22.07.2013 Views

Strain and maturation effects on female spawning time in diallel ...

Strain and maturation effects on female spawning time in diallel ...

Strain and maturation effects on female spawning time in diallel ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>female</strong> <strong>spawn<strong>in</strong>g</strong><br />

<strong>time</strong> <strong>in</strong> <strong>diallel</strong> crosses of three stra<strong>in</strong>s of ra<strong>in</strong>bow<br />

trout (Oncorhynchus mykiss)<br />

Cheryl D. Qu<strong>in</strong>t<strong>on</strong>*, Laura R. McKay, Ian McMillan<br />

Centre for Genetic Improvement of Livestock, Dept. Animal & Poultry Science, University of Guelph, Guelph,<br />

Ontario N1G 2W1, Canada<br />

Abstract<br />

Received 6 February 2003; received <strong>in</strong> revised form 12 January 2004; accepted 14 January 2004<br />

Female spawn date was <strong>in</strong>vestigated <strong>in</strong> three diverse stra<strong>in</strong>s of ra<strong>in</strong>bow trout (Oncorhynchus<br />

mykiss) <str<strong>on</strong>g>and</str<strong>on</strong>g> two year classes of complete <strong>diallel</strong> crosses between them. Spawn dates at 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 years of<br />

age were recorded for <strong>in</strong>dividual <strong>female</strong>s <strong>in</strong> two generati<strong>on</strong>s. Spawn dates were analysed to f<strong>in</strong>d the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> of stra<strong>in</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> year of <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> to estimate repeatability. <str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g>s had significantly different<br />

<strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> hybrids generally performed <strong>in</strong>termediate to pure stra<strong>in</strong>s, with little evidence<br />

of heterosis. Some differences <strong>in</strong> performance occurred between reciprocal crosses such that hybrids<br />

spawned more like the stra<strong>in</strong> of their dams. Four-year-old maiden <strong>female</strong>s spawned approximately 18<br />

days later than 4-year-old repeat <strong>spawn<strong>in</strong>g</strong> <strong>female</strong>s. Spawn date repeatability estimates were 0.72 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

0.83. The sec<strong>on</strong>d <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> occurred 6 to 35 days earlier than the first seas<strong>on</strong>, depend<strong>in</strong>g <strong>on</strong><br />

stra<strong>in</strong>. Spawn<strong>in</strong>g <strong>time</strong> appears to be <strong>in</strong>herited <strong>in</strong> an additive manner, so it should be possible to predict<br />

future <strong>spawn<strong>in</strong>g</strong> dates based <strong>on</strong> past data <str<strong>on</strong>g>and</str<strong>on</strong>g> change <strong>spawn<strong>in</strong>g</strong> <strong>time</strong> through selecti<strong>on</strong>.<br />

D 2004 Elsevier B.V. All rights reserved.<br />

Keywords: Ra<strong>in</strong>bow trout; Oncorhynchus mykiss; Quantitative genetics; Spawn<strong>in</strong>g <strong>time</strong>; Diallel cross; Age at<br />

maturity; Repeatability<br />

1. Introducti<strong>on</strong><br />

Aquaculture 234 (2004) 99–110<br />

Ra<strong>in</strong>bow trout <str<strong>on</strong>g>and</str<strong>on</strong>g> other salm<strong>on</strong>ids have an annual reproductive cycle, releas<strong>in</strong>g<br />

gametes dur<strong>in</strong>g certa<strong>in</strong> m<strong>on</strong>ths of the year which are referred to as the <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong>.<br />

* Corresp<strong>on</strong>d<strong>in</strong>g author. Tel.: +1-519-824-4120x56683; fax: +1-519-767-0573.<br />

E-mail address: cqu<strong>in</strong>t<strong>on</strong>@uoguelph.ca (C.D. Qu<strong>in</strong>t<strong>on</strong>).<br />

0044-8486/$ - see fr<strong>on</strong>t matter D 2004 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.aquaculture.2004.01.016<br />

www.elsevier.com/locate/aqua-<strong>on</strong>l<strong>in</strong>e


100<br />

The tim<strong>in</strong>g of the <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> has major c<strong>on</strong>sequences <strong>on</strong> farm<strong>in</strong>g operati<strong>on</strong>s:<br />

seas<strong>on</strong>al product availability <str<strong>on</strong>g>and</str<strong>on</strong>g> labour requirement, <str<strong>on</strong>g>and</str<strong>on</strong>g> reduced facility use. The result is<br />

lower producti<strong>on</strong> efficiency with c<strong>on</strong>sequent profit loss. In order to optimise producti<strong>on</strong>, a<br />

producer may want to move the <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> of part of their broodstock to a different<br />

<strong>time</strong> of year, or c<strong>on</strong>dense the seas<strong>on</strong> to a more specific <strong>time</strong> of year. Either may be<br />

accomplished by us<strong>in</strong>g genetic selecti<strong>on</strong> methods. By determ<strong>in</strong><strong>in</strong>g the underly<strong>in</strong>g genetic<br />

factors <strong>in</strong>fluenc<strong>in</strong>g <strong>spawn<strong>in</strong>g</strong> <strong>time</strong>, the potential for selecti<strong>on</strong> as a method to manipulate<br />

the <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> <strong>in</strong> ra<strong>in</strong>bow trout can be evaluated.<br />

The genetic factors c<strong>on</strong>troll<strong>in</strong>g <strong>spawn<strong>in</strong>g</strong> <strong>time</strong> have been studied somewhat less than<br />

have those relat<strong>in</strong>g to other producti<strong>on</strong> traits. Purdom (1993) stated that different stra<strong>in</strong>s of<br />

ra<strong>in</strong>bow trout had vary<strong>in</strong>g <strong>spawn<strong>in</strong>g</strong> <strong>time</strong>s, <strong>in</strong>dicat<strong>in</strong>g some genetic basis for this trait. Gall<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Huang (1988b) dem<strong>on</strong>strated that <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> was c<strong>on</strong>trolled by a str<strong>on</strong>g genetic<br />

comp<strong>on</strong>ent. There is anecdotal evidence that a wide range of <strong>spawn<strong>in</strong>g</strong> <strong>time</strong>s has been<br />

developed by selecti<strong>on</strong> (Purdom, 1993) <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>ses to spawn date selecti<strong>on</strong> have been<br />

observed (Siit<strong>on</strong>en <str<strong>on</strong>g>and</str<strong>on</strong>g> Gall, 1989; Sadler et al., 1992). A few studies have attempted to<br />

quantify the variance comp<strong>on</strong>ents of <strong>spawn<strong>in</strong>g</strong> <strong>time</strong> <strong>in</strong> salm<strong>on</strong>ids. Heritability <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

repeatability have been estimated by Gall et al. (1988), Siit<strong>on</strong>en <str<strong>on</strong>g>and</str<strong>on</strong>g> Gall (1989), Sadler<br />

et al. (1992), Su et al. (1997, 1999), <str<strong>on</strong>g>and</str<strong>on</strong>g> Qu<strong>in</strong>t<strong>on</strong> et al. (2002).<br />

A project is underway to develop a synthetic stra<strong>in</strong> of ra<strong>in</strong>bow trout for aquaculture<br />

which would be characterised by fast growth, reduced precocious <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> a spr<strong>in</strong>g<br />

<strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> (McMillan <str<strong>on</strong>g>and</str<strong>on</strong>g> McKay, 1992). Knowledge of the underly<strong>in</strong>g genetics of<br />

these traits is necessary to establish the optimum selecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> breed<strong>in</strong>g methods required<br />

to develop the stra<strong>in</strong>. To determ<strong>in</strong>e genetic factors regulat<strong>in</strong>g <strong>spawn<strong>in</strong>g</strong> <strong>time</strong>, four ma<strong>in</strong><br />

objectives for this study were set: rank three stra<strong>in</strong>s of ra<strong>in</strong>bow trout <str<strong>on</strong>g>and</str<strong>on</strong>g> their hybrids<br />

accord<strong>in</strong>g to spawn date; determ<strong>in</strong>e stra<strong>in</strong> <strong>in</strong>teracti<strong>on</strong>s that affect spawn date (characterised<br />

by heterosis <str<strong>on</strong>g>and</str<strong>on</strong>g> differences between reciprocal crosses); f<strong>in</strong>d <str<strong>on</strong>g>effects</str<strong>on</strong>g> of age of <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g><br />

<strong>on</strong> spawn date; <str<strong>on</strong>g>and</str<strong>on</strong>g> calculate the repeatability <str<strong>on</strong>g>and</str<strong>on</strong>g> shift <strong>in</strong> <strong>time</strong> of spawn date from 3 to 4<br />

years of age.<br />

2. Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods<br />

2.1. Experimental design<br />

C.D. Qu<strong>in</strong>t<strong>on</strong> et al. / Aquaculture 234 (2004) 99–110<br />

The study was c<strong>on</strong>ducted at the Alma Aquaculture Research Stati<strong>on</strong> (AARS), University<br />

of Guelph, Guelph, Ontario, Canada. Fertilised eggs from three farmed stra<strong>in</strong>s of ra<strong>in</strong>bow<br />

trout were brought to the AARS to form a base populati<strong>on</strong> (G0). All G0 fertilisati<strong>on</strong>s had<br />

been d<strong>on</strong>e between March 14 <str<strong>on</strong>g>and</str<strong>on</strong>g> April 6, 1991. <str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g> OC was an Ontario commercial stra<strong>in</strong><br />

<strong>in</strong> which <strong>female</strong>s had been selected for late <strong>spawn<strong>in</strong>g</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> males had been selected for fast<br />

growth. <str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g> MG was descended from the Ontario M<strong>in</strong>istry of Natural Resources’<br />

Ganaraska River stra<strong>in</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> had underg<strong>on</strong>e two generati<strong>on</strong>s of mild selecti<strong>on</strong> for faster<br />

growth. <str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g> WC was a Wash<strong>in</strong>gt<strong>on</strong> State commercial stra<strong>in</strong>. Previous studies have<br />

compared these pure stra<strong>in</strong>s for early growth, survival, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> (McMillan <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

McKay, 1992; McKay <str<strong>on</strong>g>and</str<strong>on</strong>g> McMillan, 1997). Evaluati<strong>on</strong>s of mitoch<strong>on</strong>drial DNA <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

allozyme variati<strong>on</strong> have also been d<strong>on</strong>e for the Ontario stra<strong>in</strong>s by Fergus<strong>on</strong> et al. (1993).


At maturity, two sets of complete <strong>diallel</strong> crosses were made am<strong>on</strong>g the stra<strong>in</strong>s, form<strong>in</strong>g<br />

a G1 generati<strong>on</strong>: a 94 year class when the parents were 3 years old, <str<strong>on</strong>g>and</str<strong>on</strong>g> a 96 year class<br />

when the parents were 5 years old. All reciprocal crosses were made. For this paper, stra<strong>in</strong><br />

comb<strong>in</strong>ati<strong>on</strong> A B denotes dam stra<strong>in</strong> A crossed with sire stra<strong>in</strong> B. There was no <strong>time</strong> when<br />

dams from all three stra<strong>in</strong>s spawned at the same <strong>time</strong>, so to complete the <strong>diallel</strong> crosses,<br />

mat<strong>in</strong>gs were d<strong>on</strong>e over a period of several weeks (Table 1). Each stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> was<br />

made from <strong>in</strong>dividual mat<strong>in</strong>gs of two to five r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly chosen animals from each dam <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

sire stra<strong>in</strong>. Twenty-eight <strong>female</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> 29 males parented the 94 year class. Twenty-n<strong>in</strong>e<br />

<strong>female</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> 38 males (of which 5 <strong>female</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> 12 males had also been used as parents of<br />

the 94 year class) parented the 96 year class. Individual <strong>female</strong>s were mated <strong>on</strong>ce per<br />

seas<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>in</strong>dividual males mated up to six <strong>time</strong>s per seas<strong>on</strong>.<br />

2.2. Husb<str<strong>on</strong>g>and</str<strong>on</strong>g>ry <str<strong>on</strong>g>and</str<strong>on</strong>g> data collecti<strong>on</strong><br />

C.D. Qu<strong>in</strong>t<strong>on</strong> et al. / Aquaculture 234 (2004) 99–110 101<br />

All three year classes were raised <strong>in</strong> similar optimal c<strong>on</strong>diti<strong>on</strong>s (McMillan <str<strong>on</strong>g>and</str<strong>on</strong>g> McKay,<br />

1992; McKay <str<strong>on</strong>g>and</str<strong>on</strong>g> McMillan, 1997). Water temperature rema<strong>in</strong>ed c<strong>on</strong>stant at 8.5 jC <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dissolved oxygen was 96% of saturati<strong>on</strong>. Simulated natural photoperiod was ma<strong>in</strong>ta<strong>in</strong>ed.<br />

Tanks were m<strong>on</strong>itored to ma<strong>in</strong>ta<strong>in</strong> c<strong>on</strong>sistent levels of biodensity.<br />

For G0, each pure stra<strong>in</strong> was raised separately <strong>in</strong> replicate tanks until tagg<strong>in</strong>g at 25 to<br />

26 m<strong>on</strong>ths post-fertilisati<strong>on</strong>. For the G1 94 year class, fertilised eggs from <strong>in</strong>dividual pair<br />

mat<strong>in</strong>gs of were pooled <strong>in</strong>to <strong>in</strong>cubator compartments by stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with<strong>in</strong><br />

fertilisati<strong>on</strong> date. For the G1 96 year class, fertilised eggs from <strong>in</strong>dividual pair mat<strong>in</strong>gs<br />

were held <strong>in</strong> separate <strong>in</strong>cubator compartments, <str<strong>on</strong>g>and</str<strong>on</strong>g> after hatch<strong>in</strong>g were pooled <strong>in</strong>to tanks<br />

Table 1<br />

Diallel cross mat<strong>in</strong>g schedule, show<strong>in</strong>g fertilisati<strong>on</strong> dates for stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong>s <strong>in</strong> two G1 year classes. The<br />

number of parent <strong>in</strong>dividuals used <strong>in</strong> each cross is <strong>in</strong>dicated by ‘‘a<br />

number of sires<br />

b’’ where a is the number of dams <str<strong>on</strong>g>and</str<strong>on</strong>g> b is the<br />

Fertilisati<strong>on</strong> date <str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g> comb<strong>in</strong>ati<strong>on</strong> (top: stra<strong>in</strong> of dam, bottom: stra<strong>in</strong> of sire)<br />

OC OC OC WC WC WC MG MG MG<br />

OC WC MG OC WC MG OC WC MG<br />

94 year class<br />

94/02/10 4 4 4 4 4 4 4 4 4 4 4 4<br />

94/02/24 4 4 4 4 4 4<br />

94/03/24 5 4 5 4 5 4 4 4 4 4 4 4<br />

94/03/30 2 4 2 4 3 4 3 4<br />

94/04/27 2 4 2 4 2 4<br />

96 year class<br />

95/11/30 3 3 3 2 3 4<br />

95/12/07 2 2 2 4 2 2<br />

95/12/21 2 3 4 4<br />

96/01/09 1 3 1 3 3 3 3 3<br />

96/02/13 3 4 1 4<br />

96/02/27 3 3 1 3 3 3 3 3 3 3<br />

96/03/12 2 3 2 3 2 3 4 3 4 3 4 3<br />

96/03/27 4 5 4 5 4 5


102<br />

by stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with<strong>in</strong> fertilisati<strong>on</strong> date. At hatch<strong>in</strong>g, equal numbers of fry from<br />

each <strong>in</strong>cubator compartment were pooled by stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> to create the groups<br />

summarised <strong>in</strong> Table 1. Groups with<strong>in</strong> the 94 <str<strong>on</strong>g>and</str<strong>on</strong>g> 96 year classes were raised <strong>in</strong> separate<br />

tanks until tagg<strong>in</strong>g. The 94 year class was tagged at 16 to 18 m<strong>on</strong>ths post-fertilisati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the 96 year class was tagged at 10 to 11 m<strong>on</strong>ths post-fertilisati<strong>on</strong>. All <strong>in</strong>dividuals were<br />

marked with passive <strong>in</strong>tegrated transp<strong>on</strong>der (PIT) tags (AVID Identificati<strong>on</strong> Systems)<br />

<strong>in</strong>jected <strong>in</strong> the abdom<strong>in</strong>al cavity. Tagged fish of each year class were pooled <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

distributed r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly over replicate tanks. Mature fish were housed <strong>in</strong> 2.0-m semi-square<br />

fibreglass tanks <str<strong>on</strong>g>and</str<strong>on</strong>g> a commercial dry salm<strong>on</strong>id feed (Mart<strong>in</strong> Feed Mills, Elmira, Ontario)<br />

was dispensed with dem<str<strong>on</strong>g>and</str<strong>on</strong>g> feeders. Males <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>female</strong>s were housed together.<br />

Under the c<strong>on</strong>diti<strong>on</strong>s of this study, <strong>female</strong>s matured at 3 or 4 years of age <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

<strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> ran from October until May. Imm<strong>in</strong>ent <strong>spawn<strong>in</strong>g</strong> was assessed <strong>in</strong><br />

anaesthetised <strong>female</strong>s by colour, look <str<strong>on</strong>g>and</str<strong>on</strong>g> feel of the abdomen, <str<strong>on</strong>g>and</str<strong>on</strong>g> vent extensi<strong>on</strong>.<br />

Females judged close to <strong>spawn<strong>in</strong>g</strong> were checked weekly for ripeness. Ripe <strong>female</strong>s (those<br />

from whom eggs were easily stripped) were anaesthetised <str<strong>on</strong>g>and</str<strong>on</strong>g> eggs stripped by apply<strong>in</strong>g<br />

gentle manual pressure to the abdomen. Females who had spawned were separated from<br />

the populati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> were not h<str<strong>on</strong>g>and</str<strong>on</strong>g>led for the rema<strong>in</strong>der of the seas<strong>on</strong>. All fish were checked<br />

for gamete producti<strong>on</strong> <strong>on</strong>ce <strong>in</strong> June or July between 3- <str<strong>on</strong>g>and</str<strong>on</strong>g> 4-year old <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong>s.<br />

2.3. Statistics<br />

C.D. Qu<strong>in</strong>t<strong>on</strong> et al. / Aquaculture 234 (2004) 99–110<br />

2.3.1. Data<br />

For this study, ‘maiden’ spawners are def<strong>in</strong>ed as <strong>female</strong>s <strong>spawn<strong>in</strong>g</strong> for the first <strong>time</strong>;<br />

‘repeat’ spawners are def<strong>in</strong>ed as 4-year-old <strong>female</strong>s <strong>spawn<strong>in</strong>g</strong> for the sec<strong>on</strong>d <strong>time</strong> (<str<strong>on</strong>g>and</str<strong>on</strong>g> had<br />

spawned as maidens at 3 years of age). Female spawn dates were recorded for <strong>in</strong>dividuals<br />

<strong>in</strong> each year class at 3 years of age (all 3-year maiden spawners, 3M) <str<strong>on</strong>g>and</str<strong>on</strong>g> at 4 years of age<br />

(4-year repeat spawners, 4R, <str<strong>on</strong>g>and</str<strong>on</strong>g> 4-year maiden spawners, 4M). Spawn<strong>in</strong>g date was<br />

def<strong>in</strong>ed as the period <strong>in</strong> days after October 1 (an arbitrary date) that eggs were stripped<br />

from a particular <strong>female</strong>. Numbers of 3M, 4R, <str<strong>on</strong>g>and</str<strong>on</strong>g> 4M observati<strong>on</strong>s used <strong>in</strong> analyses are<br />

summarised <strong>in</strong> Table 2.<br />

All statistical analyses were d<strong>on</strong>e with SAS Versi<strong>on</strong> 8 (n 1999 SAS Institute Inc., Cary,<br />

NC, USA). The Levene test was used to test homogeneity of 3-year-old <str<strong>on</strong>g>and</str<strong>on</strong>g> 4-year-old<br />

spawn date variances across all stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong>s with<strong>in</strong> each year class. Variances were<br />

not significantly different across stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong>s, except for the 94 year class spawn<br />

dates at 4 years of age ( P=0.0193).<br />

2.3.2. <str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> spawn date at 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 years of age <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

spawn date at 4 years of age were tested with general l<strong>in</strong>ear models. G0 <str<strong>on</strong>g>and</str<strong>on</strong>g> G1 were<br />

analysed <strong>in</strong> separate models because G0 c<strong>on</strong>sisted of three pure stra<strong>in</strong>s, while G1 c<strong>on</strong>sisted<br />

of n<strong>in</strong>e stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong>s. Spawn dates at 3 years of age <str<strong>on</strong>g>and</str<strong>on</strong>g> spawn dates at 4 years of<br />

age were analysed separately. All <strong>female</strong>s who spawned at 3 years of age matured at 3<br />

years of age (therefore there was <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year effect level at 3 years of age),<br />

but <strong>female</strong>s that spawned at 4 years may have matured at 3 or 4 years of age (therefore,<br />

there were two <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year effect levels at 4 years of age).


C.D. Qu<strong>in</strong>t<strong>on</strong> et al. / Aquaculture 234 (2004) 99–110 103<br />

Table 2<br />

Numbers of spawn date observati<strong>on</strong>s at 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 years of age for 3-year-old maiden spawners (3M), 4-year-old<br />

repeat spawners (4R), <str<strong>on</strong>g>and</str<strong>on</strong>g> 4-year-old maiden spawners (4M) of each stra<strong>in</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> year class<br />

Generati<strong>on</strong> year <str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g> Spawn dates at 3 years of age Spawn dates at 4 years of age<br />

class<br />

3M 4R a<br />

4M<br />

G0 91 OC 42 35 8<br />

WC 76 67 17<br />

MG 27 22 13<br />

G1 94 OC OC 5 2 2<br />

OC WC 3 2 1<br />

OC MG 2 2 1<br />

WC OC 10 9 3<br />

WC WC 21 20 1<br />

WC MG 11 11 3<br />

MG OC 5 5 5<br />

MG WC 6 5 5<br />

MG MG 5 4 3<br />

96 OC OC 26 18 1<br />

OC WC 23 22 2<br />

OC MG 39 32 3<br />

WC OC 29 25 1<br />

WC WC 23 20 3<br />

WC MG 25 15 2<br />

MG OC 29 25 2<br />

MG WC 27 20 0<br />

MG MG 19 15 7<br />

a All 4R <strong>female</strong>s were 3M <strong>female</strong>s <strong>in</strong> the previous seas<strong>on</strong>.<br />

<str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> G0 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 years of age spawn dates were tested<br />

with Model 1,<br />

yijk ¼ l þ Pi þ Mj þðPMÞij þ eijk<br />

ð1Þ<br />

where yij is the 3-year-old or 4-year-old spawn date for <strong>in</strong>dividual k <strong>in</strong> pure stra<strong>in</strong> i with<br />

<str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year j; l is the populati<strong>on</strong> mean; Pi is the fixed effect of pure stra<strong>in</strong> i (i=1, 2, 3);<br />

Mj is the fixed effect of <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year j ( j=1, 2); (PM)ij is the <strong>in</strong>teracti<strong>on</strong> of pure stra<strong>in</strong> i<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year j; <str<strong>on</strong>g>and</str<strong>on</strong>g>eijk is the residual error associated with <strong>in</strong>dividual ijk.<br />

<str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> G1 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 years of age spawn dates were tested<br />

with Model 2,<br />

yijklm ¼ l þ Yi þ Dj þ Sk þ Ml þðDSÞ jk þðDMÞ jl þðSMÞ kl þðDSMÞ jkl þ eijklm<br />

ð2Þ<br />

where yijkl is the 3-year old or 4-year old spawn date for <strong>in</strong>dividual m from year class i with<br />

dam stra<strong>in</strong> j, sire stra<strong>in</strong> k <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year l; l is the populati<strong>on</strong> mean; Yi is the fixed<br />

effect of year class i (i=1, 2); Dj is the fixed effect of the dam stra<strong>in</strong> j ( j=1, 2, 3); Sk is the<br />

fixed effect of the sire stra<strong>in</strong> k (k = 1, 2, 3); (DS)jk is the <strong>in</strong>teracti<strong>on</strong> of the dam stra<strong>in</strong> j <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

sire stra<strong>in</strong> k; (DM)jl is the <strong>in</strong>teracti<strong>on</strong> of dam stra<strong>in</strong> j <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year l; (SM)kl is the


104<br />

C.D. Qu<strong>in</strong>t<strong>on</strong> et al. / Aquaculture 234 (2004) 99–110<br />

<strong>in</strong>teracti<strong>on</strong> of sire stra<strong>in</strong> k <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year l; (DSM) jkl is the <strong>in</strong>teracti<strong>on</strong> of dam stra<strong>in</strong> j,<br />

sire stra<strong>in</strong> k <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year l; <str<strong>on</strong>g>and</str<strong>on</strong>g> eijklm is the residual error associated with<br />

observati<strong>on</strong> ijklm. A similar analysis was d<strong>on</strong>e by Friars et al. (1979) for <strong>diallel</strong> crosses<br />

of Atlantic salm<strong>on</strong>.<br />

Least squares means for stra<strong>in</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> were estimated from Models 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

compared with Tukey’s test for pairwise comparis<strong>on</strong>s. Heterosis, def<strong>in</strong>ed as a significant<br />

difference between the average spawn date of two pure stra<strong>in</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the average spawn date<br />

of their hybrids, was tested with Model 2 c<strong>on</strong>trasts.<br />

C<strong>on</strong>trasts between G1 reciprocal crosses were <strong>in</strong>estimable from Model 2, therefore each<br />

stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> was c<strong>on</strong>sidered a separate fixed effect. Model 3 c<strong>on</strong>trasted 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4<br />

years of age spawn dates am<strong>on</strong>g reciprocal crosses,<br />

yijkl ¼ l þ Yi þ Cj þ Mk þðCMÞ jk þ eijkl<br />

where y ijkl is the 3-year old or 4-year old spawn date for <strong>in</strong>dividual l <strong>in</strong> year class i with<br />

stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> j; C j is the fixed effect of stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> j ( j=1,..., 9); (CM) jk is the<br />

<strong>in</strong>teracti<strong>on</strong> of stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> j with <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year k; e ijkl is the residual error<br />

associated with observati<strong>on</strong> ijkl; <str<strong>on</strong>g>and</str<strong>on</strong>g> rema<strong>in</strong><strong>in</strong>g variables are as described for Model 2.<br />

2.3.3. Repeatability<br />

Repeatability is the correlati<strong>on</strong> between repeated measurements <strong>on</strong> the same <strong>in</strong>dividual,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> is used to predict future performance (Falc<strong>on</strong>er <str<strong>on</strong>g>and</str<strong>on</strong>g> Mackay, 1996). In this study,<br />

spawn date repeatability was estimated <strong>on</strong> 4R <strong>female</strong>s <strong>on</strong>ly because these fish had two<br />

spawn date measurements each. The repeatability estimate for each generati<strong>on</strong> was the<br />

partial correlati<strong>on</strong> between spawn dates calculated from analysis of variance. The analysis<br />

removed <str<strong>on</strong>g>effects</str<strong>on</strong>g> of hav<strong>in</strong>g different stra<strong>in</strong>s to f<strong>in</strong>d a pooled with<strong>in</strong>-stra<strong>in</strong> correlati<strong>on</strong> value<br />

for each generati<strong>on</strong>. Model 1 was used for G0 <str<strong>on</strong>g>and</str<strong>on</strong>g> Model 2 was used for G1, where the<br />

dependent variable was the 3 or 4 years of age <strong>spawn<strong>in</strong>g</strong> dates <str<strong>on</strong>g>and</str<strong>on</strong>g> other variables were as<br />

previously described.<br />

To predict future performance, it is also practical to know if the entire <strong>spawn<strong>in</strong>g</strong><br />

seas<strong>on</strong> of a populati<strong>on</strong> can shift <strong>in</strong> <strong>time</strong> over years. The overall <strong>time</strong> shift <strong>in</strong> days<br />

between the first <str<strong>on</strong>g>and</str<strong>on</strong>g> the sec<strong>on</strong>d <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong>s was exam<strong>in</strong>ed us<strong>in</strong>g general mixed<br />

l<strong>in</strong>ear models. This estimated the difference <strong>in</strong> <strong>time</strong>, <strong>in</strong> days, from the first <strong>spawn<strong>in</strong>g</strong><br />

seas<strong>on</strong> to the sec<strong>on</strong>d <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong>. In this case, all the <strong>spawn<strong>in</strong>g</strong> data were used, but<br />

a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om <strong>in</strong>dividual effect was added to dist<strong>in</strong>guish maiden from repeat spawners. In the<br />

first <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong>, all <strong>female</strong>s were maidens, but <strong>in</strong> the sec<strong>on</strong>d <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong>,<br />

<strong>female</strong>s could be either repeat or maiden spawners. The <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> number effect<br />

accounts for permanent envir<strong>on</strong>mental <str<strong>on</strong>g>effects</str<strong>on</strong>g> of hav<strong>in</strong>g spawned previously. Model 4<br />

was used for G0,<br />

yijkl ¼ l þ Pi þ Tj þðPTÞ ij þ Ik þ eijkl<br />

where yijkl is the 3- or 4-year old spawn date for <strong>in</strong>dividual k <strong>in</strong> pure stra<strong>in</strong> i <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> j; Tj is the fixed effect of the <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> number j ( j=1, 2); (PT)ij<br />

is the <strong>in</strong>teracti<strong>on</strong> of pure stra<strong>in</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> number; Ik is the r<str<strong>on</strong>g>and</str<strong>on</strong>g>om effect of<br />

ð3Þ<br />

ð4Þ


<strong>in</strong>dividual k; e ijkl is the residual error associated with observati<strong>on</strong> ijkl; rema<strong>in</strong><strong>in</strong>g<br />

variables are as described <strong>in</strong> Model 1. Model 5 was used for G1,<br />

yijklm ¼ l þ Yi þ Cj þ Tk þðCTÞ jk þ Il þ eijklm<br />

where yijklm is the 3- or 4-year old spawn date for <strong>in</strong>dividual l <strong>in</strong> year class i <str<strong>on</strong>g>and</str<strong>on</strong>g> stra<strong>in</strong><br />

comb<strong>in</strong>ati<strong>on</strong> j <strong>in</strong> <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> number k; Tk is the fixed effect of the <strong>spawn<strong>in</strong>g</strong><br />

seas<strong>on</strong> number k (k=1, 2); (CT)jk is the <strong>in</strong>teracti<strong>on</strong> of stra<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>spawn<strong>in</strong>g</strong><br />

seas<strong>on</strong> number; Il is the r<str<strong>on</strong>g>and</str<strong>on</strong>g>om effect of <strong>in</strong>dividual l; eijklm is the residual error<br />

associated with observati<strong>on</strong> ijklm; rema<strong>in</strong><strong>in</strong>g variables are as described for Model 3.<br />

3. Results<br />

3.1. <str<strong>on</strong>g>Stra<strong>in</strong></str<strong>on</strong>g> ma<strong>in</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

C.D. Qu<strong>in</strong>t<strong>on</strong> et al. / Aquaculture 234 (2004) 99–110 105<br />

Analysis of variance results for Models 1, 2, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 are shown <strong>in</strong> Table 3. Year class was<br />

not significant. N<strong>on</strong>e of the <strong>in</strong>teracti<strong>on</strong>s were significant <strong>in</strong> any analysis. Effects of pure<br />

stra<strong>in</strong>, dam stra<strong>in</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> sire stra<strong>in</strong> <strong>on</strong> spawn dates were highly significant. Least squares<br />

means for stra<strong>in</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> are summarised <strong>in</strong> Table 4. All G0 stra<strong>in</strong>s had significantly<br />

different mean spawn dates such that <strong>on</strong> average, OC <strong>female</strong>s spawned first, WC <strong>female</strong>s<br />

Table 3<br />

Results of analysis of variance test<strong>in</strong>g for stra<strong>in</strong>, dam stra<strong>in</strong>, sire stra<strong>in</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> year <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>spawn<strong>in</strong>g</strong><br />

dates at 3 years of age <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 years of age <strong>in</strong> generati<strong>on</strong>s 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1<br />

Model, Effects 3-year old spawn date a<br />

4-year old spawn date<br />

generati<strong>on</strong><br />

df MS P df MS P<br />

1, G0 Pure stra<strong>in</strong> ( P) 2 54619.0


106<br />

Table 4<br />

Female <strong>spawn<strong>in</strong>g</strong> date least squares means (s.e.) for G0 pure stra<strong>in</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> G1 dam stra<strong>in</strong>s, sire stra<strong>in</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> stra<strong>in</strong><br />

comb<strong>in</strong>ati<strong>on</strong>s. Spawn<strong>in</strong>g dates at 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 years of age (<strong>in</strong> days from Oct. 1) are <strong>in</strong> first <str<strong>on</strong>g>and</str<strong>on</strong>g> sec<strong>on</strong>d rows of each<br />

group, respectively. Differences a between dates <strong>in</strong> first <str<strong>on</strong>g>and</str<strong>on</strong>g> sec<strong>on</strong>d <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong>s are shown <strong>in</strong> third rows of<br />

each group<br />

G0 Pure stra<strong>in</strong><br />

OC WC MG<br />

92.1 (3.7) 132.3 (2.8) 172.7 (4.6)<br />

62.8 (6.0) 115.8 (4.1) 162.3 (5.3)<br />

35.8 26.0 17.2<br />

G1 Sire stra<strong>in</strong> Overall dam stra<strong>in</strong><br />

OC WC MG<br />

Dam stra<strong>in</strong> OC 86.9 (3.7) 92.8 (4.1) 111.5 (3.4) 97.1 (2.3)<br />

77.1 (8.0) 84.2 (7.9) 101.8 (6.9) 87.7 (4.5)<br />

20.6 8.7 13.5<br />

spawned sec<strong>on</strong>d, <str<strong>on</strong>g>and</str<strong>on</strong>g> MG <strong>female</strong>s spawned last ( P


OC MG spawned approximately 13 days earlier than MG OC ( P=0.0047). At 4 years of<br />

age, OC MG spawned approximately 21 days earlier than MG OC ( P=0.0148).<br />

3.3. Maturati<strong>on</strong> year <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

In both generati<strong>on</strong>s, at 4 years of age, repeat <strong>female</strong>s spawned significantly earlier<br />

( P


108<br />

Evidence for n<strong>on</strong>-additive genetic <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> ra<strong>in</strong>bow trout growth has been found (Gall<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Huang, 1988a; Su et al., 1996b; Pante et al., 2001), but at this <strong>time</strong> no c<strong>on</strong>clusi<strong>on</strong>s can<br />

be made about n<strong>on</strong>-additive genetic <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>spawn<strong>in</strong>g</strong> <strong>time</strong>. In the sole <strong>in</strong>cidence of<br />

heterosis (between WC <str<strong>on</strong>g>and</str<strong>on</strong>g> OC stra<strong>in</strong>s at 3 years old), there was <strong>on</strong>ly a small difference<br />

between hybrid <str<strong>on</strong>g>and</str<strong>on</strong>g> pure stra<strong>in</strong> performances, <str<strong>on</strong>g>and</str<strong>on</strong>g> other <strong>in</strong>ternal factors could have<br />

c<strong>on</strong>tributed to this difference. If an <strong>in</strong>dividual <strong>female</strong> must reach some threshold body size<br />

<strong>in</strong> order to spawn <strong>in</strong> a given seas<strong>on</strong>, those just <strong>on</strong> this threshold may have delayed oocyte<br />

development <str<strong>on</strong>g>and</str<strong>on</strong>g> ovulati<strong>on</strong> <strong>in</strong> their maiden seas<strong>on</strong>. This delayed <strong>spawn<strong>in</strong>g</strong> would be seen<br />

particularly <strong>in</strong> the early-<strong>spawn<strong>in</strong>g</strong> OC OC 3 year maiden spawners (as compared with<br />

other stra<strong>in</strong>s that spawned later <strong>in</strong> the year). When size or growth rate was no l<strong>on</strong>ger a<br />

factor at 4 years of age, the average spawn date of the hybrids was the same as the average<br />

spawn date of the pure stra<strong>in</strong>s.<br />

Inbreed<strong>in</strong>g <strong>in</strong> the WC or OC stra<strong>in</strong>s could also have caused changes <strong>in</strong> spawn date,<br />

similar to results found by Su et al. (1996a) who reported that <strong>in</strong>bred <strong>female</strong>s spawned at a<br />

later age. Any <strong>in</strong>breed<strong>in</strong>g effect would be removed by cross<strong>in</strong>g with different stra<strong>in</strong>s,<br />

therefore result<strong>in</strong>g <strong>in</strong> heterosis. There were, however, no heterosis <str<strong>on</strong>g>effects</str<strong>on</strong>g> when these<br />

stra<strong>in</strong>s were crossed with MG, so it is unlikely that removal of <strong>in</strong>breed<strong>in</strong>g depressi<strong>on</strong><br />

caused the heterosis effect.<br />

There were also differences for <strong>spawn<strong>in</strong>g</strong> performances between reciprocal crosses.<br />

Hybrids’ spawn dates tended to be more similar to that of their dam’s stra<strong>in</strong> than that of their<br />

sire’s stra<strong>in</strong>, as shown by the order of <strong>spawn<strong>in</strong>g</strong> A A, A B, B A, B B <strong>in</strong> all crosses.<br />

Hybrids from an early-<strong>spawn<strong>in</strong>g</strong> dam stra<strong>in</strong> spawned earlier than those hybrids that had the<br />

same stra<strong>in</strong> as their sire. In species that rear their young, differences between reciprocal<br />

crosses usually represent differences <strong>in</strong> maternal ability (Van Vleck et al., 1987), however,<br />

ra<strong>in</strong>bow trout do not rear their young. These results suggest that some other maternal factor<br />

affected spawn date. In this case, the <strong>spawn<strong>in</strong>g</strong> date of the dam, which was c<strong>on</strong>founded with<br />

dam stra<strong>in</strong>, could have c<strong>on</strong>tributed to differences between reciprocal crosses. No other<br />

studies <strong>on</strong> <strong>spawn<strong>in</strong>g</strong> <strong>time</strong> <strong>in</strong> reciprocal crosses have been published. Further research is<br />

needed to determ<strong>in</strong>e if n<strong>on</strong>-additive genetic or maternal <str<strong>on</strong>g>effects</str<strong>on</strong>g> c<strong>on</strong>trol this trait.<br />

4.3. Maturati<strong>on</strong> year <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

At 4 years of age, repeat spawners (<strong>female</strong>s that had matured at 3 years of age, <str<strong>on</strong>g>and</str<strong>on</strong>g> were<br />

<strong>spawn<strong>in</strong>g</strong> for the sec<strong>on</strong>d <strong>time</strong>) spawned earlier than maiden spawners. This result may<br />

relate to the previously-discussed idea that <strong>spawn<strong>in</strong>g</strong> at 3 years of age may be delayed <strong>in</strong><br />

<strong>female</strong>s that are close to a threshold body size. By the <strong>time</strong> these <strong>female</strong>s repeat <strong>spawn<strong>in</strong>g</strong><br />

at 4 years of age, eggs have had more <strong>time</strong> to ripen, <str<strong>on</strong>g>and</str<strong>on</strong>g> ovulati<strong>on</strong> can occur earlier. It<br />

would have been <strong>in</strong>terest<strong>in</strong>g to observe if this trend c<strong>on</strong>t<strong>in</strong>ued <strong>in</strong> subsequent <strong>spawn<strong>in</strong>g</strong><br />

seas<strong>on</strong>s, but this was bey<strong>on</strong>d the scope of the current project.<br />

4.4. Repeatability<br />

C.D. Qu<strong>in</strong>t<strong>on</strong> et al. / Aquaculture 234 (2004) 99–110<br />

Repeatability estimates of spawn date were high; therefore, <strong>female</strong>s that spawned early<br />

<strong>in</strong> the seas<strong>on</strong> at 3 years of age also tended to spawn early <strong>in</strong> the seas<strong>on</strong> at 4 years of age.<br />

Similarly, fish that spawned late <strong>in</strong> the seas<strong>on</strong> at 3 years of age also tended to spawn late <strong>in</strong>


the seas<strong>on</strong> at 4 years of age. A very similar repeatability estimate has also been found for<br />

the same populati<strong>on</strong> with restricted maximum likelihood methods (Qu<strong>in</strong>t<strong>on</strong> et al., 2002).<br />

These values are higher than that found by Sadler et al. (1992), probably due to more<br />

c<strong>on</strong>trolled envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s.<br />

Repeatability is c<strong>on</strong>sidered to be an upper-limit estimate of heritability (Falc<strong>on</strong>er <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mackay, 1996), which has been quantified for <strong>spawn<strong>in</strong>g</strong> <strong>time</strong> <strong>in</strong> a few studies. Published<br />

<strong>spawn<strong>in</strong>g</strong> <strong>time</strong> heritability estimates are generally high (Gall et al., 1988; Siit<strong>on</strong>en <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Gall, 1989; Sadler et al., 1992; Su et al., 1997, 1999; Qu<strong>in</strong>t<strong>on</strong> et al., 2002), but cover a<br />

wide range due to the def<strong>in</strong>iti<strong>on</strong> of traits measured <str<strong>on</strong>g>and</str<strong>on</strong>g> differ<strong>in</strong>g methods of estimati<strong>on</strong>.<br />

The reproductive seas<strong>on</strong> occurred earlier <strong>in</strong> the year when the populati<strong>on</strong>s were older.<br />

This <strong>time</strong> shift may have been caused by some change <strong>in</strong> envir<strong>on</strong>mental cues, such as<br />

management differences, from <strong>on</strong>e year to the next. It is unlikely, however, that the same<br />

envir<strong>on</strong>mental changes occurred at the same ages <strong>in</strong> all three year classes to cause similar<br />

advances <strong>in</strong> the <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong>. There may <strong>in</strong>stead be some <strong>in</strong>nate factor, such as a<br />

larger body size, which allowed repeat spawners to spawn earlier than maiden <strong>female</strong>s.<br />

The results of this study <strong>in</strong>dicate that <strong>spawn<strong>in</strong>g</strong> <strong>time</strong> is mostly <strong>in</strong>herited <strong>in</strong> an additive<br />

manner, so this trait is expected to resp<strong>on</strong>d to selecti<strong>on</strong>. It should be possible to use genetic<br />

selecti<strong>on</strong> to develop stra<strong>in</strong>s of ra<strong>in</strong>bow trout with different <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong>s suitable for a<br />

variety of producti<strong>on</strong> schemes. Select<strong>in</strong>g <strong>female</strong>s for spawn date after their first <strong>spawn<strong>in</strong>g</strong><br />

seas<strong>on</strong> could be d<strong>on</strong>e <strong>in</strong> order to c<strong>on</strong>dense future <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong>s to an optimal<br />

producti<strong>on</strong> <strong>time</strong>. Producers that spawn broodstock over multiple seas<strong>on</strong>s should able to<br />

predict <strong>in</strong>dividual future <strong>spawn<strong>in</strong>g</strong> dates based <strong>on</strong> past data, but should be aware that the<br />

entire <strong>spawn<strong>in</strong>g</strong> seas<strong>on</strong> may occur earlier for older animals.<br />

Acknowledgements<br />

The authors wish to acknowledge the staff Alma Aquaculture Research Stati<strong>on</strong>,<br />

assistance from V.M. Qu<strong>in</strong>t<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> S. M. Moghadasi, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>s by Aqua-Cage<br />

Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Blue Spr<strong>in</strong>g Trout Farms. This research was funded by the Ontario M<strong>in</strong>istry<br />

of Agriculture <str<strong>on</strong>g>and</str<strong>on</strong>g> Food through the Applied Fish Producti<strong>on</strong> Research Program.<br />

References<br />

C.D. Qu<strong>in</strong>t<strong>on</strong> et al. / Aquaculture 234 (2004) 99–110 109<br />

Falc<strong>on</strong>er, D.S., Mackay, T.F.C., 1996. Introducti<strong>on</strong> to Quantitative Genetics, 4th Editi<strong>on</strong>. L<strong>on</strong>gman Group, Burnt<br />

Mill, Harlow, Essex, Engl<str<strong>on</strong>g>and</str<strong>on</strong>g>. 464 pp.<br />

Fergus<strong>on</strong>, M.M., Danzmann, R.G., Arndt, S.K.A., 1993. Mitoch<strong>on</strong>drial DNA <str<strong>on</strong>g>and</str<strong>on</strong>g> allozyme variati<strong>on</strong> <strong>in</strong> Ontario<br />

cultured ra<strong>in</strong>bow trout <strong>spawn<strong>in</strong>g</strong> <strong>in</strong> different seas<strong>on</strong>s. Aquaculture 117, 237–259.<br />

Friars, G.W., Bailey, J.K., Saunders, R.L., 1979. C<strong>on</strong>siderati<strong>on</strong>s of a method of analyz<strong>in</strong>g <strong>diallel</strong> crosses of<br />

Atlantic salm<strong>on</strong>. Can. J. Genet. Cytol. 21, 121–128.<br />

Gall, G.A.E., Huang, N., 1988. Heritability <str<strong>on</strong>g>and</str<strong>on</strong>g> selecti<strong>on</strong> schemes for ra<strong>in</strong>bow trout: body weight. Aquaculture<br />

73, 43–56.<br />

Gall, G.A.E., Huang, N., 1988. Heritability <str<strong>on</strong>g>and</str<strong>on</strong>g> selecti<strong>on</strong> schemes for ra<strong>in</strong>bow trout: <strong>female</strong> reproductive<br />

performance. Aquaculture 73, 57–66.<br />

Gall, G.A.E., Baltodano, J., Huang, N., 1988. Heritability of age at <strong>spawn<strong>in</strong>g</strong> for ra<strong>in</strong>bow trout. Aquaculture 68,<br />

93–102.


110<br />

C.D. Qu<strong>in</strong>t<strong>on</strong> et al. / Aquaculture 234 (2004) 99–110<br />

McKay, L.R., McMillan, I., 1997. Growth, <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>spawn<strong>in</strong>g</strong> <strong>time</strong>s <strong>in</strong> crosses of three stra<strong>in</strong>s of ra<strong>in</strong>bow<br />

trout. Bull.-Aquac. Assoc. Can. 97 (2), 15–17.<br />

McMillan, I., McKay, L.R., 1992. A comparis<strong>on</strong> of four stra<strong>in</strong>s of spr<strong>in</strong>g <strong>spawn<strong>in</strong>g</strong> ra<strong>in</strong>bow trout. Bull.-Aquac.<br />

Assoc. Can. 92 (3), 43–45.<br />

Pante, M.J.R., Gjerde, B., McMillan, I., 2001. Effect of <strong>in</strong>breed<strong>in</strong>g <strong>on</strong> body weight at harvest <strong>in</strong> ra<strong>in</strong>bow trout<br />

O. mykiss. Aquaculture 192, 201–211.<br />

Purdom, C.E., 1993. Genetics <str<strong>on</strong>g>and</str<strong>on</strong>g> Fish Breed<strong>in</strong>g. Chapman & Hall, New York. 277 pp.<br />

Qu<strong>in</strong>t<strong>on</strong>, C.D., Moghadasi, S.M., McKay, L.R., McMillan, I., 2002. Genetic parameters of body weight, <strong>female</strong><br />

<strong>spawn<strong>in</strong>g</strong> date, <str<strong>on</strong>g>and</str<strong>on</strong>g> age at sexual <str<strong>on</strong>g>maturati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> ra<strong>in</strong>bow trout. Proc. 7th World C<strong>on</strong>gress <strong>on</strong> Genetics Applied<br />

to Livestock Producti<strong>on</strong>, 19–23 August 2002, M<strong>on</strong>tpellier, France. (further <strong>in</strong>formati<strong>on</strong> <strong>in</strong> given at http://<br />

www.wcgalp.org Under News).<br />

Sadler, S.E., McLeod, D., McKay, L.R., Moccia, R.D., 1992. Selecti<strong>on</strong> for early <strong>spawn<strong>in</strong>g</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> repeatability of<br />

spawn date <strong>in</strong> ra<strong>in</strong>bow trout. Aquaculture 100, 103.<br />

Siit<strong>on</strong>en, L., Gall, G.A.E., 1989. Resp<strong>on</strong>se to selecti<strong>on</strong> for early spawn date <strong>in</strong> ra<strong>in</strong>bow trout S. gairdneri.<br />

Aquaculture 78, 153–161.<br />

Su, G.-S., Liljedahl, L.-E., Gall, G.A.E., 1996a. Effects of <strong>in</strong>breed<strong>in</strong>g <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> reproductive traits <strong>in</strong><br />

ra<strong>in</strong>bow trout (O. mykiss). Aquaculture 142, 139–148.<br />

Su, G.-S., Liljedahl, L.-E., Gall, G.A.E., 1996b. Genetic <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental variati<strong>on</strong> of body weight <strong>in</strong> ra<strong>in</strong>bow<br />

trout (O. mykiss). Aquaculture 144, 71–80.<br />

Su, G.-S., Liljedahl, L.-E., Gall, G.A.E., 1997. Genetic <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental variati<strong>on</strong> of <strong>female</strong> reproductive traits<br />

<strong>in</strong> ra<strong>in</strong>bow trout (O. mykiss). Aquaculture 154, 115–124.<br />

Su, G.-S., Liljedahl, L.-E., Gall, G.A.E., 1999. Estimates of phenotypic <str<strong>on</strong>g>and</str<strong>on</strong>g> genetic parameters for with<strong>in</strong>-seas<strong>on</strong><br />

date <str<strong>on</strong>g>and</str<strong>on</strong>g> age at <strong>spawn<strong>in</strong>g</strong> of <strong>female</strong> ra<strong>in</strong>bow trout. Aquaculture 171, 209–220.<br />

Van Vleck, L.D., Pollak, E.J., Oltenacu, E.A.B., 1987. Genetics for the Animal Sciences. Freeman, New York.<br />

391 pp.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!