23.07.2013 Views

High Energy X-ray Diffraction Microscopy (HEDM) - Materials ...

High Energy X-ray Diffraction Microscopy (HEDM) - Materials ...

High Energy X-ray Diffraction Microscopy (HEDM) - Materials ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>High</strong> <strong>Energy</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Microscopy</strong> (<strong>HEDM</strong>):<br />

Microstructure Responses in Polycrystals<br />

R. M. Suter<br />

S. F. Li, C. M. Hefferan, J. Lind<br />

Department of Physics, Carnegie Mellon<br />

U. Lienert<br />

Advanced Photon Source<br />

NSF/MRSEC/Metals DMR1105173<br />

DOE/BES DESC0002001


What’s different about x-<strong>ray</strong> orientation mapping?<br />

Carnegie<br />

Mellon<br />

MRSEC<br />

Non-destructive<br />

Inside of bulk material<br />

Watch bulk material respond to stimuli


Outline<br />

1. Synchrotron radiation sources<br />

2. Near-field <strong>HEDM</strong> principles and practice<br />

3. Validation<br />

4. Orientation gradients<br />

5. Misorientations: angles and axes<br />

6. Combining with far-field


X-<strong>ray</strong> Absorption Lengths in Elemental Solids<br />

• 50 keV – 100 keV well matched to transmission through<br />

mm sized samples<br />

• Comparable to beam sizes 30 m downstream from source


<strong>HEDM</strong> Common Feature:<br />

Bragg Scattering at <strong>High</strong> <strong>Energy</strong><br />

All scattering vectors with c > q<br />

can be observed<br />

With a single rotation, we can access large region of reciprocal space


APS 1-ID <strong>High</strong> <strong>Energy</strong><br />

Beamline<br />

ESRF ID-11 <strong>Materials</strong><br />

Science Beamline<br />

Third Generation Synchrotron<br />

Radiation Sources<br />

• Small source size<br />

• <strong>High</strong> energy<br />

• Insertion devices<br />

Petra III P07 The <strong>High</strong> <strong>Energy</strong><br />

<strong>Materials</strong> Science Beamline


Magnetic Lattices as Sources<br />

Wiggler:<br />

I ~ N<br />

Broad spectrum<br />

Undulator:<br />

I ~ N 2<br />

Peaked spectrum


APS Undulator


Undulator X-<strong>ray</strong> Source


APS-U @ 1-ID: sources<br />

R. Dejus<br />

Request canted undulators:<br />

(i) superconducting (fixed<br />

period w/3 rd harmonic<br />

~70keV)<br />

(ii) revolver PM (2.3&2.5cm)<br />

for continuous coverage<br />

Request a long straight section<br />

to accommodate undulators &<br />

maximize length<br />

Heat loads more tolerable with<br />

short-period devices<br />

* 1.6cm SCU 300kW/mrad2 at<br />

min gap 9mm<br />

Advanced Photon Source 11


Specialized beam line requirements<br />

~2 m<br />

APS 1-ID beam line optics


Near-field <strong>HEDM</strong>: Orientation Field Mapping<br />

Apparatus at 1-ID at APS<br />

• Monochromatic x-<strong>ray</strong>s (> 50keV)<br />

• 1 – 5 mm beam height<br />

• 1.3 mm beam width<br />

• Air bearing rotation<br />

• 1.5 mm detector pixels<br />

• L = 4 – 12 mm<br />

Meaurement resolutions<br />

• Spatial: 1 - 4 mm<br />

• Orientation resolution: ~ 0.1 degree<br />

• Elastic strain: ??<br />

• Time: ~10 layers/hour<br />

Image diffracted beams<br />

from planar grain crosssections<br />

during 180<br />

degree w rotation<br />

in dw integration intervals<br />

• Lienert et al, JOM 2011<br />

• Suter et al, Eng Mat &<br />

• Tech 2007<br />

• Suter et al, RSI 2006<br />

• H.F. Poulsen, Springer<br />

Tracts, 2004


June 2012: Commissioning of new camera & mount<br />

Ulrich Lienert & Erika Benda<br />

• Increased stability<br />

• Simplified/smaller snout<br />

• Continuous rotation and<br />

synchronized readout of<br />

CCD


<strong>HEDM</strong>: Forward Modeling Orientation Field Reconstruction<br />

100 – 150 Braggs per grid element<br />

• Shortcut algorithms: 4 – 100X speedup<br />

• Reconstructions during measurements<br />

• Computer simulation mimics<br />

experiment<br />

• ~10 5 voxels/layer<br />

• ~100 layers<br />

• Potentially ~10 7 orientations<br />

resolved per voxel<br />

• Parallel processing:<br />

CMU, APS clusters, NSF TeraGrid


Data Flow


Initial image analysis<br />

Simple thresholding Laplacian edge detection


Geometry Determination<br />

1. Center 30 micron gold wire (absorption imaging)<br />

2. Collect 3L data set from one layer<br />

3. Back project peaks to locate rotation axis distances<br />

4. Reconstruct using IceNine<br />

5. Monte Carlo on geometry parameters: L’s, (j0, k0)’s,…<br />

• In principle, these parameters should be fixed<br />

• Mechanical drifts (or bumps) occur<br />

• Volume measurement macros use 3L layers every ~50<br />

layers, 2L’s otherwise for speed<br />

• Degradation of reconstructions leads to additional p-MC


Calibration and Validation<br />

• 152(2) micron diameter Ruby sphere<br />

(NIST calibration standard)<br />

• Locate by absorption<br />

• 20 micron gold wire co-mounted


Near-field Reconstruction: <strong>High</strong> purity nickel<br />

One of 42 layer sections,<br />

0.156 mm 3 volume<br />

• ~400 grains/layer<br />

• ~45 mm ave diameter<br />

• Smallest grains 10 mm<br />

Black lines: mesh element<br />

neighbors with > 0.1 deg<br />

misorientation<br />

• Sample has well ordered grains<br />

• ~0.1 deg experimental orientation resolution<br />

Grid elements generate ~100 relevant<br />

Bragg peaks<br />

Carnegie<br />

Mellon<br />

MRSEC<br />

20


Zirconium<br />

S0: initial state<br />

Narrowest cross-section<br />

Confidence delineation of grains:<br />

thresholding is just right!<br />

Note: “Confidence” is not a good statistical metric!


Technique Verification: <strong>HEDM</strong> & EBSD<br />

<strong>High</strong> purity nickel (1 mm diameter cylinder)<br />

EBSD <strong>HEDM</strong><br />

EBSD<br />

<strong>HEDM</strong>


Technique Verification: <strong>HEDM</strong> & EBSD<br />

• Compare distance in orientation space (misorientation)<br />

between coincident points in maps<br />

• Measured regions are not identical (planar x-<strong>ray</strong> beam vs<br />

polished surface)<br />

Point-to-point<br />

misorientation map<br />

°


NIST Single Crystal (?) Ruby Sphere<br />

• 152 micron diameter<br />

• Spherical to +/- 2 microns<br />

• 15 layers, 10 microns<br />

:<br />

0.28 deg about (0.2, -0.9, 0.4)<br />

Thanks to Joel Bernier<br />

Diffractometer Rocking Curve<br />

(0,-3,0) Bragg peak<br />

0.12 deg separation<br />

0.01 deg widths


Origin of intra-granular orientation resolution<br />

• Orientation search attempts to put 100 – 150 Bragg<br />

peaks in w-bins where they are observed<br />

• Small lattice rotations shift a subset to different bins<br />

w1 w2<br />

“Perfect” grain<br />

Detector image of a diffraction “spot”<br />

w1<br />

w2<br />

“Deformed” grain<br />

• Deformation generates broadening in both w and h at G hkl<br />

• Different G hkl’s sample a specific rotation differently<br />

Reasonable to expect sensitivity to / resolution of intra-granular<br />

orientation distributions


Simulation of a small grain<br />

with orientation gradient<br />

Five micron FCC grain<br />

Simulate with 384 area element triangles<br />

+/- 5 degree rotation around <br />

(2 -2 -4) Bragg unaffected<br />

(1 -1 1), (2 2 0) maximally broadened


w = -13.5 +/- 0.5 deg


w Lineshapes<br />

w = 93 94 95 96 97 98 99 100 deg deg


Reconstruction compared to broadened scattering<br />

w24<br />

Cu in<br />

tensile<br />

strain


Reconstruction compared to broadened scattering<br />

w25<br />

Cu in<br />

tensile<br />

strain


Reconstruction compared to broadened scattering<br />

w26<br />

Cu in<br />

tensile<br />

strain


Reconstruction compared to broadened scattering<br />

w27<br />

Cu in<br />

tensile<br />

strain


Reconstruction compared to broadened scattering<br />

w28<br />

Cu in<br />

tensile<br />

strain


Simulation Validation


INTRA-GRANULAR ORIENTATION GRADIENTS: HP AL<br />

Misorientation Map<br />

4 deg color scale<br />

2 deg boundaries<br />

<strong>High</strong> Purity Al<br />

orientation changes<br />

located at boundaries


Statistics extraction from large data sets<br />

Neighbor<br />

misorientation<br />

angle<br />

distribution


Statistics extraction from large data sets<br />

Neighbor<br />

misorientation<br />

angle<br />

distribution<br />

S27a<br />

S27b S7 S3


Misorientation axes: Ni(Bi)<br />

Red lines = 0.1 degree from nominal sigma-axes


Post-Mortem With <strong>HEDM</strong><br />

Fracture surface (tomography) of Ni<br />

superalloy<br />

Orientation map 200 microns below<br />

the tip of the sample


Near-field <strong>HEDM</strong>: Technique Summary<br />

• Non-destructive 3D crystallographic orientation field mapping<br />

• Ordered and deformed materials: metals, ceramics, …<br />

• Opportunity for basic and applied work (or “basic work on applied<br />

materials”)<br />

• Large data sets for computational model comparisons<br />

• Tracking of materials responses<br />

• Thermal / mechanical / radiation / …<br />

• APS Upgrade (aps.anl.gov/Upgrade) implications<br />

• 1-ID beamline on the “fast track”<br />

• Improved beam stability<br />

• Superconducting undulator source – 10X in brilliance!<br />

• New end-station hutch currently being instrumented<br />

• Second, fixed high energy, undulator beamline: a dedicated instrument???<br />

• Easily combined with high energy tomography<br />

• Sample shape evolution<br />

• Crack / void formation and tracking<br />

• Easily (!) combined with far-field strain sensitive measurements


Near-field <strong>HEDM</strong>: Technique Summary<br />

• Compared to 3D EBSD<br />

• <strong>High</strong>er orientation resolution<br />

• Lower spatial resolution<br />

• Faster: 3D volumes in < 24 hours (will accelerate)<br />

• But, you need a synchrotron – and not just any!<br />

• Compared to DAXM<br />

• Comparable orientation resolution<br />

• Lower spatial resolution / lower strain resolution<br />

• Faster per volume<br />

• Millimeter samples in transmission<br />

• Compared to DCT<br />

• Comparable resolutions<br />

• Slower<br />

• Access to deformed structures<br />

• Compared to tomography<br />

• Measures three parameter orientation field rather than scalar<br />

density field


Far-field measurements: Elastic Strain States<br />

• M. Miller (Cornell), U. Lienert (APS 1-ID)<br />

• Risoe group<br />

Detector A: strain<br />

sensitivity at L ~ 1m<br />

Detector B: high<br />

resolution reciprocal<br />

space mapping at<br />

L ~ 5m<br />

Use fast, efficient<br />

medical imaging<br />

detectors<br />

Lienert et al, Risoe 2010 symposium proceedings<br />

Lienert et al, JOM 2011


Ti-6Al: in-situ straining with single grain resolved strain

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!