17.07.2013 Views

Sedimentation, electrophoresis

Sedimentation, electrophoresis

Sedimentation, electrophoresis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Sedimentation</strong>, <strong>electrophoresis</strong><br />

Biophysics lecture<br />

Talián Csaba Gábor<br />

21. 03.2012.


sedimentation = settling<br />

Sedeo 2, sedi, sessum – sit<br />

Aim:<br />

1 - separation<br />

2 - measure the size or mass of the<br />

particles


F upthrust = ρ mVg<br />

ρρ km<br />

<br />

<br />

<br />

m, ρ<br />

v<br />

<br />

<br />

F g= mg<br />

<strong>Sedimentation</strong> in a gravity field<br />

F frict= fv<br />

<br />

<br />

<br />

<br />

F = F +<br />

g<br />

upthrust<br />

F<br />

frict<br />

ρVg<br />

− ρm<br />

Vg =<br />

spherical<br />

particle<br />

to calculate<br />

v<br />

to measure<br />

V = 4<br />

sed<br />

fv<br />

F − F =<br />

g<br />

upthrust<br />

F<br />

frict<br />

v = constant<br />

3 r3π Ffrict = 6πη0rv<br />

=<br />

(η 0: viscosity of the medium)<br />

2r<br />

ρ m: density of the medium; m: mass, ρ: density, v: velocity of the moving spherical particle<br />

2<br />

( − ρ )<br />

ρ m g<br />

9η<br />

0


<strong>Sedimentation</strong> in a centrifugal field:<br />

1. <strong>Sedimentation</strong> velocity method<br />

Aim: measurement of molecular mass (r ≈ nm)<br />

methods based on gravity are not effective<br />

How to calculate the forces?<br />

F frict =<br />

fv<br />

F centrifug =<br />

2<br />

mrω<br />

2<br />

ρ ρ rω<br />

ρ<br />

m<br />

mVa<br />

=<br />

Fupthrust =<br />

m<br />

Spinning system: a = rω2


What is centrifugal force?<br />

No acceleration Acceleration<br />

F cf = -mrω 2


F frict =<br />

fv<br />

Fcentrifug =<br />

2<br />

mrω<br />

Fupthrust m =<br />

2 m 2<br />

2⎛<br />

ρm<br />

⎞<br />

fv = mrω<br />

− ρm<br />

rω<br />

= mrω<br />

⎜1−<br />

⎟<br />

ρ<br />

⎝ ρ ⎠<br />

but<br />

a = rω 2<br />

2<br />

ρ rω<br />

ρ<br />

m<br />

Upon sedimentation the velocity of the particle<br />

increases while going further from axis! (v ≠ constant)


Theodore Svedberg<br />

Swedish chemist<br />

(1884-1971)<br />

Nobel-prize in 1926<br />

S<br />

=<br />

v<br />

2<br />

rω<br />

to measure<br />

⎛ ρk<br />

⎞<br />

m⎜1−<br />

⎟<br />

=<br />

⎝ ρ ⎠<br />

f<br />

to calculate<br />

S = sedimentation constant<br />

Unit: 1 Sv = 10 -13 s<br />

<strong>Sedimentation</strong><br />

velocity for unit<br />

acceleration<br />

shape factor!<br />

Relationship between shape factor (f) and diffusion constant (D):<br />

k ⋅T<br />

D<br />

R ⋅T<br />

N D<br />

To determine the mass sedimentation<br />

methods must be combined with<br />

diffusion measurements.<br />

f<br />

=<br />

=<br />

A ⋅<br />

kkkk:::: Boltzmann constant<br />

R: R: R: R: universal gas constant<br />

NNNN : Avogadro-number.<br />

=<br />

∙ ∙ <br />

∙ ∙ ( − <br />

)


Normal centrifuge<br />

Centrifuge<br />

Supercentrifuge: 20-50.000 rpm (revolution per minute)<br />

Ultracentrifuge: over 50.000 rpm<br />

Analytical centrifuge: determination of size and mass of molecules<br />

Preparative centrifuge: separation of molecules based on their mass and size<br />

angle rotor<br />

swing-out rotor


Velocity boundary sedimentation method<br />

A: boundary<br />

B: plateau<br />

: concentration profile without diffusion


2. <strong>Sedimentation</strong> equilibrium method<br />

low speed centrifugation<br />

diffusion<br />

Jean Baptiste Perrin<br />

French physicist<br />

(1870-1942)<br />

Nobel-prize in 1926<br />

sedimentation


Energy<br />

energia<br />

E 2<br />

E 1<br />

to calculate<br />

c 2<br />

c 1<br />

c<br />

c<br />

c<br />

1<br />

2<br />

=<br />

e<br />

E −E<br />

1 −<br />

kT<br />

m ⎛ ρ ⎞<br />

ω ⎜ − ⎟<br />

2 ⎝ ρ ⎠<br />

2<br />

( ) 2 2<br />

r r<br />

2 m E1 − E2<br />

= 1<br />

2 −<br />

2⎛<br />

ρm<br />

⎞<br />

mω<br />

⎜1−<br />

⎟<br />

⎝ ρ ⎠<br />

( ) 2 2<br />

r −<br />

2 ln =<br />

2 r1<br />

c1<br />

2kT<br />

to measure<br />

No influence of the molecular shape!<br />

1


Advantages of the analytical ultracentrifugation<br />

No standards are required<br />

AUC is sensitive, precise, accurate and robust (yes – all at a time!)<br />

No interactions with a stationary phase or matrix<br />

Wide range of molar masses can be investigated in the same<br />

experiment – works well for peptides to viruses.<br />

No protein modifications required<br />

No change in mobile phase – your protein is examined in exactly the<br />

same solvent in which you want to study it<br />

Theory of sedimentation is well understood


F centrifug =<br />

3. Density gradient method<br />

2<br />

mrω<br />

Fupthrust m =<br />

2<br />

ρ rω<br />

ρ<br />

m<br />

If ρ = ρ m then F c = mrω 2 = F up and v = 0!<br />

High molecular mass, small size:<br />

CsCl, CsBr, glycerol, sucrose (saccharose), ficoll<br />

Blood lipoproteins


Differential centrifugation/<br />

cellular fractionation<br />

Albert Claude<br />

Belgian biologist<br />

(1899-1983)<br />

Nobel-prize in 1974<br />

mitochondria microsomes lysosomes


Electrophoresis<br />

Ionic double layer<br />

Arne Tiselius<br />

Swedish biochemist<br />

(1902-1971)<br />

Nobel-prize in 1948


Coulomb-force: Friction force:<br />

F c = QE = ZeE<br />

E= electric field strength<br />

e = elementary charge<br />

Z= charge number<br />

Till when is the particle accelerating?<br />

F F = : until ZeE = fv<br />

c<br />

u el = v<br />

E<br />

up<br />

electrophoretic mobility<br />

= Ze<br />

f<br />

Ze<br />

6πηr<br />

F f = fv<br />

v = velocity<br />

f = shape factor<br />

For spherical molecules:<br />

ZeE = 6πηrv<br />

(Stokes-law)<br />

= Radius of molecule is<br />

to be calculated


Agarose gel <strong>electrophoresis</strong>


SYBR green


SDS polyacrylamide gel <strong>electrophoresis</strong> (SDS-PAGE)<br />

sodium-dodecyl-sulphate<br />

TEMED (tetramethylethylenediamine)<br />

ammonium-persulphate


Coomassie Brillant Blue<br />

+ protein


Native PAGE


Isoelectric focusing (IEF)


2D <strong>electrophoresis</strong>


pH pH pH 33<br />

3 3<br />

pH pH 10<br />

10<br />

biotech.szbk.u-szeged.hu/KK_Jegyzet/.../5_Downstream_1.ppt


iotech.szbk.u-szeged.hu/KK_Jegyzet/.../5_Downstream_1.ppt


THANK YOU FOR YOUR<br />

ATTENTION!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!