24.07.2013 Views

TC4467/TC4468/TC4469 - Microchip

TC4467/TC4468/TC4469 - Microchip

TC4467/TC4468/TC4469 - Microchip

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>TC4467</strong>/<strong>TC4468</strong>/<strong>TC4469</strong><br />

A resistive-load-caused dissipation for supplyreferenced<br />

loads is a function of duty cycle, load<br />

current and output voltage. The power dissipation is<br />

EQUATION<br />

Quiescent power dissipation depends on input signal<br />

duty cycle. Logic HIGH outputs result in a lower power<br />

dissipation mode, with only 0.6 mA total current drain<br />

(all devices driven). Logic LOW outputs raise the<br />

current to 4 mA maximum. The quiescent power<br />

dissipation is:<br />

EQUATION<br />

P L<br />

= DVOIL D = Duty Cycle<br />

VO = Device Output Voltage<br />

IL = Load Current<br />

P Q<br />

= VS( DI ( H)<br />

+ ( 1 – D)IL)<br />

IH = Quiescent Current with all outputs LOW<br />

(4 mA max.)<br />

IL = Quiescent Current with all outputs HIGH<br />

(0.6 mA max.)<br />

D = Duty Cycle<br />

VS = Supply Voltage<br />

Transition power dissipation arises in the complimentary<br />

configuration (TC446X) because the output stage<br />

N-channel and P-channel MOS transistors are ON<br />

simultaneously for a very short period when the output<br />

changes. The transition power dissipation is<br />

approximately:<br />

1 µF Film 0.1 µF Ceramic<br />

1A<br />

1B<br />

2A<br />

2B<br />

3A<br />

3B<br />

4A<br />

4B<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

8<br />

9<br />

V DD<br />

7<br />

14<br />

V OUT<br />

470 pF<br />

FIGURE 4-1: Switching Time Test Circuit.<br />

13<br />

12<br />

11<br />

10<br />

+5 V<br />

Input<br />

(A, B)<br />

0V<br />

V DD<br />

Output<br />

0V<br />

EQUATION<br />

Package power dissipation is the sum of load,<br />

quiescent and transition power dissipations. An<br />

example shows the relative magnitude for each term:<br />

Maximum operating temperature is:<br />

EQUATION<br />

PT fVs 10 10 9 –<br />

= ( × )<br />

C = 1000 pF Capacitive Load<br />

VS = 15 V<br />

D = 50%<br />

f = 200 kHz<br />

Note: Ambient operating temperature should not<br />

exceed +85°C for "EJD" device or +125°C<br />

for "MJD" device.<br />

DS21425B-page 10 © 2002 <strong>Microchip</strong> Technology Inc.<br />

10%<br />

P D<br />

= Package Power Dissipation<br />

= PL + PQ + PT = 45mW + 35mW + 30mW<br />

= 110mW<br />

TJ – θJA( PD) = 141°C<br />

TJ = Maximum allowable junction temperature<br />

(+150°C )<br />

θJA = Junction-to-ambient thernal resistance<br />

(83.3°C/W) 14-pin plastic package<br />

Input: 100 kHz,<br />

square wave,<br />

t RISE = t FALL ≤ 10 nsec<br />

90%<br />

tD1 t R<br />

90%<br />

t D2<br />

10% 10%<br />

90%<br />

t F

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!