group mice. Degenerated germ cells in lumen <strong>of</strong> seminiferous tubules are<br />

clearly evident (40x). 5) Testis <strong>of</strong> cadmium chloride(50mg/kg) treated mice showing exfoliated germ cells(GC) in<br />

tubular lumen (<strong>10</strong>0x). 6) Testis <strong>of</strong> cadmium chloride (50mg/kg) treated mice. Seminiferous tubules are left with only<br />

vacuolised spermatogonial mother cells (SMC) <strong>and</strong> Sertoli cell (SC) (<strong>10</strong>0x). 7) Testis <strong>of</strong> group pre-treated with<br />

curcumin(<strong>10</strong>mg/kg for 15 days) <strong>and</strong> then administered cadmium chloride(50mg/kg). Seminiferous tubules (ST)<br />

showing stages <strong>of</strong> spermatogenesis <strong>and</strong> pyknotic nuclei in Leydig cells (LC) are clearly evident (40x). 8) Testis <strong>of</strong><br />

group pre-treated with curcumin (<strong>10</strong>mg/kg for 15 days) <strong>and</strong> then administered cadmium chloride(50mg/kg).<br />

Maturing spermatids (MS) <strong>and</strong> adhered germ cells are visible (<strong>10</strong>0x)


Discussion<br />

The management <strong>of</strong> infertility problems is the need<br />

<strong>of</strong> time. The importance <strong>of</strong> drugs from plant origin,<br />

as fertility regulating agents for the males has long<br />

been recognized. Medicinal plants present a<br />

repertoire capable <strong>of</strong> providing varied constituents<br />

which could be helpful in infertility management.<br />

Curcumin, a potent antioxidant compound derived<br />

from turmeric, has been used for centuries as a<br />

natural dye, seasoning <strong>and</strong> medicine (Huang et al,<br />

1988). In Ayurveda, a 5000 year old system <strong>of</strong><br />

medicine originating in India, curcumin in turmeric<br />

has been used to treat dozens <strong>of</strong> common<br />

conditions. Hence, in the present experiment an<br />

effort has been made to observe ameliorative effect<br />

<strong>of</strong> curcumin on testicular damage induced by<br />

cadmium chloride. The evidence <strong>of</strong> the past twenty<br />

years have shown a disturbing trend in male<br />

reproductive health hazards due to careless use <strong>of</strong><br />

certain chemicals cadmium being one <strong>of</strong> them<br />

,which causes detrimental effects on different<br />

organs. Broad-spectrum irreversible toxic actions <strong>of</strong><br />

cadmium at the cellular <strong>and</strong> molecular levels have<br />

been observed mainly on the reproductive system<br />

<strong>of</strong> humans <strong>and</strong> experimental animals, by a number<br />

<strong>of</strong> researchers (Batra et al., 2001; Chowdhury,<br />

2004; Massanyi et al., 2007; Burukog <strong>and</strong> Bayc,<br />

2008; Almansour, 2009; Obianime <strong>and</strong> Roberts,<br />

2009). Cadmium has also been reported to cause<br />

testicular damage in Leydig cells <strong>and</strong> seminiferous<br />

tubules (Massanyi et al., 2007; Burukog <strong>and</strong> Bayc,<br />

2008; Almansour, 2009; Obianime <strong>and</strong> Roberts,<br />

2009; De Souza Predes et al., 2009 <strong>and</strong> Al attar<br />

Curcumin protects against cadmium chloride 35<br />

2011). These observations are similar to the results <strong>of</strong> the<br />

present study, which has revealed that cadmium chloride<br />

induced severe alterations in histopathological pr<strong>of</strong>ile <strong>of</strong><br />

testes as manifested by disarrangement <strong>of</strong> morphology <strong>of</strong><br />

Leydig cells <strong>and</strong> <strong>10</strong>0% seminiferous tubular damage<br />

within which spermatogonia, spermatocytes <strong>and</strong><br />

differentiating spermatids were severely affected <strong>and</strong> were<br />

lost in the luminal space <strong>of</strong> the tubules culminating in total<br />

suppression <strong>of</strong> spermatogenesis. There was induction <strong>of</strong><br />

azoospermia. The results <strong>of</strong> present experiment also<br />

correlate well with other reports where cadmium has been<br />

shown to induce testicular damage in rat <strong>and</strong> mice (Gunn<br />

et al., 1970., Herranz et al., 20<strong>10</strong>; <strong>and</strong> Mathur et al.,<br />

20<strong>10</strong>). Our observations are also similar to the<br />

observations <strong>of</strong> Monsefi et al., 2008; Chowdhury, 2009<br />

<strong>and</strong> Adamkovicova et al., 20<strong>10</strong> where, similar to our<br />

results cadmium chloride has shown to cause rapid<br />

testicular edema, haemorrhage, necrosis <strong>and</strong> degeneration<br />

<strong>of</strong> testicular membrane tissue. Adaikpoh <strong>and</strong> Obi (2009)<br />

have reported that cadmium increased total cholesterol<br />

levels in the testes <strong>and</strong> prostate <strong>of</strong> rats, which affects<br />

Leydig cell function negatively. In the present<br />

experimental design administration <strong>of</strong> curcumin protected<br />

testis <strong>of</strong> mice exposed to cadmium as evidenced by<br />

appearance <strong>of</strong> about 75% normal structures <strong>of</strong><br />

seminiferous tubule <strong>of</strong> testis showing the ongoing process<br />

<strong>of</strong> spermatogenesis as evidenced by the presence <strong>of</strong><br />

spermatids <strong>and</strong> spermatozoon, <strong>and</strong> lack <strong>of</strong> exfoliated cells<br />

in the luminal space. Additionally, the present study<br />

indicated that the exposure to heavy metals produce<br />

testicular damage, which leads to spermatogenic arrest<br />

which is rectified <strong>and</strong> prevented by curcumin intake.<br />

Table 1. Alterations in the seminiferous germ cells <strong>of</strong> Swiss albino mice challenged with cadmium chloride <strong>and</strong><br />

curcumin<br />

S. No.<br />

Experimental Protocol<br />

1. Control (distilled water as a<br />

vehicle for 16 days)<br />

2. Curcumin (<strong>10</strong> mg/animal/day<br />

for 16 days)<br />

3. Cadmium Chloride(50<br />

mg/kg/animal/day for 15 days)<br />

4. Curcumin (<strong>10</strong> mg/animal/day<br />

for 16 days) +Cadmium<br />

Chloride(50 mg/kg/animal/day<br />

for 15 days)<br />

Types Of Germ <strong>Cell</strong>s Present (P) And Exfoliated (E)<br />

SMC S C P Sp S Sp S S Z Se C<br />

P P P P P P P<br />

Total<br />

number <strong>of</strong><br />

germ cell<br />

layers<br />

9-11<br />

P P P P P P P 9-11<br />

P P E E E E P 2-3*<br />

Χ 2 =4.241<br />

P=0.04<br />

P P E E P E P 6-<strong>10</strong><br />

Χ 2 =0.204<br />

P=0.65<br />

SMC – Spermatogonial Mother <strong>Cell</strong>s; SC – Spermatogonial cells ; PSp- Primary Spermatocytes; SSp- Secondary<br />

Spermatocytes; S- Spermatids; SZ- Spermatozoa; SeC- Sertoli <strong>Cell</strong>s *Χ 2 significant at P ≤0.05


36 Preeti SINGH et al.<br />

References<br />

Adaikpoh M A <strong>and</strong> Obi F O. Prevention <strong>of</strong><br />

cadmium –induced alteration in rat testes <strong>and</strong><br />

prostrate lipid patterns by ɑ-tocopherol. African<br />

<strong>Journal</strong> <strong>of</strong> Biochemistry. 3 (<strong>10</strong>): 321-325, c<br />

2009.<br />

Adamkovicova M, Toman R, <strong>and</strong> Cabaj M.<br />

Diazinon <strong>and</strong> cadmium acute testicular toxicity<br />

in rats examined by histopathological <strong>and</strong><br />

morphometrical methods. Slovak J Anim Sci.<br />

43. (3): 134-140, 20<strong>10</strong>.<br />

Almansour M I. Histological alterations induced by<br />

lead in the testes <strong>of</strong> the quail Coturnix coturnix.<br />

Res. J. Environ. Toxicol. 3:24-30, 2009.<br />

Ammon HPT <strong>and</strong> Wahl M A. Pharmacology <strong>of</strong><br />

Curcuma longa. Planta Med.57: 1–7, 1991.<br />

Ammon HPT, Anazodo MI, Safayhi H <strong>and</strong> Dhawan<br />

BN. Curcumin a potent inhibitor <strong>of</strong> leukotriene<br />

B4 formation in rat polymorphonuclear<br />

neutrophils (PMNL). Planta Med. 67: 1-6,<br />

1992.<br />

Al-Attar AM. Antioxidant effect <strong>of</strong> vitamin E<br />

treatment on some heavy metals-induced renal<br />

<strong>and</strong> testicular injuries in male mice. Saudi<br />

<strong>Journal</strong> <strong>of</strong> Biological Sciences. 18, 63–72,<br />

2011.<br />

ATSDR (Agency for Toxic Substances <strong>and</strong> Disease<br />

Registry). Toxicological pr<strong>of</strong>ile for Cadmium.<br />

ATSDR / US department <strong>of</strong> Health <strong>and</strong> Human<br />

Services, Atlanta/, US, 1999.<br />

Azuine M, Bhide S. Chemo preventive effect <strong>of</strong><br />

turmeric against stomach <strong>and</strong> skin tumors<br />

induced by chemical carcinogens in Swiss mice.<br />

Nutr Cancer. 17:77-83,1992.<br />

Batra N, Nehru B, <strong>and</strong> Bansal M P. Influence <strong>of</strong><br />

lead <strong>and</strong> zinc on rat male reproduction at<br />

‘biochemical <strong>and</strong> histopathological levels’. J<br />

Appl Toxicol. 21: 507–512,2001.<br />

Ben<strong>of</strong>f S, Jacob A <strong>and</strong> Hurley I R. Male infertility<br />

<strong>and</strong> environmental exposure to lead <strong>and</strong><br />

cadmium. Hum Reprod. 6: <strong>10</strong>7-21. Update<br />

2000.<br />

Bernard A <strong>and</strong> Lauwerys R. Effects <strong>of</strong> cadmium exposure<br />

in humans. In: Foulkes, E.C. ed. H<strong>and</strong>book <strong>of</strong><br />

experimental pharmacology. 80:135-177, 1986.<br />

Beton DC, Andrews GS, Davies HJ, et al. Acute cadmium<br />

fume poisoning. Five cases with one death from renal<br />

necrosis. Br J Ind Med. 23:292-301,1966.<br />

Blumenthal NC, Cosma V, Skyler D, LeGeros J, <strong>and</strong><br />

Walters M. The effect <strong>of</strong> cadmium on the formation<br />

<strong>and</strong> properties <strong>of</strong> hydroxyl apatite in vitro <strong>and</strong> its<br />

relationto cadmium toxicity in the skeletal system.<br />

Calcif Tissue Int. 56 (4): 316-22,1995.<br />

Buchet JP, Roels H, Bernard A, et al. Assessment <strong>of</strong><br />

renal function <strong>of</strong> workers exposed to inorganic lead,<br />

cadmium or mercury vapor. J Occup Med. 22: 741-<br />

748,1980.<br />

Burukoglu D <strong>and</strong> Baycu C. Protective effects <strong>of</strong> zinc on<br />

testes <strong>of</strong> cadmium-treated rats. Bull Environ Contam.<br />

81: 521–524, 2008.<br />

Chowdhury AR. Recent Advances in Heavy Metals<br />

Induced Effect on Male Reproductive Function-A<br />

Retrospective. Al Ameen J Med Sci. 2(2): 37 -42,<br />

2009.<br />

Chowdhury AR. Male reproductive toxicity-new<br />

perspective in life science. Chatterjee P <strong>and</strong> Ch<strong>and</strong>a<br />

AK (Ed). Life Science in Modern Perspective.<br />

University <strong>of</strong> Calcutta. 97–<strong>10</strong>,2004.<br />

Col M, Col C, Soran A, et al. Arsenic related Bowen’s<br />

disease, Palmer keratosis, <strong>and</strong> skin cancer. Environ<br />

Health Perspect. <strong>10</strong>7:687-9,1999.<br />

Danielyan A. The problem <strong>of</strong> pollution with heavy metals<br />

<strong>and</strong> possible risks related to that in watersheds with the<br />

developed metallurgical industry. In: BALWOIS 20<strong>10</strong><br />

Conference. Ohrid, Republic <strong>of</strong> Macedonia. pp. 1–9,<br />

20<strong>10</strong>.<br />

De Souza Predes F , Diamante MAS <strong>and</strong> Dolder H.<br />

Testis response to low doses <strong>of</strong> cadmium in Wistar<br />

rats. Int J Exp Path, 91: 125–131,2009.<br />

Dikshit M, Rastogi L, Shukla R <strong>and</strong> Srimal RC.<br />

Prevention <strong>of</strong> ischaemia-induced biochemical changes<br />

by curcumin <strong>and</strong> quinidine in the cat heart. Indian J<br />

Med Res. <strong>10</strong>1: 31 - 35, 1995.


Eigner D <strong>and</strong> Scholz D. Ferula asa-foetida <strong>and</strong><br />

Curcuma longa in traditional medicinal<br />

treatment <strong>and</strong> diet in Nepal. J Ethnopharmacol.<br />

67: 1–6,1999.<br />

Elinder CG. Cadmium: uses, occurrence <strong>and</strong> intake.<br />

In: Cadmium <strong>and</strong> Health: A Toxicological <strong>and</strong><br />

Epidemiological Appraisal. Vol I: Exposure,<br />

Dose, <strong>and</strong> Metabolism. Effects <strong>and</strong> Response<br />

(Friberg L, Elinder CG, Kjellstrom T, Nordberg<br />

GF, eds). Boca Raton, FL: CRC Press, 23-64,<br />

1985.<br />

Ferm VH <strong>and</strong> Carpenter SJ. Teratogenic effect <strong>of</strong><br />

cadmium <strong>and</strong> its inhibition by zinc. Nature.<br />

216: 1123, 1967.<br />

Fox MRS. Cadmium bioavailability. Federation<br />

Proc. 42: 1726-1729, 1983.<br />

Friberg L, Piscator M, Nordberg G, <strong>and</strong> Kjellström<br />

T. Cadmium in the environment, 2nd ed.,<br />

Clevel<strong>and</strong>, Ohio, CRC Press. 248, 1974.<br />

Goyer R. Toxic effects <strong>of</strong> metals. In: Amdur, MO,<br />

JD Doull, C.D. Klaassen, Eds. Casarett <strong>and</strong><br />

Doull's Toxicology. 4th ed. Pergamon Press,<br />

New York. 623-680, 1991.<br />

Gunn SA, Gould TC <strong>and</strong> Anderson WAD.<br />

Maintenance <strong>of</strong> the structure <strong>and</strong> function <strong>of</strong> the<br />

cauda epididymidis <strong>and</strong> contained spermatozoa<br />

by testosterone following cadmium-induced<br />

testicular necrosis in the rat. J reprod Fert.<br />

21:443-448,1970.<br />

Herranz LM, Tebaz F, Martin R, et al. Quantitative<br />

Changes in rat Seminiferous Epithelium After<br />

Chronic Administration <strong>of</strong> low Doses <strong>of</strong><br />

Cadmium <strong>and</strong> Zinc: A sterological study. The<br />

open Andrology <strong>Journal</strong>. 2:27-36, 20<strong>10</strong>.<br />

Huang M, Smart RC, Wong C, <strong>and</strong> Conney AH.<br />

Inhibitory Effect <strong>of</strong> Curcumin, Chlorogenic<br />

Acid, Caffeic Acid, <strong>and</strong> Ferulic Acid on Tumor<br />

Promotion in Mouse Skin by 12-O-<br />

Tetradecanoylphorbol-13-acetate. CANCER<br />

RESEARCH 48, 5941-5946,1988.<br />

International Agency for the Research on Cancer<br />

(IARC). Cadmium in the human environment:<br />

toxicity <strong>and</strong> carcinogenicity. IARC Scientific<br />

publications. No 118. Lyon.1992.<br />

Curcumin protects against cadmium chloride 37<br />

Kawamura J, Yoshida O, Nishino K <strong>and</strong> Itokawa Y.<br />

Disturbances in kidney functions <strong>and</strong> calcium <strong>and</strong><br />

phosphate metabolism in cadmium-poisoned rats.<br />

Nephrology. 20:<strong>10</strong>1-1<strong>10</strong>,1978.<br />

Kiernan JA. Histological <strong>and</strong> Histochemical Methods:<br />

Theory <strong>and</strong> Practice. 4th ed. Bloxham, UK: Scion,<br />

(2008)<br />

Massanyi P, Lukac N, Slivkova J, et al. Mercuryinduced<br />

alterations in rat kidneys <strong>and</strong> testes in vivo. J<br />

Environ Sci Health A Tox Hazard Subst Environ<br />

Eng. 42:865–870,2007.<br />

Mathur N, P<strong>and</strong>ey G <strong>and</strong> Jain GC. Male Reproductive<br />

toxicity <strong>of</strong> Some Selected Metals :A Review <strong>Journal</strong> <strong>of</strong><br />

biological sciences.<strong>10</strong>(5):396-404,20<strong>10</strong>.<br />

Kamel MM , Abd El Razek AH, Ahmed KA <strong>and</strong> Kamel<br />

GM. Exposure <strong>of</strong> Adult Male Rats to Cadmium:<br />

Assessment <strong>of</strong> Sexual Behaviour, Fertility, Aggression<br />

as well as Anxiety like Behaviour with Special<br />

Reference to Biochemical <strong>and</strong> Pathological<br />

Alterations.Life Science <strong>Journal</strong>, 2011;8(2)<br />

Monsefi M, Alaee S, Moradshahi A, <strong>and</strong> Rohani<br />

L.Cadmium-Induced Infertility in Male Mice., 2008.<br />

Monsefi M, Alaee S, Moradshahi A, <strong>and</strong> Rohani L.<br />

Cadmium-induced infertility in male mice. Environ<br />

Toxicol. 25 (1):94-<strong>10</strong>2, 20<strong>10</strong>.<br />

Morrow H. Cadmium (Cd), Metals H<strong>and</strong>book, <strong>10</strong>th<br />

Edition, <strong>Volume</strong> 2, ASM International, Metals Park,<br />

Ohio, 1990.<br />

Mortellini R, Foresti R, Bassi R, <strong>and</strong> Green C J.<br />

Curcumin, an antioxidant <strong>and</strong> anti-inflammatory agent,<br />

induces heme oxygenase-1 <strong>and</strong> protects endothelial<br />

cells against oxidative stress. Free Radic Biol Med. 28:<br />

1303-1312, 2000.<br />

Nordberg G. Cadmium metabolisms <strong>and</strong> toxicity. Environ<br />

Physiol Biochem. 2: 7-36, 1972.<br />

Obianime AW <strong>and</strong> Roberts II . Antioxidants, cadmiuminduced<br />

toxicity, serum biochemical <strong>and</strong> the<br />

histological abnormalities <strong>of</strong> the kidney <strong>and</strong> testes <strong>of</strong><br />

the male Wistar rats. Niger. J Physiol Sci. 24: 177–185,<br />

2009.<br />

Rao TS, Basu N <strong>and</strong> Siddiqui H. Anti-inflammatory<br />

activity <strong>of</strong> curcumin analogues. Indian J Med Res.


38 Preeti SINGH et al.<br />

75:574-8, 1982.<br />

Ruby AJ, <strong>and</strong> Kuttan G. Anti-tumour <strong>and</strong><br />

antioxidant activity <strong>of</strong> natural curcuminoids.<br />

Cancer Lett .94:79-8, 1995.<br />

Staessen J A, Roels H A, Emelianov D, et al.<br />

Environmental exposure to cadmium, forearm<br />

bone density, <strong>and</strong> risk <strong>of</strong> fractures: Prospective<br />

Population study. Lancet, 353:1140-1144, 1999.<br />

Stowe H D, Wilson M <strong>and</strong> Goyer R A. Clinical<br />

<strong>and</strong> morphological effects <strong>of</strong> oral cadmium<br />

toxicity in rabbits. Arch Pathol. 94: 389-405,<br />

1972.<br />

Sugawara C <strong>and</strong> Sugawara N. Cadmium toxicity<br />

for rat intestine, especially on the absorption <strong>of</strong><br />

calcium <strong>and</strong> phosphorous. Jpn J Hyg. 28: 511-516,<br />

1974.<br />

Suwazono Y, Kobayashi E, Okubo Y, et al. Renal effects<br />

<strong>of</strong> cadmium exposure in cadmium non polluted areas in<br />

Japan. Environ Res. 84:44-45, 2000.<br />

Taylor A, Jackson MA, Patil D, et al. Poisoning with<br />

cadmium fumes after smelting lead. Br Med J.<br />

288:1270-1271, 1984.<br />

Wu HM, Lin-Tan DT, Wang ML, et al. Cadmium level in<br />

seminal plasma may affect the pregnancy rate for<br />

patients undergoing infertility evaluation <strong>and</strong><br />

treatment. Reproductive Toxicology. 25(4), 481-484,<br />

2008.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong> <strong>10</strong>(1):39-51, 2013 Research Article 39<br />

Haliç University, Printed in Turkey.<br />

http://jcmb.halic.edu.tr<br />

Study <strong>of</strong> Klebsiella pneumoniae isolates with ESBL activity,<br />

from ICU <strong>and</strong> Nurseries, on the isl<strong>and</strong> <strong>of</strong> Mauritius<br />

Salima Khurshid MUNGLOO-RUJUBALI 1 , Mohamed Iqbal ISSACK 2 , Yasmina<br />

JAUFEERALLY-FAKIM 1*<br />

1<br />

Department <strong>of</strong> Biotechnology, University <strong>of</strong> Mauritius, Reduit, Mauritius.<br />

2<br />

Victoria Hospital, Ministry <strong>of</strong> Health <strong>and</strong> Quality <strong>of</strong> Life, Mauritius.<br />

(* author for correspondence; yasmina@uom.ac.mu)<br />

Received: 11 August 2011, Accepted: 2 November 2012<br />

Abstract<br />

Klebsiella pneumoniae with extended spectrum beta lactamase activity circulate widely among<br />

nosocomial environments. Isolates were collected from hospitalised patients in ICU <strong>and</strong> nursery units<br />

on the isl<strong>and</strong> <strong>of</strong> Mauritius, over a two year period. They were tested for their resistance/susceptibility<br />

to various antibiotics using the double disc diffusion assay. Following the API biochemical assay their<br />

genus/species were confirmed. Their genetic diversity was determined using RAPD, REP <strong>and</strong> BOX-<br />

PCR. Among fifty isolates, most were highly diverse by these methods with a clustering into three<br />

groups. No correlation was found among isolates <strong>of</strong> the same hospital or unit or with dates <strong>of</strong><br />

collection. Sequence analysis <strong>of</strong> parts <strong>of</strong> the TEM, SHV <strong>and</strong> CTX-M beta lactamase genes confirmed<br />

the beta lactamase domain <strong>and</strong> the presence <strong>of</strong> SHV-11 <strong>and</strong> SHV-28. CTX-M 15 was found in some<br />

isolates. Furthermore, integrase was PCR-amplified from a few isolates, showing the presence <strong>of</strong> an<br />

integron-borne gene cassette. This study shows diverse clones <strong>of</strong> Klebsiella pneumoniae circulating<br />

with ESBL activity.<br />

Keywords: Klebsiella pneumoniae, ESBL, TEM, SHV, genetic diversity, beta lactamase<br />

Özet<br />

Mauritius adasında kreş ve yoğun bakım ünitesinden elde edilen ESBL aktiviteli<br />

Klebsiella pneumoniae izolatlarının çalışması<br />

Geniş spektrumlu beta laktamaz aktivitesi olan Klebsiella pneumoniae nosokomiyal çevrelerde büyük<br />

ölçüde bulunmaktadır. İzolatlar, Mauritius adasındaki yoğun bakım ünitesinde yatan hastalardan ve<br />

kreşlerden iki yıl boyunca toplanmıştır. Çift disk difüzyon testi kullanılarak izolatların çeşitli<br />

antibiyotikler için dirençleri/duyarlılıkları incelenmiştir. Sonrasında API biyokimyasal test ile cins/tür<br />

teyidi yapılmıştır. Genetik farklılıkları RAPD, REP ve BOX-PCR kullanılarak belirlenmiştir. Test<br />

edilen elli kadar izolatın çoğu, üç grupta sınıfl<strong>and</strong>ırılan bu metodlar tarafından oldukça farklı<br />

bulunmuştur. Aynı hastane, birimler, ya da aynı tarihlerde toplanan izolatlar arasında herhangi bir<br />

korelasyon bulunmamıştır. TEM, SHV ve CTX-M beta laktamaz genlerinin dizi analizleri beta<br />

laktamaz domeynini ve SHV-11 ile SHV-28 varlığını onaylamıştır. Bazı izolatlarda CTX-M 15<br />

bulunmuştur. Bundan başka, birkaç izolattan PCR-amplifikasyonu yapılmış olan integraz ile, integronkaynaklı<br />

gen kasetinin bulunduğu gösterilmiştir. Bu çalışma ESBL aktivitesiyle dolaşan Klebsiella<br />

pneumoniae’nın farklı klonlarını göstermektedir.<br />

Anahtar Kelimeler: Klebsiella pneumoniae, ESBL, TEM, SHV, genetik çeşitlilik, beta-laktamaz


40 Salima Khurshid MUNGLOO-RUJUBALI et al.<br />

Introduction<br />

Klebsiella pneumoniae is a very common source <strong>of</strong><br />

infections in hospital environments <strong>and</strong> are<br />

particularly <strong>of</strong> threat to immune-compromised<br />

patients. It is a gram-negative bacillus <strong>of</strong> the<br />

Enterobacteriaceae family. It is mostly treated with<br />

beta lactams <strong>and</strong> fluoroquinolones, but over the<br />

years the bacteria have accumulated significant<br />

resistance to many <strong>of</strong> those. Beta lactamases,<br />

encoded in bacterial sequences, are able to<br />

efficiently hydrolyse the beta lactams <strong>of</strong> many<br />

antibiotics, thus rendering them inactive. A large<br />

number <strong>of</strong> studies have demonstrated their wide<br />

occurrence <strong>and</strong> rapid spread during the era <strong>of</strong><br />

widespread antibiotic use for medical applications<br />

culminating in the appearance <strong>of</strong> extended<br />

spectrum beta lactamases (ESBLs), which are<br />

resistant to third generation cephalosporins<br />

(Nteimam, 2005).<br />

The mode <strong>of</strong> action <strong>of</strong> beta lactamases relies on<br />

their ability to bind to enzymes <strong>of</strong> the bacterial cell<br />

wall biosynthesis process, thereby killing the cells.<br />

They have an active site serine residue. They act on<br />

peptidases that cross-link the penultimate D-alanine<br />

<strong>of</strong> one peptidoglycan unit to a free amino acid <strong>of</strong><br />

diamino pimelic acid (gram negative) or a lysine<br />

residue (Gram positive). The D-alanine-D-alanine<br />

substrate <strong>of</strong> the peptidoglycan unit has a similar<br />

stereochemistry to the beta lactam moiety thus<br />

competing for binding at the active site <strong>of</strong> the<br />

peptidases. TEM <strong>and</strong> SHV beta lactamases were<br />

characterised first, followed by CTX-M. They are<br />

<strong>of</strong> the Class A enzymes (Ambler, 1980). According<br />

to Hall <strong>and</strong> Barlow (2004), TEM enzymes have<br />

experienced larger phenotypic evolution, than SHV<br />

<strong>and</strong> CTX-M. CTX-M ESBLs provide resistance to<br />

Cefotaxime, but usually not to Ceftazidime. The<br />

double disc synergy method using Cefotaxime <strong>and</strong><br />

Ceftazidime for detection <strong>of</strong> ESBLs is the<br />

recommended one by the British Society for Anti<br />

Microbial Chemotherapy (BSAC). ESBLs can<br />

hydrolyse the so-called modern β-lactams that are<br />

cefotaxime, cefuroxime, aztreonam <strong>and</strong><br />

ceftazidime.<br />

The last two decades have seen the appearance<br />

<strong>of</strong> a large number <strong>of</strong> mutant forms <strong>of</strong> beta<br />

lactamase genes from diverse organisms. Most<br />

importantly, there seems to be a positive selection<br />

for non-synonymous point mutations, which alter<br />

the binding affinity <strong>of</strong> the enzyme for its<br />

substrate. Key amino acid substitutions<br />

bring changes in the substrate <strong>and</strong> inhibitor<br />

binding affinities. Sequence comparisons <strong>of</strong><br />

the genes have identified the homology<br />

within the TEM or within the SHV groups<br />

<strong>and</strong> revealed codon alterations which lead to<br />

different phenotypic pr<strong>of</strong>iles. Structural<br />

comparison is useful in underst<strong>and</strong>ing the<br />

outcome <strong>of</strong> nucleotide changes on the 3dimensional<br />

features <strong>of</strong> the protein. Alleles<br />

TEM 1A <strong>and</strong> 1F differ by silent mutations;<br />

however derivative variants can arise by<br />

further point mutations or by crossing-over<br />

between two alleles. Examples <strong>of</strong><br />

substitutions can be found at www.lahey.org<br />

which lists all the reported variants <strong>and</strong> their<br />

codon differences. Recent work has<br />

identified key amino acid replacements<br />

which are responsible for phenotypic<br />

changes. Mutations that cause the ESBL<br />

phenotype are known to be R164H (Arg to<br />

His), R164S (Arg to Ser) <strong>and</strong> G238S (Gly to<br />

Ser). TEM-68, which has a decreased<br />

sensitivity to inhibitors, has a R275L (Arg to<br />

Leu) replacement compared to TEM-1.<br />

Similarly other mutations lead to modulating<br />

effects such as increasing or decreasing<br />

MIC’s (minimum inhibitory concentrations).<br />

β -lactam antibiotics penetrate the outer<br />

membrane <strong>of</strong> many gram-negative bacteria<br />

through porins, hence antibiotic resistance<br />

can also result from porin loss or deficiency<br />

(Nikaido, 1989). Several reports have<br />

demonstrated that beta lactamase expression<br />

is not the only form <strong>of</strong> resistance in ESBL<br />

bacteria. Other mechanisms such as porin<br />

loss have been described in many species<br />

(Tsu-Lan et al., 2001).<br />

An underst<strong>and</strong>ing <strong>of</strong> the bacterial<br />

populations carrying ESBLs is essential to<br />

characterise the molecular features<br />

associated with the genes for β-lactamases<br />

<strong>and</strong> underst<strong>and</strong> their evolution. This study<br />

describes the characterisation <strong>of</strong> Klebsiella<br />

pneumoniae isolates from hospital sources<br />

to assess their ESBL phenotype <strong>and</strong> identify<br />

the corresponding gene sequences. The<br />

genetic diversity <strong>of</strong> the strains carrying this<br />

phenotype was determined to gauge the


extent <strong>of</strong> occurrence <strong>of</strong> the ESBL feature.<br />

Materials <strong>and</strong> Methods<br />

Isolation <strong>and</strong> characterisation <strong>of</strong> K. pneumoniae<br />

About fifty isolates <strong>of</strong> K. pneumoniae were<br />

obtained between March 2003 <strong>and</strong> January 2005<br />

from six different hospitals (Table 1). These were<br />

collected by the Central Analytical Laboratory <strong>of</strong><br />

Table 1. List <strong>of</strong> K.pneumoniae isolates<br />

K. pneumonia isolates with ESBL activity 41<br />

the Ministry <strong>of</strong> Health, Mauritius. They<br />

were pre-selected for their ESBL phenotype<br />

by double disk assay. An enlargement <strong>of</strong> the<br />

inhibition zone <strong>of</strong> 5 mm in the presence <strong>of</strong><br />

clavulanic acid is a confirmation <strong>of</strong> an ESBL<br />

presence. The isolates were characterised<br />

biochemically using the Analytical Pr<strong>of</strong>ile<br />

Index (API) system.<br />

ISOLATE DATE ISOLATED SEX AGE HOSPITAL WARD SOURCE<br />

SS01 2.06.04 M 36 A ICU BLOOD<br />

SS02 28.08.04 M 37 A ICU BLOOD<br />

SS03 11.11.04 F 5 DAYS D 2-3 N/A<br />

SS04 3.08.04 M 37 A ICU BLOOD<br />

SS05 9.11.04 F 73 B D4 N/A<br />

SS06 5.12.04 M NEWBORN A NURSERY BLOOD<br />

SS07 23.08.04 F 60 C MICU BLOOD<br />

SS08 27.01.04 F 69 C 1-3 N/A<br />

SS09 14.11.04 F 4 DAYS A NURSERY N/A<br />

SS<strong>10</strong> 26.03.03 NEONATES E NURSERY N/A<br />

SS11 9.11.04 M 15 DAYS C NICU RECTALS<br />

SS12 9.09.03 F 3 WEEKS C NICU N/A<br />

SS13 24.<strong>10</strong>.04 NEONATES D NURSERY N/A<br />

SS14 6.02.04 A NURSERY ENV(SINK)<br />

SS15 29.11.04 F 6 DAYS A NURSERY N/A<br />

SS16 23.06.04 M 29 B 04 BLOOD<br />

SS17 19.11.04 M 62 B D4 N/A<br />

SS18 20.<strong>10</strong>.04 M 11 B RDU VAS.CAT.FLUID<br />

SS19 14.02.04 F 2 C S21 N/A<br />

SS20 28.02.03 7 DAYS F N/A<br />

SS21 22.11.02 4 DAYS B NICU N/A<br />

SS22 3.06.04 M 40 A ICU URINE<br />

SS23 3.06.04 M 40 A ICU URINE


42 Salima Khurshid MUNGLOO-RUJUBALI et al.<br />

SS24 4.06.04 M 40 A ICU URINE<br />

SS25 29.<strong>10</strong>.03 M 59 ICU CSF<br />

SS26 19.09.04 M 53 D 4 N/A<br />

SS27 11.11.04 M 5 DAYS C NICU RECTALS<br />

SS28 27.<strong>10</strong>.03 M 67 ICU CSF<br />

SS29 23.01.04 F 15 A ICU N/A<br />

SS30 1.09.04 F 53 E DIALYSIS BLOOD<br />

SS31 31.07.04 M 50 C MICU ET-SECRETION<br />

SS32 26.11.04 F 11 DAYS A NURSERY BLOOD<br />

SS33 14.01.05 M 44 A 2-4 BLOOD<br />

SS34 19.02.04 F 61 E F69 BLOOD<br />

SS35 <strong>10</strong>.12.04 F 5 WEEKS D NURSERY N/A<br />

SS36 27.09.04 M 37 A 2-4 BLOOD<br />

SS37 26.11.04 F 2 DAYS NURSERY N/A<br />

SS38 14.01.05 M 57 E B1 BLOOD<br />

SS39 20.09.04 M 53 D 4 BLOOD-DIALYSIS<br />

SS40 22.<strong>10</strong>.03 M 50 C ICU BLOOD<br />

SS41 2.<strong>10</strong>.03 M 42 C N/A<br />

SS42 21.06.04 F 58 A 1-2 BLOOD<br />

SS 43 18.11.03 F 68 B ICU BURN UNIT N/A<br />

SS44 13.03.03 F 12 DAYS B NURSERY CSF<br />

SS45 27.09.03 F 56 C ICU BLOOD<br />

SS46 21.06.04 F 3 WEEKS D NURSERY BLOOD<br />

SS47 16.06.04 M 44 C MICU N/A<br />

SS48 4.<strong>10</strong>.04 C CARDIAC ICU ET SECRETION<br />

SS49 30.11.04 M 34 A ICU BLOOD<br />

SS50 29.07.04 M 34 D 1-3 BLOOD<br />

RDU: Renal Dialysis unit, NICU: Neurological intensive care unit, MICU: Medical Intensive care<br />

unit CSF: Cerebro spinal fluid , ET: endotracheal secretion; N/A: Not available<br />

Their sensitivity to the following antibiotics either<br />

alone or in the presence <strong>of</strong> clavulanic acid was<br />

assessed on Mueller-Hinton agar using the pairs <strong>of</strong><br />

Oxoid combination discs: (ceftazidime-30<br />

µg <strong>and</strong> ceftazidime/clavulanate-30/<strong>10</strong> µg;<br />

cefotaxime-30 µg <strong>and</strong>


cefotaxime/clavulanate - 30/<strong>10</strong> µg; cefpodoxime-30<br />

µg <strong>and</strong> cefpodoxime/clavulanate-30/<strong>10</strong>µg;<br />

cefpirome-30 µg <strong>and</strong> cefpirome/clavulanate-<br />

30/<strong>10</strong>µg).<br />

BOX-PCR <strong>and</strong> RAPD PCR amplification<br />

For the BOX-PCR, the primer 5’-<br />

CTACGGCAAGGCGACGCTGACG-3’ (Martin et<br />

al, 1992) was used. PCR was carried out in a total<br />

reaction mixture <strong>of</strong> 25 µl, containing 50 mM buffer,<br />

2 mM MgCl2, 200 µM each deoxynucleoside<br />

triphosphate, 25 pmol <strong>of</strong> primer, 25 ng <strong>of</strong> template<br />

DNA <strong>and</strong> 1 U <strong>of</strong> Taq DNA polymerase .<br />

Amplifications were performed with a DNA<br />

thermocycler (BIO-RAD) as follows: 1 cycle <strong>of</strong> 95º<br />

C for 4 minutes, 30 cycles <strong>of</strong> 94º C for 30 s, 92º C<br />

for 30 s, 50º C for 1 minute, 65º C for 8 minutes<br />

<strong>and</strong> 1 cycle <strong>of</strong> 65º C for 8 minutes. The PCR<br />

Table 2. List <strong>of</strong> primer sequences<br />

K. pneumonia isolates with ESBL activity 43<br />

products were run in 1.5 % agarose gel<br />

stained with EtBr <strong>and</strong> observed to score for<br />

markers.<br />

Similar reaction was set up for RAPD<br />

except that the annealing temperature was<br />

32º C.<br />

The gel b<strong>and</strong>ing patterns were scored <strong>and</strong><br />

the data was analysed by NTSYS; <strong>and</strong> the<br />

tree was generated with Darwin 5.0.<br />

Amplification <strong>and</strong> sequence analysis <strong>of</strong><br />

TEM, SHV <strong>and</strong> CTX-M genes<br />

St<strong>and</strong>ard PCR reactions were done for the<br />

amplification <strong>of</strong> beta-lactamase genes using<br />

published primer sequences (Table 2).<br />

Products were purified after amplification<br />

<strong>and</strong> sequenced. Sequence results were<br />

manually checked <strong>and</strong> edited.<br />

Primer Name Primer Sequence Reference<br />

SHV A 5- ACT GAA TGA GGC GCT TCC-3<br />

SHV B<br />

SHV A1<br />

5- ATC CCG CAG ATA AAT CAC C-3<br />

5- TCA GCG AA AAC ACC TTG-3<br />

Babini & Livermore, 2000<br />

SHV A2 5 –TCC CGC AGA TAA ATC ACC A-3<br />

SHV A11 5- ATG CGT TAT ATT CGC CTG TG-3<br />

SHV A12 5- GTT AGC GTT GCC AGT GCT CG-3<br />

SHV S1<br />

5- TGG TTA TGC GTT ATA TTC GCC-<br />

3<br />

Gniadkowski et al., 1998<br />

SHV S2 5- GGT TAG CGT TGC CAG TGC T-3<br />

SHV B1 5-ATG CGT TAT ATT CGC CTG TG-3<br />

SHV B2 5- GTT AGC GTT GCC AGT GCT CG-3<br />

TEM D1<br />

5- GGG AAT TCT CGG GGA AAT<br />

GTG CGC GGA AC-3<br />

TEM D2<br />

5- GGG ATC CGA GTA AAC TTG GTC<br />

TGA CAG-3<br />

Bou et al., 2000<br />

TEM A1 5- TAA AAT TCT TGA AGA CG-3<br />

TEM A2 5- TTA CCA ATG CTT AAT CA-3<br />

CTX-M1<br />

CTX-M2<br />

5- CGC TTT GCG ATG TGC AG-3<br />

5- ACC GCG ATA TCG TTG GT-3<br />

Jungmin Kim et al., 2005<br />

INT 2F<br />

INT 2R<br />

5-TCTCGGGTAACATCAAGG -3<br />

5- AAGCAGACTTGACCTGA -3<br />

Mazel et al., 2000<br />

Sequence Analysis<br />

SHV, TEM <strong>and</strong> CTX-M homologue DNA<br />

sequences were identified with tblastx<br />

(www.ncbi.nlm.nih.gov/blast) search <strong>of</strong> the nonredundant<br />

National Center for Biotechnology<br />

Information (NCBI) sequence database. First <strong>of</strong> all<br />

the nucleotide sequence were converted into<br />

contigs using the following web page<br />

http://pbil.univ-lyon1.fr/cap3.php. Tblastx<br />

was carried out with the contigs in NCBI.<br />

The contigs were translated into amino<br />

acids by using the following program:<br />

http://www.biochem.ucl.ac.uk/cgi-


44 Salima Khurshid MUNNGLOO-RUJUUBALI<br />

et al.<br />

bin/mcdoonald/cgina2aaa.pl<br />

The aamino<br />

acid seequence<br />

with no stop coddon<br />

was seleected.<br />

This wwas<br />

then aliigned<br />

with tthe<br />

corresponnding<br />

sequence<br />

that blasteed<br />

well withh<br />

a<br />

low E-value.<br />

The aamino<br />

acid seequences<br />

<strong>of</strong> SSHV,<br />

TEM a<strong>and</strong><br />

CTX-M <strong>and</strong> their hoomologs<br />

werre<br />

aligned with<br />

MultAliggn.<br />

Results<br />

Biochemmical<br />

characteerisation<br />

The API 20E system indicated thaat<br />

45g negatiive<br />

isolates wwere<br />

identifieed<br />

as Klebsiellla<br />

pneumoniaae,<br />

however these isolates could be classsified<br />

into thrree<br />

groups baased<br />

on the prr<strong>of</strong>ile<br />

obtainedd:<br />

Group I: Pr<strong>of</strong>ile 52157773<br />

Group II: : Pr<strong>of</strong>ile 52153373<br />

Group IIII:<br />

Pr<strong>of</strong>ile 52077773<br />

Group IVV:<br />

Pr<strong>of</strong>ile 52055773<br />

Group V: Pr<strong>of</strong>ile 52557773<br />

Group VII:<br />

Pr<strong>of</strong>ile 52255773<br />

ESBL acctivity<br />

Four out <strong>of</strong> fifty isolatees<br />

were ESBLL<br />

negative. Thhey<br />

were isolates<br />

SS22, SSS42,<br />

SS45 <strong>and</strong> SS47. TThe<br />

differencee<br />

in the zone <strong>of</strong> inhibition was less thann<br />

5<br />

mm for each one o<strong>of</strong><br />

them. Thee<br />

remaining 46<br />

isolates wwere<br />

confirmed<br />

as ESBL producers.<br />

The ddouble<br />

disc asssay<br />

revealed, tthat<br />

except for<br />

a<br />

few, mosst<br />

<strong>of</strong> the isolaates<br />

produced evidence <strong>of</strong> an<br />

extended spectrum beta lacctamase;<br />

with<br />

Cefot taxime, isolates<br />

SS 35 <strong>and</strong>d<br />

SS 42 were<br />

susce eptible with a zone <strong>of</strong> iinhibition<br />

<strong>of</strong><br />

about t 20 mm <strong>and</strong> 25 mm, resppectively,<br />

<strong>and</strong><br />

an in ncrease <strong>of</strong> thiss<br />

zone by > 5 mm in the<br />

prese ence <strong>of</strong> clavullanate.<br />

Three isolates, SS<br />

17, SS S 31 <strong>and</strong> SSS<br />

42 were suusceptible<br />

to<br />

Cefta azidime with nno<br />

increase inn<br />

diameter in<br />

the presence <strong>of</strong> inhibiitor.<br />

With<br />

Cefpo odoxime, SS 442,<br />

SS 45 <strong>and</strong>d<br />

SS 47 were<br />

susce eptible, whilee<br />

with Cefpirrome<br />

SS 42<br />

<strong>and</strong> SS S 09 showedd<br />

some susceeptibility<br />

<strong>and</strong><br />

just a slight inccrease<br />

<strong>of</strong> 4 mm in the<br />

prese ence <strong>of</strong> inhibittor<br />

clavulanatte.<br />

Isolate SS<br />

42 wa as considered a non-ESBL.<br />

BOX X <strong>and</strong> RAPD PPCR<br />

BOX X-PCR is commonly used for<br />

fingerprinting<br />

baacterial<br />

genoomes<br />

using<br />

prime ers targeting repetitive elements in<br />

interg genic regionns.<br />

The oveerall<br />

results<br />

show wed that isolaates<br />

SS49, SSS42,<br />

SS45,<br />

SS43,<br />

SS44, SS48, , SS46, SS47, , SS50 which<br />

were isolated duriing<br />

the same year, but in<br />

differ rent hospitalss,<br />

were groupped<br />

into one<br />

cluste er (Figures 1, 2, 3). Isoolates<br />

SS42,<br />

SS44 4, SS45, SS477,<br />

SS48, SS449<br />

<strong>and</strong> SS50<br />

also shared s the samme<br />

API pr<strong>of</strong>ilee<br />

i.e pr<strong>of</strong>ile 1<br />

(Figu ures 2 <strong>and</strong> 5).<br />

Figure 1.<br />

DNA fingerrprint<br />

analysiss<br />

<strong>of</strong> K pneumooniae<br />

by BOX X-PCR. Lane 42: SS42, Lanne<br />

43: SS43,<br />

Lane 44: SS44, Lane 445:<br />

SS45, Lanne<br />

46: SS46, LLane<br />

47: SS47 7, Lane 48: SS48,<br />

Lane 49:<br />

SS49, Lane<br />

50: SS50.<br />

C: Control, HH:<br />

Hyperladdeer<br />

(11) Biolinne.


K. K pneumonia issolates<br />

with ESBL<br />

activity 45<br />

Figure 2.<br />

Dendogram generated froom<br />

BOX-PCRR<br />

based on Di ice similarity coefficient annd<br />

neighbour<br />

joining cllustering<br />

for tthe<br />

50 isolatess<br />

<strong>of</strong> Klebsiellaa<br />

pneumoniae e with a copheenetic<br />

correlattion<br />

(r) value<br />

<strong>of</strong> 0.95299.<br />

Figure 3. . RAPD fingeerprint<br />

<strong>of</strong> K. pneumoniae<br />

with<br />

primer OP PA12. Lane 1: SS01, Lane 22:SS02,<br />

Lane<br />

3: SS03, Lane 4: SS004,<br />

Lane 5: SS05,<br />

Lane6: SS06, Lane 7: 7 SS07, Lanee<br />

8: SS08, Laane<br />

9: SS09,<br />

Lane<strong>10</strong>: SS<strong>10</strong>, Lane 11: SS11, Laane12:<br />

SS12, Lane13: SS1 13, Lane14: SSS14,<br />

Lane 115:<br />

SS15. C:<br />

control, HH:Hyperladderr(11)<br />

Bioline


46 Salima Khurshid MUNNGLOO-RUJUUBALI<br />

et al.<br />

Figure 4.<br />

RAPD fingeerprint<br />

<strong>of</strong> K .ppneumoniae<br />

wwith<br />

primer OPB O 01. Lane442:<br />

SS42, Lanne<br />

43: SS43,<br />

Lane 44: SS44, Lane455:<br />

SS45, Lanee<br />

46: SS46, Laane47:<br />

SS47, Lane48: SS488,<br />

Lane 49: SSS49,<br />

Lane50:<br />

SS50.C: ccontrol,<br />

H:Hyyperladder(1)<br />

BBioline.<br />

Figure 5.<br />

Dendogram generated froom<br />

RAPD-PCRR<br />

based on Dice D similarity coefficient annd<br />

neighbour<br />

joining cllustering<br />

<strong>of</strong> RRAPD<br />

for the 550<br />

isolates <strong>of</strong> f Klebsiella pn neumonia. Forr<br />

both sets <strong>of</strong> data with the<br />

BOX <strong>and</strong>d<br />

RAPDs, the clustering <strong>of</strong> iisolates<br />

was nnearly<br />

the sam me, with three ddiscernable<br />

grroups.


TEM, SHHV<br />

<strong>and</strong> CTX-M<br />

amplificaation<br />

K. K pneumonia issolates<br />

with ESBL<br />

activity 47<br />

Differentt<br />

size productss<br />

were obtaineed<br />

for each set<br />

<strong>of</strong> primers. The T TEM A1/ /A2 gave prodducts<br />

slightly<br />

longer thaan<br />

1 kb. The CCTX-M<br />

primeers<br />

amplified a product <strong>of</strong> 585 5 bp. Both ssets<br />

<strong>of</strong> SHV AA11<br />

<strong>and</strong> A12,<br />

<strong>and</strong> SHVV<br />

B1 <strong>and</strong> B2 ggave<br />

a producct<br />

<strong>of</strong> 865 bp. AAmplification<br />

n were detecteed<br />

for thirty seven<br />

isolates<br />

for SHV A11 <strong>and</strong> SHVV<br />

A12; twentyy<br />

two isolates for SHVB1 <strong>and</strong> a SHVB2, reespectively.<br />

AAmplification<br />

was achieeved<br />

with twenty-one<br />

isolaates<br />

for TEMM<br />

A1/A2 <strong>and</strong> twenty eight isolates for TTEM<br />

D1/D2.<br />

There weere<br />

only twelve<br />

isolates, whhich<br />

amplified with CTX-M M to give a product<br />

<strong>of</strong> 585 bpp.<br />

Figure 6. . Protein blastt<br />

<strong>of</strong> translated product fromm<br />

isolate SS11 with primer SSHV<br />

A11/A122<br />

Figure 7. . Alignment o<strong>of</strong><br />

amino acid sequence fromm<br />

isolate SS11<br />

with SHV-228.<br />

The same wwas<br />

obtained<br />

with isolaate<br />

SS25. Amiino<br />

acid sequeence<br />

from isollate<br />

SS47 alig gned well withh<br />

CTX-M 15.


48 Salima Khurshid MUNGLOO-RUJUBALI et al.<br />

For one isolate, the presence <strong>of</strong> integrons was assessed using integrase specific primers. It was found<br />

that the INT amplicon from isolate SS02 had the sequence for integrase. The BLAST result returned a<br />

match with Corynebacterium diphtheriae integrase.<br />

The results for integrase from isolate SS02 are shown below.<br />

>2R.INT<br />

QAMKT<br />

ATAPLPPLRS VKVLDQLRER IRYLHYSLRT EQAYVHWVRA FIRFHGVRHP<br />

ATLGSSEVEA FLSWLANERK VSVSTHRQAL AALLFFYGKV LCTDLPWLQE<br />

IGRPRPSRRL PVVLTPDEVV RILGFLEGEH RLFAQLLYGT GMRISEGLQL<br />

RVKDLDFDHG TII<br />

ref|NP_940279.1| integrase [Corynebacterium diphtheriae NCTC ... 331 2e-89<br />

REFSEQ: accession NC_002935.2<br />

KEYWORDS complete genome.<br />

SOURCE Corynebacterium diphtheriae NCTC 13129<br />

ORGANISM Corynebacterium diphtheriae NCTC 13129<br />

PUBMED 146029<strong>10</strong><br />

Amino acid sequence<br />

>2int<br />

mktataplpp lrsvkvldql rerirylhys lrteqayvhw vrafirfhgv rhpatlgsse<br />

veaflswlan erkvsvsthr qalaallffy gkvlctdlpw lqeigrprps rrlpvvltpd<br />

evvrilgfle gehrlfaqll ygtgmriseg lqlrvkdldf dhgtiivreg kgskdralml<br />

peslapslre qlsrglcckd wrqsevgcrs apirrllrng g


Figuree<br />

8. Conserveed<br />

domain <strong>of</strong> integrases.<br />

Discussioon<br />

The Klebbsiella<br />

pneumooniae<br />

isolates<br />

were analyssed<br />

to determmine<br />

their geenetic<br />

relateddness<br />

<strong>and</strong> moost<br />

came from<br />

ICU (42% %). These isolaates<br />

were testted<br />

by classiical<br />

biochemiical<br />

(growth on media, AAPI<br />

identificaation<br />

<strong>and</strong> Oxoiid<br />

Combinatioon<br />

disk test) a<strong>and</strong><br />

DNA- ba ased methods. . Biochemicall<br />

pr<strong>of</strong>iles by tthe<br />

API 20 E system identiified<br />

two grouups.<br />

The pphenotypic<br />

chaaracterisation<br />

<strong>of</strong> sensitivity to<br />

the anti-microbials<br />

inndicated<br />

thatt<br />

most <strong>of</strong> tthe<br />

isolates thhat<br />

were colleected<br />

<strong>and</strong> pree-screened,<br />

weere<br />

in fact EESBLs.<br />

API confirmed thheir<br />

identity as<br />

Klebsiellaa<br />

pneumoniaee.<br />

There are nno<br />

reports <strong>of</strong> tthe<br />

recent sittuation<br />

regardding<br />

the extent<br />

<strong>of</strong> spread <strong>of</strong><br />

ESBL froom<br />

Klebsiellaa<br />

pneumoniaae<br />

or any othher<br />

resistant bbacterial<br />

pathogens<br />

in Mauuritius.<br />

OPB 01, OPL 07 <strong>and</strong> OPA12 wwere<br />

the RAPPD<br />

primers ( (Fig 3&4), chhosen<br />

from thee<br />

twenty five or<br />

so primeers<br />

that weree<br />

screened. PPrimer<br />

OPA 12<br />

producedd<br />

more polymoorphic<br />

pr<strong>of</strong>ilees<br />

than the othher<br />

two <strong>and</strong> aall<br />

the isolates<br />

were differeent.<br />

With primmer<br />

OPL 07 tthe<br />

same pr<strong>of</strong>iile<br />

was obtainned<br />

from isolattes<br />

SS40, SSS41,<br />

SS42, SS43,<br />

SS44, SS445,<br />

SS46, SS447,<br />

SS48, SSS49,<br />

<strong>and</strong> SS500.<br />

They all haad<br />

only 3 bannds<br />

<strong>of</strong> sizes ssizes<br />

700bp, <strong>10</strong>00 bp <strong>and</strong> 1200 bp. Theese<br />

same isollates<br />

gave diffferent<br />

patternns<br />

with the othher<br />

two primmers.<br />

The denndrograms<br />

obbtained<br />

with tthe<br />

results o<strong>of</strong><br />

BOX-PCRR<br />

<strong>and</strong> that o<strong>of</strong><br />

RAPD booth<br />

producedd<br />

three groups.<br />

Several <strong>of</strong> thhem<br />

were in tthe<br />

same grouup<br />

for both mmethods.<br />

No coorrelation<br />

wass<br />

found betweeen<br />

hospitals a<strong>and</strong><br />

dates <strong>of</strong> f isolation suuggesting<br />

thaat<br />

the ESBLL<br />

-<br />

K. K pneumonia issolates<br />

with ESBL<br />

activity 49<br />

carrying<br />

strains hhad<br />

originatedd<br />

from very<br />

diverse<br />

sources. Siimilarly,<br />

theree<br />

was little or<br />

no co orrelation fouund<br />

among sammples<br />

<strong>of</strong> the<br />

same hospitals, pprobably<br />

inddicating<br />

that<br />

there had not beeen<br />

significannt<br />

spread <strong>of</strong><br />

ESBL L carrying sstrains<br />

withinn<br />

the same<br />

centre e, although thhe<br />

sampling wwas<br />

primarily<br />

done from patientss.<br />

RAPD <strong>and</strong>d<br />

PFGE have<br />

been used for typing <strong>of</strong> f Klebsiella<br />

pneum moniae (Thouuraya<br />

et al., 2003). Both<br />

PFGE E typing <strong>and</strong> RAPDD<br />

produced<br />

conco ordant resullts<br />

<strong>and</strong> diiscrimination<br />

betwe een groups <strong>of</strong>f<br />

epidemiologiically<br />

related<br />

strain ns could be maade.<br />

Th he presence o<strong>of</strong><br />

the beta-lacttamase<br />

genes<br />

were detected by PCR amplifiication<br />

using<br />

specific<br />

primers fo for TEM, SHVV<br />

<strong>and</strong> CTX-<br />

M. All A fifty isolates<br />

amplifieed<br />

the TEM<br />

<strong>and</strong>/o or SHV gennes<br />

while oonly<br />

twelve<br />

produ uced a prodduct<br />

with tthe<br />

CTX-M<br />

specific<br />

primerss<br />

(data noot<br />

shown).<br />

Ampl licons were purified <strong>and</strong>d<br />

sequenced.<br />

BLAST<br />

results inddicated<br />

that isolates<br />

SS11<br />

<strong>and</strong> SS25 carried SHV 28 whhereas<br />

SS27<br />

harbo oured SHV 11.<br />

For isolatees<br />

S01, S02,<br />

S25 <strong>and</strong> S41-49, CTX-M 15 was present.<br />

This variant is kknown<br />

to bee<br />

commonly<br />

found d worldwide. There are fivve<br />

groups <strong>of</strong><br />

CTX-M<br />

enzymes, namely CTXX-M<br />

1, 2,3, 4<br />

<strong>and</strong> 25. ESBLL<br />

carrying strains <strong>of</strong><br />

entero obacteria arre<br />

resistant to third<br />

gener ration cephhalosporins<br />

such as


50 Salima Khurshid MUNGLOO-RUJUBALI et al.<br />

cefotaxime, cefdazidime <strong>and</strong> ceftriaxone; <strong>and</strong> are<br />

important threats. These enzymes do not affect<br />

cephamycins or imipenems. CTX-M is widely<br />

found in E. coli <strong>and</strong> Klebsiella isolates worldwide.<br />

CTX-M 15 in Salmonella enterica has also been<br />

shown to be present in stool samples <strong>of</strong> patients<br />

suffering from acute diarrhoea (Rotimi et al.,<br />

2008). The CTX-M 15 is encoded on large<br />

incompatibility plasmids <strong>of</strong> sizes varying between<br />

145,5 <strong>and</strong> 242,5 kb. Many are found as IncFII<br />

together with IncFIA <strong>and</strong> IncFIB, with one report<br />

showing IncFI not associated with any IncFII<br />

(Mshana et al., 2009). This suggests that the<br />

plasmids contribute to the lateral transfer <strong>of</strong> the<br />

resistance genes. CTX-M ESBL hydrolyse<br />

cefepime more efficiently than other ESBLs<br />

(Mendonca et al., 2007).<br />

TEM <strong>and</strong> SHV enzymes have evolved<br />

significantly over the last decade or so <strong>and</strong> there is<br />

some evidence <strong>of</strong> positive selection. A list <strong>of</strong> over<br />

hundred different combinations <strong>of</strong> amino acid<br />

substitutions have been reported for the 278 long<br />

polypeptide. It is likely that the evolution <strong>of</strong> the<br />

protein is directed towards finding the mutants that<br />

have enhanced catalytic efficiency <strong>and</strong> can better<br />

compete with others. Experimental prediction <strong>of</strong><br />

how resistance genes evolve in response to<br />

selection pressure has shown that alleles <strong>of</strong> the<br />

genes will mutate in a similar way as in nature.<br />

Several in vitro experiments using gene shuffling,<br />

or mutagenesis with Taq Polymerase under errorprone<br />

or the use <strong>of</strong> nucleoside analogs have led to<br />

the appearance <strong>of</strong> mutants with extreme resistance<br />

(> 64X or to beta-lactamase inhibitor). Interestingly<br />

these in vitro experiments have recovered amino<br />

acid substitutions that are naturally found among<br />

the TEM beta-lactamases. Hall <strong>and</strong> Barlow (2002)<br />

have used error-prone PCR for assessing the<br />

evolution <strong>of</strong> TEM-1 under selection pressure.<br />

Mutations were introduced into the genes <strong>and</strong> the<br />

mutated genes cloned into E.coli. Growth in<br />

increasing concentrations <strong>of</strong> antibiotic led to the<br />

identification <strong>of</strong> mutations in the resistance genes<br />

which allowed survival in the highest antibiotic<br />

concentrations. The cycles <strong>of</strong> mutations <strong>and</strong><br />

selection are repeated until there is no further<br />

increase in resistance.<br />

The Barlow-Hall in vitro method recovered<br />

seven out <strong>of</strong> the nine amino acid substitutions that<br />

had arisen in nature. The same approach has been<br />

used to isolate an allele giving a resistance with a<br />

MIC <strong>of</strong> 256 µg/ml compared to 0.5 µg ml<br />

for reported, natural form <strong>of</strong> TEM. Those<br />

resistant alleles had between 2 to 6 amino<br />

acid substitutions. Three <strong>of</strong> these were<br />

identified that increased the MIC from 0.5 to<br />

2 µg /ml then to 32 µg /ml <strong>and</strong> finally from<br />

32 µg /ml to 256µg /ml. This would strongly<br />

suggest that there is a “natural evolutionary”<br />

series <strong>of</strong> replacement leading to the most<br />

resistant allele (Ford <strong>and</strong> Avison, 2004).<br />

Analysis <strong>of</strong> a K. pneumoniae genome<br />

sequence (strainMGH78578) reported two<br />

chromosomal blaSHV genes. Closer<br />

comparison <strong>of</strong> the surrounding sequence<br />

(GC content <strong>and</strong> other genes) <strong>of</strong> the two<br />

genes indicated that one had evolved from<br />

within that strain itself. On the other h<strong>and</strong><br />

the second one was accompanied by<br />

insertion sequences IS26 suggesting that it<br />

was mobilised most likely from a different<br />

K. pneumoniae strain. Nucleotide sequence<br />

comparison <strong>and</strong> amino acid replacement at<br />

the active site have pointed to convergent<br />

evolution <strong>of</strong> ESBLs during the period <strong>of</strong><br />

intense cefotaxime use <strong>and</strong> later that <strong>of</strong><br />

ceftazidime.<br />

Beta lactamase genes have been shown<br />

to be vehicled as gene cassettes within<br />

integron sequences. VEB-1 (Vietnamese<br />

Extended Spectrum) <strong>and</strong> GES-1 (Guyanese<br />

Extended Spectrum) were first described<br />

associated with the intI1 integrase (Poirel et<br />

al 1999., 2000). Being part <strong>of</strong> the integron<br />

ensures that the resistance genes are rapidly<br />

mobilised for lateral transfer intra- <strong>and</strong> interspecies.<br />

In this study, one CTX-M 15 from<br />

isolate SS02, was found together with an<br />

integrase (Figure 3c). This could explain its<br />

rapid spread since it was first described.<br />

References<br />

Ambler RP. The structure <strong>of</strong> betalactamases.<br />

Philosophical Transactions<br />

<strong>of</strong> the Royal Society <strong>of</strong> London. Series B:<br />

Biological Sciences. 289: 321–331,<br />

1980.<br />

Babini G <strong>and</strong> Livermore DM. Are SHV beta<br />

lactamases universal in Klebsiella<br />

pneumonia. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy. 44(8): 2230-2230, 2000.


Barlow M <strong>and</strong> Hall BG. Predicting evolutionary<br />

potential: in vitro evolution accurately<br />

reproduces natural evolution <strong>of</strong> the TEM -<br />

lactamase. Genetics. 160: 823–832, 2002.<br />

German B <strong>and</strong> Martinez-Beltran J. Cloning,<br />

Nucleotide Sequencing, <strong>and</strong> Analysis <strong>of</strong> the<br />

Gene Encoding an AmpC b-Lactamase in<br />

Acinetobacter baumannii. Antimicrobial Agents<br />

<strong>and</strong> Chemotherapy. 44(2): 428–432, 2000.<br />

Ford PJ <strong>and</strong> Avison MB. Evolutionary mapping <strong>of</strong><br />

the SHV b-lactamase <strong>and</strong> evidence for two<br />

separate IS26-dependent blaSHV mobilization<br />

events from the Klebsiella pneumoniae<br />

chromosome. <strong>Journal</strong> <strong>of</strong> Antimicrobial<br />

Chemotherapy. 54: 69 – 75, 2004.<br />

Gniadkowski M, Schneider I, Jungwirth R, et al.<br />

Ceftazidime Resistant Enterobacteriaceae<br />

isolates from three Polish Hospitals:<br />

Identification <strong>of</strong> three novel TEM- <strong>and</strong> SHV-5<br />

type Extended Spectrum Beta Lactamases.<br />

Antimicrobial Agents <strong>and</strong> Chemotherapy. 42(3):<br />

514-520, 1998.<br />

Hall BG <strong>and</strong> Barlow M. Evolution <strong>of</strong> the serine<br />

beta-lactamases: past, present <strong>and</strong> future. Drug<br />

Resistance Update.7: 111–123, 2004.<br />

Kim J, Lim Y, Jeong Y <strong>and</strong> Seol S. Occurrence <strong>of</strong><br />

CTX-M-3, CTX-M-15, CTX-M-14, <strong>and</strong> CTX-<br />

M-9 Extended-Spectrum Beta Lactamases in<br />

Enterobacteriaceae Clinical Isolates in Korea.<br />

Antimicrob Agents Chemother. 49(4): 1572–<br />

1575, 2005.<br />

Mazel D, Dychinco B, Webb VA, <strong>and</strong> J. Davies.<br />

Antibiotic resistance in the ECOR collection:<br />

integrons <strong>and</strong> identification <strong>of</strong> a novel aad gene.<br />

Antimicrob Agents Chemother. 44:1568–1574.<br />

2000.<br />

Mshana SE, Imirzalioglu C, Hossain H, et al.<br />

Conjugative IncFI plasmids carrying CTX-M-<br />

15 among Escherichia coli ESBL producing<br />

isolates at a University hospital in Germany.<br />

BioMedCentral (BMC) Infectious Diseases. 9:<br />

97, 2009.<br />

Mendonça N, Leitão J, Manageiro V, et al. Spread<br />

<strong>of</strong> extended spectrum b-lactamase CTX-M-<br />

K. pneumonia isolates with ESBL activity 51<br />

producing Escherichia coli clinical<br />

isolates in community <strong>and</strong> nosocomial<br />

environments in Portugal. Antimicrob<br />

Agents Chemother. 51:1946-1955, 2007.<br />

Nikaido H. Outer membrane barrier as a<br />

mechanism <strong>of</strong> antimicrobial resistance.<br />

Antimicrob Agents Chemother. 33:1831-<br />

1836, 1989.<br />

Jonathan N. Screening for Extended-<br />

Spectrum Beta-Lactamase-Producing<br />

Pathogenic Enterobacteria in District<br />

General Hospitals. J Clin Microbiol. 43:<br />

1488–1490, 2005.<br />

Poirel L, Naas T, Guibert M, et al.<br />

<strong>Molecular</strong> <strong>and</strong> biochemical<br />

characterization <strong>of</strong> VEB-1, a novel class<br />

A extended-spectrum b-lactamase<br />

encoded by an Escherichia coli integron<br />

gene. Antimicrob Agents Chemother.<br />

43:573–581, 1999.<br />

Poirel L, Le Thomas I, Naas T, et al.<br />

Biochemical sequence analyses <strong>of</strong> GES-<br />

1, a novel class A extended-spectrum blactamase,<br />

<strong>and</strong> the class 1 integron In52<br />

from Klebsiella pneumoniae. Antimicrob<br />

Agents Chemother. 44: 622–632, 2000.<br />

Rotimi V, Jamal W, Pal T, et al. Emergence<br />

<strong>of</strong> CTX-M-15 type extended-spectrum blactamase-producing<br />

Salmonella spp. in<br />

Kuwait <strong>and</strong> the United Arab Emirates. J<br />

Med Microbiol. 57: 881–886, 2008.<br />

Ben-Hamouda T, Foulon T, Ben cheikh-<br />

Masmoudi A, et al. <strong>Molecular</strong><br />

epidemiology <strong>of</strong> an outbreak <strong>of</strong> multi<br />

resistant Klebsiella pneumoniae in a<br />

Tunisian neonatal ward. <strong>Journal</strong> <strong>of</strong><br />

Medical Microbiology. 52(5): 427-433,<br />

2003.<br />

Wu TL, Siu LK, Su LH, et al. Outer<br />

membrane protein change combined<br />

with co-existing TEM-1 <strong>and</strong> SHV-1 beta<br />

lactamases lead to false identification <strong>of</strong><br />

ESBL producing Klebsiella pneumoniae.<br />

J Antimicrob Chemother. 47:755-761,<br />

2001.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong> <strong>10</strong>(2):53-59, 2012 Research Article 53<br />

Haliç University, Printed in Turkey.<br />

http://jcmb.halic.edu.tr<br />

HIV-1 reverse transcriptase inhibition by Vitex negundo L. leaf<br />

extract <strong>and</strong> quantification <strong>of</strong> flavonoids in relation to anti-HIV<br />

activity<br />

Mohan KANNAN 1* , Paramasivam RAJENDRAN 2 , Veerasami VEDHA 3 ,<br />

Gnanasekaran ASHOK 3 , Shanmugam ANUSHKA 3 , Pratap CHANDRAN<br />

RAMACHANDRAN NAIR 1<br />

1 Department <strong>of</strong> Biotechnology <strong>and</strong> Research, K.V.M. College <strong>of</strong> Engineering <strong>and</strong> Information<br />

Technology, Kokkothamangalam, Cherthala, Kerala, India.<br />

2 Department <strong>of</strong> Microbiology, Sri Ramach<strong>and</strong>ra Medical College & Research Institute, Sri<br />

Ramach<strong>and</strong>ra University, Porur, Chennai – 600 116, Tamilnadu, India.<br />

3 Department <strong>of</strong> Microbiology, Post Graduate Institute <strong>of</strong> Basic Medical Sciences, University <strong>of</strong><br />

Madras, Taramani Campus, Chennai – 600 113, Tamilnadu, India.<br />

(*author for correspondence; kannan.am@gmail.com)<br />

Received: 22 September 2011, Accepted: 08 November 2012<br />

Abstract<br />

This study aimed to determine the activity <strong>of</strong> ethanolic leaf extract <strong>of</strong> Vitex negundo L. against HIV-1<br />

Reverse Transcriptase (RT) <strong>and</strong> to identify <strong>and</strong> quantify the flavonoids present. The effects <strong>of</strong><br />

ethanolic (85%) leaf extract <strong>of</strong> Vitex negundo L. on RT activity in vitro were evaluated with<br />

recombinant HIV-1 enzyme, using a non-radioactive HIV-RT colorimetric ELISA kit. In addition,<br />

identification <strong>and</strong> quantification <strong>of</strong> flavonoids such as Rutin, Luteolin, Myricetin, Quercetin,<br />

Kaempherol, Isorhamnetin <strong>and</strong> Quercetagetin were analysed using HPLC. The plant Vitex negundo L.<br />

ethanolic leaf extract exhibited the most notable activity <strong>of</strong> 92.8% against HIV-1 RT at 200 µg/ml<br />

concentration. Phytochemical analysis revealed the presence <strong>of</strong> steroids, triterpenes, alkaloids,<br />

flavanoids, antroquinone glycosides <strong>and</strong> amino acids. Among 7 flavonoids tested, 6 were identified in<br />

the decreasing order <strong>of</strong> quantity as Kaempherol, Myricetin, Quercetin, Quercetagetin, Isorhamnetin<br />

<strong>and</strong> Luteolin. The study revealed that the plant Vitex negundo L. leaf possess anti-RT substances <strong>and</strong><br />

probably the flavonoids act as anti-virus agents.<br />

Keywords: Vitex negundo, flavonoids, HIV-1 reverse transcriptase, phytochemical, anti-HIV activity.<br />

Özet<br />

Vitex negundo L. yaprak özütüyle HIV-1 ters transkriptaz inhibisyonu ve anti-<br />

HIV aktivitesiyle ilişkili flavonoidlerin kantifikasyonu üzerine bir çalışma<br />

Bu çalışmada HIV-1 ters transkriptaza karşı Vitex negundo L. etanolik yaprak özütünün aktivitesini<br />

tespit etmek ve flavonoidlerin varlığını ölçmek amaçlanmıştır. Vitex negundo L. etanolik (%85)<br />

yaprak özütünün in vitro RT aktivitesi üzerinde etkileri, rekombinant HIV-1 enzimi ile radyoaktif<br />

olmayan HIV-RT kolorimetrik ELISA kiti kullanarak ölçülmüştür. Ayrıca, Rutin, Luteolin, Myricetin,<br />

Quercetin, Kaempherol, Isorhamnetin ve Quercetagetin gibi flavonoidlerin tanımlanması ve<br />

kantifikasyonu HPLC kullanılarak analiz edilmiştir. Vitex negundo etanolik yaprak özütü 200 µg/ml<br />

konsantrasyonda HIV-1 RT’e karşı %92,8 aktivite göstermiştir. Fitokimyasal analizler steroidlerin,<br />

triterpenlerin, alkoloidlerin, flavonoidlerin, antrokinon glikoitlerin ve aminoasitlerin varlığını açığa


54 Mohan KANNAN et al.<br />

çıkartmaktadır. Test edilen 7 flavonoidden altısı, azalan miktarlarına göre Kaempherol, Myricetin,<br />

Quercetin, Quercetagetin, Isorhamnetin ve Luteolin olacak şekilde belirlenmiştir. Bu çalışma, Vitex<br />

negundo bitki yaprağının anti-ters transkriptaz özelliği bulunduğunu ve flavonoidlerin retrovirüslere<br />

karşı muhtemelen antivirüs ajan olarak rol oynadıkları ortaya çıkarmaktadır.<br />

Anahtar kelimeler: Vitex negundo, flavonoidler, HIV-1 ters transkriptaz, fitokimyasal, anti-HIV<br />

aktivitesi.<br />

Introduction<br />

Acquired immunodeficiency syndrome (AIDS),<br />

caused by the human immunodeficiency virus<br />

(HIV), results in life-threatening opportunistic<br />

infections <strong>and</strong> malignancies. HIV leads to the<br />

destruction <strong>and</strong> functional impairment <strong>of</strong> the<br />

immune system, subsequently destroying the<br />

body’s ability to fight against infections (Kanazawa<br />

<strong>and</strong> Matija, 2001). Moreover, the st<strong>and</strong>ard antiviral<br />

therapies are too expensive for a common man. In<br />

order to manage this condition alternative<br />

treatments are explored.<br />

Vitex negundo L., a member <strong>of</strong> Verbenaceae<br />

family, an important medicinal plant is found<br />

throughout India. Though almost all plant parts are<br />

used, the extract from leaves <strong>and</strong> the roots is the<br />

most important in the field <strong>of</strong> medicine <strong>and</strong> is sold<br />

as drugs. The leaf extract is used in Ayurvedic <strong>and</strong><br />

Unani systems <strong>of</strong> medicine for treatment <strong>of</strong> various<br />

ailments (Kapur et al., 1994). It also has mosquito<br />

repellent activity (Hebbalkar et al., 1992), antiarthritic<br />

effect on rats (Tamhankar et al., 1994),<br />

analgesic activity on mice (Gupta et al., 1999),<br />

hepatoprotective activity (Kapur et al., 1994), antiinflammatory<br />

<strong>and</strong> anti-allergic activity (Chawla et<br />

al., 1992; Jana et al., 1999). Besides being used as<br />

a traditional medicine, its antiviral property,<br />

especially against HIV, has not yet been explored<br />

much.<br />

Flavonoids have been proven to display a wide<br />

range <strong>of</strong> biochemical <strong>and</strong> pharmacological actions<br />

such as anti-carcinogenic, anti-viral, anti-microbial,<br />

anti-thrombotic, anti-inflammatory, <strong>and</strong> antimutagenic<br />

activities. In addition, flavonoids can act<br />

as free radical scavengers <strong>and</strong> terminate the radical<br />

chains reaction that occurs during the oxidation <strong>of</strong><br />

triglycerides in food system (Turkoglu et al., 2007).<br />

Moreover flavonoid compounds represent an<br />

important natural source <strong>of</strong> anti-retrovirals for<br />

AIDS therapy due to their significant anti-HIV-1<br />

activity <strong>and</strong> low toxicity.<br />

One <strong>of</strong> the possible approaches is the<br />

screening <strong>of</strong> plants based on their<br />

ethnomedicinal data for inhibition (Vlietinck<br />

et al., 1998). Current strategies for anti-HIV<br />

chemotherapy involve inhibition <strong>of</strong> virus<br />

adsorption, virus-cell fusion, reverse<br />

transcription, integration, translation,<br />

proteolytic cleavage, glycosylation,<br />

assembly, or release (Moore <strong>and</strong> Stevenson,<br />

2000; Miller <strong>and</strong> Hazuda, 2001). Reverse<br />

transcriptase is an enzyme that reads the<br />

sequence <strong>of</strong> HIV RNA that has entered the<br />

host cell <strong>and</strong> transcribes the sequence into<br />

complementary DNA. Without reverse<br />

transcriptase, the viral genome cannot be<br />

incorporated into the host cell <strong>and</strong> as a result<br />

a virus will not replicate. Reverse<br />

transcriptase is therefore the principal target<br />

enzyme <strong>of</strong> antiretroviral drugs such as<br />

Nevarapine <strong>and</strong> Delavirpine that are used to<br />

treat HIV infected patients (De Clercq,<br />

2007; Woradulayapinji et al., 2005).<br />

Therefore this study has been designed to<br />

explore the possible anti-HIV activity by RT<br />

enzyme inhibition assay <strong>and</strong> to quantify the<br />

flavonoids from the leaves <strong>of</strong> Vitex negundo.<br />

Materials <strong>and</strong> Methods<br />

Plant material <strong>and</strong> extraction<br />

The leaves <strong>of</strong> Vitex negundo L. were<br />

collected from Kolli hills adjoining<br />

downstream areas <strong>of</strong> Namakkal district,<br />

Tamil Nadu, India <strong>and</strong> authenticated<br />

(PARC/20<strong>10</strong>/587) by Dr. Jayaraman, Plant<br />

Anatomy Research Centre, National<br />

Institute <strong>of</strong> Herbal Science, Chennai, India.<br />

The plant samples were washed, shadedried,<br />

powdered <strong>and</strong> extracted in 85%<br />

ethanol <strong>and</strong> filtered. The extracts were then<br />

concentrated to dryness under reduced<br />

pressure <strong>and</strong> the residue was freshly<br />

dissolved in appropriate buffer on each day


<strong>of</strong> experiment for the assays. Depending on the<br />

assay, extract that could not dissolve in appropriate<br />

buffer were dissolved in DMSO <strong>and</strong> later diluted to<br />

different concentration needed for a particular<br />

assay.<br />

HIV-1 RT assay<br />

The effect <strong>of</strong> the plant extract on RT activity in<br />

vitro was evaluated with recombinant HIV-1<br />

enzyme, using a non-radioactive HIV-1 RT<br />

colorimetric ELISA kit (Roche) (Ayisi, 2003;<br />

Harnett et al., 2005). The concentration <strong>of</strong> extract<br />

used was 200µg/ml. The extracts, which reduced<br />

activity by at least 50%, were considered as active<br />

Percentage <strong>of</strong> Inhibition = <strong>10</strong>0 -<br />

Preliminary phytochemical analysis<br />

The ethanolic leaf extract was subjected to<br />

preliminary phytochemical screening as per the<br />

procedures <strong>of</strong> Harborne, 1998 <strong>and</strong> Kokate, 2003.<br />

Quantitative analysis <strong>of</strong> flavonoids using HPLC<br />

The procedure as described by Lawrence Evans<br />

(2007) was used for the determination <strong>of</strong> flavonoids<br />

in the plant extracts. The flavonoid st<strong>and</strong>ard used in<br />

the study includes Rutin, Luteolin, Myricetin,<br />

Quercetin, Kaempferol, Isorhamnetin <strong>and</strong><br />

Quercetagetin (Sigma Chemicals, USA) <strong>and</strong> were<br />

prepared at 1 mg/ml in methanol. A total <strong>of</strong> 1g <strong>of</strong><br />

plant extract was extracted with 78 ml <strong>of</strong> extraction<br />

solvent (methanol, water <strong>and</strong> hydrochloric acid;<br />

50:20:8). Extract was then refluxed at 90 ◦ C for 2 h.<br />

Then extract was cooled <strong>and</strong> latter 20 ml <strong>of</strong><br />

methanol was added <strong>and</strong> sonicated for 30 minutes.<br />

All solutions were filtered through a 0.45µM<br />

cellulose acetate membrane filter (Paul, USA)<br />

before being injected into the HPLC. Aliquots <strong>of</strong><br />

the filtrate (20µl) were injected on to an HPLC<br />

(Lachrom L-7000) column using C18 (Merck) (25<br />

X 0.4 cm, 5µm) separately <strong>and</strong> eluted with mobile<br />

phase solvent mixture comprising Water:<br />

Methanol: Phosphoric acid (<strong>10</strong>0:<strong>10</strong>0:1, v:v:v) with<br />

a flow rate at 1.5 ml/min. The UV detection was<br />

Anti-HIV property <strong>of</strong> Vitex negundo L 55<br />

(Woradulayapinji et al., 2005).<br />

Azidothymidine (AZT) was used as a<br />

positive control at <strong>10</strong>0 µg/ml. The control<br />

(1) only contained the buffer <strong>and</strong> reaction<br />

mixture (no enzyme <strong>and</strong> extracts were<br />

added). For the control (2) the enzyme <strong>and</strong><br />

reaction mixture were added for the reaction<br />

to take place. The absorbance was read on a<br />

microtitre plate reader at 405 nm with a<br />

reference wavelength <strong>of</strong> 490 nm. The mean<br />

<strong>of</strong> the triplicate absorbance were analysed<br />

using the formula:<br />

Mean Sample absorbance X <strong>10</strong>0<br />

Mean Control-2 absorbance<br />

carried out at 270 nm. The chromatograms<br />

were recorded <strong>and</strong> the areas measured for<br />

the major peak to quantify the flavonoids in<br />

the tested plant sample.<br />

Results<br />

The results shown in Table 1 indicates the<br />

inhibition percentage <strong>of</strong> ethanolic leaf<br />

extract <strong>of</strong> Vitex negundo L. against the<br />

reverse transcriptase (RT) enzyme. The most<br />

notable activity <strong>of</strong> about 92.8% was detected<br />

against RT at 200µg/ml. The phytochemical<br />

analysis <strong>of</strong> the plant extract revealed the<br />

presence <strong>of</strong> steroids, triterpenes, alkaloids,<br />

flavanoids, antroquinone glycosides <strong>and</strong><br />

aminoacids. In this study, flavonoids content<br />

<strong>of</strong> the ethanolic extract <strong>of</strong> Vitex negundo L.<br />

leaves were evaluated. The HPLC<br />

chromatogram <strong>of</strong> the flavonoid st<strong>and</strong>ard<br />

used <strong>and</strong> the chromatogram <strong>of</strong> the tested<br />

plant extract is shown in Figure 1 & 2.<br />

Results revealed that the extract consisted <strong>of</strong><br />

different amount <strong>of</strong> various flavonoid types.<br />

As shown in Figure 1, the retention times <strong>of</strong><br />

Rutin, Quercetin, Kaempherol Luteolin,<br />

Isorhamnetin , Myricetin, <strong>and</strong> Quercetagetin<br />

were at 19.40, 24.80 29.70, 33.80, 38.70,<br />

41.26 <strong>and</strong> 43.8 min, respectively.


56 Mohan KANNAN et al.<br />

Table 1. Effect <strong>of</strong> ethanolic leaf extract <strong>of</strong> Vitex negundo L. on the activity <strong>of</strong> recombinant HIV-1<br />

reverse transcriptase<br />

Extract/Control Mean absorbance ± SD Percentage <strong>of</strong> Inhibition<br />

Control 1 0.003 ± 0.01 <strong>10</strong>0<br />

Control 2 1.32 ± 0.01 0<br />

AZT 0.193 ± 0.00 85.37<br />

V. negundo L. 0.094 ± 0.01 92.8<br />

Control 1- buffer <strong>and</strong> reaction mixture (no enzyme <strong>and</strong> extract); Control 2- enzyme <strong>and</strong> reaction<br />

mixture (no extract); AZT – Azidothymidine (Positive control). The plant extract showing percentage<br />

<strong>of</strong> inhibition greater than 50% has been considered as positive in inhibiting recombinant HIV-1<br />

reverse transcriptase enzyme.<br />

Figure 1. HPLC Chromatogram <strong>of</strong> the flavonoid st<strong>and</strong>ards used in the study. 1. Rutin 2. Quercetin,<br />

3.Kaempherol, 4. Luteolin, 5.Isorhamnetin, 6.Myricetin, 7.Quercetagetin.<br />

Figure 2 exhibits the presence <strong>of</strong> Quercetin, Kaempherol, Luteolin, Isorhamnetin, Myricetin <strong>and</strong><br />

Quercetagetin in Vitex negundo leaf extract as per the retention time. The flavonoid Rutin was not<br />

identified in the chromatogram <strong>of</strong> the plant sample showing its absence in the plant extract. Amount<br />

<strong>of</strong> tested flavonoid compounds in the extract were calculated by measuring the area obtained for the<br />

peaks <strong>and</strong> in the order as Kaempherol (20.61 mg/g) > Myricetin (18.75 mg/g) > Quercetin (14.73<br />

mg/g) > Quercetagetin (12.13 mg/g) > Isorhamnetin (11.01 mg/g) > Luteolin (6.40 mg/g).


Anti-HIV property <strong>of</strong> Vitex negundo L 57<br />

Figure 2. HPLC chromatogram <strong>of</strong> Vitex negundo leaves. Probable flavonoids quantity as per area <strong>and</strong><br />

Retention time compared with the st<strong>and</strong>ard HPLC chromatogram: 1. Kaempherol ; 2. Myricetin ; 3.<br />

Quercetin ; 4. Quercetagetin ; 5. Isorhamnetin ; 6. Luteolin.<br />

Discussion<br />

For centuries water extract <strong>of</strong> fresh mature leaves<br />

are used in Ayurveda medicine as antiinflammatory,<br />

analgesic <strong>and</strong> anti-itching agents<br />

internally <strong>and</strong> externally. However the ethanolic<br />

extract <strong>of</strong> V. negundo leaves resulted in the<br />

isolation <strong>of</strong> a new flavones glycoside along with<br />

five known compounds which were evaluated for<br />

their antimicrobial activities by Sathyamoorthy et<br />

al., (2007). However studies on anti-HIV activity <strong>of</strong><br />

V.negundo are few. For example the water extracts<br />

<strong>of</strong> Vitex negundo (aerial part) was shown to have<br />

HIV-1 RT inhibition ratio (% IR) higher than 90%<br />

at a 200µg/ml concentration (Woradulayapinij et<br />

al., 2005). Similarly the present study also showed<br />

that the polar solvent extract <strong>of</strong> ethanolic leaf<br />

extract <strong>of</strong> Vitex negundo L. had 92.8% inhibition <strong>of</strong><br />

recombinant HIV-1 reverse transcriptase enzyme at<br />

200µg/ml. Previous phytochemical studies on V.<br />

negundo L. had revealed the presence <strong>of</strong> volatile<br />

oil, triterpenes, diterpenes, sesquiterpenes, lignan,<br />

flavonoids, flavones glycosides, iridoid glycosides,<br />

<strong>and</strong> steroids as physiologically active compounds<br />

(Azhar <strong>and</strong> Abdul, 2004; Mukherjee et al., 1981).<br />

For centuries, preparations that contain<br />

flavonoids as the principal physiologically active<br />

constituents have been used by physicians <strong>and</strong> lay<br />

healers in attempts to treat human diseases<br />

(Havsteen, 1983). Flavonoids are the largest<br />

classes <strong>of</strong> naturally-occurring polyphenolic<br />

compounds (Geissman <strong>and</strong> crout, 1969).<br />

Evidence has been presented that substances<br />

closely related to flavonoids inhibit the<br />

fusion <strong>of</strong> the viral membrane with that <strong>of</strong> the<br />

lysosome (Miller <strong>and</strong> Lenard, 1981).<br />

Therefore the many claims from lay medical<br />

practitioners <strong>of</strong> the prophylactic effects <strong>of</strong><br />

flavonoids against viral attack have<br />

substantial support (Beladi et al., 1977).<br />

Although the mechanism <strong>of</strong> the inhibition<br />

remains unclear, it seems that prostagl<strong>and</strong>ins<br />

participate in the fusion <strong>of</strong> cell membranes.<br />

Since flavonoids inhibit their formation, a<br />

rationale can be constructed for the<br />

protective effect <strong>of</strong> flavonoids against viral<br />

diseases (Nagai et al., 1995a, 1995b;<br />

Carpenedo et al., 1969). Moreover from the<br />

previous reports it is clear that certain<br />

naturally occurring flavonoids can inhibit<br />

reverse transcriptases <strong>of</strong> different origins<br />

(Spedding et al., 1989) From the above<br />

reviews it is clear that the flavonoids have<br />

anti-microbial activity, particularly the<br />

antiviral. Therefore the present study is<br />

focused particularly on flavonoids among<br />

other phytochemicals. Moreover the choice


58 Mohan KANNAN et al.<br />

<strong>of</strong> flavonoid st<strong>and</strong>ards used in this study was based<br />

on those commonly found in herbs <strong>and</strong> vegetables<br />

which have been studied earlier <strong>and</strong> evidenced to<br />

possess anti-HIV activity.<br />

Schinazi et al. (1997) showed that the flavonols<br />

such as quercetin, myricetin, <strong>and</strong> quercetagetin,<br />

which was used as st<strong>and</strong>ard control in this study,<br />

have earlier been reported to inhibit certain viruses<br />

in vitro, including the Rauscher murine leukemia<br />

virus <strong>and</strong> the HIV virus. Among the 17 flavonols<br />

tested by Schinazi et al. (1997) only 3-O-glucosides<br />

<strong>of</strong> kaempherol, quercetin, <strong>and</strong> myricetin caused<br />

significant inhibition <strong>of</strong> HIV-1 at nontoxic<br />

concentrations. At the same time other comparative<br />

studies with other flavonoids revealed that the<br />

presence <strong>of</strong> both the double bond between positions<br />

2 <strong>and</strong> 3 <strong>of</strong> the flavonoids pyrone ring, <strong>and</strong> the three<br />

hydroxyl groups introduced on positions 5,6 <strong>and</strong> 7<br />

(ie, baicalein) were a prerequisite for the inhibition<br />

<strong>of</strong> RT-activity. Removal <strong>of</strong> the 6-hydroxyl group <strong>of</strong><br />

bacalein required the introduction <strong>of</strong> three<br />

additional hydroxyl groups at position 3,3’ <strong>and</strong> 4’<br />

(quercetin) to afford a compound still capable <strong>of</strong><br />

inhibiting the RT-activity. Quercetagetin which<br />

contains the structures <strong>of</strong> both baicalein <strong>and</strong><br />

quercetin with an additional hydroxyl group on the<br />

5’ position also proved strong inhibitors <strong>of</strong> RT<br />

activity (Ono et al., 1990). Thus the activity <strong>of</strong><br />

Vitex negundo leaf extract against HIV-1 RT in the<br />

present study might be due to the presence <strong>of</strong> above<br />

mentioned flavonoids particularly due to the<br />

presence <strong>of</strong> high quantity <strong>of</strong> Kaempherol, myricetin<br />

<strong>and</strong> quercetin. However this needs to be explored<br />

<strong>and</strong> confirmed. Probably this is the first report from<br />

India confirming the possible anti-HIV activity <strong>of</strong><br />

Vitex negundo L.<br />

Acknowledgement<br />

We would like to thank Dr. Hannah Raichel<br />

Vasanthi, Former in-charge <strong>of</strong> Herbal Indian<br />

Medicinal Research laboratory, Sri Ramach<strong>and</strong>ra<br />

Medical College & Research Institute for providing<br />

sophisticated lab facility for successful completion<br />

<strong>of</strong> this work.<br />

References<br />

Ayisi NK <strong>and</strong> Nyadedzor C. Comparitive in vitro<br />

effects <strong>of</strong> AZT <strong>and</strong> extracts <strong>of</strong> Ocimum<br />

gratissium, Ficus polita, Clausena arisata,<br />

Alchornea cordifolia <strong>and</strong> Elaeophorbia<br />

drupifera against HIV-1 <strong>and</strong> HIV-2<br />

infections. Antiviral Research. 13: 2559-<br />

2562, 2003.<br />

Azhar UH <strong>and</strong> Abdul M. Enzymes<br />

Inhibiting Lignans from Vitex negundo,<br />

Chemical <strong>and</strong> Pharmaceutical Bulletin.<br />

52(11):1269-1272, 2004.<br />

Beladi I, Pusztai R, Mucsi I, et al. Activity<br />

<strong>of</strong> some flavonoids against viruses.<br />

Annuals <strong>of</strong> the New York Academy <strong>of</strong><br />

Sciences. 284: 358–364, 1977.<br />

Carpenedo F, Bortignon C, Bruni A <strong>and</strong><br />

Santi R. Effect <strong>of</strong> quercetin on<br />

membrane-linked activities. Biochem<br />

Pharmacol. 18: 1495– 1500, 1969.<br />

Chawla AS, Sharma AK, Ha SS <strong>and</strong> Dhar<br />

KL. Chemical investigation <strong>and</strong> antiinflammatory<br />

activity <strong>of</strong> Vitex negundo<br />

seeds. J Natl Prod. 55: 163-167, 1992.<br />

De clercq E. Anti HIV drugs.<br />

Verh<strong>and</strong>elingen-Koninklijke Academie<br />

Geneeskdunde van Belgie. 69: 81-<strong>10</strong>4,<br />

2007.<br />

Spedding G, Ratty A, Middleton E.<br />

Inhibition <strong>of</strong> reverse transcriptase by<br />

flavonoids. Antiviral Research. 12: 99-<br />

1<strong>10</strong>, 1989.<br />

Geissman TA <strong>and</strong> Crout DHG. Organic<br />

chemistry <strong>of</strong> secondary plant<br />

metabolism. Freeman, Cooper &<br />

Company, San-Francisco. 183-230,<br />

1969.<br />

Gupta M, Mazumber UK <strong>and</strong> Bhawal RS.<br />

CNS activity <strong>of</strong> vitex negundo Linn. In<br />

mice. Indian J Exptl Biol. 37: 143-146,<br />

1999.<br />

Harborne JB. Phytochemical Methods: A<br />

Guide to Modern Techniques <strong>of</strong> Plant<br />

Analysis. 3 rd (Ed). Chapman <strong>and</strong> Hall<br />

Co, New York. 1-302, 1998.<br />

Harnett SM, Oosthuizen V <strong>and</strong> Van De<br />

Venter M. Anti-HIV activities <strong>of</strong> organic<br />

<strong>and</strong> aqueous extracts <strong>of</strong> Sutherl<strong>and</strong>ia<br />

frutescens <strong>and</strong> Lobostemon trigonus.<br />

<strong>Journal</strong> <strong>of</strong> Ethanopharmacology. 96:<br />

113-119, 2005.


Havsteen B. Flavonoids, a class <strong>of</strong> natural products<br />

<strong>of</strong> high pharmacological potency. Biochem<br />

Pharmacol. 32: 1141–1148, 1983.<br />

Hebbalkar DS, Hebbalkar GD <strong>and</strong> Sharma RN.<br />

Mosquito repellent activity <strong>of</strong> oils from Vitex<br />

negundo Linn. Leaves. Indian J Med Res. 95:<br />

200-203, 1992.<br />

Jana U, Chattopadhyay RN <strong>and</strong> Shaw B.<br />

Preliminary studies on anti-inflammatory<br />

activity <strong>of</strong> Zingiber <strong>of</strong>ficinale Rose, Vitex<br />

negundo Linn. <strong>and</strong> Tinospora cordifolia<br />

(Willid) Miers in albino rats. Indian J<br />

Pharmacol. 31: 232-233, 1999.<br />

Kanazawa S <strong>and</strong> Matija PB. Repression <strong>of</strong> MHC<br />

determinants in HIV infection. Microbes Infect.<br />

3: 467–473, 2001.<br />

Kapur V, Pillai KK, Hussain SZ <strong>and</strong> Balani DK.<br />

Hepatoprotective activity <strong>of</strong> ‘JIGRINE’ (An<br />

Unani polypharmaceutical herbal formulation<br />

on liver damage <strong>and</strong> lipid peroxidation caused<br />

by alcohol-carbon tetrachloride <strong>and</strong> paracetamol<br />

in rats. Indian J Pharm Sci. 56: 160, 1994.<br />

Kokate CK, Purohit AP <strong>and</strong> Gokhale SB.<br />

Pharmacognosy. Pune. 1-624, 2003.<br />

Lawrence Evans. Pharmacopeial Forum. 28(5):<br />

1545, 2007.<br />

Miller DK <strong>and</strong> Lenard J. Antihistaminics, local<br />

anaesthetics <strong>and</strong> other amines as antiviral<br />

agents. Proc Natl Acad Sci. 78: 3605– 3609,<br />

1981.<br />

Miller MD <strong>and</strong> Hazuda DJ. New antiretroviral<br />

agents: Looking beyond protease <strong>and</strong> reverse<br />

transcriptase. Curr Opin Microbiol. 4: 535–539,<br />

2001.<br />

Moore JP <strong>and</strong> Stevenson M. New targets for<br />

inhibitors <strong>of</strong> HIV-1 replication. Nat Rev Mol<br />

<strong>Cell</strong> Biol. 1: 40–49, 2000.<br />

Mukherjee KS <strong>and</strong> Badruddoza S. Chemical<br />

constituents <strong>of</strong> Dillenia indica Linn. And Vitex<br />

negundo Linn. J Indian Chem Soc. 58: 97,<br />

1981.<br />

Nagai T, Moriguchi R, Suzuki Y, et al. Mode <strong>of</strong><br />

action <strong>of</strong> the anti-influenza virus activity <strong>of</strong><br />

plant flavonoid, 5,7,40-trihydroxy-8methoxyflavone,<br />

from the roots <strong>of</strong> Scutellaria<br />

baicalensis. Antiviral Res 1995a; 26: 11– 25.<br />

Anti-HIV property <strong>of</strong> Vitex negundo L 59<br />

Nagai T, Suzuki Y, Tomimori T <strong>and</strong><br />

Yamada H. Antiviral activity <strong>of</strong> plant<br />

flavonoid, 5,7,40-trihydroxy-8methoxyflavone,<br />

from the roots <strong>of</strong><br />

Scutellaria baicalensis against influenza<br />

A (H3N2) <strong>and</strong> B viruses. Biol Pharm<br />

Bull. 18: 295–299, 1995b.<br />

Ono K, Nakane H, Fukushima M, Chermann<br />

JC <strong>and</strong> Barre-Sinoussi F. Differential<br />

inhibitory effects <strong>of</strong> various flavonoids<br />

on the activities <strong>of</strong> reverse transcriptase<br />

<strong>and</strong> cellular DNA <strong>and</strong> RNA polymerases<br />

Eur J Biochem. 190: 469-476, 1990.<br />

Sathiamoorthy B, Prasoon Gupta, Manmeet<br />

Kumar, Ashok K, Chaturvedi <strong>and</strong> Shukla<br />

PK. New antifungal flavonoid glycoside<br />

from Vitex negundo. Bioorganic &<br />

Medicinal Chemistry Letters. 17: 239–<br />

242, 2007.<br />

Schinazi RF, Hughes SH <strong>and</strong> Chen FC. In<br />

vitro anti-HIV activity <strong>of</strong> biflavonoids<br />

isolated from Rhus succedanea <strong>and</strong><br />

Garcinia multiflora. J Nat Prod. 60:<br />

884-888, 1997.<br />

Tamhankar CP <strong>and</strong> Saraf MN. Anti-arthritic<br />

activity <strong>of</strong> V. Negundo L. Indian J<br />

Pharm Sci. 56: 154-160, 1994.<br />

Turkoglu A, Duru ME, Mercan N, et al.<br />

Antioxidant <strong>and</strong> antimicrobial activities<br />

<strong>of</strong> Laetiporus sulphureous (Bull.)<br />

Murrill. Food Chem. <strong>10</strong>1(1):267–73,<br />

2007.<br />

Vlietinck, AJ, De Bruyne T, Apers S <strong>and</strong><br />

Pieters LA. Plant derived leading<br />

compounds for chemotherapy <strong>of</strong> human<br />

immunodeficiency virus (HIV) infection.<br />

Planta Med. 64: 97–<strong>10</strong>9, 1998.<br />

Woradulayapinij W, Soonthornchareonnon<br />

N, Wiwat C. In vitro HIV type 1 reverse<br />

transcriptase inhibitory activities <strong>of</strong> Thai<br />

medicinal plants <strong>and</strong> Canna indica L.<br />

rhizomes. <strong>Journal</strong> <strong>of</strong><br />

Ethnopharmacology. <strong>10</strong>1: 84-89, 2005.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong> <strong>10</strong>(2):61-69, 2012 Research Article 61<br />

Haliç University, Printed in Turkey.<br />

http://jcmb.halic.edu.tr<br />

Genetic characterization <strong>and</strong> bottleneck analysis <strong>of</strong> Korki<br />

Jonub Khorasan goats by microsatellite markers<br />

Bizhan MAHMOUDI* 1 , Orang ESTEGHAMAT 2 , Ahmad SHAHRIYAR 1 <strong>and</strong><br />

Majnun Sh. BABAYEV 3<br />

1 Islamic Azad University, Meshkinshahr Branch, Meshkinshahr, Ardabil, Iran<br />

2 Department <strong>of</strong> Animal Sciences, Islamic Azad University, Astara Branch, Astara, Gilan, Iran<br />

3 Department <strong>of</strong> Genetic, Faculty <strong>of</strong> <strong>Biology</strong>, Baku State University, Baku, Azerbaijan<br />

(*author for correspondence: bizhan.mahmoudi@gmail.com)<br />

Received: 19 March 2012, Accepted: 14 November 2012<br />

Abstract<br />

The present study was undertaken for population genetic analysis at molecular level to exploit the<br />

breed for planning sustainable improvement, conservation <strong>and</strong> utilization, which subsequently can<br />

improve the livelihood <strong>of</strong> its stake holders. Iranian goat populations are recognized as an invaluable<br />

component <strong>of</strong> the world’s goat genetic resources. The genetic characterization <strong>and</strong> bottleneck analysis<br />

in Korki Jonub Khorasan (KJK) was analyzed using 13 microsatellite markers. The observed number<br />

<strong>of</strong> alleles ranged from 3 (OarAE133) to 11 (TGLA122) with a total <strong>of</strong> 98 alleles <strong>and</strong> mean <strong>of</strong> 7.54<br />

alleles across loci. The overall heterozygosity, PIC <strong>and</strong> Shannon index values were 0.845, 0.76 <strong>and</strong><br />

1.759 indicating high genetic diversity. Only 4 out <strong>of</strong> 13 loci were in Hardy-Weinberg equilibrium.<br />

The mean Fis was -0.059.Only 3 loci had positive Fis values <strong>and</strong> <strong>10</strong> loci had negative values. Genetic<br />

bottleneck hypotheses were also explored. Our data suggest that the KJK goats have not experienced a<br />

genetic bottleneck in the recent past.<br />

Keywords: Bottleneck, Genetic Diversity, Microsatellites, Korki Jonub Khorasan, Fis.<br />

Özet<br />

Korki Jonub Horasan keçisinin mikrosatellit markörleriyle darboğaz analizi ve<br />

genetik tanımlanması<br />

Bu çalışmada sahiplerinin geçimini arttıracak soyların sürdürülebilir gelişiminin planlanması,<br />

korunması ve faydalanılması için moleküler düzeyde popülasyon genetik analizi yapılması<br />

üstlenilmiştir. İran keçisi popülasyonu dünyanın keçi genetik kaynaklarının çok değerli bir parçası<br />

olarak kabul edilmektedir. Korki Jonub Horasan (KJK)’da genetik tanımlama ve darboğaz analizi 13<br />

mikrosatellit markör kullanılarak yapılmıştır. Gözlemlenen allel sayısı toplam 98 allelden<br />

3(OarAE133) -11(TGLA122) arasında değişmektedir ve lokuslar genelinde ortalama 7,54 allel vardır.<br />

Heterozigotluk, PIC ve Shannon indeks değerleri 0,845, 0,76 ve 1,759 olup yüksek genetik çeşitliliği<br />

işaret etmektedir. 13 lokustan 4’ü Hardy-Weinberg dengesindedir. Ortalama Fis -0,059’dur. Sadece 3<br />

lokusun pozitif ve <strong>10</strong> lokusun negatif Fis değeri vardır. Genetik darboyun analizi ayrıca incelenmiştir.<br />

Verilerimiz KJK keçilerinin yakın geçmişte genetik bir darboğaz ile karşılaşılmadığını öne<br />

sürmektedir.<br />

Anahtar Kelimeler: Darboğaz, Genetik çeşitlilik, Mikrosatellitler, Horasan keçisi, Fis.


62 Bizhan MAHMOUDI et al.<br />

Introduction<br />

Genetic diversity, the primary component <strong>of</strong><br />

adaptive evolution, is essential for the long-term<br />

survival probability <strong>of</strong> a population (Avise, 1995;<br />

Coltman et al., 1998; Harley et al., 2002). Genetic<br />

diversity within domesticated species depends on<br />

several factors such as changing agricultural<br />

practices, breed replacement <strong>and</strong> cross breeding.<br />

Genetic diversity has been analyzed by using<br />

protein polymorphism, mitochondrial diversity <strong>and</strong><br />

microsatellite marker in both domestic <strong>and</strong> wild<br />

species (Harley et al., 2002;Li <strong>and</strong> Valenti, 2004;<br />

Tapiio et al., 2006; Pastor et al., 2004; Barker et<br />

al., 2001; Li et al., 2002; Joshi et al., 2004, Rout et<br />

al., 2008). The domestic goat (Capra hircus) is<br />

known for its ability to thrive on paltry fodder <strong>and</strong><br />

to with st<strong>and</strong> harsh environments. From an<br />

agricultural st<strong>and</strong>point, the world’s 700 million<br />

goats provide reliable access to meat, milk, skin,<br />

<strong>and</strong> fiber for small farmers particularly in some<br />

countries like Iran. Iran is bestowed with 8% <strong>of</strong><br />

total world’s goat population comprised <strong>of</strong> 8<br />

recognized <strong>and</strong> many non-descript populations.<br />

Among them, Korki Jonub Khorasan (KJK) is the<br />

major goat population <strong>of</strong> Khorasane Jonobi<br />

province <strong>and</strong> is known for fiber quality, meat <strong>and</strong><br />

milk production.<br />

There are several studies on genetic diversity<br />

<strong>of</strong> goats, based on microsatellite markers, such as<br />

Swiss breeds (Saitbekova et al., 1999), Chinese<br />

indigenous populations (Li et al., 2002), goats from<br />

Europe (includingalso the breeds represented here)<br />

<strong>and</strong> Middle East (Canon et al., 2006), Mehsana<br />

goat (Aggarwal et al., 2007), Indian domestic goats<br />

(Rout et al., 2008), Barbari goats (Ramamoorthi et<br />

al., 2009) <strong>and</strong> Iranian native goats (Mahmoudi et<br />

al., 2011).<br />

Microsatellites have been used successfully to<br />

define genetic relationships among different breeds<br />

in Iran. Microsatellites display higher levels <strong>of</strong><br />

variation, <strong>and</strong> consequently, enable population<br />

differentiation to be found more efficiently, so as to<br />

help breeders to implement rational decisions for<br />

conservation <strong>and</strong> improvement <strong>of</strong> valuable<br />

germplasm (Mahmoudi et al., 2011).<br />

Bottleneck analysis <strong>of</strong> KJK population has not been<br />

carried out. Hence, it is essential to genetically<br />

characterize <strong>and</strong> unfold the genetic diversity <strong>of</strong><br />

indigenous breeds.<br />

The aim <strong>of</strong> our pervious study was to analyze<br />

the genetic diversity <strong>and</strong> calculation <strong>of</strong> genetic<br />

distance <strong>of</strong> three Iranian native goat<br />

populations (Raeini, Korki Jonub Khorasan<br />

<strong>and</strong> Lori) through the use <strong>of</strong> microsatellite<br />

markers. Our pervious study demonstrates<br />

that the closest distance was observed<br />

between Raeini <strong>and</strong> KJK (D = 0.4891) <strong>and</strong><br />

the largest between Raeini <strong>and</strong> Lori (D =<br />

0.6298). The UPGMA tree shows that two<br />

goat populations (KJK <strong>and</strong> Raeini) are<br />

distinct from the other goat population<br />

(Lori) (Mahmoudi et al., 2011).<br />

But in this study, Microsatellite analysis<br />

was carried out to test for signatures <strong>of</strong><br />

recent population bottlenecks in Korki<br />

Jonub Khorasan goat. This analysis was<br />

carried out on 51 DNA samples with 13<br />

microsatellite markers. For these loci,<br />

genetic variation was quantified using<br />

measures <strong>of</strong> the total number <strong>of</strong> alleles,<br />

number <strong>of</strong> polymorphic loci, observed <strong>and</strong><br />

expected heterozygosity per locus <strong>and</strong> allelic<br />

richness. We tested the Hardy-Weinberg<br />

(HW) equilibrium <strong>and</strong> also calculated the<br />

values <strong>of</strong> Fis (inbreeding coefficient).<br />

Materials <strong>and</strong> Methods<br />

51 blood samples were collected in 12<br />

villages in which the population has a major<br />

concentration. Samples were collected from<br />

the individuals exhibiting typical population<br />

characteristics <strong>and</strong> at least two samples were<br />

collected from each village <strong>of</strong> Khorasane<br />

Jonobi province in Iran. An effort was made<br />

to collect samples from unrelated<br />

individuals based on information provided<br />

by farmers. Blood samples were collected<br />

from each animal using EDTA vacutainer<br />

<strong>and</strong> stored at –20 ºC till further use.<br />

Blood samples (5–6 ml) were collected<br />

from the jugular vein <strong>of</strong> the animal in<br />

vacutainers containing EDTA as<br />

anticoagulant. DNA was extracted from<br />

whole blood using st<strong>and</strong>ard protocols<br />

(Sambrook et al., 1989). The DNA isolation<br />

procedure involved lysis <strong>of</strong> RBCs, digestion<br />

<strong>of</strong> protein using proteinase K, <strong>and</strong><br />

precipitation <strong>of</strong> protein using phenol:<br />

chlor<strong>of</strong>orm: isoamyl alcohol with 25: 24: 1<br />

ratio.<br />

In this study, 13 microsatellite primer<br />

pairs were used, including MAF64,


BM4621, BM121, LSCV36, TGLA122,<br />

OarJMP23, OarFCB304, OarAE133, ILSTS005,<br />

ILSTS022, ILSTS029, ILSTS033 <strong>and</strong> ILSTS034.<br />

Most <strong>of</strong> primers used were independent <strong>and</strong><br />

belonged to different chromosomes. Typical<br />

polymerase chain reaction (PCR) testing was<br />

carried out under these conditions: 60 ng <strong>of</strong> target<br />

DNA was used in 25-μl PCR reaction containing<br />

1×PCR buffer, 50 ng <strong>of</strong> each primer, 200 μM <strong>of</strong><br />

dNTPs, 0.5 units <strong>of</strong> Taq DNA Polymerase <strong>and</strong> 1.5<br />

mMMgCl2. A Common “Touchdown” PCR pr<strong>of</strong>ile<br />

included 3 cycles <strong>of</strong> 45 sec at 95°C, 1 min at 60°C;<br />

3 cycles <strong>of</strong> 45 sec at 95°C, 1 min at 57°C; 3 cycles<br />

<strong>of</strong> 45 sec at 95°C, 1 min at 54°C; 3 cycles <strong>of</strong> 45 sec<br />

at 95°C, 1 min at 51°C <strong>and</strong> 20 cycles <strong>of</strong> 45 sec at<br />

92°C, 1 min at 48°C. In all cycles elongation<br />

temperature <strong>and</strong> time were 72°C <strong>and</strong> 1 min,<br />

respectively. Alleles were scored using unlabeled<br />

primers with products visualized by silver staining<br />

(Bassam et al., 1991). Genotype <strong>of</strong> individual<br />

animal at 13 microsatellite loci was recorded by<br />

direct counting.Genotypic data were analyzed using<br />

POPGENE (Yeh <strong>and</strong> Boyle, 1997) <strong>and</strong> GenAlex<br />

(Peakall <strong>and</strong> Smouse, 2006) to calculate the<br />

observed number <strong>of</strong> alleles, effective number <strong>of</strong><br />

alleles, observed heterozygosity, expected<br />

heterozygosity, <strong>and</strong> to test for Hardy–Weinberg<br />

equilibrium (HWE).Allelic frequencies were<br />

utilized for assessing polymorphic information<br />

content (PIC), a measure <strong>of</strong> informativeness <strong>of</strong> a<br />

marker, calculated according to Botstein et al.<br />

(1980) using the given formula,<br />

Where k is the number <strong>of</strong> alleles <strong>and</strong> xi <strong>and</strong> xj are<br />

the frequencies <strong>of</strong> the ith <strong>and</strong> jth alleles<br />

respectively.<br />

Heterozygote deficiencies were estimated as Fis =<br />

(Ho −He)/He, where Ho <strong>and</strong> He are the observed<br />

<strong>and</strong> expected frequency <strong>of</strong> heterozygotes<br />

respectively.<br />

The bottlenecks program (Piry et al.,<br />

1999) was used as an alternative measure <strong>of</strong> genetic<br />

bottlenecks to test for excess gene diversity relative<br />

to that expected under mutation-drift equilibrium.<br />

The heterozygosity excess method exploits the fact<br />

that allele diversity is reduced faster than<br />

heterozygosity during a bottleneck, because rare<br />

alleles are lost rapidly <strong>and</strong> have little effect on<br />

Bottleneck analysis <strong>of</strong> KJH goats 63<br />

heterozygosity, thus producing a transient<br />

excess in heterozygosity relative to that<br />

expected in a population <strong>of</strong> constant size<br />

with the same number <strong>of</strong> alleles (Cornuet<br />

<strong>and</strong> Luikart, 1996; Piry et al., 1999). To<br />

determine the population ‘‘genetic reduction<br />

signatures’’ characteristic <strong>of</strong> recent<br />

reductions in effective population size (Ne),<br />

the Wilcoxon’s heterozygosity excess test<br />

(Piry et al., 1999) , st<strong>and</strong>ard differential test,<br />

sign test <strong>and</strong> the allele frequency<br />

distribution mode shift analysis(Luikart et<br />

al., 1998) were performed using<br />

BOTTLENECK (Piry et al., 1999). The<br />

heterozygosity excess method was used to<br />

analyzed the population <strong>and</strong> the data for the<br />

heterozygosity excess test were examined<br />

under the two-phased model (TPM;<br />

95%stepwise mutation model with 5%<br />

multi-step mutations <strong>and</strong> a variance among<br />

multiple steps <strong>of</strong> 12), which is considered<br />

best for microsatellite data (Piry et al., 1999;<br />

Di Rienzo et al., 1994). We also analyzed<br />

the allele frequency distribution for gaps.<br />

Aqualitative descriptor <strong>of</strong> allele frequency<br />

distribution (the mode-shift indicator),is<br />

reported to discriminate between<br />

bottlenecked <strong>and</strong> stable population (Luikart<br />

et al.,1998).<br />

Results<br />

In order to maintain genetic diversity,<br />

breeding strategies that increase effective<br />

population size minimizing genetic drift<br />

effect should be implemented. Microsatellite<br />

markers in combination with recent<br />

statistical methodologies represent a useful<br />

tool for the conservation <strong>and</strong> management <strong>of</strong><br />

endangered breeds. In the present work, the<br />

actual situation concerning genetic diversity<br />

<strong>and</strong> population structure <strong>of</strong> this breed has<br />

been evaluated using the molecular<br />

information derived from 13 microsatellites<br />

loci <strong>and</strong> the use <strong>of</strong> clustering methods.<br />

13 pairs <strong>of</strong> highly polymorphic<br />

microsatellite markers were chosen based on<br />

their genomic location (Table 1).Various<br />

measures <strong>of</strong> genetic variation are presented<br />

in the Table 2. The F-statistics estimates are<br />

presented in Table3. The number <strong>of</strong> alleles<br />

observed across the microsatellite loci


64 Bizhan MAHMOUDI et al.<br />

studied varied from 3(OarAE133) to 11<br />

(TGLA122) with an overall mean <strong>of</strong> 7.54 (Table 2).<br />

The observed number <strong>of</strong> alleles across the loci was<br />

more than the effective number <strong>of</strong> alleles (2.355 to<br />

6.973). The Shannon information index (I) <strong>and</strong><br />

polymorphic Information Content (PIC) showed<br />

that most <strong>of</strong> the loci were highly informative<br />

indicating the high polymorphism across the loci<br />

with an overall mean <strong>of</strong> 1.759 <strong>and</strong> 0.76<br />

Table 1. Details <strong>of</strong> the microsatellite used in the study<br />

Locus Primer sequence<br />

BM121<br />

BM4621<br />

ILSTS005<br />

ILSTS022<br />

ILSTS029<br />

ILSTS033<br />

ILSTS034<br />

LSCV36<br />

MAF64<br />

OarAE133<br />

OarFCB304<br />

OarJMP23<br />

TGLA122<br />

respectively. The average observed<br />

heterozygosity was more than the expected<br />

(Table 3). The average expected gene<br />

diversity (Nei, 1973) ranged from 0.581<br />

(OarAE133) to 0.865 (TGLA122) with an<br />

overall mean <strong>of</strong> 0.798. Nine out <strong>of</strong> total 13<br />

loci studied showed significant deviations<br />

from Hardy Weinberg Equilibrium.<br />

Type <strong>of</strong><br />

repeat<br />

Chromosome<br />

No.<br />

TGGCATTGTGAAAAGAAGTAAAA<br />

CTAGCACTATCTGGCAAGCA<br />

CAAATTGACTTATCCTTGGCTG<br />

(TC)18 16<br />

TGTAACATATGGGCTGCATC<br />

GGAAGCAATGAAATCTATAGCC<br />

(CA)14 6<br />

TGTTCTGTGAGTTTGTAAGC<br />

AGTCTGAAGGCCTGAGAACC<br />

(nn)39 <strong>10</strong><br />

CTTACAGTCCTTGGGGTTGC<br />

TGTTTTGATGGAACACAGCC<br />

(GT)21 3<br />

TGGATTTAGACCAGGGTTGG<br />

TATTAGAGTGGCTCAGTGCC<br />

(CA)19 3<br />

ATGCAGACAGTTTTAGAGGG<br />

AAGGGTCTAAGTCCACTGGC<br />

(CA)12 12<br />

GACCTGGTTTAGCAGAGAGC<br />

GCACACACATACACAGAGATGCG<br />

(GT)29 5<br />

AAAGAGGAAAGGGTTATGTCTGGA<br />

AATAGACCATTCAGAGAAACGTTGAC<br />

(CA)16 19<br />

CTCATCGAATCAGACAAAAGGTAGG<br />

AGCCAGTAGGCCCTCACCAGG<br />

(TG)13 1<br />

CCAACCATTGGCAGCGGGAGTGTGG<br />

CCCTAGGAGCTTTCAATAAAGAATCGG<br />

(TG)24 Ann<br />

CGCTGCTGTCAACTGGGTCAGGG<br />

GTATCTTGGGAGCCTGTGGTTTATC<br />

(CT)11(CA)15 19<br />

GTCCCAGATGGGAATTGTCTCCAC<br />

AATCACATGGCAAATAAGTACATAC<br />

- 27<br />

CCCTCCTCCAGGTAAATCAGC (CA)21 21


Within population inbreeding estimate (Fis) for<br />

the investigated loci was -0.059. The estimates for<br />

each locus are presented in Table 3. The values<br />

ranged from –0.158 (TGLA122) to 0.047<br />

(ILSTS05). Ten loci revealed negative Fis values.<br />

The heterozygote deficiency may be a result <strong>of</strong><br />

inbreeding. The high genetic diversity observed in a<br />

breed could be explained by overlapping<br />

generations, mixing <strong>of</strong> populations from different<br />

geographical locations, natural selection favoring<br />

heterozygosity or subdivision accompanied by<br />

genetic drift. Isolation, founder effects, genetic drift<br />

<strong>and</strong> different selection pressures realized by<br />

farmers in each population may have played major<br />

role in differentiation <strong>of</strong> Iranian goats.<br />

Any population that experienced a recent<br />

bottleneck will show higher than expected<br />

(equilibrium) heterozgosity for a large number <strong>of</strong><br />

loci. Microsatellite data were also subjected to<br />

statistical analysis to test whether the populations<br />

have undergone recent genetic bottleneck. Because<br />

historical population sizes <strong>and</strong> levels <strong>of</strong> genetic<br />

variation are seldom known, methods for detecting<br />

bottlenecks in the absence <strong>of</strong> historical data would<br />

be useful. Cornuet <strong>and</strong> Luikart, (1996) described<br />

the quantitative methods suitable for analysis <strong>of</strong><br />

microsatellite data for detection <strong>of</strong> recent<br />

bottlenecks in (<strong>10</strong>0-200) generations.<br />

Table 2. Number <strong>of</strong> alleles (Observed <strong>and</strong><br />

effective), Shannon's Information index <strong>and</strong><br />

Polymorphic Information Content for KJK goats<br />

Locus name Na Ne I PIC<br />

BM121 8 6.375 1.944 0.82<br />

BM4621 9 6.007 1.969 0.81<br />

ILSTS005 8 4.42 1.729 0.75<br />

ILSTS022 7 4.321 1.606 0.73<br />

LSTS029 7 4.579 1.702 0.75<br />

ILSTS033 8 5.742 1.9 0.8<br />

ILSTS034 7 6.267 1.89 0.82<br />

LSCV36 9 6.367 1.988 0.82<br />

MAF64 4 3.272 1.262 0.64<br />

OarAE133 3 2.355 0.929 0.48<br />

OarFCB304 9 6.391 2.014 0.83<br />

OarJMP23 8 4.751 1.775 0.76<br />

TGLA122 11 6.973 2.164 0.84<br />

Mean 7.538 5.217 1.759 0.76<br />

Na: Observed number <strong>of</strong> alleles; Ne: Effective number <strong>of</strong><br />

alleles; I: Shannon's Information index; PIC:<br />

Polymorphic Information Content.<br />

Bottleneck analysis <strong>of</strong> KJH goats 65<br />

To determine whether a population exhibits<br />

a significant number <strong>of</strong> loci with gene<br />

diversity excess, there are three tests,<br />

namely a "sign test", a "st<strong>and</strong>ardized<br />

differences test" (Cornuet <strong>and</strong> Luikart,<br />

1996) <strong>and</strong> a "Wilcoxon sign-rank test"<br />

(Luikart et al., 1997).<br />

Table 3. Observed <strong>and</strong> expected<br />

heterozygosity with p-value, Fis value for<br />

each microsatellite locus <strong>and</strong> mean estimate<br />

<strong>of</strong> different parameters for KJK goats<br />

Locus<br />

Ho He Fis HWE<br />

name<br />

BM121 0.902 0.852 -0.06 ***<br />

BM4621 0.804 0.842 0.045 ***<br />

ILSTS005 0.745 0.781 0.047 NS<br />

ILSTS022 0.863 0.776 -0.113 NS<br />

ILSTS029 0.902 0.789 -0.144 ***<br />

ILSTS033 0.902 0.834 -0.082 ***<br />

ILSTS034 0.941 0.849 -0.11 ***<br />

LSCV36 0.843 0.851 0.01 ***<br />

MAF64 0.725 0.701 -0.035 NS<br />

OarAE133 0.667 0.581 -0.149 NS<br />

FCB304 0.882 0.852 -0.036 ***<br />

OarJMP23 0.804 0.797 -0.008 ***<br />

TGLA122 1 0.865 -0.158 ***<br />

Mean 0.845 0.798 -0.059<br />

NS: Not Significant; ***: Significant at the<br />

0.1% level<br />

All the three models <strong>of</strong> microsatellite<br />

evaluation Infinite Allele Model (IAM),<br />

Stepwise Mutation Model (SPM) <strong>and</strong> Two<br />

Phase Model (TPM) were utilized for the<br />

purpose. In a population at mutation-drift<br />

equilibrium (i.e., the effective size <strong>of</strong> which<br />

has remained constant in the recent past),<br />

there is approximately an equal probability<br />

that a locus shows gene diversity excess or a<br />

gene diversity deficit. The first test suffers<br />

from low statistical power. The second test<br />

is not very useful since it requires at least 20<br />

polymorphic loci. The Wilcoxon test<br />

provides relatively high power <strong>and</strong> it can be<br />

used with as few as four polymorphic loci<br />

<strong>and</strong> any number <strong>of</strong> individuals (15-40<br />

individuals <strong>and</strong> <strong>10</strong>-15 polymorphic loci is<br />

recommend to achieve high power. So, the<br />

null hypothesis was again rejected under<br />

IAM for the sign test. St<strong>and</strong>ard difference


66 Bizhan MAHMOUDI et al.<br />

test (T2 statistics) in this population provided the<br />

significant (p


st<strong>and</strong>ardized difference test <strong>and</strong> Wilcoxon rank test<br />

indicated heterozygosity excess in KJK population.<br />

The Mode-shift indicator test was also utilized as a<br />

second method to detect potential bottlenecks, as<br />

the non-bottleneck populations that are near<br />

mutation-drift equilibrium are expected to have a<br />

large proportion <strong>of</strong> alleles with low frequency. This<br />

test discriminates many bottlenecked populations<br />

from stable populations (Luikart et al., 1998;<br />

Luikart <strong>and</strong> Cornuet, 1997). The distribution<br />

followed the normal L-shaped form. The alleles<br />

with low frequencies (0.01–0.1) are the most<br />

numerous <strong>and</strong> proportion <strong>of</strong> alleles showed a<br />

normal ‘L’ shaped distribution (figure 1) This<br />

distribution clearly show that the studied population<br />

has not experienced a recent bottleneck.<br />

Figure 1. L-shaped mode-shift graph showing lack<br />

<strong>of</strong> recent genetic bottleneck in KJK population<br />

Severely bottlenecked populations are important<br />

to identify for conservation, as they are likely to<br />

suffer from inbreeding depression, loss <strong>of</strong> genetic<br />

variation, fixation <strong>of</strong> deleterious alleles as well as<br />

increased demographic stochasticity, any <strong>of</strong> which<br />

can ultimately reduce adaptive potential <strong>and</strong> the<br />

probability <strong>of</strong> population persistence (Frankham,<br />

1995).<br />

Li et al. (2002) studied the genetic equilibrium<br />

<strong>of</strong> 12 Chinese goat population's using17<br />

microsatellite loci, all except three Tibetan<br />

populations showed deviation from the equilibrium.<br />

Tantia et al. (2004) reported heterozygosity excess<br />

<strong>and</strong> genetic bottleneck in the Indian goat breeds<br />

(Chegu <strong>and</strong> Black Bengal). Deviation from<br />

mutation-drift equilibrium has been reported in<br />

several populations; however they were mainly<br />

associated with heterozygosity deficiency viz., in<br />

Mehsani goats (Aggarwal et al., 2007). Among all<br />

the seven population <strong>of</strong> Baltic sheep only Estonian<br />

Bottleneck analysis <strong>of</strong> KJH goats 67<br />

Ruhnu population showed a slight distortion<br />

in distribution <strong>of</strong> allelic frequency<br />

(Grigaliunaite et al., 2003).<br />

Discussion<br />

In conclusion, there was substantial genetic<br />

variation <strong>and</strong> polymorphism across studied<br />

loci in the KJK goat. And this population<br />

was not in Hardy-Weinberg equilibrium at<br />

most <strong>of</strong> the studied loci. The strong<br />

inference that the KJK <strong>of</strong> goat has not<br />

undergone bottleneck, as it suggests that any<br />

unique alleles present in this breed may not<br />

have been lost. Therefore, it can be<br />

recommended that within breed diversity is<br />

actively maintained to enable these<br />

extensively unmanaged stocks to adapt to<br />

future dem<strong>and</strong>s <strong>and</strong> conditions <strong>and</strong> there is<br />

ample scope for further improvement in its<br />

productivity through appropriate breeding<br />

strategies.<br />

Acknowledgments<br />

This work was support by the Islamic Azad<br />

University, Meshkinshahr Branch, Iran.<br />

References<br />

Aggarwal RAK, Dixit SP, Verma NK, et al.<br />

Population genetic analysis <strong>of</strong> Mehsana goat<br />

based on microsatellite markers. Current<br />

Science. 92 (8):1133–1137, 2007.<br />

Avise JC. Mitochondrial DNA<br />

polymorphism <strong>and</strong> a connection between<br />

genetics <strong>and</strong> demography <strong>of</strong> relevance to<br />

conservation. Conservation <strong>Biology</strong>. 9: 686–<br />

690, 1995.<br />

Barker JSF, Tan SG, Moore SS, et al.<br />

Genetic variation within <strong>and</strong> relationship<br />

among populations <strong>of</strong> Asian goats (Capra<br />

hircus). J Anim Breed Genet. 118:213-233,<br />

2001.<br />

Bassam BJ, Caetano-Anolles G, Gressh<strong>of</strong>f<br />

M. Fast <strong>and</strong> sensitive silver staining <strong>of</strong> DNA<br />

in polyacrylamide gels. Anal Biochem.<br />

196:80-83, 1991.


68 Bizhan MAHMOUDI et al.<br />

Botstein D, White RL, Skolnick M, Davis RW.<br />

Construction <strong>of</strong> a genetic linkage map in man using<br />

restriction fragment length polymorphisms. Am. J.<br />

Hum Genet 32:314–331, 1980.<br />

Coltman DW, Bowen WD, Wright JM. Birth<br />

weight <strong>and</strong> neonatal survival <strong>of</strong> harbour seal pups<br />

are positively correlated with genetic variation<br />

measured by microsatellites. Proceeding Royal<br />

Society <strong>of</strong> London (Biological Sciences) 265:803–<br />

809, 1998.<br />

Cornuet JM <strong>and</strong> Luikart G. Description <strong>and</strong> power<br />

analysis <strong>of</strong> two tests for detecting recent population<br />

bottlenecks from allele frequency data. Genetics<br />

144: 2001–2014, 1996.<br />

Di Rienzo A, Peterson AC, Garza JC, et al.<br />

Mutational processes <strong>of</strong> simple-sequence repeat<br />

loci in human populations. Proceeding <strong>of</strong> National<br />

Academy <strong>of</strong> Sciences USA. 91:3166–3170, 1994.<br />

Frankham R. Effective population size/adult<br />

population size ratios in wildlife: a review. Genet.<br />

Res. 66:95–<strong>10</strong>7, 1995.<br />

Grigaliunaite I, Haldja MT, Grislis VZ, et al.<br />

Microsatellite variation in the Baltic Sheep breeds.<br />

Veterinarija Ir Zootechnika. 21: 66-73, 2003.<br />

Harley EH. AGARST, version 2.8, a program for<br />

calculating allele frequencies, GST <strong>and</strong> RST from<br />

microsatellite data. Wild life Genetics Unit,<br />

University <strong>of</strong> Care Town, South Africa, 2002.<br />

Joshi MB, Rout PK, M<strong>and</strong>al A, et al.<br />

Phylogeography <strong>and</strong> origin <strong>of</strong> Indian domestic<br />

goats. <strong>Molecular</strong> <strong>Biology</strong> Evolution. 21: 454–462,<br />

2004.<br />

Li MH, Wang HS, Wei H, et al. Genetic<br />

relationship among 12 Chinese indigenous goat<br />

populations based on microsatellite analysis.<br />

Genetic Selection <strong>and</strong> Evolution. 34:729- 744,<br />

2002.<br />

Li SL <strong>and</strong> Valenti A. Genetic diversity <strong>of</strong> Chinese<br />

indigenous goat breeds based on microsatellite<br />

markers. J Anim Breed Genet. 121: 350–55, 2004.<br />

Luikart G <strong>and</strong> Cornuet JM. Empirical<br />

evaluation <strong>of</strong> a test for identifying recently<br />

bottlenecked populations from allele<br />

frequency data. Conservation <strong>Biology</strong>. 12:<br />

228-237,1997.<br />

Luikart GL, Allendorf FW, Cornuet JM,<br />

Sherwin WB. Distortion <strong>of</strong> allele frequency<br />

distributions provides a test for recent<br />

population bottlenecks. <strong>Journal</strong> <strong>of</strong> Heredity.<br />

89:238–247, 1998.<br />

Mahmoudi B, Babayev M Sh, Hayeri<br />

Khiyavi F, Pourhosein A <strong>and</strong> Daliri M.<br />

Breed characteristics in Iranian native goat<br />

populations. <strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> Animal<br />

<strong>Biology</strong>. 5: 129-134, 2011.<br />

Nei M. Analysis <strong>of</strong> gene diversity in<br />

subdivided populations. Proc. Natl. Acad.<br />

Sci. USA 70:3321-3323, 1973.<br />

Piry S, Luikart G, Cornuet JM.<br />

BOTTLENECK: A program for detecting<br />

recent effective population size reductions<br />

from allele frequency data. <strong>Journal</strong> <strong>of</strong><br />

Heredity. 90: 502–503, 1999.<br />

Peakall R <strong>and</strong> Smouse PE. GENALEX 6:<br />

genetic analysis in Excel. Population genetic<br />

s<strong>of</strong>tware for teaching <strong>and</strong> research.<br />

<strong>Molecular</strong> Ecology Notes. 6: 288-295, 2006.<br />

Ramamoorthi J, Thilagam K, Sivaselvam<br />

SN, Karthickeyan AMK. Genetic<br />

characterization <strong>of</strong> Barbari goats using<br />

microsatellite markers. <strong>Journal</strong> <strong>of</strong><br />

Veterinary Science. <strong>10</strong>:72–76, 2009.<br />

Rout PK, Joshi MB, M<strong>and</strong>al A, et al.<br />

Microsatellite-based phylogeny <strong>of</strong> Indian<br />

domestic goats.BMC Genetics. 9:11, 2008.<br />

Saitbekova N, Gaillard C, Obexer-Ruff G,<br />

Dolf G. Genetic diversity in Swiss goat<br />

breeds based on microsatellite analysis.<br />

Animal Genetics. 30: 36–41, 1999.


Sambrook J, Fritsch EF, Maniatis T. <strong>Molecular</strong><br />

cloning: a laboratory manual, 2nd edition. Cold<br />

Spring Harbor LaboratoryPress, Cold Spring<br />

Harbor. 1989.<br />

Tantia MS, Behl R, Sheoran N, et al. Microsatellite<br />

data analysis for conservation <strong>of</strong> two goat breeds.<br />

Ind J Ani Sci. 74: 761-767, 2004.<br />

Tapiio S, Bennewitz J, Maleviciute E, et al.<br />

Prioritization for Conservation <strong>of</strong> Northern<br />

Bottleneck analysis <strong>of</strong> KJH goats 69<br />

European Cattle Breeds Based 468 on<br />

Analysis <strong>of</strong> Microsatellite Data.<br />

Conservation <strong>Biology</strong>. 20: 1768–1779,<br />

2006.<br />

Yeh FC <strong>and</strong> Boyle TJB. Population genetic<br />

analysis <strong>of</strong> co-dominant <strong>and</strong> dominant<br />

markers <strong>and</strong> quantitative traits. Belg. J. Bot.<br />

129: 157, 1997


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong> <strong>10</strong>(2):71-77, 2012 Research Article 71<br />

Haliç University, Printed in Turkey.<br />

http://jcmb.halic.edu.tr<br />

Low-Stringency Single-Specific-Primer PCR as a tool for<br />

detection <strong>of</strong> mutations in the matK gene <strong>of</strong> Phaseolus vulgaris<br />

exposed to paranitrophenol<br />

Mohamed R. ENAN<br />

Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC),<br />

Giza, Egypt<br />

(author for correspondence; mohamed.enan@uaeu.ac.ae)<br />

Received: 26 April 2012; Accepted: 08 December 2012<br />

Abstract<br />

Low-stringency single specific primer polymerase chain reaction (LSSP)-PCR was assessed for its<br />

suitability in detecting the genotoxic effect <strong>of</strong> paranitrophenol (PNP) in the dwarf bean (Phaseolus<br />

vulgaris) exposed to different concentrations <strong>of</strong> PNP. DNA was extracted from both PNP-treated <strong>and</strong><br />

non-treated shoots that was amplified by specific PCR, using universal primers <strong>of</strong> maturase K<br />

chloroplast DNA. PCR products <strong>of</strong> approximately 776 bp were subsequently used as a template for<br />

LSSP-PCR analysis. We detected the genotoxic effect based on LSSP-PCR pr<strong>of</strong>iles <strong>of</strong> the DNA<br />

generated in PNP-treated over the non-treated control <strong>of</strong> bean shoots. A complex electrophoretic<br />

pattern consisting <strong>of</strong> many b<strong>and</strong>s was obtained from control <strong>and</strong> treated samples. Surprisingly, DNA<br />

sequencing data revealed that the homology among the maturase gene amplified from PNP-treated vs.<br />

non-treated samples <strong>of</strong> dwarf beans are comparable. These results showed that the use <strong>of</strong> LSSP-PCR<br />

analysis is not a proper tool to detect genotoxic effect in bean, at least in bean shoots that were<br />

exposed to PNP.<br />

Keywords: Genotoxicity, LSSP-PCR, Paranitrophenol, Phaseolus vulgaris, maturase K.<br />

Özet<br />

Paranitr<strong>of</strong>enole maruz kalan Phaseolus vulgaris’te matK geni mutasyonlarının<br />

tespitinde bir araç olarak Düşük Kesinlikte Tek-Özgün Primerli PCR kullanımı<br />

Düşük kesinlikte tek özgün primer lipolimeraz zincir reaksiyonunun (LSSP-PCR), paranitr<strong>of</strong>enolün<br />

(PNP) sebep olduğu genotoksik etki tespitindeki uygunluğu farklı konsantrasyonlarda PNP’ye maruz<br />

bırakılan bodur fasülyede (Phaseolus vulgaris) değerlendirildi. PNP ile muamele edilmiş veya<br />

edilmemiş filizlerden izole edilen DNA, maturaz K kloroplast DNA’sının evrensel primerleri<br />

kullanılarak özgün PCR ile çoğaltıldı. Hemen akabinde, 776 bç’lık PZR ürünleri LSSP-PCR analizi<br />

için kalıp DNA olarak kullanıldı. PNP ile işlenmiş fasülye filizinden elde edilen DNA üzerindeki<br />

genotoksik etkilerin PNP ile işlenmemiş kontrollere olan kıyasını LSSP-PCR pr<strong>of</strong>iline dayanarak<br />

tespit ettik. Kontrol ve işlenmiş örneklerde birçok banttan oluşan karmaşık elektr<strong>of</strong>oretik motifler elde<br />

edildi. Şaşırtıcı bir şekilde DNA dizi analizi verileri PNP ile işlenmiş ve işlenmemiş bodur fasülye<br />

örneklerinde çoğaltılan maturaz geni homolojisinin kıyaslanabilir olduğunu gösterdi. Bu sonuçlar,<br />

LSSP-PCR analizinin fasülyede, en azından PNP ile işlenmiş filizlerde, genotoksik etkinin tespitinde<br />

uygun bir araç olmadığını gösterdi.<br />

Anahtar Kelimeler: Genotoksisite, LSSP-PCR, Paranitr<strong>of</strong>enol, Phaseolus vulgaris, maturaz K.


72 Mohamed R. ENAN<br />

Introduction<br />

Maturase K (matK) is a chloroplast-encoded gene<br />

which is nested between the 5’ <strong>and</strong> 3’ exons <strong>of</strong><br />

trnK, tRNA-lysine (Sugita et al., 1985). Sequence<br />

analysis indicated that this region displayed<br />

homology to domain X <strong>of</strong> mitochondrial group II<br />

intron maturases (Sugita et al., 1985; Neuhaus <strong>and</strong><br />

Link, 1987). Although maturase K gene (matK)<br />

contains many indels (insertions <strong>and</strong> deletions)<br />

throughout its reading frame, yet domain X lacks<br />

any <strong>of</strong> these indels (Hilu <strong>and</strong> Liang, 1997; Hilu <strong>and</strong><br />

Alice, 1999; Hilu et al., 2003). Maturase K is the<br />

only gene found in the chloroplast genome <strong>of</strong><br />

higher plants that contains this putative maturase<br />

domain X in its protein (Neuhaus <strong>and</strong> Link, 1987).<br />

Maturases are considered as splicing factors<br />

because <strong>of</strong> their ability to splice <strong>and</strong> fold group II<br />

introns. The coding region <strong>of</strong> matK is generally<br />

located within intron <strong>of</strong> the chloroplast trnK gene<br />

(Vogel et al., 1997). matK is very useful in DNA<br />

barcoding to genetically identify plant families (Qiu<br />

et al., 1999; Li <strong>and</strong> Zhou, 2007).<br />

Genotoxic compounds are those which cause<br />

damage to DNA. Para-nitrophenol is a synthetic<br />

chemical that is used to manufacture drugs,<br />

fungicides, insecticides (Yang et al., 20<strong>10</strong>).<br />

Pesticides, such as parathion <strong>and</strong> methyl parathion,<br />

are hydrolyzed <strong>and</strong> transformed to PNP; which in<br />

turn these pesticides are considered as the main<br />

source <strong>of</strong> PNP that is released to the environment<br />

(Kitagawa et al., 2004). In vitro assay using CHO<br />

cell PNP was positive for chromosome aberration<br />

at levels <strong>of</strong> <strong>10</strong>0 µg/ml (Ohno et al., 2005), proving<br />

the hypothesis that PNP induces chromosomal<br />

aberrations.<br />

The LSSP-PCR is a simple technique that<br />

permits detection <strong>of</strong> single or multiple mutations in<br />

gene-sized fragments (Pena et al., 1994). This<br />

sensitive <strong>and</strong> rapid method uses PCR amplification<br />

<strong>of</strong> a single oligonucleotide primer "driver" that is<br />

specific to one <strong>of</strong> the extremities <strong>of</strong> the fragment,<br />

under very low stringency conditions (Pena et al.,<br />

1994). In a sequence-dependent manner, the driver<br />

hybridizes both to the highly specific<br />

complementary extremity, <strong>and</strong> to the low<br />

specificity <strong>of</strong> multiple sites within the fragment.<br />

The reaction thus yields a large number <strong>of</strong> products<br />

that can be resolved by polyacrylamide gel<br />

electrophoresis to give rise to a multib<strong>and</strong> DNA<br />

fragment "signature" that reflects the underlying<br />

sequence. Changes as small as single base<br />

mutations can drastically alter the multib<strong>and</strong><br />

pattern, which ultimately produce new<br />

signatures. LSSP-PCR has been broadly<br />

used for the detection <strong>of</strong> mutations in human<br />

genetic diseases (Pena et al., 1994),<br />

sequence variations in human mitochondrial<br />

DNA (Barreto et al., 1996) <strong>and</strong> for genetic<br />

typing <strong>of</strong> infectious agents such as<br />

papillomavirus (HPV; Villa et al., 1995),<br />

Trypanosoma cruzi (Vago et al., 2006),<br />

Trypanosoma rangeli (Marquez et al.,<br />

2007), <strong>and</strong> Leishmania infantum (Alvarenga<br />

et al., 2012). The objective <strong>of</strong> this study was<br />

to describe the potential use <strong>of</strong> LSSP-PCR<br />

as a molecular biomarker to detect DNA<br />

mutation in maturase K gene in dwarf bean<br />

tissues exposed to paranitrophenol.<br />

Materials <strong>and</strong> methods<br />

Plant growth <strong>and</strong> treatment conditions<br />

The dwarf bean (Phaseolus vulgaris) was<br />

used as the plant material in this study. The<br />

selected seeds were sterilized with 75%<br />

(v/v) ethanol for 2 min, followed by 20%<br />

(v/v) sodium hypochlorite for <strong>10</strong> min <strong>and</strong><br />

were washed five times in sterile distilled<br />

water. Uniformly three plant seedlings were<br />

transferred to a Magenta box containing MS<br />

(Murashige <strong>and</strong> Skoog, 1962) liquid<br />

medium (control) or supplemented with<br />

different concentrations <strong>of</strong> PNP (20, 40, 80,<br />

160, 320, <strong>and</strong> 640 µg/ml). PNP-treated<br />

seedlings were grown for <strong>10</strong> days in the<br />

growth chamber. Plant growth conditions<br />

was previously described (Enan, 2006).<br />

DNA isolation<br />

DNA was extracted from fresh plant shoots<br />

using DNeasy plant minikit (Qiagen, USA),<br />

following the instruction <strong>of</strong> the<br />

manufacturer. The final DNA concentration<br />

was determined by agarose gel<br />

electrophoresis against known st<strong>and</strong>ards<br />

(Invitrogen, USA).<br />

Specific PCR amplification <strong>of</strong> matK<br />

fragments<br />

To eliminate any possibility <strong>of</strong> bacterial<br />

contamination due to the very low-


stringency conditions <strong>of</strong> the LSSP-PCR reaction,<br />

all experiments were carried out with extreme<br />

precautions. PCR reactions were performed with<br />

specific primers matK472F (5′-<br />

CCCRTYCATCTGGAAATCTTGGTTC-3′) <strong>and</strong><br />

matK1248R (5′-<br />

GCTRTRATAATGAGAAAGATTTCTGC-3′) as<br />

described by Yu et al. (2011). Amplification <strong>of</strong><br />

specific PCR products was carried out in a volume<br />

<strong>of</strong> 25 μl containing 30 ng <strong>of</strong> genomic DNA <strong>and</strong> a<br />

master mix containing 1.5 mM MgCl2, 200 μM <strong>of</strong><br />

each deoxynucleotide (dNPTs), 20 pmol <strong>of</strong> each<br />

primer, 1.0 U Taq DNA polymerase (Invitrogen-<br />

BRL), in <strong>10</strong> mM Tris–HCl [pH 8.0] <strong>and</strong> 50 mM<br />

KCl. After an initial denaturation step <strong>of</strong> 94 °C for<br />

5 min, the specific PCR program consisted <strong>of</strong> 35<br />

cycles <strong>of</strong> 94 °C for 30 s, 56 °C for 1 min <strong>and</strong> 72 °C<br />

for 1 min. The last cycle consisted <strong>of</strong> an extension<br />

step at 72 °C for 5 min. The PCR products were run<br />

on ethidium bromide-stained gel <strong>and</strong> the b<strong>and</strong>s<br />

corresponding to the specific fragment (876bp)<br />

generated by universal specific primers were<br />

purified using Purelink PCR purification Kit<br />

(Invitrogen, USA).<br />

LSSP-PCR analysis<br />

For the production <strong>of</strong> LSSP-PCR signatures,<br />

previously amplified matk fragments were purified<br />

used as a template in the LSSP-PCR (Pena et al.,<br />

1994). LSSP-PCR was also carried out in a 25μl<br />

volume containing 5ng <strong>of</strong> DNA template, 1.5 mM<br />

MgCl2, 200 μM <strong>of</strong> the four deoxynucleotide<br />

triphosphates, 120 pmol <strong>of</strong> matK472F or<br />

matK1248R primer 4.0 U Taq DNA polymerase in<br />

<strong>10</strong> mM Tris–HCl [pH 8.0] <strong>and</strong> 50 mM KCl. After a<br />

denaturation step at 94 °C for 5 min the LSSP-PCR<br />

program consisted <strong>of</strong> 35 cycles <strong>of</strong> denaturation at<br />

94 °C for 1 min, annealing at 30 °C for 1 min <strong>and</strong><br />

extension at 72 °C for 1 min. Ten microliters <strong>of</strong><br />

LSSP-PCR products were analyzed by<br />

electrophoresis on 8% (w/v) polyacrylamide gels<br />

followed by ethidium bromide. The similarity<br />

among the LSSP-PCR pr<strong>of</strong>iles <strong>of</strong> control <strong>and</strong> those<br />

obtained with the DNA <strong>of</strong> PNP-treated samples<br />

was analyzed accordingly.<br />

DNA sequencing <strong>of</strong> PCR products<br />

In order to determine the nucleotide sequence <strong>of</strong> the<br />

776 fragments generated with universal specific<br />

primers, PCR products <strong>of</strong> control <strong>and</strong> PNP-treated<br />

samples were purified <strong>and</strong> sequenced by Source<br />

BioScience (Nottingham, UK) according to Sanger<br />

matK mutations in Phaselous vulgaris 73<br />

et al. (1977). The sequence was analyzed for<br />

homology with database sequences with<br />

Multiple Sequence Alignment by MultiAlin<br />

(Corpet, 1988).<br />

Results<br />

We used the LSSP-PCR method to detect<br />

mutations in matK gene <strong>of</strong> dwarf bean<br />

tissues. DNA was amplified (first step)<br />

using universal primers to produce 776 bp<br />

fragments containing the maturase K region<br />

(Figure 1).<br />

Each fragment was isolated by<br />

electroelution <strong>and</strong> subjected to a second<br />

PCR amplification (second step) using a<br />

single primer annealed under low-stringency<br />

conditions. The generated pr<strong>of</strong>iles <strong>of</strong> the<br />

PCR products <strong>of</strong> each sample were resolved<br />

<strong>and</strong> analyzed by non-denaturing<br />

polyacrylamide gel. A complex pattern<br />

consisting <strong>of</strong> many b<strong>and</strong>s was obtained<br />

which was different depending on the<br />

concentration <strong>of</strong> PNP. We showed the<br />

LSSP-PCR pr<strong>of</strong>iles <strong>of</strong> DNA obtained from<br />

PNP-treated or PNP-untreated samples<br />

amplified with either matk742 forward<br />

primer (Figure 2) or matk1248R reverse<br />

primer matK1248R primer (Figure 3).<br />

Figure 1. Agarose gel electrophoresis <strong>of</strong><br />

PCR amplification <strong>of</strong> matk fragment with<br />

776 bp obtained in control <strong>and</strong> treated<br />

samples. Lane M: <strong>10</strong>0 bp DNA ladder; Lane<br />

C: untreated sample (control); lanes 1-6:<br />

plant samples treated with 20, 40, 80, 160,<br />

320 <strong>and</strong> 640 µg/ml PNP, respectively.


74 Mohamed R. ENAN<br />

Figure 2. Ethidium bromide-stained<br />

polyacrylamide gel electrophoresis showing gene<br />

signatures obtained by LSSP-PCR with matk742<br />

forward primer. Lanes M: <strong>10</strong>0 bp DNA ladder;<br />

Lane C: untreated sample; lanes 1-6: plant samples<br />

treated with 20, 40, 80, 160, 320 <strong>and</strong> 640 µg/ml<br />

PNP, respectively.<br />

Figure 3. Ethidium bromide-stained<br />

polyacrylamide gel showing gene signatures<br />

obtained by LSSP-PCR with matk1248 reverse<br />

primer. Lane M: <strong>10</strong>0 bp DNA ladder; Lane C:<br />

untreated sample; lanes 1-6: plant samples treated<br />

with 20, 40 80 160, 320 <strong>and</strong> 640 µg/ml PNP,<br />

respectively.<br />

The LSSP-PCR pr<strong>of</strong>iles were unique for each<br />

treatment, suggesting that this technique may be<br />

applicable for the detection <strong>of</strong> genotoxic impact <strong>of</strong><br />

environmental contaminants. The sequence <strong>of</strong> the<br />

maturase K gene was deposited in Genbank<br />

(accession numbers JQ403111). We also<br />

determined whether these sequence<br />

identities showed similarities between the<br />

different samples treated with PNP (Figure<br />

4). Our sequence alignment data obtained by<br />

MultiAlin indicated that the sequence<br />

identities <strong>of</strong> all treated samples shared <strong>10</strong>0%<br />

homology with sequences <strong>of</strong> untreated<br />

samples (Figure 4). This suggests that a<br />

mutation in the matK gene as a hotspot gene<br />

is not induced by treatment with PNP.<br />

Discussion<br />

To our knowledge, this is the first study to<br />

employ LSSP-PCR for monitoring<br />

biological effects <strong>of</strong> pollution. <strong>Molecular</strong><br />

biomarkers are effective early warning<br />

signals <strong>of</strong> adverse biological effects. The<br />

purpose <strong>of</strong> this study was to evaluate the<br />

performance <strong>of</strong> LSSP-PCR method in the<br />

detection <strong>of</strong> genotoxic effect <strong>of</strong><br />

paranitrophenol (PNP) on dwarf beans<br />

(Phaseolis vulgaris). In the past 25 years,<br />

numerous biomarkers have been developed<br />

with the objective to apply them for<br />

environmental biomonitoring (Sanchez <strong>and</strong><br />

Porcher, 2009). <strong>Molecular</strong> marker<br />

techniques have provided new tools <strong>of</strong><br />

detection <strong>of</strong> mutations in DNA in response<br />

to chemical pollution using DNA sequence<br />

<strong>and</strong> structure. The alterations in genomic<br />

DNA induced by genotoxic pollutants can<br />

be monitored using different biomarkers’<br />

assays both at the biochemical <strong>and</strong> the<br />

molecular levels. In the past few years,<br />

several <strong>of</strong> techniques revealed that<br />

mutations in DNA could be generated <strong>and</strong><br />

identified mostly by the polymerase chain<br />

reaction (PCR). Some <strong>of</strong> the examples <strong>of</strong><br />

PCR assays were utilized to detect genotoxic<br />

effects <strong>of</strong> environmental pollutants arbitraryprimed<br />

PCR (AP-PCR; Welsh <strong>and</strong><br />

McClell<strong>and</strong>, 1990) <strong>and</strong> r<strong>and</strong>omly amplified<br />

polymorphic DNA (RAPD) (Williams et al.,<br />

1990). One <strong>of</strong> the main advantages <strong>of</strong> using<br />

LSSP-PCR for studies related to<br />

genotoxicity is that the signatures were not<br />

unduly sensitive to the concentration <strong>of</strong><br />

DNA template.


matK mutations in Phaselous vulgaris 75<br />

Figure 4. DNA sequences <strong>of</strong> the matK genes from untreated <strong>and</strong> PNP-treated plant samples aligned<br />

by using MultiAlin.


76 Mohamed R. ENAN<br />

In the present study, genotoxic effect <strong>of</strong> PNP<br />

was performed using LSSP-PCR that can detect<br />

single or multiple mutations in gene-size DNA<br />

fragments. The chloroplast maturase K gene<br />

(matK) is one <strong>of</strong> the most variable coding genes <strong>of</strong><br />

angiosperms, which has been suggested to be a<br />

“barcode” for l<strong>and</strong> plants (Yu et al., 2011). Good<br />

reproducibility as a solution in the LSSP-PCR<br />

pr<strong>of</strong>iles using both forward <strong>and</strong> reverse primers<br />

was obtained. However, we observed that many <strong>of</strong><br />

these b<strong>and</strong>s are larger than the template. Our results<br />

confirm the data obtained from other studies that<br />

PCR products <strong>of</strong> the first few cycles may<br />

themselves act as primers in further rounds <strong>of</strong><br />

amplification (Barreto et al., 1996). In the current<br />

study, the sequenced PCR products <strong>of</strong> matK<br />

fragment confirmed the results <strong>of</strong> the specific PCR<br />

(Figure 1). On the other h<strong>and</strong>, unexpectedly, the<br />

data <strong>of</strong> sequence alignment quite contradicts that <strong>of</strong><br />

the LSSP-PCR signatures. Sequence alignment <strong>of</strong><br />

all PNP-treated samples <strong>of</strong> dwarf bean with the<br />

untreated control samples indicated that there is no<br />

any nucleotide substitution in the matK sequence.<br />

In previous study, Oliveira et al. (2003) described<br />

that, very similar signatures were obtained with<br />

specific primers (G1 <strong>and</strong> G2) for identification <strong>of</strong><br />

Leptospira interrogans serovars. Although the<br />

sequence data <strong>of</strong> the 285 bp fragments <strong>of</strong> the three<br />

serovars <strong>of</strong> L. interrogans indicated the presence <strong>of</strong><br />

three nucleotide alterations in these fragments, they<br />

found that identical LSSP-PCR pr<strong>of</strong>iles were<br />

obtained for the three serovars with individual<br />

primers <strong>of</strong> G1 <strong>and</strong> G2. Barreto et al. (1996)<br />

reported that the variations observed in LSSP-PCR<br />

are attributed to several variables: (i ) the number<br />

<strong>of</strong> cycles has a marked effect on the signature up to<br />

35 cycles (ii) the ramping speed <strong>of</strong> thermocyclers (<br />

type <strong>of</strong> thermo cyclers) had marked effect on the<br />

LSSP-PCR signatures <strong>and</strong> (iii) changes in the<br />

annealing temperature a range between 25-35◦C<br />

had no marked effect but Ta > 40◦C showed a<br />

deterioration <strong>of</strong> the signature.<br />

In conclusion, the chloroplast matk used in this<br />

study as a molecular biomarker gene to measure<br />

genotoxicity <strong>of</strong> PNP using LSSS-PCR, is not<br />

affected by PNP at DNA level but may be down<br />

regulated at transcriptional or post-transcriptional<br />

levels, which should be confirmed in further<br />

studies.<br />

Acknowledgment<br />

The author would like to thank a lot Dr<br />

Synan Abu Qamar, Ph.D, Purdue University<br />

for his critical revising <strong>and</strong> constructive<br />

comments on the manuscript.<br />

References<br />

Alvarenga JSC, Ligeiro CM, Gontijo CMF,<br />

et al. KDNA genetic signatures obtained<br />

by LSSP-PCR analysis <strong>of</strong> Leishmania<br />

(Leishmania) infantum isolated from the<br />

new <strong>and</strong> the old world. PLoS ONE 7:<br />

e43363, 2012<br />

Barreto G, Vago AR, Ginther C, et al.<br />

Mitochondrial D-loop ‘‘signatures’’<br />

produced by low-stringency single<br />

specific primer PCR constitute a simple<br />

comparative human identity test. Am J<br />

Hum Gene.t 58: 609–616, 1966.<br />

Corpet F. Multiple sequence alignment with<br />

hierarchical clustering. Nucl Acids Res.<br />

16: <strong>10</strong>881-<strong>10</strong>890, 1988<br />

Enan MR. Application <strong>of</strong> r<strong>and</strong>om amplified<br />

polymorphic DNA (RAPD) to detect the<br />

genotoxic effect <strong>of</strong> heavy metals.<br />

Biotechnol. Appl. Biochem. 43: 147–154,<br />

2006.<br />

Hilu KW <strong>and</strong> Alice LA. Evolutionary<br />

implications <strong>of</strong> matK indels in Poaceae.<br />

Am J Bot. 86: 1735-1741, 1999.<br />

Hilu KW, Borsch T, Muller K, et al.<br />

Angiosperm phylogeny based on matK<br />

sequence information. Am J Bot. 90:<br />

1758–1776, 2003.<br />

Hilu KW <strong>and</strong> Liang H. The matK gene:<br />

sequence variation <strong>and</strong> application in<br />

plant systematics. Am J Bot. 84: 830-<br />

839, 1997.<br />

Kitagawa W, Kimura N, Kamagata Y. A<br />

Novel p-nitrophenol degradation gene<br />

cluster from a gram-positive bacterium,<br />

Rhodococcus opacus SAO<strong>10</strong>1. J<br />

Bacteriol. 186: 4894-4902, 2004.<br />

Li X-X <strong>and</strong> Zhou ZK. The higher-level<br />

phylogeny <strong>of</strong> monocots based on matK,<br />

rbcL <strong>and</strong> 18S rDNA sequences. Acta


Phytotaxonomica Sinica 45: 113–133, 2007.<br />

Murashige T <strong>and</strong> Skoog FA. A revised medium for<br />

rapid growth <strong>and</strong> bioassay with tobacco tissue<br />

cultures. Physiol Plant. 15: 473–479, 1962.<br />

Neuhaus H <strong>and</strong> Link G. The chloroplast tRNA Lys<br />

(UUU) gene from mustard (Sinapis alba)<br />

contains a class II intron potentially coding for a<br />

maturase-related polypeptide. Curr Genet. 11:<br />

251–257, 1987.<br />

Ohno K, Tanaka-Azuma Y, YonedaY, Yamada T.<br />

Genotoxicity test system based on p53R2 gene<br />

expression in human cells: Examination with 80<br />

chemicals. Mutat. Res. 588: 47-57, 2005.<br />

Oliveira MAA, Caballero OLSD, Vago AR, et al.<br />

Low-stringency single specific primer PCR for<br />

identification <strong>of</strong> Leptospira. J Med Microbiol.<br />

52: 127–135, 2003.<br />

Pena SDJ, Barreto G, Vago AR, et al. Sequencespecific<br />

‘gene signatures’ can be obtained by<br />

PCR with single specific primers at low<br />

stringency. Proc Natl Acad Sci USA, 91: 1946–<br />

1949, 1994.<br />

Qiu, Y L, Lee J, Bernasconi-Quadroni F, et al. The<br />

earliest angiosperms: evidence from<br />

mitochondrial, plastid, <strong>and</strong> nuclear genomes.<br />

Nature. 402: 404-407, 1999.<br />

Sanchez W <strong>and</strong> Porcher JM. Fish biomarkers for<br />

environmental monitoring within the Water<br />

Framework Directive <strong>of</strong> the European Union.<br />

TrAC Trends in Analytical Chemistry. 28: 150-<br />

158, 2009.<br />

Sanger F, Nicklen S, Coulson AR. DNA<br />

sequencing with chain-terminating inhibitors.<br />

Proc Natl. Acad. Sci. USA, 74: 5463–5467,<br />

1977.<br />

Sugita M, Shinozaki K, Sugiura M. Tobacco<br />

chloroplast tRNALys (UUU) gene contains a<br />

matK mutations in Phaselous vulgaris 77<br />

2.5-kilobase-pair intron: an open reading<br />

frame <strong>and</strong> a conserved boundary<br />

sequence in the intron. Proc Natl Acad<br />

Sci USA. 82:3557-3561, 1985.<br />

Vago AR, Macedo AM, Oliveira RP, et al.<br />

Kinetoplast DNA signatures <strong>of</strong><br />

Trypanosoma cruzi strains obtained<br />

directly from infected tissues. Am J<br />

Pathol 149: 2153–2159, 2006.<br />

Villa LL, Caballero OL, Levi JE, et al. An<br />

approach to human papilloma virus<br />

identification using low-stringency<br />

single specific primer PCR. Mol <strong>Cell</strong><br />

Probes. 9: 45-48, 1995.<br />

Vogel J, Hübschmann T, Börner T, Hess<br />

WR. Splicing <strong>and</strong> intron- internal RNA<br />

editing <strong>of</strong> trnK-matK transcripts in<br />

barley plastids: support for matK as an<br />

essential splicing factor. J Mol Biol. 270:<br />

179–187, 1997.<br />

Welsh J <strong>and</strong> McClell<strong>and</strong> M. Fingerprinting<br />

genomes using PCR with arbitrary<br />

primers. Nucleic Acids Res. 19: 861–866,<br />

1990.<br />

Williams JGK, Kubelik AR, Livak KJ, et al.<br />

DNA polymorphisms amplified by<br />

arbitrary primers are useful as genetic<br />

markers. Nucleic Acids Res. 18: 6531-<br />

6535, 1990.<br />

Yang L, Luo S, Li Y, et al. High efficient<br />

photocatalytic degradation <strong>of</strong> pnitrophenol<br />

on a unique Cu2O/TiO2 p-n<br />

heterojunction network catalyst. Environ<br />

Sci Technol. 44: 7641–7646, 20<strong>10</strong>.<br />

Yu J, Xue JH, Zhou SL. New universal<br />

matK primers for DNA barcoding<br />

angiosperms. J Syst Evol. 49: 176-181,<br />

2011.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong> <strong>10</strong>(2):79-83, 2012 Short Communication 79<br />

Haliç University, Printed in Turkey.<br />

http://jcmb.halic.edu.tr<br />

Characterization <strong>of</strong> Paenibacillus larvae isolates from Brazil<br />

Sérgio Salla CHAGAS 1 , Rodrigo Almeida VAUCHER 2 , Adriano BRANDELLI 2,*<br />

1<br />

Laboratório Nacional Agropecuário (LANAGRO/RS), Estrada da Ponta Grossa 3036, Porto Alegre,<br />

Brazil.<br />

2<br />

Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de<br />

Alimentos, Universidade Federal do Rio Gr<strong>and</strong>e do Sul, 91501-970 Porto Alegre, Brazil.<br />

(*author for correspondence: abr<strong>and</strong>@ufrgs.br)<br />

Received: 24 February 2012; Accepted:11 November 2012<br />

Abstract<br />

Paenibacillus larvae is the agent <strong>of</strong> American Foulbrood disease (AFB), causing the death <strong>of</strong> the hive<br />

<strong>and</strong> greatly affecting beekeeping. In Brazil, this bacterium was only isolated in the states <strong>of</strong> Rio<br />

Gr<strong>and</strong>e do Sul <strong>and</strong> Paraná. The present study aimed to characterize the strains isolated in Brazil,<br />

confirming its identification by molecular diagnosis. Eighty isolates from samples <strong>of</strong> honey,<br />

honeycomb <strong>and</strong> pollen collected between 2002 <strong>and</strong> 2007 from different regions were selected for<br />

analysis. Phenotypical characterization indicates that 77 strains were P. larvae but 3 strains showed<br />

inconclusive results. PCR protocols based on detection <strong>of</strong> 16S rDNA <strong>and</strong> metalloproteinase gene<br />

confirmed all strains being P. larvae. The PCR amplicon <strong>of</strong> 16S rDNA was sequenced, <strong>and</strong><br />

phylogenetic analysis was performed. The results indicated that there is high homology among the<br />

strains isolated in Brazil.<br />

Keywords: Paenibacillus larvae, 16S rDNA, metalloproteinase, American foulbrood disease,<br />

phylogenetic analysis<br />

Özet<br />

Brezilya’dan Paenibacillus larvae izolatlarının karakterizasyonu<br />

Paenibacillus larvae kovanın ölümüne sebep olan ve büyük or<strong>and</strong>a arıcılığı etkileyen Amerikan yavru<br />

çürüklüğü hastalığının (AFB) etkenidir. Brezilya’da bu bakteri sadece Rio Gr<strong>and</strong>e do Sul ve Paraná<br />

eyaletlerinde izole edilmiştir. Bu çalışma moleküler tanı ile yapılan identifikasyonu doğrulayarak<br />

Brezilya’da izole edilen suşları karakterize etmeyi amaçlamıştır. Farklı bölgelerden 2002 ve 2007<br />

yılları arasında toplanan bal, petek ve polen örneklerinden elde edilen seksen izolat analiz için<br />

seçilmiştir. Fenotipik karakterizasyon 77 suşun P. larvae olduğunu, fakat 3 suşun yetersiz sonuç<br />

gösterdiğini belirtmektedir. Metalloproteinaz geni ve 16SrDNA’nın saptanmasına dayanan PCR<br />

protokolleri tüm suşların P. larvae olduğunu doğrulamaktadır. 16SrDNA PCR amplikonu<br />

dizilenmiştir ve filogenetik analiz yapılmıştır. Sonuçlar Brezilya’da izole edilen suşlar arasında<br />

yüksek homoloji olduğunu göstermektedir.<br />

Anahtar Kelimeler: Paenibacillus larvae, 16S rDNA; metalloproteinaz; Amerikan yavru çürüklüğü<br />

hastalığı, filogenetik analiz


80 Sérgio Salla CHAGAS et al.<br />

Introduction<br />

The American foulbrood (AFB) is a notifiable<br />

disease <strong>of</strong> high economic importance <strong>and</strong><br />

significant international trade (OIE, 2009). Its<br />

causative agent, Paenibacillus larvae, attacks only<br />

the larval stage <strong>of</strong> the bee Apis mellifera <strong>and</strong> other<br />

Apis spp. (Genersch, 20<strong>10</strong>). P. larvae are only<br />

infective in the form <strong>of</strong> spores, which are extremely<br />

tenacious <strong>and</strong> can remain viable for many years<br />

(Genersch, 2008). Infection occurs by ingestion <strong>of</strong><br />

spores that germinate <strong>and</strong> spread after 24 hours,<br />

producing septicemia <strong>and</strong> death (Allipi, 1992). The<br />

clinical symptoms are typical, <strong>and</strong> the larvae have<br />

affected to a dark <strong>and</strong> viscous form. Besides food<br />

with honey containing spores, the introduction <strong>of</strong><br />

bees from hives infected <strong>and</strong> even beekeepers could<br />

help its spread (Genersh, 20<strong>10</strong>).<br />

In South America, the first isolation <strong>of</strong> P. larvae<br />

occurred in 1989 in Argentina (Allipi, 1992), <strong>and</strong><br />

subsequently in Uruguay (Antunez et al., 2004). In<br />

Brazil, despite efforts to prevent its introduction,<br />

honey contaminated with P. larvae was found in<br />

the state <strong>of</strong> Rio Gr<strong>and</strong>e do Sul in 2002 (Schuch et<br />

al., 2003). More recently, the occurrence <strong>of</strong> P.<br />

larvae was reported in hives in the state <strong>of</strong> Paraná<br />

(MAPA, 2006). The aim <strong>of</strong> this work was to<br />

confirm the presence <strong>of</strong> P. larvae by molecular<br />

methods <strong>and</strong> to characterize the strains isolated in<br />

Brazil.<br />

Materials <strong>and</strong> Methods<br />

This study used 80 isolates <strong>of</strong> P. larvae, originated<br />

from samples <strong>of</strong> honey, honeycomb <strong>and</strong> pollen<br />

collected from different Brazilian regions between<br />

May 2002 <strong>and</strong> June 2007 by Laboratório Nacional<br />

Agropecuário (LANAGRO/RS, Ministry <strong>of</strong><br />

Agriculture, Brazil), for the microbiological<br />

analysis for the detection <strong>of</strong> spores (Schuch et al.,<br />

2002). Of these 80 isolates, 30 were from suspected<br />

samples <strong>and</strong> 50 originated from the process <strong>of</strong><br />

importation. Aliquots <strong>of</strong> 20 g <strong>of</strong> the various<br />

products were diluted to 40 ml <strong>of</strong> distilled water<br />

<strong>and</strong> centrifuged at 6000 g for <strong>10</strong> min. The pellet<br />

obtained was resuspended in 1 ml <strong>of</strong> distilled water,<br />

heated to 80°C for <strong>10</strong> min <strong>and</strong> seeded on selective<br />

P. larvae agar plates (Schuch et al., 2002). These<br />

plates were incubated at 35°C, <strong>and</strong> monitored for 5<br />

days.<br />

Isolated colonies were suspended in distilled<br />

water <strong>and</strong> subjected to bacterial DNA extraction<br />

using phenol-chlor<strong>of</strong>orm. P. larvae ATCC 9545<br />

was used as a positive control. Bacillus<br />

cereus ATCC 11778 <strong>and</strong> Paenibacillus alvei<br />

isolated by LANAGRO/RS (Porto Alegre,<br />

Brazil), were used as negative controls. The<br />

amplification <strong>of</strong> the 16S rDNA was through<br />

a nested PCR protocol, conducted in the<br />

GeneAmp PCR System 2400 equipment<br />

(Applied Biosystems, Foster City, CA,<br />

USA). The amplification was initially<br />

performed with external primers Ple(F)<br />

TCGAGCGGACCTTGTGT <strong>and</strong> Ple(R)<br />

CTATCTCAAAACCGCTCAGAG, <strong>and</strong><br />

then with the external primers Pli (F)<br />

CTTCGCATGAAGAAGTCATC <strong>and</strong><br />

Pli(R) TCAGTTATAGGCCAGAAAGC.<br />

The final concentrations <strong>of</strong> reagents were<br />

0.2 mM <strong>of</strong> each primer, 1.25 U Taq DNA<br />

polymerase, 0.2 mM dNTPs, 1.5 mM<br />

MgCl2, 5 μl <strong>of</strong> DNA (20 ng/μl) in a reaction<br />

volume <strong>of</strong> 25 μl (Lauro et al. 2003). The<br />

primers MpPl(F)<br />

CGGGCAGCAAATCGTATTCAG <strong>and</strong><br />

MpPl(R)<br />

CCATAAAGTGTTGGGTCCTCTAAG<br />

were used for amplification <strong>of</strong><br />

metalloproteinase gene. The final<br />

concentrations <strong>of</strong> reagents was 1 mM <strong>of</strong><br />

each primer, 1 U Taq DNA polymerase, 0.2<br />

mM <strong>of</strong> dNTPs , 2.0 mM MgCl2, 5 μl <strong>of</strong><br />

DNA (20 ng/μl) in a reaction volume <strong>of</strong> 25<br />

μl (Kilwinski et al., 2004). The amplified<br />

DNA was subjected to electrophoresis in 1%<br />

agarose gel stained with ethidium bromide.<br />

The PCR products obtained by<br />

amplification with primers Pli were purified<br />

using the kit PureLink Quick Gel Extraction<br />

(Invitrogen, Carlsbad, CA, USA) <strong>and</strong><br />

sequenced. The reaction was carried out<br />

using the sequencing kit Big Dye<br />

Terminator (Applied Biosystems), according<br />

to the manufacturer’s instructions. The<br />

analysis was performed on a 16 capillary<br />

sequencer, model ABI 3130xl (Applied<br />

Biosystems). The sequences <strong>of</strong> the 16S<br />

rDNA were established, <strong>and</strong> the BLAST<br />

algorithm was used to find homologous<br />

sequences. The calculation <strong>of</strong> the distance<br />

<strong>and</strong> the construction <strong>of</strong> the phylogenetic tree<br />

were carried out by the neighbor-joining<br />

method, with the help <strong>of</strong> the s<strong>of</strong>tware


MegaBACE version 3.1 (Kumar et al., 2004).<br />

Results<br />

When microbial growth was observed on selective<br />

medium, three colonies <strong>of</strong> each plate were selected<br />

on the basis <strong>of</strong> colony morphology (hyaline aspect,<br />

flat edges <strong>and</strong> flat center) <strong>and</strong> presence <strong>of</strong> a zone <strong>of</strong><br />

Characterization <strong>of</strong> Paenibacillus larvae 81<br />

proteolysis for confirmatory tests (reaction<br />

to catalase <strong>and</strong> Gram stain). Most <strong>of</strong> the<br />

isolates were positive for P. larvae. Two<br />

isolates from honeycomb showed atypical<br />

colony morphology <strong>and</strong> one isolate from<br />

pollen showed positive catalase reaction <strong>and</strong><br />

atypical morphology (Table 1).<br />

Table 1. Evaluation <strong>of</strong> Paenibacillus larvae isolated from honey, honeycomb <strong>and</strong> pollen samples<br />

(2002-2007).<br />

Sample n Typical colony<br />

Negative catalase<br />

morphology reaction<br />

Honey 37 37 37 37<br />

Honeycomb 35 33 35 35<br />

Pollen a 8 7 7 8<br />

Total 80 77 79 80<br />

a<br />

The same pollen sample showed atypical colony morphology <strong>and</strong> positive catalase reaction.<br />

The PCR protocols allowed definitive identification<br />

<strong>of</strong> P. larvae by observing the specific amplification<br />

<strong>of</strong> the 16S rDNA <strong>and</strong> metalloproteinase genes (Fig.<br />

1). All the 80 isolates responded to this approach,<br />

showing the presence <strong>of</strong> expected PCR fragments<br />

Positive PCR<br />

results<br />

with primers Ple (969 bp), Pli (572 bp) <strong>and</strong><br />

MpPl (271 bp). The specificity <strong>of</strong> amplicons<br />

was checked by sequencing. Amplification<br />

was not observed in the samples <strong>of</strong> negative<br />

controls.<br />

Figure 1. Agarose gel electrophoresis <strong>of</strong> PCR products. Bacillus cereus ATCC 11778 (B,C, 16S<br />

rDNA; D, metalloproteinase); Paenibacillus larvae ATCC 9545 (E,F, 16S rDNA; G,<br />

metalloproteinase); Paenibacillus alvei (H, I, 16S rDNA; J, metalloproteinase); Paenibacillus larvae<br />

(K,L, 16S rDNA; M, metalloproteinase); A,N = <strong>10</strong>0 bp ladder.


84 Sérgio Salla CHAGAS et al.<br />

The sequences were aligned with sequences<br />

obtained from the GenBank database (accession no.<br />

in parentheses) <strong>of</strong> the following strains:<br />

Paenibacillus brasiliensis (D78476), Paenibacillus<br />

glucanolyticus (D885140), Paenibacillus alvei<br />

(X60604), Paenibacillus koreensis (AF130254),<br />

Paenibacillus larvae (AY030079), Paenibacillus<br />

alginolyticus (D78465), Paenibacillus azot<strong>of</strong>ixans<br />

(AJ 251192) <strong>and</strong> Paenibacillus polymyxa (AY<br />

3596370). All P. larvae isolates investigated in this<br />

study had >99% identity with the 16S rDNA<br />

sequence <strong>of</strong> P. larvae (AY030079). These results<br />

are the first sequencing <strong>of</strong> strains <strong>of</strong> P. larvae<br />

isolated in Brazil <strong>and</strong> show that these strains are<br />

highly correlated.<br />

Discussion<br />

Strains <strong>of</strong> P. larvae isolated from samples <strong>of</strong> honey,<br />

honeycomb <strong>and</strong> pollen in Brazil were<br />

characterized. Results from the microbiological<br />

investigation <strong>of</strong>ten confirmed the presence <strong>of</strong> P.<br />

larvae observed by growing in selective medium.<br />

The most common discrepancy was on colony<br />

morphology. Some degree <strong>of</strong> inconclusive results<br />

from phenotypical characteristics could be expected<br />

since different P. larvae genotypes may present<br />

differences in morphological <strong>and</strong> physiological<br />

characteristics (Genersch, 20<strong>10</strong>).<br />

Although the isolation <strong>of</strong> the microorganism <strong>of</strong><br />

interest is <strong>of</strong>ten the gold st<strong>and</strong>ard for microbial<br />

identification, molecular diagnosis may permit an<br />

early detection <strong>of</strong> P. larvae, before the clinical<br />

signs <strong>of</strong> the disease, in time to implement proper<br />

control measures. In addition, some samples<br />

showed inconclusive results in microbiological<br />

testing, thus molecular verification may provide<br />

security to the diagnosis. As an example, PCR<br />

allowed to identify P. larvae in 91% <strong>of</strong> honey<br />

samples, against 57% observed by cultural methods<br />

(Lauro et al., 2003).<br />

The high similarity among isolates <strong>of</strong> P. larvae,<br />

together with the fact that until now there was only<br />

one record on the presence <strong>of</strong> P. larvae in the state<br />

<strong>of</strong> Rio Gr<strong>and</strong>e do Sul <strong>and</strong> one outbreak notification<br />

in the state <strong>of</strong> Paraná, may indicate that this<br />

pathogen was recently introduced in Brazil.<br />

Phenotypic <strong>and</strong> genotypic characterization <strong>of</strong> P.<br />

larvae isolated in the neighbor country Uruguay<br />

revealed high strain similarity (Antunez et al.,<br />

2007), while samples from Austria <strong>and</strong> Germany<br />

show higher genetic diversity (Peters et al.,<br />

2006; Loncaric et al., 2009).<br />

The evolution <strong>of</strong> the disease in South<br />

America (Allipi, 1992; Antunez et al., 2004)<br />

direct to the strong control health deployed<br />

to prevent the introduction <strong>of</strong> this pathogen<br />

<strong>and</strong> its spread in the Brazilian territory. The<br />

need for continuous surveillance indicates<br />

that PCR-based methods for rapid detection<br />

<strong>of</strong> P. larvae may be useful tools to be<br />

adopted by regulatory agencies.<br />

References<br />

Allipi AM. A comparison techniques for the<br />

detection <strong>of</strong> significant bacteria <strong>of</strong> the<br />

honey bee, Apis mellifera, in Argentina.<br />

J Apicult Res. 30: 75-80, 1992.<br />

Antunez K, D’Aless<strong>and</strong>ro B, Piccini C, et<br />

al. Paenibacillus larvae spores in honey<br />

samples from Uruguay: a nationwide<br />

survey. J Invertebr Pathol. 86: 56-58,<br />

2004.<br />

Antunez K, Piccini C, Castro-Sowinski S, et<br />

al. Phenotypic <strong>and</strong> genotypic<br />

characterization <strong>of</strong> Paenibacillus larvae<br />

isolates. Vet Microbiol. 124: 178-183,<br />

2007.<br />

Genersh E. Paenibacillus larvae <strong>and</strong><br />

American Foulbrood - long since known<br />

<strong>and</strong> still surprising. J Verbr Lebensm. 3:<br />

429-434, 2008.<br />

Genersh E. American Foulbrood in<br />

honeybees <strong>and</strong> its causative agent,<br />

Paenibacillus larvae. J Invertebr Pathol.<br />

<strong>10</strong>3: S<strong>10</strong>-S19, 20<strong>10</strong>.<br />

Kilwinski J, Peters M, Ashiralieva A,<br />

Genersch E. Proposal to reclassify<br />

Paenibacillus larvae subsp. pulvifaciens<br />

DSM 3615 (ATCC 49843) as<br />

Paenibacillus larvae subsp. larvae.<br />

Results <strong>of</strong> a comparative biochemical<br />

<strong>and</strong> genetic study. Vet Microbiol. <strong>10</strong>4:<br />

31-42, 2004.<br />

Kumar S, Tamura K, Nei M. MEGA3:<br />

Integrated s<strong>of</strong>tware for <strong>Molecular</strong><br />

Evolutionary Genetics Analysis <strong>and</strong><br />

sequence alignment. Brief Bioinformat.<br />

5: 150-163, 2004.


82 Sérgio Salla CHAGAS et al.<br />

Lauro FM, Favaretto M, Covolo L, et al. Rapid<br />

detection <strong>of</strong> Paenibacillus larvae subsp. larvae<br />

from honey <strong>and</strong> hive samples with a novel<br />

nested PCR protocol. Int J Food Microbiol. 81:<br />

195-201, 2003.<br />

Loncaric I, Derakhshifar I, Oberlerchner JT, et al.<br />

Genetic diversity among isolates <strong>of</strong><br />

Paenibacillus larvae from Austria. J Invertebr<br />

Pathol. <strong>10</strong>0: 44-46, 2009.<br />

MAPA. Nota técnica DSA nº52/2006. Ocorrência<br />

de “Cria Pútrida Americana” no município de<br />

Quatro Barra, estado do Paraná-Brasil. Ministry<br />

<strong>of</strong> Agriculture <strong>of</strong> Brazil, Brasília, 2006.<br />

OIE. American Foulbrood. Manual <strong>of</strong> st<strong>and</strong>ards for<br />

diagnostic tests <strong>and</strong> vaccines for lists A <strong>and</strong> B<br />

diseases <strong>of</strong> mammals, birds <strong>and</strong> bees. Office<br />

International des Epizooties, Paris. pp. 687-693,<br />

2009.<br />

Peters M, Kilwinski J, Beringh<strong>of</strong>f A, et al.<br />

American Foulbrood <strong>of</strong> the honey bee:<br />

occurrence <strong>and</strong> distribution <strong>of</strong> different<br />

genotypes <strong>of</strong> Paenibacillus larvae in the<br />

administrative district <strong>of</strong> Arnsberg (North<br />

Rhine-Westphalia). J Vet Med B. 53: <strong>10</strong>0-<strong>10</strong>4,<br />

2006.<br />

Schuch DMT, Madden RH, Sattler A. An improved<br />

method for the detection <strong>and</strong> presumptive<br />

identification <strong>of</strong> Paenibacillus larvae subsp.<br />

larvae spores in honey. J Apicult Res. 40: 59-<br />

64, 2002.<br />

Schuch DMT, Tochetto LG, Sattler A. Relato do<br />

primeiro isolamento <strong>of</strong>icial de esporos de<br />

Paenibacillus larvae subsp. larvae no Brasil em<br />

colméia sem sinais clínicos de Cria Pútrida<br />

Americana. Pesq Agropec Bras. 38: 441-444,<br />

2003.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong> - GUIDELINES for AUTHORS<br />

General<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong><br />

(J<strong>Cell</strong>MolBiol) is an international journal which<br />

covers original works in the field <strong>of</strong> cell biology,<br />

molecular biology, genetics, microbiology,<br />

neurobiology, bioinformatics <strong>and</strong> related topics.<br />

The <strong>of</strong>ficial language <strong>of</strong> the journal is English,<br />

however manuscripts in Turkish are accepted as<br />

well.<br />

Conditions for publication<br />

This journal publishes research articles, review<br />

articles, short communications, book/s<strong>of</strong>tware<br />

reviews, case reports <strong>and</strong> letters to the editor.<br />

Research articles: Only original contributions will<br />

be accepted which have not been published<br />

previously. Manuscripts should not exceed 15<br />

papers <strong>of</strong> printed text, including tables, figures <strong>and</strong><br />

references<br />

Review articles: Reviews <strong>of</strong> recent developments in<br />

a research field <strong>and</strong> ideas will be accepted.<br />

Manuscripts should not exceed 15 papers <strong>of</strong> printed<br />

text. Illustrations are encouraged.<br />

Short communications: These include small-scale<br />

investigations or innovative methods, techniques,<br />

clinical trials <strong>and</strong> epidemiological studies. It should<br />

not exceed 3 pages.<br />

Letters to editor: These include opinions, news <strong>and</strong><br />

suggestions. Letters should not exceed 2 papers <strong>of</strong><br />

printed text.<br />

Case Reports: These include individual<br />

observations based on small numbers <strong>of</strong> subjects.<br />

This type <strong>of</strong> research cannot indicate causality but<br />

may indicate areas for further research.<br />

REVISED<br />

December, 2011<br />

Manuscripts should be submitted by e-mail to:<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong> <strong>Molecular</strong> <strong>Biology</strong><br />

Haliç Üniversitesi<br />

Fen Edebiyat Fakültesi<br />

Moleküler Biyoloji ve Genetik Bölümü<br />

Sıracevizler Cad. No:29<br />

Bomonti-Şişli 34381, İstanbul-TÜRKİYE<br />

Tel: +90 212 343 08 87, Fax: +90 212 231 06 31<br />

E-Mail: jcmb@halic.edu.tr<br />

83<br />

Book/s<strong>of</strong>tware reviews: Short but concise<br />

description <strong>of</strong> the book/s<strong>of</strong>tware, not exceeding a<br />

page. Book/s<strong>of</strong>tware reviews are not peer reviewed.<br />

Presentation<br />

Papers should be typed clearly, double-spaced with<br />

3 cm wide margins.<br />

Manuscripts should be prepared using Word<br />

Processor.<br />

Cover Letter: You may briefly explain your work<br />

<strong>and</strong> its contribution to present knowledge.<br />

Title Page: The first page <strong>of</strong> your manuscript<br />

should be a title page containing the type <strong>of</strong> paper;<br />

the title; all authors' full names, <strong>and</strong> affiliations;<br />

<strong>and</strong> the corresponding author's contact address<br />

(including phone <strong>and</strong> fax numbers) <strong>and</strong> e-mail<br />

address. The title should be as short as possible, but<br />

should give adequate information regarding the<br />

contents. Authors should also state a running title<br />

<strong>of</strong> no more than 50 characters including spaces.<br />

All pages must be numbered.<br />

<strong>Full</strong> Paper<br />

The full paper should be divided into the following<br />

parts in the order indicated:


84<br />

Abstract: A brief, informative abstract, not<br />

exceeding 200 words, should be provided in<br />

English <strong>and</strong> in Turkish. For authors who are not<br />

native Turkish speakers, J<strong>Cell</strong>MolBiol can provide<br />

the Turkish abstract.<br />

Keywords: Immediately following the abstract,<br />

authors should provide 5 keywords or phrases that<br />

reflect the content <strong>of</strong> the article.<br />

Introduction should include theory, hypotheses,<br />

prior work<br />

Material <strong>and</strong> methods may include subheadings<br />

Results: If the study consists <strong>of</strong> different parts,<br />

subheadings in this section should be consistent<br />

with subheadings in the methods.<br />

Discussion<br />

Acknowledgements should precede the list <strong>of</strong><br />

references<br />

References: Papers cited in the manuscript should<br />

be listed in alphabetical order according to the first<br />

author's surname.<br />

Tables <strong>and</strong> Figures<br />

• Tables <strong>and</strong> figures should both be embedded<br />

within the text in their appropriate positions <strong>and</strong> be<br />

submitted separately.<br />

• Electronically submitted figures are preferred in<br />

*.jpg or *.tiff (min. 300 dpi) formats. Bar scales<br />

should be drawn directly on the figures when<br />

necessary. Figure legends should not be included in<br />

the *jpg or *tif files.<br />

• Each table should be accompanied by a short<br />

instructive title line plus an explanatory caption at<br />

the top. Indicate footnotes within tables by<br />

superscript letters <strong>and</strong> type footnotes below the<br />

table.<br />

• All the tables <strong>and</strong> figures must be referred to<br />

within the text.<br />

Units, Abbreviations <strong>and</strong> Scientific Names<br />

• Only SI units should be used. Current<br />

abbreviations can be used without explanation,<br />

others must be explained.<br />

• All acronyms/abbreviations must be explained<br />

in parenthesis after their first occurrence. If many<br />

unfamiliar acronyms/abbreviations are used, please<br />

compile them in an "Abbreviations" section at the<br />

end <strong>of</strong> the paper.<br />

• Latin expressions should be typed in italics.<br />

Referencing<br />

• In the text, citations with two authors should<br />

take the form: Smith <strong>and</strong> Robinson,1990. If several<br />

papers are cited by the same author in the same<br />

year, they should be lettered in sequence (1990a),<br />

(1990b), etc. When papers are by more then two<br />

authors they should be cited as Smith et al.,1990. In<br />

cases where more than one reference is written for<br />

the same sentence, they should appear in ascending<br />

publication order, e.g. (Jones et al., 2005; Smith et<br />

al., 2007; Brown et al., 2009).<br />

• In the list, references must be placed in<br />

alphabetical order. The following models for the<br />

reference list cover all situations. The punctuation<br />

given must be exactly followed. The journal titles<br />

should be abbreviated appropriately.<br />

Redford IR. Evidence for a general relationship<br />

between the induced level <strong>of</strong> DNA double<br />

str<strong>and</strong> breakage <strong>and</strong> cell killing after Xirradiation<br />

<strong>of</strong> mammalian cells. Int J Radiat<br />

Biol. 49: 611- 620, 1986.<br />

Tccioli CE, Cottlieb TM, Blund T. Product <strong>of</strong> the<br />

XRCCS gene <strong>and</strong> its role in DNA repair <strong>and</strong><br />

V(D)J recombination. Science. 265: 1442-1445,<br />

1994<br />

Ohlrogge JB. Biochemistry <strong>of</strong> plant acyl carrier<br />

proteins. The Biochemistry <strong>of</strong> Plants: A<br />

Comprehensive Treatise. Stumpf PK <strong>and</strong> Conn<br />

EE (Ed). Academic Press, New York. 137-157,<br />

1987.<br />

Brown LA. How to cope with your supervisor. PhD<br />

Thesis. University <strong>of</strong> New Orleans, 2005.<br />

Web document with no author: Leafy seadragons<br />

<strong>and</strong> weedy seadragons 2001. Retrieved<br />

November 13, 2002, from http:// www.<br />

windspeed.net.au/jenny/seadragons/<br />

Web document with author: Dawson J, Smith L,<br />

Deubert K. Referencing, not plagiarism.<br />

Retrieved October 31, 2002 from http:<br />

//studytrekk.lis.curtin.edu.au/<br />

• Only papers published or in press should be<br />

cited in the literature list. Unpublished results,<br />

including submitted manuscripts <strong>and</strong> those in<br />

preparation, should be indicated as unpublished<br />

data in the text.<br />

Submission Policies <strong>and</strong> Authorship<br />

REVISED<br />

December, 2011


Upon submission <strong>of</strong> a manuscript, it is accepted<br />

that all co-authors have approved the contents <strong>of</strong><br />

the manuscript <strong>and</strong> its submission by the<br />

corresponding author, <strong>and</strong> that the corresponding<br />

author is authorized to represent all co-authors in<br />

pre-publication discussions with J<strong>Cell</strong>MolBiol.<br />

The corresponding author is responsible for<br />

ensuring that all the contributors to the relevant<br />

work are listed as authors <strong>and</strong> that all authors have<br />

aggreed to the manuscript’s content <strong>and</strong> its<br />

submission to the J<strong>Cell</strong>MolBiol. In case the <strong>Journal</strong><br />

happens to be aware <strong>of</strong> an authorship dispute,<br />

authorship must be approved in writing by all <strong>of</strong> the<br />

parties.<br />

Cost<br />

There are no submission fees or page charges.<br />

Criteria for the Selection <strong>of</strong> Manuscripts<br />

Manuscripts should meet the following criteria: The<br />

study conducted is material is original <strong>and</strong> ethical,<br />

the writing is clear; the study methods are<br />

appropriate, the data are valid, the conclusions are<br />

reasonable <strong>and</strong> supported by the data; the<br />

information is important; <strong>and</strong> the topic is<br />

interesting to our readership.<br />

Editorial Processes<br />

Researchers may request informal feedback from<br />

the editors in a particular manuscript. The<br />

presubmission process aids in the submission<br />

decision for authors.<br />

When J<strong>Cell</strong>MolBiol receives a manuscript, the<br />

Editor-in-Chief will first decide whether the<br />

manuscript meets the formal criteria specified with<br />

“Guidelines for Authors” <strong>and</strong> whether it fits within<br />

the scope <strong>of</strong> the <strong>Journal</strong>. In case <strong>of</strong> doubt on the<br />

basis <strong>of</strong> initial review, the Editor-in-Chief will<br />

consult other members <strong>of</strong> the Editorial Board.<br />

Manuscripts that are found suitable for peer review<br />

will be assigned to two expert reviewers. Reviewers<br />

may either be Editorial/Advisory Board members<br />

or external experts selected by the Editorial Board.<br />

The corresponding author is notified by e-mail<br />

when the editor decides to send a paper for review.<br />

The reviewers will have up to three weeks to<br />

review the submitted article. After peer review, the<br />

editor will contact the author. If the author is<br />

required to submit a revised version, the revised<br />

version has to be submitted by the author within<br />

two weeks. Otherwise, the manuscript will be<br />

REVISED<br />

December, 2011<br />

85<br />

removed from the manuscript submission queue<br />

<strong>and</strong> will be considered rejected.<br />

In cases where the referees have requested welldefined<br />

changes to the manuscript, editors may<br />

request a revised manuscript that addresses to<br />

referees’ concerns. The revised version is sent back<br />

to the original referees for re-review. In cases<br />

where the referees’ concerns are more wideranging,<br />

editors may reject the manuscript. The<br />

revised manuscript should be accompanied by a<br />

cover letter that includes a point-by-point response<br />

to referees’ comments <strong>and</strong> an explanation <strong>of</strong> how<br />

the manuscript has been changed.<br />

As a matter <strong>of</strong> policy, we do not suppress referees’<br />

reports, any comments directed to authors are<br />

transmitted regardless <strong>of</strong> what we may think <strong>of</strong> the<br />

content. On rare occasions, we may edit a report to<br />

remove <strong>of</strong>fensive language or comments to reveal<br />

confidentiality.<br />

The final decision to accept or reject a manuscript<br />

will be made by the Editor-in-Chief. If it becomes<br />

apparent that there are serious problems with the<br />

scientific content or with violations <strong>of</strong> our<br />

publishing policies, the Editor-in-Chief also<br />

reserves the right to reject a paper even after it has<br />

been accepted.<br />

After acceptance, the Editor-in-Chief may make<br />

further changes to the text <strong>and</strong> figures so that the<br />

manuscript is readable <strong>and</strong> clear. Page pro<strong>of</strong>s will<br />

be sent to the corresponding author via email for<br />

checking before publication. Corresponding authors<br />

are sent pro<strong>of</strong>s <strong>and</strong> are welcome to discuss<br />

proposed changes with the Editor-in-Chief, but<br />

J<strong>Cell</strong>MolBiol reserves the right to make the final<br />

decision about the style. Corrected pro<strong>of</strong>s should be<br />

sent back within three days <strong>of</strong> receipt, otherwise the<br />

Editor-in-Chief reserves the rights to correct the<br />

pro<strong>of</strong>s himself <strong>and</strong> to send the material for<br />

publication. In cases where the authors do not<br />

submit the appropriately signed Publication<br />

Agreement Form, the manuscript is drawn from<br />

publication process even if it is accepted.<br />

Appeals<br />

Authors have the right to ask the Editor-in-Chief to<br />

reconsider a rejection decision, which is considered<br />

an appeal. Decisions are reversed only if the Editor<br />

is convinced that the original decision was a serious<br />

mistake. If an appeal merits further consideration,<br />

the Editor may send the author’s response or the<br />

revised paper to one or more referees, or Editor


86<br />

may ask one referee to comment on the concerns<br />

raised by another referee.<br />

Advance Online Publication<br />

J<strong>Cell</strong>MolBiol provides Advance Online Publication<br />

<strong>of</strong> articles, which benefit authors with an earlier<br />

publication date <strong>and</strong> allows the readers’ access to<br />

accepted papers several weeks before they appear<br />

in print<br />

Ethical Issues<br />

For manuscripts reporting experiments on live<br />

vertebrates or higher invertebrates, authors must<br />

declare that the study was approved by the<br />

institutional ethics committee. Papers describing<br />

investigations on human subjects must include a<br />

statement that informed consent was obtained from<br />

all subjects.<br />

Plagiarism<br />

If portions <strong>of</strong> the manuscript have already been<br />

published by the author on other journals or<br />

websites, J<strong>Cell</strong>MolBiol Editorial Board needs to<br />

know which portions <strong>of</strong> the manuscript have been<br />

previously published <strong>and</strong> where. The author should<br />

include a note in the cover letter indicating which<br />

portions have been published elsewhere.<br />

In case <strong>of</strong> any suspicion on scientific misconduct or<br />

dishonesty in research, J<strong>Cell</strong>MolBiol reserves the<br />

right to forward any submitted manuscript to an<br />

appropriate authority for investigation.<br />

Copyright Notice<br />

It is the responsibility <strong>of</strong> the submitting author to<br />

ensure that the authorship <strong>of</strong> the paper reflects the<br />

contributions <strong>of</strong> the authors to the work described,<br />

<strong>and</strong> that all listed authors have agreed to the<br />

submission <strong>of</strong> the manuscript in its current form.<br />

Conditions <strong>of</strong> publication in J<strong>Cell</strong>MolBiol are that<br />

the paper has not already been published elsewhere;<br />

that it is not currently being considered for<br />

publication else-where; all persons designated as<br />

authors should qualify for authorship, <strong>and</strong> all those<br />

who qualify should be listed. If accepted, Haliç<br />

University <strong>and</strong> J<strong>Cell</strong>MolBiol have the exclusive<br />

license to publish.<br />

J<strong>Cell</strong>MolBiol is freely available to individuals <strong>and</strong><br />

institutions. Copies <strong>of</strong> this <strong>Journal</strong> <strong>and</strong> articles in<br />

this journal may be distributed for research or for<br />

educational purposes free <strong>of</strong> charge. However,<br />

REVISED<br />

December, 2011<br />

commercial use <strong>of</strong> articles contained herein is<br />

prohibited without the written consent <strong>of</strong> the<br />

Editor-in-Chief.<br />

Publication Agreement<br />

The corresponing author is required to assign the<br />

Publication Agreement Form in order to publish the<br />

submitted manuscript in J<strong>Cell</strong>MolBiol.


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>and</strong><br />

<strong>Volume</strong> <strong>10</strong> · No 2 · December 2012<br />

Review Articles<br />

<strong>Molecular</strong> <strong>Biology</strong><br />

Transforming acidic coiled-coil proteins <strong>and</strong> spindle assembly<br />

S. TRIVEDI<br />

Marker Systems <strong>and</strong> Applications in Genetic Characterization Studies<br />

Y. ÖZŞENSOY, E. KURAR<br />

Research Articles<br />

COX5B <strong>and</strong> COX2 gene expressions in Multiple Sclerosis<br />

N. SAFAVIZADEH, S. A. RAHMANI , M. ZAEFIZADEH<br />

Curcumin rendered protection against cadmium chloride induced testicular damage in<br />

Swiss albino mice<br />

P. SINGH, K. DEORA, V. SANKHLA, P. MOGRA<br />

Study <strong>of</strong> Klebsiella pneumoniae isolates with ESBL activity, from ICU <strong>and</strong> Nurseries, on the<br />

isl<strong>and</strong> <strong>of</strong> Mauritius<br />

S.K. Mungloo-RUJUBALI, M.I. ISSACK, Y. JAUFEERALLY-FAKIM<br />

HIV-1 reverse transcriptase inhibition by Vitex negundo L. leaf extract <strong>and</strong> quantification <strong>of</strong><br />

flavonoids in relation to anti-HIV activity<br />

M. KANNAN, P. RAJENDRAN, V. VEDHA, G. ASHOK, S. ANUSHKA, P. CHANDRAN<br />

RAMACHANDRAN NAİR<br />

Genetic characterization <strong>and</strong> bottleneck analysis <strong>of</strong> Korki Jonub Khorasan goats by<br />

microsatellite markers<br />

B. MAHMOUDI, O. ESTEGHAMAT, A. SHARIYAR. M. Sh. BABAYEV<br />

Low-Stringency Single-Specific-Primer PCR as a tool for detection <strong>of</strong> mutations in the matK<br />

gene <strong>of</strong> Phaseolus vulgaris exposed to paranitrophenol<br />

Mohamed R. ENAN<br />

Short Communication<br />

Characterization <strong>of</strong> Paenibacillus larvae isolates from Brazil<br />

S.S. CHAGAS, R.A. VAUCHER, A. BRANDELLI<br />

Guidelines for Authors 83<br />

1<br />

11<br />

21<br />

31<br />

39<br />

53<br />

61<br />

71<br />

79

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!