16.07.2013 Views

Sterols and the phytosterol content in oilseed rape - Journal of Cell ...

Sterols and the phytosterol content in oilseed rape - Journal of Cell ...

Sterols and the phytosterol content in oilseed rape - Journal of Cell ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

78 M. Kemal Gül <strong>and</strong> Samija Amar<br />

oil, second highest <strong>phytosterol</strong> proportion <strong>in</strong> oil. The<br />

mean <strong>content</strong> <strong>in</strong> oil <strong>of</strong> five <strong>rape</strong>seed varieties was 6900<br />

mg/kg, <strong>in</strong> which <strong>the</strong> free <strong>phytosterol</strong> fraction equals<br />

65 % <strong>and</strong> <strong>the</strong> steryl ester fraction equals 35 %, <strong>of</strong> <strong>the</strong><br />

total <strong>phytosterol</strong> <strong>content</strong>. They have published that<br />

<strong>the</strong>ir <strong>phytosterol</strong> <strong>content</strong> <strong>in</strong> oil can vary to a great<br />

extent from 6540 mg/kg to 8550 mg/kg <strong>of</strong> oil.<br />

Never<strong>the</strong>less, <strong>the</strong> average total sterol <strong>content</strong> <strong>of</strong><br />

6900mg/kg classifies <strong>rape</strong>seed oil, <strong>in</strong>to oils with <strong>the</strong><br />

highest <strong>content</strong> i.e. higher than 4000 mg/kg <strong>of</strong> oil. On<br />

<strong>the</strong> o<strong>the</strong>r h<strong>and</strong> Appelqvist et al. (1981) ascerta<strong>in</strong>ed <strong>the</strong><br />

<strong>content</strong> <strong>of</strong> free <strong>phytosterol</strong>s <strong>in</strong> <strong>the</strong> total amount <strong>of</strong><br />

<strong>rape</strong>seed oil would be <strong>the</strong>n 0.3 % <strong>and</strong> esterified<br />

<strong>phytosterol</strong>s 0.6 %. Piironen et al. (2000) have<br />

published collected results <strong>of</strong> <strong>phytosterol</strong> <strong>content</strong> <strong>in</strong><br />

crude corn, cottonseed, <strong>rape</strong>seed, olive, soybean <strong>and</strong><br />

sunflower oil (Table. 2), <strong>in</strong> which <strong>the</strong>y have showed<br />

<strong>the</strong> majority <strong>of</strong> crude vegetable oils conta<strong>in</strong>, at least<br />

1 g/kg to 5 g/kg <strong>of</strong> oil. However, <strong>the</strong>y have found that<br />

<strong>the</strong> most significant exceptions are corn (up to 16 g/kg<br />

<strong>of</strong> oil) <strong>and</strong> <strong>rape</strong>seed oil (up to 10 g/kg <strong>of</strong> oil).<br />

Accord<strong>in</strong>g to Abidi et al. (1999) <strong>the</strong> total<br />

<strong>phytosterol</strong> <strong>content</strong> is affected by genetic<br />

modifications. They have compared 10 experimental<br />

transgenic <strong>and</strong> non-transgenic canola genotypes<br />

differ<strong>in</strong>g <strong>in</strong> fatty acid composition <strong>and</strong> concluded that<br />

<strong>the</strong> <strong>phytosterol</strong> <strong>content</strong> was <strong>in</strong>fluenced by <strong>the</strong> genetic<br />

modification <strong>of</strong> <strong>the</strong> fatty acid composition. A<br />

significant decrease <strong>in</strong> amount <strong>of</strong> three major<br />

<strong>phytosterol</strong>s: sitosterol, campesterol <strong>and</strong><br />

brassicasterol, was observed <strong>in</strong> non-transgenic canola<br />

varieties grown for low-l<strong>in</strong>olenic <strong>and</strong> high oleic acid.<br />

In addition, <strong>the</strong> amount <strong>of</strong> brassicasterol varied widely<br />

based on genotype <strong>and</strong> grow<strong>in</strong>g conditions.<br />

Brassicasterol <strong>content</strong> ranged from 85 to 189 mg/100 g<br />

<strong>of</strong> modified oil; campesterol <strong>content</strong> ranged from 205<br />

to 264 mg/100 g; sitosterol from 457 to 509 mg/100 g<br />

<strong>and</strong> f<strong>in</strong>ally variation <strong>of</strong> <strong>the</strong> total <strong>phytosterol</strong> <strong>content</strong>s<br />

was from 766 to 961 mg/100 g <strong>of</strong> modified oil. On <strong>the</strong><br />

o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong>re wasn’t any systematic trend <strong>of</strong><br />

<strong>phytosterol</strong> <strong>content</strong> <strong>in</strong> transgenic canola l<strong>in</strong>es. In his<br />

paper Miett<strong>in</strong>en (2001) discussed on what plant<br />

breeders should focus when try<strong>in</strong>g to develop<strong>in</strong>g new<br />

nutritionally <strong>in</strong>terest<strong>in</strong>g plant with an ideal <strong>phytosterol</strong><br />

<strong>content</strong>, which could be later on used for cholesterollower<strong>in</strong>g<br />

functional food production. He suggested<br />

that ideal <strong>phytosterol</strong> composition should conta<strong>in</strong><br />

ma<strong>in</strong>ly sitosterol esters with low campesterol ester<br />

<strong>content</strong>, because apparently campesterol esters result<br />

<strong>in</strong> similar changes, when reduction <strong>of</strong> serum<br />

cholesterol level is concerned, but at <strong>the</strong> same time, <strong>in</strong><br />

contrast to sitosterol esters, <strong>the</strong>y <strong>in</strong>crease <strong>the</strong>ir own<br />

absorption. His second suggestion for oil, which<br />

would be preferable for preparation <strong>of</strong> functional food,<br />

was that it should be rich with stanols, especially<br />

sitostanol, esterified with polyunsaturated fatty acids.<br />

S<strong>in</strong>ce phytostanols are less abundant <strong>in</strong> plants than<br />

<strong>phytosterol</strong>s, <strong>in</strong> order to produce esterified<br />

phytostanols, <strong>the</strong> f<strong>in</strong>al food price will <strong>in</strong>crease.<br />

Result<br />

Plant sterols, also called <strong>phytosterol</strong>s, occur as organic<br />

compounds <strong>and</strong> essential constituents <strong>of</strong> cell<br />

membranes <strong>in</strong> all plant oils. Recently <strong>in</strong>creased<br />

<strong>in</strong>terest <strong>in</strong> <strong>phytosterol</strong>s lies <strong>in</strong> <strong>the</strong>ir potential to reduce<br />

plasma low-density lipoprote<strong>in</strong> cholesterol level,<br />

decreas<strong>in</strong>g coronary mortality <strong>and</strong> <strong>the</strong>refore act<strong>in</strong>g as<br />

naturally preventive dietary product. High<br />

expectations have already been put forward regard<strong>in</strong>g<br />

<strong>phytosterol</strong> analysis <strong>and</strong> traditional plant-breed<strong>in</strong>g<br />

applications <strong>in</strong> develop<strong>in</strong>g improved cultivars with<br />

desirable <strong>phytosterol</strong> composition <strong>and</strong> <strong>in</strong>creased<br />

<strong>content</strong>.<br />

Phytosterols occur <strong>in</strong> relatively high concentration<br />

<strong>in</strong> <strong>the</strong> seeds <strong>of</strong> <strong>oilseed</strong> <strong>rape</strong> (Brassica napus L.).<br />

However, little is known about genetic variation <strong>of</strong><br />

<strong>phytosterol</strong>s <strong>and</strong> almost no data are available <strong>of</strong> <strong>the</strong><br />

impact <strong>of</strong> geographic location <strong>and</strong> agricultural<br />

practices on <strong>the</strong> <strong>content</strong> <strong>and</strong> composition <strong>of</strong><br />

<strong>phytosterol</strong>s <strong>in</strong> <strong>rape</strong>seed. To improve <strong>the</strong> phtosterol<br />

composition must be a major breed<strong>in</strong>g aim for a high<br />

quality vegatable oil production.<br />

References<br />

Abidi SL, List GR <strong>and</strong> Rennick KA. Effect <strong>of</strong> genetic<br />

modification on <strong>the</strong> distribution <strong>of</strong> m<strong>in</strong>or constituents <strong>in</strong><br />

canola oil. <strong>Journal</strong> <strong>of</strong> American Oil Chemists’ Society,<br />

76: 463-467, 1999.<br />

Appelqvist LAD, Kornfeldt, AK <strong>and</strong> Wennerholm JE.<br />

<strong>Sterols</strong> <strong>and</strong> steryl esters <strong>in</strong> some brassica <strong>and</strong> S<strong>in</strong>apis<br />

Seeds. Phytochemistry, 20: 207-210, 1981.<br />

Becker HC, Löptien H <strong>and</strong> Röbbelen G. Breed<strong>in</strong>g: An<br />

O v e r v i e w. In: Developments <strong>in</strong> Plant Genetics <strong>and</strong><br />

Breed<strong>in</strong>g, 4: Biology <strong>of</strong> Brassica coenospecies. Gomez-<br />

Campo C. (ed.), 13: 413-449, 1999.<br />

Benveniste P. Sterol Metabolism. American Society <strong>of</strong> Plant<br />

Biologists, The Arabidopsis Book 1–31, 2002.<br />

Dutta CP <strong>and</strong> Normen L. Capillary column gas-liquid

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!