16.10.2012 Views

Design of De-Emphasis and Equalization Circuits for Gigabit Serial ...

Design of De-Emphasis and Equalization Circuits for Gigabit Serial ...

Design of De-Emphasis and Equalization Circuits for Gigabit Serial ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong><strong>De</strong>sign</strong> <strong>of</strong> <strong>De</strong>-<strong>Emphasis</strong> <strong>and</strong><br />

<strong>Equalization</strong> <strong>Circuits</strong> <strong>for</strong> <strong>Gigabit</strong> <strong>Serial</strong><br />

Interconnects<br />

Girish Ramesh<br />

Ans<strong>of</strong>t Corporation


Agenda<br />

� High Speed Interconnects<br />

� Driving <strong>for</strong>ces<br />

� Challenges<br />

� <strong>Equalization</strong> Techniques<br />

� <strong>De</strong>-emphasis Circuitry compliant with FB-DIMM<br />

st<strong>and</strong>ard<br />

� Circuit schematics<br />

� Nexxim Simulation Results<br />

� Example <strong>of</strong> Passive <strong>Equalization</strong> at Receive side<br />

� Example <strong>of</strong> combination <strong>of</strong> transmit <strong>and</strong> receive<br />

equalization


Why High Speed <strong>Serial</strong><br />

Interconnects ?<br />

� Modern systems like servers, storage, PCs,<br />

telecom systems have necessitated large<br />

volume <strong>of</strong> data transmission<br />

� Shared parallel buses get denser <strong>and</strong> board<br />

design becomes complicated <strong>and</strong> costly<br />

� Solution is to move to gigabit serial links<br />

with more complicated IC design since<br />

Silicon manufacturing cost is shrinking


Challenges <strong>of</strong> High Speed <strong>Serial</strong><br />

� Signal Integrity<br />

Transmission<br />

� Channel Loss hampers board design<br />

� Skin Loss ∝ √(freq)<br />

� Dielectric Loss freq<br />

� Impedance Mismatch<br />

� Lossy Connectors<br />

� Verification <strong>and</strong> testing <strong>of</strong> high speed designs<br />

� Inaccurate modeling <strong>and</strong> simulation <strong>of</strong><br />

channel, vias, interconnect<br />

� Accurate transistor models<br />

� New Simulation Tools <strong>and</strong> Diagnostics<br />


FR4 loss<br />

•Channel loss per<strong>for</strong>ms low pass<br />

filtering <strong>of</strong> input signal<br />

•High Frequency content <strong>and</strong> Low<br />

frequency content must be made<br />

equal<br />

•Boost High Frequency content or<br />

decrease low frequency content


Potential Solutions<br />

<strong>Equalization</strong> must be employed to deal with<br />

channel loss<br />

� Transmit <strong>Equalization</strong><br />

� Pre-<strong>Emphasis</strong>: Increase in voltage swing <strong>for</strong><br />

transition bits (Boost High Frequency content)<br />

� <strong>De</strong>-<strong>Emphasis</strong>: Reduce voltage swing <strong>for</strong> nontransition<br />

bits (Attenuate Low Frequency content)<br />

� Receive <strong>Equalization</strong><br />

� Analog Techniques: High Pass Filter to reverse<br />

channel effect<br />

� Digital Techniques: <strong>De</strong>cision Feedback<br />

<strong>Equalization</strong>


Transmit vs. Receive<br />

<strong>Equalization</strong><br />

� Which method to adopt?<br />

� Pre-<strong>Emphasis</strong>/<strong>De</strong>-<strong>Emphasis</strong> used if noise is a<br />

big factor, receive equalization amplifies<br />

transmitted noise<br />

� Receive <strong>Equalization</strong> used if cross talk/radiated<br />

emissions is a factor<br />

� Receive <strong>Equalization</strong> can be implemented with<br />

a passive network without a system clock<br />

� Many systems adopt a combination <strong>of</strong> the<br />

two schemes


Signaling Features<br />

FB-DIMM St<strong>and</strong>ard<br />

� DC coupled output<br />

� Transmitter with de-emphasis (3.5dB &<br />

6dB)<br />

� Reference clock at 1/24 <strong>of</strong> data rate<br />

� Data transmission at 3.2 Gb/s, 4.0 Gb/s <strong>and</strong><br />

4.8 Gb/s<br />

� 50 Ω single ended termination


<strong>De</strong>-<strong>Emphasis</strong> Architecture<br />

Use edge detection circuitry to detect transition bits<br />

� <strong>De</strong>lay data by one clock cycle using a positive edge triggered flipflop.<br />

� XOR data with flip-flop output to generate a pulse (width=clock<br />

period) <strong>for</strong> every transition.<br />

� Use this pulse to control a high speed current mirror that changes<br />

the tail current <strong>of</strong> the output driver to reduce voltage <strong>of</strong> non-transition<br />

bits.<br />

� Block level implementation<br />

IN<br />

D<br />

Driver RX<br />

D FlipFlop<br />

CK<br />

XOR


Control Wave<strong>for</strong>ms<br />

� Timing Diagram to show signals that used by the Edge <strong>De</strong>tection<br />

Circuit<br />

� Output <strong>of</strong> XOR gate is high after every transition


Transmitter Top Level Implementation<br />

� Adjustable <strong>De</strong>-emphasis through Vcontrol1,2,3 (digital control)<br />

� Four levels <strong>of</strong> <strong>De</strong>-emphasis possible 6.5dB, 3.5dB, 1.75 dB <strong>and</strong> 0dB<br />

� All <strong>Circuits</strong> realized using UMC’s 0.13um CMOS process<br />

� <strong>Circuits</strong> designed using Ans<strong>of</strong>t <strong><strong>De</strong>sign</strong>erRF <strong>and</strong> Nexxim<br />

vee<br />

i400u5<br />

i400u6<br />

i800u3<br />

i400u5<br />

i400u6<br />

i400u7<br />

i800u4<br />

i800u3<br />

Vss<br />

Vdd<br />

U3<br />

CurrentSource8<br />

Vdd<br />

DIS<br />

vee vee<br />

ckl<br />

spinh<br />

spinl<br />

Vdd<br />

Vdd<br />

U54<br />

Driver5<br />

vee<br />

i400u4 i400u2<br />

i20m<br />

i800u1 i800u1<br />

i400u1 i400u1<br />

i400u2 i400u2<br />

i400u3 i400u3<br />

vee<br />

i400u4 i400u4<br />

i800u1 i800u1<br />

i800u2 i800u2 Vdd<br />

ckh<br />

dl<br />

dh<br />

dh<br />

dl<br />

ckh<br />

ckl<br />

Vss<br />

vee<br />

Vdd<br />

i400u1<br />

i400u2<br />

inh<br />

U31<br />

DFlipflop4<br />

i400u1 i400u2<br />

qh<br />

ql<br />

Vdd<br />

i20m<br />

inl outl<br />

Vss<br />

Output Driver<br />

D Flip-flop XOR Gate<br />

outh<br />

ah<br />

al<br />

bh<br />

bl<br />

i400u3<br />

i400u<br />

XORgate6<br />

Vss<br />

vee<br />

outh<br />

Vdd<br />

Vdd<br />

U6<br />

outh<br />

outl<br />

outl<br />

inh<br />

inl<br />

inh<br />

inl<br />

i400u5 i400u2<br />

i800u2 i800u1<br />

inh<br />

inl<br />

i400u6 i400u2<br />

i800u3 i800u1<br />

Vdd<br />

U21<br />

<strong>De</strong>mphcurrsrc4<br />

Vdd Vss<br />

Vdd Vss<br />

vee<br />

Vdd Vss<br />

vee<br />

Adjustable Current<br />

Source<br />

Idemph<br />

DIS<br />

U65<br />

<strong>De</strong>mphcurrsrc4<br />

Idemph<br />

DIS<br />

U75<br />

<strong>De</strong>mphcurrsrc4<br />

Idemph<br />

DIS<br />

VCONTROL1<br />

VCONTROL2<br />

VCONTROL3<br />

User<br />

Programmed<br />

<strong>De</strong>-emphasis<br />

(0dB, 1.8dB,<br />

3.5dB,6.2dB)


�CML Output Driver<br />

�50 Ohm load<br />

Vdd<br />

Output Driver<br />

INH<br />

inh M1558<br />

M1559<br />

inl<br />

P_12_MML130E<br />

P_12_MML130E<br />

Vss<br />

L=0.12u<br />

W=80u<br />

M=2<br />

l=6u<br />

w=1.8u<br />

m=63<br />

rnhr_rf<br />

r_zbt_m=0.05k<br />

i20m<br />

outl outh<br />

OUT<br />

Vdd Vdd<br />

Vss Vss<br />

l=6u<br />

w=1.8u<br />

m=63<br />

L=0.12u<br />

W=80u<br />

M=2<br />

rnhr_rf<br />

r_zbt_m=0.05k<br />

INL


dl<br />

dh<br />

ckh ckl<br />

Vss<br />

Flip Flop<br />

� D Flip-Flop realized by two D latches in series using complementary clocks<br />

� Optimized <strong>for</strong> data rates <strong>of</strong> up to 5Gbps<br />

ckl<br />

ckh<br />

U33<br />

Dlatch8<br />

dh<br />

dl<br />

ckh<br />

ckl<br />

Vss<br />

Vdd<br />

i400u<br />

qh<br />

ql<br />

Vdd<br />

i400u1<br />

U32<br />

Dlatch8<br />

i400u2<br />

ckh<br />

ckl<br />

dh<br />

dl<br />

ckh<br />

ckl<br />

Vss<br />

Vdd<br />

i400u<br />

qh<br />

ql<br />

qh<br />

ql


Vss<br />

Vdd<br />

m=30<br />

w=1u<br />

l=10u<br />

ql<br />

D Latch<br />

� Current Steering D latch with positive feedback<br />

Data<br />

Vdd<br />

Vdd<br />

dh<br />

n_bpw_12_rf<br />

n_bpw_12_rf<br />

dl<br />

Clock<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=1<br />

wt=4u<br />

qh<br />

Vdd<br />

Vdd<br />

ckh<br />

n_bpw_12_rf<br />

n_bpw_12_rf<br />

ckl<br />

Vss<br />

Vdd<br />

i400u<br />

n_bpw_12_rf<br />

r_zbt_m=0.336k<br />

rnhr_rf<br />

Vdd Vdd<br />

Vss Vss<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=1<br />

wt=4u<br />

Vss Vss<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=4<br />

wt=4u<br />

Vss<br />

m=30<br />

w=1u<br />

l=10u<br />

r_zbt_m=0.336k<br />

rnhr_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=1<br />

wt=4u<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=4<br />

wt=4u<br />

Vdd<br />

Vss<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=4<br />

wt=4u<br />

Vdd<br />

Vss<br />

Vss<br />

Vss<br />

Vdd<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=4<br />

wt=4u<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=4<br />

wt=4u


XOR Gate<br />

� Gilbert Cell Variation<br />

bh<br />

ah al<br />

Vdd<br />

outh<br />

outl<br />

i400u<br />

Vss<br />

bl<br />

l=10u<br />

w=1u<br />

m=24<br />

rnhr_rf<br />

r_zbt_m=0.42k<br />

l=10u<br />

w=1u<br />

m=24<br />

rnhr_rf<br />

r_zbt_m=0.42k<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=2<br />

wt=4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=2<br />

wt=4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=2<br />

wt=4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=2<br />

wt=4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=2<br />

wt=4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=2<br />

wt=4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=4<br />

wt=4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=1<br />

wt=4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=1<br />

wt=4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=1<br />

wt=4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=1<br />

wt=4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1u<br />

M=1<br />

wt=4u<br />

Vdd Vdd<br />

Vdd Vdd<br />

Vdd<br />

Vdd<br />

Vdd<br />

Vdd<br />

Vdd<br />

Vdd<br />

Vss<br />

Vss<br />

Vss Vss<br />

Vss Vss<br />

Vss Vss<br />

Vss Vss<br />

Vdd<br />

Vss<br />

Vdd<br />

Vss<br />

Vdd<br />

Vss<br />

Vdd<br />

Vss<br />

A<br />

B


High Speed Current mirror switch<br />

� Changes bias current in driver to incorporate de-emphasis<br />

Vss<br />

i400u2<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=1<br />

wt=4u<br />

inl<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=1<br />

wt=4u<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=1<br />

wt=4u<br />

Vdd<br />

inh<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=1<br />

wt=4u<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=1<br />

wt=4u<br />

M1348<br />

P_12_MML130E<br />

L=0.12u<br />

W=4u<br />

M=6<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=1<br />

wt=4u<br />

i800u1<br />

M1349<br />

P_12_MML130E<br />

L=0.12u<br />

W=4u<br />

M=6<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=1<br />

wt=4u<br />

Vdd<br />

Vss<br />

Mirror turns on to pull current<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=11<br />

wt=4u<br />

Idemph<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1u<br />

nf=4<br />

M=5<br />

wt=4u<br />

DIS


Receiver Input Stage<br />

� CML input stage with internal 50 Ohm resistors<br />

Vss<br />

inh M1633<br />

M1634<br />

inl<br />

P_12_MML130E<br />

P_12_MML130E<br />

Vdd<br />

l=6u<br />

w=1.8u<br />

m=63<br />

rnhr_rf<br />

r_zbt_m=0.05k<br />

L=0.12u<br />

W=3u<br />

M=4<br />

l=6u<br />

w=1.8u<br />

m=15<br />

rnhr_rf<br />

r_zbt_m=0.211k<br />

1m<br />

outl outh<br />

l=6u<br />

w=1.8u<br />

m=15<br />

L=0.12u<br />

W=3u<br />

M=4<br />

Vdd<br />

Vdd<br />

Vss Vdd<br />

Vdd<br />

Vss Vss<br />

Vss<br />

rnhr_rf<br />

r_zbt_m=0.211k<br />

l=6u<br />

w=1.8u<br />

m=63<br />

rnhr_rf<br />

r_zbt_m=0.05k


� <strong>De</strong>-emphasis disabled<br />

Output without <strong>De</strong>-emphasis


Output with <strong>De</strong>-emphasis<br />

� Every transition bit is 6.5dB above subsequent bits


Memory<br />

Bridge<br />

FB-DIMM Configurations<br />

Read Data<br />

(Primary North)<br />

14<br />

10<br />

Write Data<br />

(Primary South)<br />

DRAM<br />

DRAM<br />

DRAM<br />

DRAM<br />

AMB<br />

DRAM<br />

DRAM<br />

DRAM<br />

DRAM<br />

Secondary<br />

North<br />

Secondary<br />

South<br />

DRAM<br />

DRAM<br />

DRAM<br />

DRAM<br />

AMB<br />

DRAM<br />

DRAM<br />

DRAM<br />

DRAM<br />

*Third party marks <strong>and</strong> br<strong>and</strong>s are the property <strong>of</strong> their respective owners<br />

� The FB-DIMM architecture replaces the existing parallel<br />

memory bus with a point-to-point serial signaling similar to<br />

PCI Express. The DRAM is behind a buffer (Advance<br />

Memory Buffer - AMB). The AMB is a high-speed (3.2-<br />

5GB/s) unidirectional link with the host memory bridge. Ten<br />

channels are provide <strong>for</strong> writes on the South Bridge <strong>and</strong> 14<br />

<strong>for</strong> reads on the North Bridge. The AMB also has a<br />

secondary channel <strong>for</strong> read/writes that acts a pass-through<br />

to the next module. The secondary channel is an additional<br />

point-to-point serial link. This results in a total <strong>of</strong> 48 highspeed<br />

serial channels.<br />

� The primary channels are routed on the top side <strong>of</strong> the<br />

memory module using microstrip. Trace lengths vary from<br />

approximately 2-7in. The secondary channels are routed<br />

on the backside <strong>of</strong> the module <strong>and</strong> transition first into a<br />

stripline layer <strong>and</strong> then to the top <strong>of</strong> the module where they<br />

interface with the AMB BGA.<br />

� For our investigation we will focus on the first channel <strong>of</strong> the<br />

Primary South <strong>and</strong> Secondary South channels. We will<br />

show the end-to-end channels <strong>for</strong> two configurations: host<br />

memory bridge to AMB <strong>and</strong> AMB to AMB.<br />

� Passive channels will be extracted <strong>for</strong> the packages, the<br />

motherboard, the FB-DIMM connector, <strong>and</strong> module routing.<br />

� Transistor level active drivers were developed with deemphasis<br />

to meet the FB-DIMM spec.<br />

� The following slide shows a block diagram <strong>of</strong> the system to<br />

be extracted, simulated, <strong>and</strong> validated along with the<br />

applicable Ans<strong>of</strong>t simulation tools.


Vss<br />

Package<br />

inh M1558<br />

M1559<br />

inl<br />

P_12_MML130E<br />

P_12_MML130E<br />

L=0.12u<br />

W=80u<br />

M=2<br />

rnhr_rf<br />

r_zbt_m=0.05k<br />

l=6u<br />

w=1.8u<br />

m=63<br />

i20m<br />

outl outh<br />

Vdd Vdd<br />

Vss Vss<br />

l=6u<br />

w=1.8u<br />

m=63<br />

L=0.12u<br />

W=80u<br />

M=2<br />

rnhr_rf<br />

r_zbt_m=0.05k<br />

+<br />

-<br />

Model Extraction<br />

Backplane Connector Daughter Card<br />

MS SL SL<br />

Via Via Via<br />

+<br />

-<br />

Package


<strong>De</strong>-emphasis at work!<br />

� FB-DIMM board (Primary South Side)


<strong>De</strong>-emphasis at work!<br />

� Xilinx Virtex II Pro test board


<strong>De</strong>-emphasis at work!<br />

� Two Xilinx Virtex II Pro test boards in series<br />

� Increased <strong>De</strong>-emphasis to improve per<strong>for</strong>mance


Receive <strong>Equalization</strong><br />

� Passive Network<br />

� Adaptive <strong>Equalization</strong> can incorporated<br />

Incorporating passive network into reciever to maintain 50 Ohm matching<br />

Simple Resistive Divider with Frequency <strong>De</strong>pendent Gain<br />

50 Out<br />

50<br />

IN+ IN-<br />

IN Out<br />

0<br />

50<br />

0


Receive Passive <strong>Equalization</strong><br />

� Xilinx Virtex II Pro test board<br />

spinh<br />

spinl<br />

50<br />

1<br />

50 25<br />

2<br />

4<br />

ref<br />

0<br />

3<br />

12p<br />

12p<br />

25<br />

vee<br />

DIS<br />

Vdd<br />

Vss<br />

U2<br />

rxcurrsrc13<br />

vee<br />

1m<br />

inh<br />

inl outl<br />

Vss<br />

U1<br />

rxip13<br />

Vdd<br />

1m<br />

vee<br />

outh


Combination <strong>of</strong> <strong>De</strong>-emphasis <strong>and</strong> Receive<br />

<strong>Equalization</strong><br />

� Two Xilinx Virtex II Pro test boards in series<br />

� Some Channels require higher order high pass<br />

filter <strong>for</strong> greater eye opening


Summary<br />

� Outlined challenges faced in high speed serial interconnects<br />

� Discussed <strong>Equalization</strong> techniques<br />

� Presented a <strong>De</strong>-emphasis circuit that is compliant with FB-DIMM<br />

st<strong>and</strong>ard<br />

� Simulations (Nexxim) show the benefits <strong>of</strong> using <strong>De</strong>-emphasis<br />

� Example <strong>of</strong> a simple Receive equalization technique<br />

� Example <strong>of</strong> a combination <strong>of</strong> <strong>De</strong>-emphasis <strong>and</strong> Receive<br />

equalization<br />

� <strong>De</strong>monstrated diminishing returns from simple low order<br />

equalization circuits <strong>for</strong> a channel with higher order properties<br />

� Ans<strong>of</strong>t has come out with a well integrated design kit that includes<br />

� Channel Modeling: Trace/Backplane, Vias, Connectors<br />

� Transceiver design with equalization techniques to enhance<br />

high speed data transmission over Copper<br />

� Work with board designers to solve their signal integrity issues to<br />

ensure high signal quality <strong>for</strong> data recovery

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!