22.07.2013 Views

slides (pdf)

slides (pdf)

slides (pdf)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ab-initio Assisted Process and Device<br />

Simulation for Nanoelectronic Devices<br />

As impl.<br />

SIMS<br />

Model<br />

800 o C<br />

20 min<br />

Wolfgang Windl<br />

MSE, The Ohio State University, Columbus, OH, USA<br />

Computational Materials Science and Engineering<br />

I<br />

V


Insulator<br />

(SiO 2 )<br />

+<br />

+<br />

Source<br />

+<br />

-<br />

P +<br />

N: e - , e.g. As<br />

(Donor)<br />

-<br />

Semiconductor Devices – MOSFET<br />

Metal Oxide Semiconductor Field Effect Transistor<br />

+<br />

+<br />

+<br />

-<br />

-<br />

-<br />

0V G<br />

Gate<br />

(Me)<br />

Channel<br />

-<br />

N<br />

Doping:<br />

-<br />

-<br />

-<br />

+<br />

+<br />

+<br />

+<br />

+<br />

Si<br />

Spacer<br />

P: holes, e.g. B<br />

(Acceptor)<br />

-<br />

+<br />

Drain<br />

+ +<br />

+ P +<br />

+<br />

-<br />

– V D<br />

Source<br />

+ P +<br />

Computational Materials Science and Engineering<br />

+<br />

+<br />

+<br />

+ +<br />

-<br />

Gate<br />

N<br />

+<br />

Drain<br />

+ +<br />

+ P<br />

+<br />

+ + +<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

-<br />

- -<br />

+<br />

+<br />

+ +<br />

+<br />

+<br />

+ +<br />

-<br />

-<br />

- -<br />

-<br />

-<br />

– V G<br />

I D<br />

-<br />

Si<br />

– V D<br />

• Analog: Amplification<br />

• Digital: Logic gates<br />

-


1. Semiconductor Technology Scaling<br />

– Improving Traditional TCAD<br />

• Feature size shrinks on average by 12% p.a.; speed ∝ size<br />

• Chip size increases on average by 2.3% p.a.<br />

Overall performance: ↑ by ~55% p.a. or<br />

~ doubling every 18 months (“Moore’s Law”)<br />

Computational Materials Science and Engineering


Semiconductor Technology Scaling<br />

– Gate Oxide<br />

Gate oxide<br />

(SiO 2 )<br />

+<br />

+<br />

Source<br />

+<br />

-<br />

P +<br />

-<br />

+<br />

+<br />

Gate<br />

(Me)<br />

Channel<br />

+<br />

Drain<br />

+ +<br />

+ P +<br />

Computational Materials Science and Engineering<br />

+<br />

-<br />

-<br />

-<br />

0V G<br />

-<br />

-<br />

N<br />

-<br />

-<br />

+<br />

+<br />

+<br />

+<br />

+<br />

Si<br />

-<br />

+<br />

-<br />

– V D<br />

C = ε A/d<br />

+<br />

+<br />

+<br />

+ +<br />

-<br />

Bacterium<br />

Virus<br />

Protein<br />

molecule<br />

Atom


Role of Ab-Initio Methods on Nanoscale<br />

1. Improving traditional (continuum) process<br />

modeling to include nanoscale effects<br />

– Identify relevant equations & parameters (“physics”)<br />

– Basis for atomistic process modeling<br />

(Monte Carlo, MD)<br />

2. Nanoscale characterization<br />

= Combination of experiment & ab-initio calculations<br />

3. Atomic-level process + transport modeling<br />

= structure-property relationship (“ultimate goal”)<br />

Computational Materials Science and Engineering


1. “Nanoscale” Problems – Traditional MOS<br />

What you expect:<br />

Intrinsic diffusion<br />

dC<br />

dt<br />

( D ∇ )<br />

B = ∇ C B B<br />

What you get:<br />

•fast diffusion<br />

(TED)<br />

•immobile peak<br />

•segregation<br />

800 °C<br />

20 min<br />

800 °C<br />

20 min<br />

Computational Materials Science and Engineering<br />

800 °C<br />

1 month<br />

Active B¯


Bridging the Length Scales: Ab-Initio to Continuum<br />

dC<br />

dt<br />

D<br />

K<br />

I<br />

r<br />

I<br />

2<br />

I<br />

=<br />

=<br />

∝<br />

D<br />

∇<br />

0<br />

I<br />

D<br />

I I2<br />

( D ∇C<br />

)<br />

I<br />

exp<br />

a<br />

I<br />

2<br />

I<br />

I<br />

( − E / kT )<br />

exp<br />

C<br />

( I<br />

E / kT )<br />

2<br />

Computational Materials Science and Engineering<br />

m<br />

−<br />

− 2K<br />

b<br />

f<br />

I<br />

2<br />

2<br />

I<br />

+ 2K<br />

Need to calculate: ? Diffusion prefactors (Uberuaga et al., phys. stat. sol. 02)<br />

r<br />

I<br />

2<br />

C<br />

? Migration barriers (Windl et al., PRL 99)<br />

? Capture radii (Beardmore et al., Proc. ICCN 02)<br />

? Binding energies (Liu et al., APL 00)<br />

I<br />

2<br />

+


2. The Nanoscale Characterization Problem<br />

• Traditional characterization techniques, e.g.:<br />

– SIMS (average dopant distribution)<br />

– TEM (interface quality; atomic-column<br />

information)<br />

• Missing: “Single-atom” information<br />

– Exact interface (contact) structure (previous; next)<br />

– Atom-by-atom dopant distribution (strong V T shifts)<br />

• New approach: atomic-scale characterization<br />

(TEM) plus modeling<br />

Computational Materials Science and Engineering


Buczko et al.<br />

Abrupt vs. Diffuse Interface<br />

Abrupt Graded<br />

Si 0<br />

Si 2+<br />

Si 4+<br />

Si 0<br />

Si 1,2,3+<br />

Si 4+<br />

How do we know? What does it mean?<br />

Computational Materials Science and Engineering


0.1 nm<br />

Scanning<br />

Probe<br />

EELS<br />

Spectrometer<br />

Atomic Resolution Z-Contrast<br />

GaAs<br />

Imaging<br />

Computational Materials Science and Engineering<br />

Z=31 Z=33<br />

Ga<br />

As<br />

1.4Å


intensity (a.u.)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

ZERO<br />

LOSS<br />

Electron Energy-Loss Spectrum<br />

x25<br />

VALENCE<br />

LOSS<br />

x500 x5000<br />

optical properties<br />

and<br />

electronic structure<br />

Si-L<br />

bonding and<br />

oxidation state<br />

CORE<br />

LOSS<br />

C-K<br />

silicon with<br />

surface oxide and<br />

carbon contamination<br />

concentration<br />

100 200 300 400 500<br />

energy loss (eV)<br />

Computational Materials Science and Engineering<br />

O-K<br />

CB<br />

VB<br />

Core hole<br />

⇒ Z+1


Theoretical Methods<br />

ab initio Density Functional Theory<br />

plus LDA or GGA<br />

implemented within<br />

pseudopotential<br />

and<br />

full-potential (all electron) methods<br />

Computational Materials Science and Engineering


site and<br />

momentum<br />

resolved<br />

DOS<br />

Si-L 2,3 Ionization Edge in EELS<br />

energy<br />

ground state of Si atom<br />

with total energy E 0<br />

conduction band minimum<br />

EF 2p 3/2<br />

2p 1/2<br />

2s 1/2<br />

1s 1/2<br />

Computational Materials Science and Engineering<br />

excited Si atom<br />

with total energy E 1<br />

~ 90eV ~ 115eV<br />

2p 6<br />

2p 5<br />

Transition energy E T 1 0 = E - E0 E<br />

ET = ~100 eV


Calculated Si-L 2,3 Edges at Si/SiO 2<br />

0.8<br />

0.4<br />

0<br />

0.6<br />

0.2<br />

1.2<br />

0.4<br />

0<br />

1<br />

0.5<br />

0<br />

Si<br />

Si 2+<br />

Si 4+<br />

Si 1+<br />

Si 3+<br />

100 104<br />

Energy-loss, eV<br />

108<br />

Computational Materials Science and Engineering


0.5 nm nm<br />

Si<br />

Combining Theory and Experiment<br />

Calculation of EELS Spectra from Band Structure<br />

Intensity<br />

Si - L 2,3<br />

100 105 110<br />

Energy-loss (eV)<br />

Computational Materials Science and Engineering


0.5 nm nm<br />

Si<br />

Combining Theory and Experiment<br />

Calculation of EELS Spectra from Band Structure<br />

Intensity<br />

Si - L 2,3<br />

100 105 110<br />

Energy-loss (eV)<br />

Computational Materials Science and Engineering<br />

4<br />

3<br />

2<br />

1<br />

Fractions<br />

.74<br />

Si 0 Si 1+ Si 2+ Si 3+ Si 4+<br />

⇒ “Measure” atomic structure of amorphous materials.


Band Line-Up Si/SiO 2<br />

Real-space band structure:<br />

•Calculate electron DOS<br />

projected on atoms<br />

•Average layers<br />

⇒ Abrupt would be better!<br />

Is there an abrupt<br />

interface?<br />

Lopatin et al., submitted to PRL<br />

Computational Materials Science and Engineering<br />

n<br />

=<br />

N<br />

0<br />

exp<br />

⎛ EC<br />

− E<br />

⎜ −<br />

⎝ k T B<br />

F<br />

⎞<br />

⎟<br />


• Yes!<br />

Interfaces with Different Abruptness:<br />

• Ge-implanted sample<br />

from ORNL (1989).<br />

• Sample history:<br />

Si/SiO 2 vs. Si:Ge/SiO 2<br />

• Ge implanted into Si<br />

(10 16 cm -2 , 100 keV)<br />

• ~ 800 o C oxidation<br />

Computational Materials Science and Engineering<br />

Initial Ge distribution<br />

~120 nm<br />

~4%


Intensity<br />

Z-Contrast Ge/SiO Interface<br />

2<br />

1 2 3 4 5 6 nm<br />

Si Ge<br />

SiO2 Computational Materials Science and Engineering<br />

• Ge after<br />

oxidation<br />

packed into<br />

compact layer,<br />

~ 4-5 nm wide<br />

• peak ~100% Ge


Kinetic Monte Carlo Ox. Modeling<br />

Simulation Algorithm for oxidation of Si:Ge:<br />

– Si lattice with O added between Si atoms<br />

– Addition of O atoms and hopping of Ge positions<br />

by KMC*<br />

– First-principles calculation of simplified energy<br />

expression as function of bonds:<br />

E<br />

[ ]<br />

eV<br />

=<br />

− 2.<br />

71<br />

− 7.<br />

07<br />

SiSi<br />

GeOGe<br />

GeGe<br />

SiOSi<br />

Windl et al., J. Comput. Theor. Nanosci.<br />

Computational Materials Science and Engineering<br />

n<br />

n<br />

− 2.<br />

23<br />

n<br />

− 8.<br />

94<br />

n<br />

− 2.<br />

47<br />

n<br />

−8.<br />

05<br />

SiGe<br />

n<br />

SiOGe<br />

*Hopping rate Ge: McVay, PRB 9 (74); ox rate SiGe: Paine, JAP 70 (91).


Monte Carlo Results - Animation<br />

• O<br />

• Ge<br />

Si not shown<br />

2×4×22 nm 3<br />

Concentration (cm -3 )<br />

Computational Materials Science and Engineering<br />

Depth (cm)<br />

Ge conc.<br />

O conc.


Monte Carlo Results - Profiles<br />

Initial Ge distribution 25 min, 1000 o C<br />

oxide<br />

Computational Materials Science and Engineering


0.5 nm<br />

Si<br />

Intensity<br />

Si/SiO vs. Ge/SiO 2 2<br />

Atomic Resolution EELS<br />

Si - L 2,3<br />

100 105 110<br />

Energy-loss (eV)<br />

0.5 nm<br />

S. Lopatin et al., Microscopy and Microanalysis, San Antonio, 2003.<br />

Si - L 2,3<br />

Ge<br />

Ge<br />

Intensity<br />

SiGe<br />

Computational Materials Science and Engineering<br />

100 105 110<br />

Energy-loss (eV)<br />

oxide


Band Line-Up Si/SiO 2 & Ge/SiO 2<br />

Lopatin et al., submitted to PRL<br />

Computational Materials Science and Engineering


Conclusions 2<br />

• Atomic-scale characterization is possible:<br />

Ab-initio methods in conjunction with Z-contrast &<br />

EELS can resolve interface structure.<br />

• Atomically sharp Ge/SiO 2 interface observed<br />

• Reliable structure-property relationship for well<br />

characterized structure (band line-up)<br />

• Abrupt is good<br />

• Sharp interface from Ge-O repulsion (“snowplowing”)<br />

Computational Materials Science and Engineering


3. Process and Device Simulation of<br />

Molecular Devices<br />

300 nm<br />

Possibilities:<br />

Wind et al., JVST B, 2002.<br />

Computational Materials Science and Engineering<br />

• Carbon nanotubes (CNTs) as<br />

channels in field effect transistors<br />

• Single molecules to function as<br />

devices<br />

• Molecular wires to connect device<br />

molecules<br />

• Single-molecule circuits where<br />

devices and interconnects are<br />

integrated into one large molecule


I<br />

p<br />

( ) ( )<br />

2<br />

V = ∫ T , ( ) ( ) = ∫ ( )<br />

lr E V fl<br />

E fr<br />

E dE Tlr<br />

E<br />

Using<br />

Concept of Ab-Initio Device Simulation<br />

2<br />

8π<br />

e<br />

h<br />

device<br />

• Landauer formula for I p (V)<br />

Zhang, Fonseca, Demkov, Phys Stat Sol (b), 233, 70 (2002)<br />

Computational Materials Science and Engineering<br />

E<br />

E<br />

F<br />

F<br />

+ V<br />

/ 2<br />

−V<br />

/ 2<br />

• Lippmann-Schwinger equation, T lr (E) = 〈 l⏐V + VGV ⏐r 〉<br />

• Rigid-band approximation T(E,V) = T(E + ηV) with η = 0.5<br />

2<br />

dE


H<br />

⎛H<br />

l<br />

⎜<br />

= ⎜Vdl<br />

⎜<br />

⎝ 0<br />

Zhang, Fonseca, Demkov,<br />

Phys Stat Sol (b), 233,<br />

T lr from Local-Orbital Hamiltonian<br />

T lr<br />

=<br />

V<br />

H<br />

V<br />

l<br />

ld<br />

d<br />

rd<br />

Vˆ<br />

+ Vˆ<br />

Gˆ<br />

Vˆ<br />

V<br />

0<br />

H<br />

dr<br />

r<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

r<br />

( ) 1 −<br />

E − Hˆ<br />

+ i<br />

Gˆ<br />

( E)<br />

= ε<br />

...<br />

Hˆ = Hˆ<br />

l + Hˆ<br />

r + Hˆ<br />

d + Vˆ<br />

dl + Vˆ<br />

dr<br />

Vˆ<br />

left elec.<br />

(H l )<br />

device<br />

(H d )<br />

Computational Materials Science and Engineering<br />

right elec.<br />

(H r )<br />

T l T dl T dr T r<br />

• T lr (E) can be constructed from matrix elements of DFT tightbinding<br />

Hamiltonian H. Pseudo atomic orbitals: ψ(r > r c )=0.<br />

• We use matrix-element output from SIESTA.<br />

...


The Molecular Transport Problem<br />

I Expt.<br />

Strong discrepancy expt.-theory!<br />

Suspected Problems:<br />

• Contact formation molecule/lead<br />

not understood<br />

• Influence of contact structure on<br />

electronic properties<br />

Theor.<br />

Computational Materials Science and Engineering


What is “Process Modeling” for<br />

Molecular Devices?<br />

• Contact formation: need to follow influence of temperature<br />

etc. on evolution of contact.<br />

• Molecular level:<br />

atom by atom<br />

⇒ Molecular Dynamics<br />

• Problem:<br />

MD may never get to<br />

relevant time scales<br />

* 1-week simulation of 1000-atom metal<br />

system, EAM potential<br />

Accessible simulated time*<br />

Computational Materials Science and Engineering<br />

s<br />

ms<br />

μ s<br />

ns<br />

Moore’ s law<br />

1990 2000<br />

Year<br />

2010


Accelerated Molecular Dynamics<br />

• Possible solution: accelerated dynamics methods.<br />

• Principle: run for t run. Simulated time: t sim = n t run, n >> 1<br />

• Possible methods:<br />

• Hyperdynamics (1997)<br />

Methods<br />

• Parallel Replica Dynamics (1998)<br />

• Temperature Accelerated Dynamics (2000)<br />

Voter et al., Annu. Rev. Mater. Res. 32, 321 (2002).<br />

Computational Materials Science and Engineering


Temperature Accelerated Dynamics (TAD)<br />

Concept:<br />

• Raise temperature of system to make events occur more<br />

frequently. Run several (many) times.<br />

• Pick randomly event that should have occurred first at the<br />

lower temperature.<br />

Basic assumption (among others):<br />

• Harmonic transition state theory (Arrhenius behavior) w/<br />

ΔE from Nudged Elastic Band Method (see above).<br />

⎛ ΔE<br />

⎞<br />

⎡ ⎛<br />

⎞⎤<br />

⎢ ⎜<br />

1 1<br />

k = ν<br />

⎟ ⇒ = Δ − ⎟<br />

0 exp ⎜−<br />

tlow<br />

thigh<br />

exp E<br />

⎥<br />

⎝ kT ⎠<br />

⎢<br />

⎜<br />

⎟<br />

⎣ ⎝<br />

kT kT low high ⎠⎥⎦<br />

Voter et al., Annu. Rev. Mater. Res.<br />

32, 321 (2002). Computational Materials Science and Engineering


Carbon Nanotube on Pt<br />

• From work function, Pt possible lead candidate.<br />

• Structure relaxed with VASP.<br />

• Very small relaxations of Pt suggest little wetting<br />

between CNT and Pt (⇒ bad contact!?).<br />

Computational Materials Science and Engineering


Movie: Carbon Nanotube on Pt<br />

Temperature-Accelerated MD at 300 K<br />

•Nordlund empirical potential<br />

t sim = 200 μ s<br />

•Not much interaction observed ⇒ study different system.<br />

Computational Materials Science and Engineering


Carbon Nanotube on Ti<br />

•Large relaxations of Ti suggest strong reaction<br />

(wetting) between CNT and Ti.<br />

•Run ab-initio TAD for CNT on Ti (no empirical<br />

potential available).<br />

•Very strong reconstruction of contacts observed.<br />

Computational Materials Science and Engineering


TAD MD for CNT/Ti<br />

600 K, 0.8 ps<br />

t sim (300 K) = 0.25 μ s<br />

CNT bonds break on<br />

top of Ti, very different<br />

contact structure.<br />

New structure 10 eV<br />

lower in energy.<br />

Computational Materials Science and Engineering


Contact Dependence of<br />

I-V Curve for CNT on Ti<br />

Difference 15-20%<br />

Computational Materials Science and Engineering


Relaxed CNT on Ti “Inline Structure”<br />

Computational Materials Science and Engineering<br />

• In real devices, CNT embedded into<br />

contact. Maybe major conduction<br />

through ends of CNT?


Contact Dependence of<br />

I-V Curve for CNT on Ti<br />

Inline structure has 10x conductivity of on-top structure<br />

Computational Materials Science and Engineering


• Currently major challenge for molecular devices: contacts<br />

• Contact formation: “Process” modeling on MD basis.<br />

• Accelerated MD<br />

Conclusions<br />

• Empirical potentials instead of ab initio when possible<br />

• Major pathways of current flow through ends of CNT<br />

Computational Materials Science and Engineering


Funding<br />

• Semiconductor Research Corporation<br />

• NSF-Europe<br />

• Ohio Supercomputer Center<br />

Computational Materials Science and Engineering


Acknowledgments (order of appearance)<br />

• Dr. Roland Stumpf (SNL; B diffusion)<br />

• Dr. Marius Bunea and Prof. Scott Dunham (B diffusion)<br />

• Dr. Xiang-Yang Liu (Motorola/RPI; BICs)<br />

• Dr. Leonardo Fonseca (Freescale; CNT transport)<br />

• Karthik Ravichandran (OSU; CNT/Ti)<br />

• Dr. Blas Uberuaga (LANL; CNT/Pt-TAD)<br />

• Prof. Gerd Duscher (NCSU; TEM)<br />

• Tao Liang (OSU; Ge/SiO 2)<br />

• Sergei Lopatin (NCSU; TEM)<br />

Computational Materials Science and Engineering


Right:<br />

• Ti below 10 a.u. and above 60<br />

a.u.<br />

• CNT (3,3), 19 C planes, in<br />

contact with Ti between 15 a.u. and<br />

30 a.u. and between 45 a.u. and<br />

60 a.u.<br />

Left:<br />

• Ti below 25 a.u. and above 55<br />

a.u.<br />

• CNT (armchair (3,3), 12 C planes)<br />

in the middle


Minimal basis set used (SZ); I did a separate calculation for an isolated CNT<br />

(3,3) and obtained a band gap of 1.76 eV (SZ) and 1.49 eV (DZP). Armchair<br />

CNTs are metallic; to close the gap we need kpts in the z-direction.


The main peak in the X structure is<br />

located at ~5 V, which is close to<br />

the value from the inline structure<br />

(~5.5 V). This indicates that the<br />

qualitative features in the<br />

conductance derive from the CNT<br />

while the magnitude of the<br />

conductance is set by the contacts.<br />

The extra peaks seen on the right<br />

may be due to incomplete<br />

Notice the difference in the yaxis.<br />

The X structure (below)<br />

carries a current which is about<br />

one order of magnitude smaller<br />

than the CNT inline with the<br />

contacts (left)


The main peak in the X structure is<br />

located at ~5 V, which is close to<br />

the value from the inline structure<br />

(~5.5 V). This indicates that the<br />

qualitative features in the<br />

conductance derive from the CNT<br />

while the magnitude of the<br />

conductance is set by the contacts.<br />

The extra peaks seen on the right<br />

may be due to incomplete<br />

Notice the difference in the yaxis.<br />

The X structure (below)<br />

carries a current which is about<br />

one order of magnitude smaller<br />

than the CNT inline with the<br />

contacts (left)


Current (A)


PDOS for the relaxed CNT in line with contacts. The two curves correspond<br />

to projections on atoms far away from the two interfaces. A (3,3) CNT is<br />

metallic, still there is a gap of about 4 eV. Does the gap above result from<br />

interactions with the slabs or from lack of kpts along z? This question is not<br />

so important since the Fermi level is deep into the CNT valence band.


Previous calculations and new ones. Black is unrelaxed but converged with<br />

Siesta while blue is relaxed with Vasp and converged with Siesta. From your<br />

results it looks like you started from an unrelaxed structure and is trying to<br />

converge it.


Current (A)<br />

Bias (V)<br />

Previous calculations and new ones. Black is relaxed with Vasp and<br />

converged with Siesta.


MD smoothes out most of<br />

the conductance peaks<br />

calculated without MD.<br />

However, the overall effect<br />

of MD does not seem to be<br />

very important. That is an<br />

important result because it<br />

tells us that the Schottky<br />

barrier is extremely<br />

important for the device<br />

characteristics but interface<br />

defects are not. Transport<br />

seems to average out the<br />

defects generated with MD.<br />

Notice in the lower plot that<br />

there is no exponential<br />

regime, indicating ohmic<br />

behavior. Slide 7 shows<br />

that for the aligned<br />

structure the tunneling<br />

regime is very clear up to<br />

~6 V.


Physical Multiscale Process Modeling REED-MD<br />

Ab Initio: Diffusion<br />

parameters, stress<br />

dependence, etc.<br />

2<br />

Relate atomistic<br />

calculations to<br />

macroscopic eqs.<br />

Device modeling<br />

compare modeled<br />

results to specs.<br />

Met ⇒ done,<br />

otherwise goto 1.<br />

Computational Materials Science and Engineering<br />

3<br />

5<br />

Diffusion Solver<br />

- read in implant<br />

- solve diffusion<br />

Implant:<br />

“ab-initio”<br />

modeling<br />

(3D dopant<br />

distribution<br />

)<br />

1<br />

4


MOSFET Scaling: Ultrashallow Junctions<br />

Shallower Implant<br />

Better insulation (off)<br />

Higher Doping<br />

*P. Packan, MRS Bulletin<br />

Computational Materials Science and Engineering<br />

To get enough<br />

current with shallow<br />

source & drain


Gate<br />

Channel<br />

Source Drain<br />

Implantation & Diffusion<br />

• Dopants inserted by ion implantation<br />

⇒ damage<br />

• Damage healed by annealing<br />

• During annealing, dopants diffuse fast<br />

(assisted by defects)<br />

⇒ important to optimize anneal<br />

*Hoechbauer, Nastasi, Windl<br />

Computational Materials Science and Engineering<br />

*


Ab-Initio Calculations – Standard Codes<br />

Input:<br />

● Coordinates and types of group of atoms<br />

(molecule, crystal, crystal + defect, etc.)<br />

Output:<br />

● Solve quantum mechanical Schrödinger equation,<br />

Hψ = Eψ ⇒ total energy of system<br />

● Calculate forces on atoms, update positions<br />

⇒ equilibrium configuration<br />

⇒ thermal motion (MD),<br />

vibrational properties<br />

Computational Materials Science and Engineering<br />

H<br />

H<br />

H<br />

O<br />

O<br />

H


“real”<br />

Ab-Initio Calculations<br />

DFT<br />

Computational Materials Science and Engineering<br />

effective potential<br />

• Error from effective potential corrected by (exchange-)correlation term<br />

• Local Density Approximation (LDA)<br />

• Generalized-Gradient Approximations (GGAs)<br />

• Others (“Exact exchange”, “hybrid functionals” etc.)<br />

• “Correct one!?”<br />

• “Everybody’s” choice:<br />

Ab-initio code VASP (Technische Universität Wien), LDA and GGA


How To Find Migration Barriers I<br />

• “Easy”: Can guess final state & diffusion path (e.g. vacancy diffusion)<br />

“By hand”, “drag” method. Extensive use in the past.<br />

Energy<br />

ΔE ~ 0.4 eV ΔE<br />

Fails even for exchange N-V in Si (“detour” lowers barrier by ~2 eV)<br />

drag<br />

real<br />

Unreliable!<br />

Computational Materials Science and Engineering


How To Find Migration Barriers II<br />

New reliable search methods for diffusion paths exist like:<br />

• Nudged elastic band method” (Jónsson et al.). Used in this work.<br />

• Dimer method (Henkelman et al.)<br />

• MD (usually too slow); but can do “accelerated” MD (Voter)<br />

• All in VASP, easy to use.<br />

a b c<br />

Initial Saddle Final<br />

Elastic band method:<br />

Minimize energy of all snapshots plus<br />

spring terms, E chain :<br />

E<br />

E<br />

chain<br />

spring<br />

ab<br />

=<br />

=<br />

all atoms<br />

b c<br />

spring<br />

ab<br />

1<br />

k j j<br />

2<br />

Computational Materials Science and Engineering<br />

E<br />

a<br />

+<br />

∑<br />

E<br />

2<br />

+ E<br />

+ E<br />

+<br />

E<br />

spring<br />

bc<br />

( a b<br />

x − x ) ( Hooke' s Law )


Calculation of Diffusion Prefactors<br />

• Vineyard theory<br />

• From vibrational<br />

frequencies<br />

⇒<br />

const.<br />

Prefactor<br />

×<br />

N<br />

∏<br />

j=<br />

1<br />

N −1<br />

∏<br />

j=<br />

1<br />

ν<br />

ν<br />

A<br />

j<br />

S<br />

j<br />

given<br />

,<br />

ν<br />

j<br />

by<br />

phonon<br />

freqs.<br />

Energy<br />

Computational Materials Science and Engineering<br />

ΔE<br />

A S B<br />

• Phonon calculation in VASP<br />

• Download our scripts from Johnsson group website (UW)<br />

A<br />

S<br />

B


Reason for TED: Implant Damage<br />

NEBM-DFT: Interstitial assisted two-step mechanism:<br />

Intrinsic diffusion:<br />

Create interstitial, B captures interstitial, diffuse together<br />

⇒ Diffusion barrier: E form (I) – E bind (BI) + E mig (BI)<br />

4 eV 1 eV 0.6 eV ~ 3.6 eV<br />

After implant:<br />

Interstitials for “free” ⇒ transient enhanced diffusion<br />

W. Windl, M.M. Bunea, R. Stumpf, S.T. Dunham, and M.P. Masquelier,<br />

Proc. MSM99 (Cambridge, MA, 1999), p. 369; MRS Proc. 568, 91 (1999); Phys. Rev. Lett. 83, 4345 (1999).<br />

Computational Materials Science and Engineering


T( o C)<br />

Reason for Deactivation – Si-B Phase Diagram<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

2092<br />

2020<br />

B<br />

SiB 14<br />

Si 10 B 60<br />

1850<br />

Si 1.8B 5.2<br />

1385<br />

1270<br />

Computational Materials Science and Engineering<br />

1414<br />

800<br />

0 10 20 30 40 50 60 70 80 90 100<br />

B<br />

Si<br />

L<br />

Si


Deactivation – Sub-Microscopic Clusters<br />

Experimental findings:<br />

• Structures too small to be seen in EM ⇒ only “few” atoms<br />

• New phase nucleates, but decays quickly<br />

• Clustering dependent on B concentration and<br />

interstitial concentration<br />

⇒ formation of B mI n clusters postulated;<br />

experimental estimate: m / n ~ 1.5*<br />

⇒ Approach:<br />

• Calculate clustering energies from first principles up to<br />

“max.” m, n<br />

• Build continuum or atomistic kinetic-Monte Carlo model<br />

*S. Solmi et al., JAP 88, 4547 (2000).<br />

Computational Materials Science and Engineering


Cluster Formation – Reaction Barriers<br />

*Uberuaga, Windl et al.<br />

Computational Materials Science and Engineering<br />

Dimer study of the<br />

breakup of B 3 I 2 into B 2 I<br />

and BI showed:*<br />

•BIC reactions diffusion<br />

limited<br />

•Reaction barrier can be<br />

well approximated by<br />

difference in formation<br />

energies plus migration<br />

energy of mobile species.


B-I Cluster Structures from Ab Initio Calculations<br />

B x I<br />

B x I 2<br />

B x I 3<br />

I>3<br />

BI +<br />

LDA −0.5<br />

GGA −0.4<br />

BI 2 0<br />

−2.5<br />

−2.3<br />

B 2 I 0<br />

B 2 I 2 0<br />

B 3 I -<br />

B 3 I 2 0<br />

+ 0<br />

-<br />

-<br />

BI3 B2I3 B3I3 B4I3 −4.8<br />

−4.5<br />

B 4 I 4 -<br />

−9.2<br />

−7.8<br />

−2.0<br />

−1.2<br />

−3.0<br />

−2.4<br />

−6.0<br />

−5.3<br />

−3.0<br />

−2.2<br />

−4.1<br />

−2.6<br />

−6.6<br />

−5.6<br />

X.-Y. Liu, W. Windl, and M. P. Masquelier,<br />

APL 77, 2018 (2000).<br />

Computational Materials Science and Engineering<br />

B 4 I 2-<br />

−5.5<br />

−4.3<br />

B 4 I 2 0<br />

−5.5<br />

−4.3<br />

−7.0<br />

−5.9<br />

B 12 I 7 2-<br />

−24.4<br />

N/A


Activation and Clusters<br />

30 min anneal, different T (equiv. constant T, varying times)<br />

GGA<br />

B 3 I 3 -<br />

B 3 I -<br />

Computational Materials Science and Engineering


Conc. (cm -3 )<br />

Calibration with SIMS Measurements<br />

• Sum of small errors in ab-initio exponents has big effect on<br />

continuum model<br />

∀⇒ refining of ab-initio numbers necessary<br />

• Use Genetic Algorithm for recalibration<br />

10 19<br />

10 18<br />

10 17<br />

10 16<br />

650 o C<br />

20 min<br />

As impl.<br />

SIMS<br />

Model<br />

1025 o C<br />

20 s<br />

0 0.5 0 0.5 0 0.5<br />

Depth (μm)<br />

800 o C<br />

20 min<br />

Computational Materials Science and Engineering<br />

30 min


*A. Asenov<br />

Statistical Effects in Nanoelectronics:<br />

Why KMC?<br />

Computational Materials Science and Engineering<br />

SIMS<br />

Need to think about exact distribution ⇒ atomic scale!


Conclusion 1<br />

• Atomistic, especially ab-initio, calculations<br />

very useful to determine equation set and<br />

parameters for physical process modeling.<br />

• First applications of this “virtual fab” in<br />

semiconductor field.<br />

• In future, atomistic modeling needed (example:<br />

oxidation model later).<br />

Computational Materials Science and Engineering


Vacuum<br />

level<br />

E F<br />

Lead CNT<br />

VB<br />

CNT-FET as Schottky Junction<br />

CB<br />

Φ L<br />

Φ CNT<br />

VB<br />

CB<br />

E F<br />

Metal<br />

lead<br />

Computational Materials Science and Engineering<br />

Vo<br />

E o<br />

CNT<br />

Before contact After contact<br />

E F<br />

Φ B = Φ L – Φ CNT<br />

Desirable: Φ B = 0 to minimize contact resistance.<br />

Metals with “right” Φ B : Pt, Ti, Pd.


Computational Materials Science and Engineering


The main peak in the X structure is<br />

located at ~5 V, which is close to<br />

the value from the inline structure<br />

(~5.5 V). This indicates that the<br />

qualitative features in the<br />

conductance derive from the CNT<br />

while the magnitude of the<br />

conductance is set by the contacts.<br />

The extra peaks seen on the right<br />

may be due to incomplete<br />

Notice the difference in the yaxis.<br />

The X structure (below)<br />

carries a current which is about<br />

one order of magnitude smaller<br />

than the CNT inline with the<br />

contacts (left)


Current (A)


PDOS for the relaxed CNT in line with contacts. The two curves correspond<br />

to projections on atoms far away from the two interfaces. A (3,3) CNT is<br />

metallic, still there is a gap of about 4 eV. Does the gap above result from<br />

interactions with the slabs or from lack of kpts along z? This question is not<br />

so important since the Fermi level is deep into the CNT valence band.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!