23.07.2013 Views

cubic b-spline interpolation method for singular integral equations ...

cubic b-spline interpolation method for singular integral equations ...

cubic b-spline interpolation method for singular integral equations ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

References<br />

[1] A. Alaylioglu and D. S. Lubinsky,<br />

“Product integration of logarithmic<br />

<strong>singular</strong> integrands based on <strong>cubic</strong><br />

<strong>spline</strong>”; Journal of Computational and<br />

Applied Mathematics 11, 353-366<br />

(1984).<br />

[2] K. E. Atkinson and I. H. Sloan, “The<br />

numerical solution of first kind<br />

logarithmic-kernal <strong>integral</strong> <strong>equations</strong><br />

on smooth open arcs” ; Math.<br />

Comput., 56, 119-139, (1991).<br />

[3] K. E. Atkinson, “A Survey of<br />

Numerical Methods <strong>for</strong> the Solution of<br />

Fredholm Integral Equations of the<br />

second kind”; Society <strong>for</strong> Industrial<br />

and Applied Mathematics (SIAM),<br />

Philadelphia, Pensylvania, 1976.<br />

[4] K. E. Atkinson, “A discrete Galerkin<br />

<strong>method</strong> <strong>for</strong> first kind <strong>integral</strong> <strong>equations</strong><br />

with logarithmic kernel”; J. Integral<br />

Eqns. Applics. 1, 343-363, (1988).<br />

[5] C. T. H. Baker, “The Numerical<br />

Treatment of Integral Equations”;<br />

Clarendon Press, 1977.<br />

[6] A. Chakrabarti, and S. R. Manam,<br />

“Solution of a logarithmic <strong>singular</strong><br />

<strong>integral</strong> equation”; Applied<br />

Mathematics Letters, 16, 369-373,<br />

(2003).<br />

[7] M. M. Chawla , and S. Kumar,<br />

“Convergence of quadratures <strong>for</strong><br />

Cauchy principal value <strong>integral</strong>s”;<br />

Computing, 23, 67-72, (1979).<br />

[8] S. Christiansen , “Numerical solution<br />

of an <strong>integral</strong> <strong>equations</strong> with a<br />

logarithmic kernel”; BIT, 11, 276-<br />

287, (1971).<br />

[9] L.M. Delves, and J. Walsh, (Eds),<br />

“Numerical Solution of Integral<br />

Equations”; Ox<strong>for</strong>d University Press,<br />

London, 1974.<br />

[10] F. D. Gakhov, “Boundary value<br />

problems”; Pergamen Press and<br />

Addison- Wesley, Ox<strong>for</strong>d, 1966.<br />

[11] N. I. Ioakimidis, “A <strong>method</strong> <strong>for</strong><br />

numerical solution of <strong>singular</strong> <strong>integral</strong><br />

<strong>equations</strong> with logarithm<br />

<strong>singular</strong>ities”; Iternational J.<br />

Computer Math., 9, 363-372, (1981).<br />

[12] R. Kress, and I. H. Sloan, “On the<br />

numerical solution of a logarithmic<br />

<strong>integral</strong> equation of the first kind <strong>for</strong><br />

the Helmholtz equation”; Numer.<br />

Math., 66, 199-214, (1993).<br />

[13] W. Liu, “A simple, efficient degree<br />

raising algorithm <strong>for</strong> B-Spline curves”;<br />

Computer Aided Geometric Design,<br />

14, 693-698, (1997).<br />

[14] S. R. Manam, “A logarithmic <strong>singular</strong><br />

<strong>integral</strong> equation over multiple<br />

intervals”; Applied Mathematics<br />

Letters, 16, 1031-1037, (2003).<br />

[15] L. W. Morland, “Singular <strong>integral</strong><br />

<strong>equations</strong> with logarithmic kernels”;<br />

Mathematika, 17, (1970), 47−56,<br />

(1970).<br />

[16] G. M. Phillips, “Interpolations and<br />

Approximations by Polynomials”;<br />

Springer-Verlag, New York, 2003.<br />

[17] H. Prautzsch, W. Boehm, and M.<br />

Paluszny, “Bézier and B-<strong>spline</strong><br />

Techniques”; Springer-Verlag, Berlin,<br />

2002.<br />

[18] H. Prautzsch, “B-<strong>spline</strong>s with arbitrary<br />

connection matrices”; Constructive<br />

Approximation, 20, 191-205, (2004).<br />

[19] U. Reif, “Best bounds on the<br />

approximation of polynomials and<br />

<strong>spline</strong>s by their control structure”;<br />

Computer Aided Geometric Design,<br />

17, 579-589, (2000).<br />

[20] J. Saranen, and I. H. Sloan,<br />

“Quadrature <strong>method</strong>s <strong>for</strong> logarithmic-<br />

kernel <strong>integral</strong> <strong>equations</strong> on closed<br />

curves”; IMA Journal of Numerical<br />

Analysis, 12, 167- 187, (1992).<br />

[21] J. Saranen, “The modified quadrature<br />

<strong>method</strong> <strong>for</strong> logarithmic-kernel <strong>integral</strong><br />

<strong>equations</strong> on closed curves”; J.<br />

Integral Equations Appl., 3, 575-600<br />

(1991).<br />

[22] I. H. Sloan, and B. J. Burn, “An<br />

unconventional quadrature <strong>method</strong> <strong>for</strong><br />

logarithmic-kernel <strong>integral</strong> <strong>equations</strong><br />

of closed curves”; J. Integral<br />

Equations Appl., 4, 117-151 (1992).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!