29.07.2013 Views

Baseline study Fish, fry and commercial fishery Nysted Offshore ...

Baseline study Fish, fry and commercial fishery Nysted Offshore ...

Baseline study Fish, fry and commercial fishery Nysted Offshore ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

March 2003<br />

<strong>Baseline</strong> <strong>study</strong><br />

<strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong><br />

<strong>Nysted</strong> <strong>Offshore</strong> Wind Farm<br />

at Røds<strong>and</strong>


<strong>Baseline</strong> <strong>study</strong><br />

<strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong><br />

<strong>Nysted</strong> offshore Wind Farm at Røds<strong>and</strong><br />

Status report


Prepared for:<br />

SEAS Distribution A.m.b.A., Slagterivej 25 4690 Haslev<br />

Performed by:<br />

Bio/consult as, Johs. Ewalds Vej 42-44, 8230 Åbyhøj<br />

Text: Artwork: Editing:<br />

Christian B. Hvidt Kirsten Nygaard Gitte Spanggaard<br />

Kirsten Engell-Sørensen Christian B. Hvidt Michael Bech<br />

Maks Klaustrup<br />

Project manager:<br />

Christian B. Hvidt<br />

31.03.2003<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Table of contents<br />

Summary .......................................................................................................................I<br />

<strong>Baseline</strong> <strong>study</strong> of fish <strong>and</strong> <strong>fry</strong> ....................................................................................I<br />

<strong>Baseline</strong> <strong>study</strong> of <strong>commercial</strong> <strong>fishery</strong> .....................................................................IV<br />

Resumé (In Danish) ...................................................................................................VII<br />

<strong>Baseline</strong>studie af fisk og fiskeyngel.......................................................................VII<br />

<strong>Baseline</strong>undersøgelse af erhvervsfiskeri .................................................................. X<br />

1. Introduction <strong>and</strong> objectives .......................................................................................1<br />

2. Background...............................................................................................................3<br />

2.1. <strong>Baseline</strong> program...............................................................................................3<br />

2.2. Location <strong>and</strong> description of <strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at Røds<strong>and</strong> ................4<br />

2.3. The importance of the area as a probable migration route <strong>and</strong> spawning<br />

ground for species of <strong>commercial</strong> importance...................................................7<br />

2.4. Previous fish studies ..........................................................................................9<br />

2.4.1. Preliminary fish <strong>study</strong> .................................................................................9<br />

2.4.2. Preliminary <strong>study</strong> on <strong>commercial</strong> <strong>fishery</strong>................................................... 10<br />

2.4.3. Trail <strong>fishery</strong> using pound netting <strong>and</strong> <strong>fry</strong> trawl.......................................... 10<br />

3. <strong>Fish</strong> <strong>and</strong> Fry............................................................................................................ 11<br />

3.1. Materials <strong>and</strong> methods..................................................................................... 11<br />

3.2. Field studies .................................................................................................... 11<br />

3.3. Applied gears................................................................................................... 15<br />

3.3.1. <strong>Fish</strong> <strong>study</strong>.................................................................................................. 16<br />

3.3.2. Fry Study .................................................................................................. 16<br />

3.4. Scope............................................................................................................... 16<br />

3.4.1. <strong>Fish</strong> <strong>study</strong>.................................................................................................. 16<br />

3.4.2. Fry <strong>study</strong>................................................................................................... 17<br />

3.5. Information recorded ....................................................................................... 18<br />

3.6. Data processing ............................................................................................... 19<br />

3.6.1. Statistical analyses .................................................................................... 20<br />

3.6.2. Power analysis .......................................................................................... 21<br />

3.7. Margin of error in the method.......................................................................... 22<br />

3.8. Results - <strong>Fish</strong> <strong>study</strong>.......................................................................................... 23<br />

3.8.1. Observations ............................................................................................. 23<br />

3.8.2. Overview of catches.................................................................................. 23<br />

3.8.3. Selection of indicator species .................................................................... 27<br />

3.8.4. Individual selected species ........................................................................ 28<br />

3.8.4.1 Baltic herring (Clupea harengus) ........................................................... 28<br />

3.8.4.2 Brisling (Sprattus sprattus) .................................................................... 30<br />

3.8.4.3 Atlantic cod (Gadus morhua)................................................................. 32<br />

3.8.4.4 Small s<strong>and</strong>eel (Ammodytes tobianus) .................................................... 34<br />

3.8.4.5 Great s<strong>and</strong>eel (Hyperoplus lanceolatus) ................................................. 36<br />

3.8.4.6 Eelpout (Zoarces viviparous)................................................................. 38<br />

3.8.4.7 Short-spined sea scorpion (Myoxocephalus scorpius) ............................ 40<br />

3.8.4.8 Turbot (Psetta maxima) ......................................................................... 42<br />

3.8.4.9 Flounder (Platichthys flesus) ................................................................. 44<br />

3.8.5. Comments on the remaining species.......................................................... 46<br />

3.8.6. Statistical comparison of areas. ................................................................. 46<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


3.9. Results - Fry <strong>study</strong>........................................................................................... 53<br />

3.9.1. Observations ............................................................................................. 53<br />

3.9.2. Overview of catches.................................................................................. 53<br />

3.9.3. Selection of indicator species .................................................................... 57<br />

3.9.4. Individual selected species ........................................................................ 59<br />

3.9.4.1 Fifteen-spined stickleback (Spinachia spinachia) ................................... 59<br />

3.9.4.2 Two-spotted goby (Gobiusculus flavescens).......................................... 61<br />

3.9.4.3 S<strong>and</strong> goby (Pomatoschistus minutus)..................................................... 63<br />

3.9.4.4 Eelpout (Zoarces viviparus)................................................................... 65<br />

3.9.4.5 Short-spined sea scorpion (Myoxocephalus scorpius) ............................ 67<br />

3.9.4.6 Longspined bullhead (Taurulus bubalis) ................................................ 69<br />

3.9.4.7 Flounder (Platichthys flesus) ................................................................. 71<br />

3.9.5. Comments on some the remaining species................................................. 73<br />

3.9.6. Statistical comparison of sampling areas. .................................................. 73<br />

3.10. Discussion ..................................................................................................... 79<br />

3.10.1. Evaluation of methods............................................................................. 79<br />

3.10.2. Evaluation of statistics............................................................................. 79<br />

3.10.2.1 Parametric vs. non-parametric ............................................................. 80<br />

3.10.2.2 Univariate or multivariate analysis?..................................................... 86<br />

3.10.2.3 Examples from the actual investigation................................................ 88<br />

3.10.3. Biological evaluation............................................................................... 92<br />

3.10.3.1 <strong>Fish</strong> <strong>study</strong>............................................................................................ 92<br />

3.10.3.2 Fry <strong>study</strong> ............................................................................................. 93<br />

3.10.4. Evaluation <strong>and</strong> development of the monitoring program.......................... 93<br />

3.10.4.1 Recommendations in relation to parametric univariate analysis............ 93<br />

3.10.4.2 Recommendations in relation to non-parametric multivariate analysis . 95<br />

4. Commercial <strong>fishery</strong>................................................................................................. 97<br />

4.1. Methods........................................................................................................... 97<br />

4.1.1. Interviews with local <strong>commercial</strong> fishermen.............................................. 97<br />

4.1.2. Quality assurance ...................................................................................... 98<br />

4.1.3. Review of existing information ................................................................. 98<br />

4.2. Results............................................................................................................. 98<br />

4.2.1. The scope of the <strong>fishery</strong> ............................................................................ 99<br />

4.2.2. <strong>Fish</strong>ing grounds....................................................................................... 102<br />

4.2.3. Catches recorded in the Danish Directorate for <strong>Fish</strong>eries logbook<br />

records from 1982 to 2001 ..................................................................... 104<br />

4.2.4. Expectations for the occurrence of <strong>commercial</strong>ly important species ........ 106<br />

4.2.5. Comparison between information on catches from the interview <strong>and</strong><br />

data from the Directorate of <strong>Fish</strong>eries from area 38G1. .......................... 107<br />

4.2.6. Reported catches in area 38G1 from 1982 to 2001................................... 109<br />

4.2.7. Estimate of the catch within the wind farm site alone .............................. 110<br />

4.3. Discussion..................................................................................................... 111<br />

5. Conclusion............................................................................................................ 113<br />

5.1. <strong>Fish</strong> <strong>study</strong> ...................................................................................................... 113<br />

5.2. Fry Study....................................................................................................... 114<br />

5.3. Commercial <strong>fishery</strong> ....................................................................................... 114<br />

6. References ............................................................................................................ 115<br />

Appendix 1. Review of the biology of fish species .................................................... 117<br />

Appendix 2. List of research positions (stations), WGS-84........................................ 128<br />

Appendix 3. Levene’s test <strong>and</strong> Uni-ANOVA analysis of abundance.......................... 129<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


<strong>Fish</strong> <strong>study</strong>............................................................................................................. 129<br />

Fry <strong>study</strong>.............................................................................................................. 136<br />

Appendix 4. Levene’s test <strong>and</strong> Uni-ANOVA analysis of weight................................ 144<br />

<strong>Fish</strong> <strong>study</strong>............................................................................................................. 144<br />

Fry <strong>study</strong>.............................................................................................................. 151<br />

Appendix 5. Non-parametric Kolmogov/Smirnoff analysis of distribution of length<br />

159<br />

<strong>Fish</strong> <strong>study</strong>............................................................................................................. 159<br />

Fry <strong>study</strong> .............................................................................................................. 161<br />

Appendix 6. Mann-Whitney U .................................................................................. 163<br />

Appendix 7. Power analysis part 1. ........................................................................... 169<br />

Appendix 8. Power analysis part 2. ........................................................................... 171<br />

Appendix 9. Commercial <strong>Fish</strong>ery.............................................................................. 178<br />

Appendix 9.1. Inquiry form used for questioning the fishermen............................ 178<br />

Appendix 9.2. Division of Danish Waters according to ICES areas....................... 180<br />

Appendix 9.3. Data regarding l<strong>and</strong>ings in area 38G1 obtained from the<br />

Directorate of <strong>Fish</strong>eries, Ministry of Food <strong>and</strong> <strong>Fish</strong>eries............................... 181<br />

Appendix 9.4. Map of all fishermen’s recorded fishing locations within the wind<br />

farm area <strong>and</strong> reference area south of Røds<strong>and</strong> for the years 1997 to 2001.... 189<br />

Appendix 9.5. Seasons for the <strong>fishery</strong> of <strong>commercial</strong>ly important species............. 199<br />

Appendix 9.6. Presentation of the fishermen’s statements..................................... 201<br />

Appendix 9.7. Announcements on seasonal protections of fish <strong>and</strong> shellfish in<br />

saltwater. A map of the baseline around Sjæll<strong>and</strong> <strong>and</strong> Loll<strong>and</strong>-Falster is<br />

included. ...................................................................................................... 211<br />

Appendix 9.8. Announcement no. 91 of Jan. 22 1991 regarding logbooks etc....... 217<br />

Appendix 10. Note concerning statistical analysis of data from the fisheries<br />

survey. ......................................................................................................... 218<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page I<br />

Summary<br />

The planned 150 MW offshore wind farm at Røds<strong>and</strong> will be placed in the Femern Belt<br />

approximately 10 kilometres south of <strong>Nysted</strong> on Loll<strong>and</strong>. The wind farm will cover an<br />

area of approximately 24 km 2 . The wind farm will consist of 72 turbines each of 2.2<br />

MW placed in 8 north-south orientated rows separated by a distance of 850m.<br />

The objective of the baseline <strong>study</strong> ”<strong>Fish</strong>, Fry <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> – <strong>Nysted</strong><br />

<strong>Offshore</strong> Wind Farm at Røds<strong>and</strong>” was to establish a basis for the following monitoring<br />

programme by selecting the optimal investigations <strong>and</strong> parameters to assess the basic<br />

condition of the area <strong>and</strong> to collect an adequate amount of baseline data to distinguish<br />

the natural variation from the environmental impact caused by the operation of the<br />

offshore wind farm. This is especially with regard to changes caused by noise,<br />

vibrations, <strong>and</strong> changes in the food basis, sediment <strong>and</strong> magnetic fields, including other<br />

unexpected effects.<br />

Furthermore, the objective of this baseline <strong>study</strong> was to document <strong>and</strong>, so far as<br />

possible, quantify the expected <strong>and</strong> unexpected effects on the <strong>commercial</strong> <strong>fishery</strong>, inside<br />

<strong>and</strong> around <strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at Røds<strong>and</strong>.<br />

The baseline <strong>study</strong> consisted of three partly separate studies; baseline <strong>study</strong> of fish,<br />

baseline <strong>study</strong> of <strong>fry</strong> <strong>and</strong> baseline <strong>study</strong> of <strong>commercial</strong> <strong>fishery</strong>.<br />

<strong>Baseline</strong> <strong>study</strong> of fish <strong>and</strong> <strong>fry</strong><br />

Special emphasis was placed on statistical comparisons between the wind farm area <strong>and</strong><br />

the reference area to verify the hypothesis that there are no differences in number,<br />

weight <strong>and</strong> mean length of selected fish species with respect to the two areas <strong>and</strong> that<br />

possible changes in number <strong>and</strong> weight (even if the differs between the two areas)<br />

exhibit parallel changes.<br />

A preliminary fishing investigation (screening) from the area was used to clarify the<br />

variation of the area <strong>and</strong> to estimate an adequate number of samples. An overall power<br />

analysis on the results, showed that the wind farm area <strong>and</strong> the reference area as a<br />

minimum should be fished with 22 samples from 11 stations in each area to achieve a<br />

criteria which, with 80% certainty, detects a significant (p


Bio/consult as Page II<br />

In the baseline <strong>study</strong> of fish, a total of 785 individuals divided among 23 species with a<br />

total weight of 47.4 kg were caught in the wind farm area. In the reference area, the<br />

corresponding total catch was 685 individuals with a total weight of 67.8 kg divided<br />

among 24 different species. Only a few adult turbot were caught, despite the use of an<br />

extra type of net especially aimed at catching turbot.<br />

In all different 26 species was recorded of which Baltic herring, brisling, Atlantic cod,<br />

small s<strong>and</strong>eel, great s<strong>and</strong>eel, eelpout, short spined sea scorpion, turbot <strong>and</strong> flounder<br />

were selected according to their indicator characters.<br />

The statistical results were to a high degree defective due to lack of variance<br />

homogeneity. Most of the selected species did not fulfil this test assumption.<br />

Only short-spined sea scorpion <strong>and</strong> flounder fulfilled the statistical criteria of tests<br />

concerning number, weight, length distribution <strong>and</strong> mean length between the two areas<br />

with respect to space <strong>and</strong> time. Other species was only partly fulfilling the test<br />

assumption.<br />

The abundance of turbot <strong>and</strong> flounders appear to be equally distributed throughout the<br />

wind farm <strong>and</strong> reference areas where as eelpout <strong>and</strong> short-spined sea scorpion showed<br />

differences between the to areas.<br />

Similarities in weight between the two areas appeared in brisling, short-spined sea<br />

scorpion <strong>and</strong> flounder.<br />

The length distribution was only found to be different between the Wind farm <strong>and</strong><br />

reference areas for of for the selected indicator species; Atlantic cod, great s<strong>and</strong>eel <strong>and</strong><br />

flounder. The mean length of Atlantic cod, small s<strong>and</strong>eel, great s<strong>and</strong>eel, turbot <strong>and</strong><br />

flounder was larger in the reference area compared to the wind farm area. Mean length<br />

varied over time for more than half of the species.<br />

Both short-spined sea scorpion <strong>and</strong> flounder showed higher numbers <strong>and</strong> weight in May<br />

relative to June whereas the abundance of eelpout <strong>and</strong> turbot did not change.<br />

In the baseline <strong>study</strong> of <strong>fry</strong>, each sample consisted of one st<strong>and</strong>ard fyke net <strong>and</strong> one <strong>fry</strong><br />

fyke net. In both investigations of the baseline studies, the total number of samples<br />

obtained during the spring <strong>and</strong> autumn programme was 192 biological survey gill nets,<br />

96 turbot gill nets, 236 st<strong>and</strong>ard fyke nets <strong>and</strong> 236 <strong>fry</strong> fyke nets. The sampling <strong>and</strong><br />

observation of the baseline <strong>study</strong> of <strong>fry</strong> in spring were conducted in the periods 16 th –<br />

27 th of May <strong>and</strong> 16 th –20 th of June as a part of the baseline <strong>study</strong> of fish. In the autumn<br />

sampling of the baseline <strong>study</strong> of <strong>fry</strong> were conducted in the periods 24 th – 27 th of<br />

September 25 th - 28 th of October <strong>and</strong> 24 th - 26 th of November 2001.<br />

In the baseline <strong>study</strong> of <strong>fry</strong> a total of 960 individuals divided among 28 species with a<br />

total weight of 20.5 kg were caught in the wind farm area. In the reference area, the<br />

corresponding total catch was 1234 individuals with a total weight of 19.1 kg divided<br />

among 24 different species. In all 30 species was recorded of which fifteen-spined<br />

stickleback, two-spotted goby, s<strong>and</strong> goby, eelpout, short-spined sea scorpion,<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page III<br />

longspined bullhead <strong>and</strong> flounder were selected for further analysis according to their<br />

indicator characters <strong>and</strong> abundance in the catch.<br />

Abundances of <strong>fry</strong> <strong>and</strong> small <strong>fry</strong> during spring were generally lower than catches in<br />

autumn.<br />

The catch data of all selected indicator species in the baseline <strong>study</strong> of <strong>fry</strong> suffer from<br />

lack of variance homogeneity both in consideration to number <strong>and</strong> biomass <strong>and</strong> by that,<br />

it was not possible to show effects of interaction to established temporal <strong>and</strong>/or spatial<br />

differences. Though, especially eelpout but also two spotted goby indicated effect of<br />

interaction.<br />

A power analysis for species caught in at least 50 % of the samples revealed that, only<br />

the eelpout fulfilled the 50% criterion. For this species, statistical reliable results can be<br />

achieved if a minimum of 16 stations per area is applied.<br />

The classic analytical techniques used in both the baseline <strong>study</strong> of fish <strong>and</strong> baseline<br />

<strong>study</strong> of <strong>fry</strong> could not deal with the many empty samples recorded. Furthermore, high<br />

variation was recorded in many samples, which posed a problem concerning the use of<br />

the classic statistical methods in the BACI design, which require homogeneity of the<br />

variance.<br />

Depending on the purpose <strong>and</strong> taking into account the properties of the data at h<strong>and</strong>,<br />

both univariate <strong>and</strong> multivariate statistical analysis can be carried out according to an<br />

either a parametric or a non-parametric test.<br />

One of the main problems of the investigation was to verify if the reference area could<br />

be used as control area in a future monitoring programme of the effects from the wind<br />

farm. The answer to that question requires a selection of the optimal statistical model,<br />

which depends on various factors such as the characteristics of the variance <strong>and</strong> the<br />

distribution of the data.<br />

In relation to the classic parametric univariate design used hitherto it was realized that<br />

the problem with obtaining normal distribution could be solved by dividing the fish<br />

species into functional groups. The division of species into groups of stationary, prey<br />

<strong>and</strong> reef species shows good statistical strength. The grouping will reduce the<br />

occurrence of empty samples <strong>and</strong> improve the possibility to fulfil the conditions of the<br />

analysis. The grouping should be chosen a priori <strong>and</strong> not based on the results of the<br />

investigation.<br />

A power of 80% can be achieved if the number of sampling stations is increased from<br />

12 to 26 in each area without increasing the effort significantly because, the replicates<br />

can be redistributed into new samplings stations.<br />

The main improvement of the statistics was the application of non-parametric<br />

multivariate techniques mainly because the data could not be fitted to a normal<br />

distribution.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page IV<br />

The non-parametric multivariate analysis of variance (NPMANOVA) showed that the<br />

reference area <strong>and</strong> the wind farm area was not significantly different with the present<br />

abundance of fish <strong>and</strong> number of species.<br />

The suggested strategies can only be carried out on the level of numbers since the<br />

morphological features, of the grouped species differ greatly in weight, length<br />

distribution <strong>and</strong> mean length.<br />

It may be biological relevant to time the sampling occasion according to a yearly<br />

recurrent occasion which can be established by supervision instead of using fixed dates.<br />

Hereby, the problem of reduced catch efficiency due to high occurrence of drifting<br />

filamentous algae can to be minimized.<br />

It cannot be recommended to establish a monitoring program on a statistical basis, in<br />

association to the <strong>fry</strong> <strong>study</strong> according to the spatial distribution of <strong>fry</strong> <strong>and</strong> small <strong>fry</strong>.<br />

However, the <strong>fry</strong> <strong>study</strong> can be used to qualitatively evaluate the importance of the area<br />

as spawning <strong>and</strong> nursery ground.<br />

<strong>Baseline</strong> <strong>study</strong> of <strong>commercial</strong> <strong>fishery</strong><br />

The baseline <strong>study</strong> of <strong>commercial</strong> <strong>fishery</strong> was based on interviews <strong>and</strong> logbooks from<br />

local fishermen located in Kramnitse, Gedser, Rødbyhavn <strong>and</strong> Hesnæs <strong>and</strong> material<br />

from the Directorate of <strong>Fish</strong>eries regarding area 38G1 (ICES division of Danish coastal<br />

water).<br />

At least ten <strong>commercial</strong> fishermen have fished the area at Røds<strong>and</strong> form Hyllekrog to<br />

Gedser including the area of the planned wind farm in the period from 1997 to 2001.<br />

These consist of 3 trawl fishermen, six gill net fishermen <strong>and</strong> one pound net fisherman.<br />

The fish were mainly l<strong>and</strong>ed at Gedser <strong>and</strong> Kramnitse, Rødbyhavn <strong>and</strong> Hesnæs.<br />

The fishermen agreed that the fishing was quite good in the area mainly because of the<br />

abundance s<strong>and</strong> eel <strong>and</strong> shrimp, which serves especially as food for cod <strong>and</strong> turbot.<br />

Three trawl fishermen at Røds<strong>and</strong> fished especially for cod, in the area south of the base<br />

line <strong>study</strong>, from April to June <strong>and</strong> from September to November. Net fishing for cod<br />

takes place mainly from December to May effectively in the whole area south of<br />

Røds<strong>and</strong>.<br />

Turbot is mainly caught in the spring <strong>and</strong> summer up to spawning. There is agreement<br />

that the area serves as a spawning ground for turbot. Small numbers of plaice, flounder<br />

<strong>and</strong> dab are part of the by-catch for cod <strong>and</strong> turbot fishermen. Silver eel is easiest caught<br />

in pound nets from September to November because of their migration towards the<br />

Sargasso Sea.<br />

The annual catch of all species except turbot from 1997 to 1999 <strong>and</strong> silver eel amounts<br />

to a small part of the total recorded in logbooks from area 38G1 (Division of Danish<br />

Waters according to ICES areas). The total catches of turbot apparently equalled<br />

approximately 1 /3 of the turbot catch in the official statistics for area 38G1 from 1997 to<br />

1999. The difference can partly be explained by the fact that the fishermen who catch<br />

turbot sail under the coastal waters regulations, <strong>and</strong> so their figures are not included in<br />

the official catch statistics for area 38G1.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page V<br />

Towards the end of the 1980s <strong>and</strong> the start of the 1990s, higher catches of dab <strong>and</strong><br />

flounder were recorded, although the catch decreased again from 1992 until 1994. From<br />

the early 1990s, there has been an increase in the annual catch of herring, flounder,<br />

plaice <strong>and</strong> cod. The catch of turbot peaked in 1995. In the years 1997 to 2001, the<br />

annual net <strong>fishery</strong> catch in the wind farm site itself can be estimated as amounting to<br />

between 1,6 <strong>and</strong> 11.1 tons of cod, between 0.00 <strong>and</strong> 0.41 tons of turbot <strong>and</strong> between<br />

0.20 <strong>and</strong> 0.68 tons of silver eel.<br />

As expected, cod, flounder, dab, turbot <strong>and</strong> plaice are fished at Røds<strong>and</strong>. In addition,<br />

silver eel are caught from September to November. In the years 1997 to 2001, the<br />

annual net <strong>fishery</strong> catch in the wind farm site itself can be estimated as amounting to<br />

between 1,6 <strong>and</strong> 11.1 tons of cod, between 0.00 <strong>and</strong> 0.41 tons of turbot <strong>and</strong> between<br />

0.20 <strong>and</strong> 0.68 tons of silver eel. There is no trawling within the proposed site itself.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page VI<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page VII<br />

Resumé (In Danish)<br />

Den projekterede 150 MW vindmøllepark vil blive placeret i Femern Bælt omkring 10<br />

kilometer syd for <strong>Nysted</strong> på Loll<strong>and</strong>. Vindmølleparken vil dække et område på 24 km 2<br />

og bestå af 72 turbiner på hver 2,2 MW. Møllerne vil blive placeret i 8 nord-syd<br />

orienterede rækker med 850 meter mellem rækkerne.<br />

Formålet med baselineundersøgelsen “Fisk, yngel og kommerciel fiskeri – <strong>Nysted</strong><br />

vindmøllepark ved Røds<strong>and</strong>” var at etablere basis for det følgende<br />

monitoreringsprogram ved at udvælge de optimale undersøgelser og parametre til at<br />

bestemme de basale forhold for området og samtidig indsamle en tilstrækkelig mængde<br />

data til at skelne den naturlige variation fra en mulig miljømæssige påvirkning fra<br />

vindmølleparken. Miljømæssige påvirkninger kan skyldes øget niveau af støj og<br />

vibrationer, ændringer i fødemængde, sediment og elektromagnetiske felter.<br />

Ydermere er formålet af dette baselinestudie at dokumentere og så vidt muligt<br />

kvantificere effekterne på det kommercielle fiskeri i området omkring vindmølleparken.<br />

<strong>Baseline</strong>undersøgelsen bestod af tre separate studier af henholdsvis fisk, yngel og<br />

erhvervsfiskeriet i området.<br />

<strong>Baseline</strong>studie af fisk og fiskeyngel<br />

I undersøgelsen blev der lagt særlig statistisk vægt på sammenligningen mellem<br />

mølleparkens område og et referenceområde med henblik på at påvise, at der ikke var<br />

signifikant forskel mellem antal, vægt og længde af udvalgte arter fra de to respektive<br />

områder, og om eventuelle ændringer udvikles parallelt i begge områder.<br />

En foreløbig fiskeundersøgelse fra området blev foretaget for at belyse variansen på<br />

data og for at få et estimat for, hvor mange prøver der skulle til for, at undersøgelsen var<br />

statistisk forsvarlig. En power-analyse viste, at der krævedes et minimum på 22 prøver<br />

fordelt på 11 stationer med 2 replikater i såvel mølleområdet som referenceområdet for<br />

at opnå en statistisk forsvarlig undersøgelse med 80% sikkerhed for at detektere en<br />

ændring på 50% (p


Bio/consult as Page VIII<br />

I alt blev der registreret 26 forskellige arter, hvoraf sild, brisling, torsk, kysttobis, plettet<br />

tobiskonge, ålekvabbe, almindelig ulk, pighvar og skrubbe blev udvalgt med baggrund i<br />

deres indikatorkarakterer til videre statistisk analyse.<br />

Resultatet af de statistiske analyser var i vid udstrækning uanvendelige som følge af<br />

manglende varianshomogenitet. De fleste af de udvalgte indikatorarter kunne således<br />

ikke opfylde forudsætningerne for de statistiske modeller og analyser.<br />

Kun almindelig ulk og skrubbe opfyldte forudsætningerne for at gennemføre de<br />

statistiske analyser af tidslige og rumlige sammenligninger mellem mølleområdet og<br />

referenceområdet hvad angår antal, vægt, længdefordeling og gennemsnitslængde. De<br />

<strong>and</strong>re arter opfyldte ikke eller kun delvist forudsætningerne for disse analyser.<br />

Forekomsten af pighvar og skrubbe var således ikke forskellig i mølleområdet og<br />

referenceområdet, hvorimod forekomsten var hvad angår ålekvabbe og almindelig ulk.<br />

Biomassen af brisling, almindelig ulk og skrubbe var ligeledes ens i de to områder.<br />

Der blev kun fundet forskelle i længdefordelingerne mellem mølleområdet og<br />

referenceområdet hos følgende udvalgte indikatorarter: Torsk, plettet tobiskonge og<br />

skrubbe. For mere end halvdelen af arterne varierede middellængden med tiden.<br />

Gennemsnitslængden hos torsk, kysttobis, plettet tobiskonge, pighvar og skrubbe var<br />

større i referenceområdet end i mølleområdet.<br />

Forekomst og biomasse af almindelig ulk og skrubbe var større i maj end i juni,<br />

hvorimod der ikke var forskelle i forekomsten af ålekvabbe og pighvar i de to måneder.<br />

Hver prøve i baselinestudiet af yngel bestod af fangsten fra en almindelig kasteruse og<br />

en yngelruse. Den totale mængde fangstdata fra begge baselineundersøgelser i<br />

henholdsvis forårs- og efterårsundersøgelsen bestod af 192 befiskninger med biologiske<br />

overvågningsgarn, 96 med pighvargarn, 236 med kasteruser og 236 med yngelruser.<br />

<strong>Baseline</strong>undersøgelsen af yngel blev foretaget både i foråret i perioderne 16. – 27. maj<br />

og 16. – 20. juni og i efteråret i perioderne 24. – 27. september, 25. – 28. oktober og 24.<br />

– 27. november i 2001.<br />

I studiet af yngel i mølleområdet blev der fanget 28 forskellige arter fordelt på 960<br />

individer med en samlet vægt på 20,5 kg. I referenceområdet blev der tilsvarende fanget<br />

24 arter fordelt på 1.234 individer med en samlet vægt på 19,1 kg.<br />

I alt blev 30 forskellige arter registreret. Til nærmere statistisk analyse blev toplettet<br />

kutling, s<strong>and</strong> kutling, ålekvabbe, almindelig ulk og langtornet ulk og skrubbe udvalgt<br />

som indikatorarter på baggrund af deres talrighed og adfærdsmæssige karakterer.<br />

Forekomsten af fiskeyngel og småfisk var generelt mindre i foråret end i efteråret.<br />

Det var ikke muligt at udføre statistiske sammenligninger mellem antal eller biomasse<br />

og derved påvise vekselvirkninger i tid og/eller mellem områder som følge af<br />

manglende varianshomogenitet. Dog syntes der specielt for ålekvabbe, men også<br />

toplettet kutling, at være en indikation af vekselvirkning.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page IX<br />

En power-analyse for de arter som er fanget i minimum 50% af prøverne viste at kun<br />

ålekvabbe tilfredsstiller s<strong>and</strong>synligheden for med 80% sikkerhed at kunne spore en 50%<br />

ændring. For denne art vil det statistisk grundlag kunne opnås med et minimum af 16<br />

stationer for hvert af de to områder.<br />

Der var afgørende problemer med den klassiske statistiske analyseteknik, som blev<br />

anvendt i både baselineundersøgelsen af fisk og baselineundersøgelsen af yngel, fordi<br />

metoden ikke kan håndtere en stor frekvens af tomme prøver. Endvidere var der stor<br />

variation i mange prøver, hvorved den statistiske forudsætning om varianshomogenitet<br />

ikke kunne opfyldes i forbindelse med de statistiske analyser i et klassisk BACI design.<br />

Alt efter formålet og med udgangspunkt i de indsamlede datas egenskaber kan både den<br />

univariable og den multivariable analyse gennemføres i en parametriseret model eller<br />

med anvendelse af forskellige ikke-parametriske test, hvoraf de sidst udviklede hører til<br />

gruppen af beregningstunge permutationstest.<br />

Et væsentligt formål med undersøgelsen var at efterprøve om referenceområdet kan<br />

anvendes som kontrolområde i et kommende moniteringsprogram til overvågning af<br />

mulige effekter fra mølleparken. For at kunne verificere dette skal der anvendes en<br />

optimal statistisk model, hvor valget afhænger af forskellige faktorer som eksempelvis<br />

karakter af datas fordeling og varians.<br />

Ved anvendelse af det klassiske parametriske univariate design kan det observerede<br />

problem med at opnå varianshomogenitet løses ved at inddele de registrerede arter i<br />

funktionelle grupper. En sådan gruppedeling af indikatorarterne i stationære arter, bytte<br />

fisk og hårbundsarter viste god statistisk styrke. En gruppering vil reducere frekvensen<br />

af tomme prøver og forbedre grundlaget for forudsætningerne for analysen. Inddeling af<br />

grupper bør prædefineres og ikke udføres på grundlag af undersøgelsens resultater.<br />

En power på 80% kan opnås ved at øge antallet af stationer fra 12 til 24 i både<br />

reference- og mølleområde. Det behøver ikke medføre en væsentligt øget indsats,<br />

eftersom det vil være forsvarligt at omfordele replikaterne til nye stationer.<br />

Et væsentligt fremskridt for statistikken ved nærværende type opgave blev opnået ved at<br />

anvende non-parametrisk multivariat teknik, ikke mindst fordi data herved blev<br />

normalfordelt.<br />

Den non-parametriske multivariate analyse af varians (NPMANOVA) viste, at der ikke<br />

var forskelle i antal arter og forekomsten af fisk mellem referenceområdet og<br />

mølleområdet.<br />

Disse statistiske strategier kan dog kun udføres på niveauet af antal og arter af fisk,<br />

eftersom de grupperede arter vil kunne variere betydeligt med hensyn til vægt,<br />

længdefordeling og gennemsnitslængde.<br />

Det vil være biologisk relevant at planlægge prøvetagningerne ud fra en årligt<br />

tilbagevendende begivenhed, som kan bestemmes ud fra tilsyn, i stedet for en<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page X<br />

planlægning på bestemte datoer. Herved kan eksempelvis problemer med en reducerede<br />

fangsteffektivitet som følge af drivende trådalger minimeres.<br />

Det kan ikke anbefales at i værksætte et moniteringsprogram for fiskeyngel og småfisk<br />

med udgangspunkt i en statistisk vurdering som følge af en spredt forekomst af<br />

fiskeyngel og småfisk. Derimod kan en undersøgelse rettet med fiskeyngel give en<br />

kvalitativ vurdering af mølleparkens betydning som gyde- og opvækstområde for<br />

fiskeyngel.<br />

<strong>Baseline</strong>undersøgelse af erhvervsfiskeri<br />

<strong>Baseline</strong>undersøgelsen af erhvervsfiskeri tog udgangspunkt i interviews med lokale<br />

erhvervsfisker, deres logbog samt materiale fra Fiskeridirektoratet.<br />

Området ved Røds<strong>and</strong> blev i perioden 1997-2001 benyttet af mindst ti erhvervsfiskere.<br />

Heraf er tre trawlfiskere, seks garnfiskere og en bundgarnsfisker. Fangsterne er<br />

hovedsagelig l<strong>and</strong>et i Gedser, Kramnitse, Rødbyhavn og Hesnæs.<br />

Der var bl<strong>and</strong>t fiskerne enighed om at fiskeriet i området var godt, hvilket blev<br />

begrundet med tilstedeværelsen af en store mængde tobis og rejer, der er vigtige<br />

fødeemner specielt for torsk og pighvar.<br />

De tre trawlfiskere ved Røds<strong>and</strong> fisker specielt efter torsk syd for<br />

baselineundersøgelsesområdet, i perioden april til juni og fra september til november.<br />

Garnfiskeri efter torsk forgår i hele området syd for Røds<strong>and</strong> og hovedsagelig i perioden<br />

fra december til maj.<br />

Pighvar bliver primær fanget i forår- og sommerperioden, frem til starten af<br />

gydesæsonen. Der er enighed om, at området benyttes som gydeområde for pighvar. Et<br />

mindre antal rødspætte, skrubbe og ising udgør en del at bifangsterne ved fiskeriet efter<br />

pighvar og torsk. Blankål er hovedsageligt fanget i bundgarn i perioden september til<br />

november i forbindelse med deres migration mod Sargassohavet.<br />

De årlige fangster af alle arter, bortset fra pighvar og blankål, udgør en lille del af den<br />

totale registrering i logbøgerne fra område 38G1 (inddelingen af de danske kystnære<br />

områder til ICES områder) i perioden 1997 til 1999. Den totale fangst af pighvar udgør<br />

cirka 1 /3 af de pighvar, der optræder i de officielle fangstrapporter for område 38G1 fra<br />

1997 til 1999. Forskellen kan forklares ved det faktum, at fiskere, som fanger pighvar,<br />

høre ind under regulativet for kystnære områder, og deres tal bliver derved ikke<br />

medtaget i den officielle statistik for område 38G1.<br />

I slutningen af 1980´erne og i begyndelsen af 1990´erne blev der registreret større<br />

fangster af ising og skrubbe. Fangsterne faldt dog igen fra 1992 til 1994. Fra<br />

begyndelsen af 1990érne øgedes de årlige fangster af sild, rødspætte og torsk.<br />

Fangsterne af pighvar toppede i 1995. I årene fra 1997 til 2001 kan de årlige fangster i<br />

selve mølleområdet estimeres til: Torsk 1,6 - 11,1 tons, pighvar 0,00 - 0,41 tons samt<br />

blankål 0,20 - 0,68 tons.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page XI<br />

Torsk, skrubbe, ising, pighvar og rødspætte bliver som forventet fanget ved Røds<strong>and</strong>.<br />

Ligeledes bliver der fanget blankål i perioden september til november. Der foregår<br />

ingen trawling i selve undersøgelsesområdet.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page XII<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 1<br />

1. Introduction <strong>and</strong> objectives<br />

The establishment of a demonstration offshore wind farm in the waters at Røds<strong>and</strong>,<br />

south of <strong>Nysted</strong> in the eastern part of Femer Belt, se Figure 2.1.1, has been granted by<br />

the Ministry of Environment <strong>and</strong> Energy in compliance with the conditions of<br />

environmental impact as outlined in the EIA <strong>study</strong> (SEAS 2000).<br />

Establishing an offshore wind farm at Røds<strong>and</strong> can have an impact on the local marine<br />

fish population during the construction <strong>and</strong> the operational phases. Effects are expected<br />

during the operational phase, partly due to the physical appearance of the offshore wind<br />

farm, including the effect of the artificial reefs created by the foundations of the wind<br />

turbines, <strong>and</strong> partly due to the cable trace to l<strong>and</strong>.<br />

The objective of the baseline <strong>study</strong> was to establish a basis for the following monitoring<br />

programme by selecting the optimal investigations <strong>and</strong> parameters to assess the basic<br />

condition of the area <strong>and</strong> to collect an adequate amount of baseline data to distinguish<br />

the natural variation from the possible environmental impact caused by the operation of<br />

the offshore wind farm. Eventual environmental impact caused by offshore wind farms<br />

might be due to increased level of noise <strong>and</strong> vibrations, changes in the food basis,<br />

sediment <strong>and</strong> magnetic fields <strong>and</strong> other unexpected effects.<br />

Furthermore, the objective of this baseline <strong>study</strong> was to establish a basis for later<br />

documentation <strong>and</strong> quantifying the effects on the <strong>commercial</strong> <strong>fishery</strong>, inside <strong>and</strong> around<br />

<strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at Røds<strong>and</strong>.<br />

This report presents the results of the baseline <strong>study</strong> on fish <strong>and</strong> the baseline <strong>study</strong> of <strong>fry</strong><br />

at the <strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at Røds<strong>and</strong> <strong>and</strong> an adjacent reference area besides<br />

<strong>study</strong> on the effects on the <strong>commercial</strong> <strong>fishery</strong> in the area. The baseline <strong>study</strong> on fish<br />

<strong>and</strong> <strong>fry</strong> was performed from May to November 2001.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 2<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 3<br />

2. Background<br />

2.1. <strong>Baseline</strong> program<br />

The <strong>Baseline</strong> <strong>study</strong> of adult fish <strong>and</strong> <strong>fry</strong> (young-of-the-year) <strong>and</strong> juvenile fish at <strong>Nysted</strong><br />

<strong>Offshore</strong> Wind Farm at Røds<strong>and</strong> was prepared <strong>and</strong> undertaken according to evaluations<br />

<strong>and</strong> recommendations described in “Monitoring programme for fish <strong>and</strong> fisheries for the<br />

offshore wind farm at Røds<strong>and</strong>“ (Bio/consult 2001a) <strong>and</strong> “<strong>Baseline</strong> programme for fish<br />

<strong>and</strong> fisheries offshore wind farm at Røds<strong>and</strong>.” (Bio/consult 2001b).<br />

According to the baseline programme the baseline <strong>study</strong> is expected to enable the<br />

verification of the possible changes in the fish population in the wind farm area during<br />

its operational phase. Therefore, a series of issues have been suggested for the following<br />

monitoring programme. It is expected to verify these issues by testing of the following<br />

0-effect hypotheses:<br />

1. The offshore wind farm will not cause a change in the density <strong>and</strong> biomass of<br />

selected fish species in the wind farm area.<br />

2. The offshore wind farm will not cause a change in the length distribution of<br />

indicator fish species in the wind farm area.<br />

3. The offshore wind farm will not cause a change in the behaviour of reproduction<br />

patterns of indicator fish species in the wind farm area.<br />

4. The offshore wind farm will not cause a change in the density <strong>and</strong> biomass of fish<br />

<strong>fry</strong> in the wind farm area.<br />

5. The offshore wind farm will not cause a change in the <strong>commercial</strong> catch in the wind<br />

farm area.<br />

6. The offshore wind farm will not cause changes in the <strong>fishery</strong> pattern in the wind<br />

farm area.<br />

7. The cable trace will not cause obstacles for the migration of indicator fish species.<br />

This baseline <strong>study</strong> consists of three partly separate studies:<br />

• <strong>Baseline</strong> <strong>study</strong> of fish (basically adult fish)<br />

• <strong>Baseline</strong> <strong>study</strong> of <strong>fry</strong> (includes <strong>fry</strong>, juveniles <strong>and</strong> small fish species)<br />

• <strong>Baseline</strong> <strong>study</strong> of <strong>commercial</strong> <strong>fishery</strong><br />

The 0-effect hypothesis number 7 is discussed in a separate baseline <strong>study</strong> “<strong>Baseline</strong><br />

<strong>study</strong> - <strong>Fish</strong> at the cable trace, <strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at Røds<strong>and</strong>” (Bio/consult<br />

2003a).<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 4<br />

2.2. Location <strong>and</strong> description of <strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at<br />

Røds<strong>and</strong><br />

The planned 150MW offshore wind farm at Røds<strong>and</strong> is placed in the Femern Belt<br />

approximately 10 kilometres south of <strong>Nysted</strong> on Loll<strong>and</strong> (Figure 2.2.1).<br />

The wind farm will cover an area of approximately 24 km 2 . A 200m wide zone with<br />

limited admittance will be established around the wind farm during the construction<br />

phase, resulting in an overall area of approximately 28 km 2 . <strong>Fish</strong>ing will be allowed<br />

during the operational phase with regard to executive orders concerning <strong>fishery</strong> near sea<br />

cables.<br />

The wind farm will consist of 72 turbines each of 2.2MW placed in 8 north-south<br />

orientated rows separated by a distance of 850m.<br />

The turbine foundations will be gravity foundations in concrete. The bottom plate of the<br />

foundations will be covered with stones to protect against erosion <strong>and</strong> just above the<br />

water surface a special collar will protect against ice. The foundations will take up an<br />

area of about 45.000m 2 , corresponding to 0.2% of the total area of the wind farm.<br />

The wind farm is located on a gently sloping seabed with depths between 6m <strong>and</strong> 9.5m.<br />

The majority of the seabed area consists of glacier deposits covered by thin layers of<br />

s<strong>and</strong>. The largest part of the area consists of s<strong>and</strong> with larger <strong>and</strong> smaller ridges. In<br />

certain areas at the base of these ridges, there is loose material that easily becomes<br />

suspended. In other areas, there are pebbles, gravel or shell. Stones >10 cm do occur<br />

sporadically but the overall coverage is


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Figure 2.1.1. Map of <strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at Røds<strong>and</strong> with associated transformer platform<br />

<strong>and</strong> planned cable trace.<br />

<strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at Røds<strong>and</strong><br />

Cable trace<br />

q Mills<br />

Tranformer platform<br />

<strong>Nysted</strong><br />

q q<br />

q q<br />

qqq q q<br />

q q q q<br />

q q q<br />

q q q q<br />

q q q<br />

q q q<br />

q q q q<br />

q q<br />

q q<br />

q q q q<br />

q q<br />

q q<br />

q q q q<br />

q q q<br />

q q q q q<br />

q q q<br />

q q q q q<br />

q q q<br />

q q q<br />

q q<br />

q q<br />

Vantore Str<strong>and</strong><br />

Bio/consult as Page 5


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Bio/consult as Page 6


Bio/consult as Page 7<br />

The turbines will be interconnected with a 33 kV sea-cable of a total length of about 48<br />

km. From a 33/132 kV transformer platform, placed on a foundation similar to the wind<br />

turbine foundation 200m north of the northernmost row of turbines, a 10 km long 132<br />

kV cable will lead to l<strong>and</strong> at Vantore Str<strong>and</strong>huse east of <strong>Nysted</strong>. All cables are planned<br />

to be Alternating Current (AC) cables <strong>and</strong> will be sluiced/buried at a depth of one metre.<br />

2.3. The importance of the area as a probable migration route <strong>and</strong><br />

spawning ground for species of <strong>commercial</strong> importance<br />

The western part of the Baltic lies within the distribution areas for cod, flounder, dab,<br />

plaice, turbot, eel <strong>and</strong> herring.<br />

Thin-shelled shellfish as well as bristle worms form an important part of the diet of flat<br />

fish. Cod have a wide food spectrum <strong>and</strong> eat all kinds of crustaceans, bristle worms <strong>and</strong><br />

shellfish. Larger cod also eat fish. Herring, like s<strong>and</strong>eel, eat zooplankton, especially<br />

copepods. In general, most fish do not eat in the spawning period, <strong>and</strong> their need for<br />

food decreases in the winter.<br />

The western Baltic as a whole is probably a spawning ground for cod, flounder, dab,<br />

turbot, plaice <strong>and</strong> herring (Krog, 1993). Flounder, dab, turbot, <strong>and</strong> to some extent cod,<br />

for which spawning depends on the water temperature, can spawn in waters of depths<br />

similar to those at Røds<strong>and</strong>, while plaice probably spawn in deeper waters (20 – 40<br />

metres).<br />

Plaice live on s<strong>and</strong>y or mixed sea bottoms from the coast out to depths of about 200<br />

metres. Most adult plaice occupy waters of 10–50 metres depth, while the younger fish<br />

stay in shallower waters. Plaice spawn in the Baltic over a long period (from November<br />

to March) because of the relatively low, constant temperatures in the deeper waters.<br />

(Muus & Nielsen, 1998).<br />

Flounder inhabit waters from the tidal zone out to depths of about 100 metres, the<br />

youngest ones in the shallowest waters. Spawning is from March to May.<br />

Dab live on s<strong>and</strong>y or soft bottoms at depths of 5–150 metres. The youngest can be<br />

found to depths of approximately 70 metres. Dab spawn in the Baltic from April to<br />

August.<br />

Turbot inhabit water depths of 20–70 metres <strong>and</strong> is found on s<strong>and</strong>y, stony or mixed<br />

bottoms apart from the spawning period. During spawning, they can be found in<br />

somewhat shallower waters (according to the literature, turbot spawn in depths of 10–40<br />

metres) from April to August.<br />

Cod are found from the coast out to a depth of 500 metres. Spawning cod seek out water<br />

temperatures of 4–6 °C. The fishermen believe the cod at Røds<strong>and</strong> spawn from March<br />

to June. The cod in the western part of the Baltic are considered to spawn earlier than<br />

the cod around Bornholm. Cod in the Baltic have a very long spawning period (April–<br />

September) compared with other cod populations (Tomkiewiecz pers. Comm. 2001). In<br />

recent years, the spawning period of cod has extended even more, possibly because of<br />

the effects of hormone-like substances.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 8<br />

Herrings are pelagic. The herring strains in the western Baltic probably spawn in an area<br />

off the German coast in spring.<br />

Figure 2.3.1 The silver eel migrate along the southern coast of the isl<strong>and</strong> of Loll<strong>and</strong> Falster in the<br />

autumn. Commercial <strong>fishery</strong> for silver eel is common in the area.<br />

Eel migrate through the area from September to November on their way to the Sargasso<br />

Sea.<br />

As a result of the fish studies at Røds<strong>and</strong>, the probable migration <strong>and</strong> spawning<br />

conditions in the area can be stated. These are shown in Table 2.3.1.<br />

Commercial<br />

species<br />

Species<br />

Catch 1999 Behaviour<br />

Spring Autumn Stationary Migratory<br />

(April, June) (Sept. Oct.)<br />

Probable<br />

spawning in<br />

wind farm<br />

area <strong>and</strong>/or<br />

reference<br />

area<br />

Herring 4 28 X (X) 4<br />

Brisling 9 73 X (X) 4<br />

Cod 295 463 X X (X) 2)<br />

Whiting 0 428 X<br />

Flounder 18 10 X X (X) 3)<br />

Plaice 0 0<br />

Turbot 1 1 X X<br />

Short-spined sea scorpion 40 19 X X<br />

Fifteen-spined stickleback 0 116 X X<br />

Small s<strong>and</strong>eel 308 115 X (X) 1) Great s<strong>and</strong>eel 40 602 X (X)<br />

X<br />

1) Additional<br />

species<br />

caught in<br />

larger<br />

numbers Two spotted goby 17 12 X<br />

X<br />

Not studied<br />

S<strong>and</strong> goby 0 99 X Not studied<br />

Eelpout 4 129 X X<br />

1) Daily migrations<br />

2) Only intermediary, juvenile <strong>and</strong> spent (reference area) cod were recorded. The absence of any sexually mature cod is attributed<br />

to the time of fishing (spawning season app. January to April)<br />

3) Only intermediary, sexually differentiated, juvenile <strong>and</strong> spent flounder were recorded. The absence of any sexually mature<br />

flounder is attributed to the time of fishing (spawning season April/early May).<br />

4) Only few individuals were caught in the spring. A few were mature or had already spent.<br />

Table 2.3.1. List of some important species recorded at Røds<strong>and</strong> <strong>and</strong> location of their habitat as<br />

either stationary or temporary (visitor). It is also shown whether the species probably<br />

uses the area as a spawning area. (After bio/consult 2000a)<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 9<br />

2.4. Previous fish studies<br />

In connection to the planning of an offshore wind farm at Røds<strong>and</strong>, preliminary fish<br />

studies (screenings) of the fish population in the area (Bio/consult, 2000a) <strong>and</strong> the<br />

existing <strong>fishery</strong> pattern for the <strong>commercial</strong> <strong>fishery</strong> (Bio/consult 2000b) have been<br />

carried out as part of the EIA <strong>study</strong> conducted in 1999.<br />

The studies have provided fundamental background knowledge about existing fish<br />

populations <strong>and</strong> <strong>commercial</strong> fishing in the area. Furthermore, the studies have provided<br />

experience of methods <strong>and</strong> gear, which can be applied to the baseline <strong>and</strong> monitoring<br />

program of fish at The Røds<strong>and</strong> <strong>Offshore</strong> Wind Farm at <strong>Nysted</strong>.<br />

The studies form the basis for planning the program for the baseline <strong>study</strong> before the<br />

construction work starts in June of 2002, <strong>and</strong> for planning a subsequent monitoring<br />

programme for the operational phase of the wind farm, from 2003 to 2006.<br />

2.4.1. Preliminary fish <strong>study</strong><br />

The preliminary fish <strong>study</strong> included fishing with gill <strong>and</strong> fyke nets at five stations in the<br />

wind farm area <strong>and</strong> an adjacent reference area (Bio/consult 2000a). Sampling was<br />

carried out as repeated fishings (fishing at the same station within a few days), where<br />

the number of replicates at each fishing was 10. Furthermore, trawling (TV3 Baltic<br />

Surveying Trawl) was undertaken at four stations in the wind farm area <strong>and</strong> at four<br />

stations in the adjacent reference area. The sampling regime was conducted with<br />

identical programmes in both the spring (April) <strong>and</strong> autumn (September).<br />

Results showed that it was acceptable to divide the sampling effort within a station over<br />

several days as the variation between the repeated-samplings was low <strong>and</strong> thus<br />

considered negligible as it only constituted up to 20% of the variation observed between<br />

replicates (the spatial variation). Hence, the spatial variation was much greater than the<br />

variation from local sampling over several days.<br />

An overall power analysis on the results of the fishing with gill <strong>and</strong> fyke nets, showed<br />

that the wind farm area <strong>and</strong> the reference area should be fished with a minimum of 22<br />

replicates. This is necessary in order to achieve a criteria which, with 80% certainty,<br />

detects a significant (p


Bio/consult as Page 10<br />

2.4.2. Preliminary <strong>study</strong> on <strong>commercial</strong> <strong>fishery</strong><br />

The <strong>study</strong> concerning the <strong>commercial</strong> <strong>fishery</strong> included interviews with the local<br />

fishermen, who have interests in the area south of Røds<strong>and</strong> (Bio/consult 2000b). The<br />

interviews were concentrated on the fishing practice (important species, gears, seasons<br />

etc.) <strong>and</strong> collection <strong>and</strong> processing of catch data from the area.<br />

The catches by the <strong>commercial</strong> fishermen have been calculated for the years 1997-1999.<br />

This calculation has been partly made on the basis of data from log books, records of<br />

l<strong>and</strong>ed fish, yearly statements from the <strong>Fish</strong>ery Department <strong>and</strong> private notes, <strong>and</strong> partly<br />

on official data from the Directorate of <strong>Fish</strong>eries, on the ICES area 38 G1 (the coastal<br />

area surrounding Loll<strong>and</strong> <strong>and</strong> Falster).<br />

The <strong>commercial</strong> <strong>fishery</strong> in the area south of Røds<strong>and</strong> is primarily for Atlantic cod <strong>and</strong><br />

turbot using gillnets <strong>and</strong> trawling, as well as pound netting for silver eel during autumn.<br />

There is no trawling inside the wind farm area.<br />

2.4.3. Trail <strong>fishery</strong> using pound netting <strong>and</strong> <strong>fry</strong> trawl<br />

In the autumn of 2000, a <strong>study</strong> was carried out to evaluate the possibility of using bycatches<br />

from pound netting in a future baseline <strong>and</strong> monitoring programme at Røds<strong>and</strong>,<br />

<strong>and</strong> the possibility of using <strong>fry</strong> trawl <strong>and</strong> pound nets as a substitute or additional fishing<br />

gear (Bio/consult 2001e).<br />

There was a small degree of overlap between the catches from pound nets <strong>and</strong> the<br />

catches from <strong>fry</strong> trawls. A much greater number of species were caught in the pound<br />

nets compared to the <strong>fry</strong> trawls. The <strong>fry</strong> trawl was, however, more effective at catching<br />

small fish (< about 10 cm) whereas the pound net was more effective at catching larger<br />

fish (> about 20 cm).<br />

Even though the pound net <strong>fishery</strong> in the area is primarily aimed at catching silver eel,<br />

the catches in the pound nets also included a broad selection of other fish species<br />

(herring, sprat, Atlantic cod, short-spined sea scorpion, hooknose, flounder <strong>and</strong> plaice).<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 11<br />

3. <strong>Fish</strong> <strong>and</strong> Fry<br />

3.1. Materials <strong>and</strong> methods<br />

The two baseline studies, baseline <strong>study</strong> of fish <strong>and</strong> baseline <strong>study</strong> of <strong>fry</strong>, were carried<br />

out in the year of 2001 according to the recommendations in “<strong>Baseline</strong> programme for<br />

fish <strong>and</strong> <strong>fishery</strong>. <strong>Offshore</strong> wind farm at Røds<strong>and</strong>” (Bio/consult 2001b). In spring, the<br />

program for baseline <strong>study</strong> of fish was undertaken with two identical sampling sessions<br />

in May <strong>and</strong> June, respectively. In autumn, the sampling program baseline <strong>study</strong> of <strong>fry</strong><br />

was executed with three identical sampling sessions in September, October <strong>and</strong><br />

November.<br />

Apart from the use of gill nets in the baseline <strong>study</strong> of fish <strong>and</strong> sampling seasons <strong>and</strong><br />

number of samplings, the execution of the two baseline studies was identical.<br />

The chosen strategy for the studies was selected for its ability to describe the correlation<br />

of variations in time <strong>and</strong> place (corresponding to the principles in a BACI test). The<br />

baseline <strong>study</strong> of fish was also designed to catch spawning flatfish (e.g. turbot <strong>and</strong><br />

flounder). The baseline <strong>study</strong> of <strong>fry</strong> was expected to catch the young-of-the-year of a<br />

number of species that spawn in early <strong>and</strong> mid summer as well as small fish species.<br />

With one exception, the baseline <strong>study</strong> of <strong>fry</strong> differed from the baseline program<br />

described in “<strong>Baseline</strong> programme for fish <strong>and</strong> <strong>fishery</strong>. <strong>Offshore</strong> wind farm at Røds<strong>and</strong>”<br />

(Bio/consult 2001b). Data collected at the baseline <strong>study</strong> of fish was to some degree<br />

used in the baseline <strong>study</strong> of <strong>fry</strong>, as far as concerns identical stations <strong>and</strong> fishing gear. It<br />

was expected, that this alteration would strengthen the baseline <strong>study</strong> of <strong>fry</strong>.<br />

3.2. Field studies<br />

All sampling concerning the baseline <strong>study</strong> of fish <strong>and</strong> the baseline <strong>study</strong> of <strong>fry</strong> was<br />

conducted at the same 12 permanent stations in the area of the wind farm <strong>and</strong> 12<br />

permanent stations in the adjacent reference area (Figure 3.2.1). The research stations<br />

were selected in accordance to eight transects used in connection with studies of marine<br />

biological conditions (DHI, 2000). Four transects were selected in the wind farm area<br />

<strong>and</strong> four transects in the corresponding reference area.<br />

Repeated sampling at 12 stations in the area of the wind farm <strong>and</strong> corresponding 12<br />

stations in the reference area took place simultaneously. Sampling at all 24 stations were<br />

done within a period of three to four days, depending on the weather conditions.<br />

Gill <strong>and</strong> fyke nets were set from two high-speed rubber zodiacs (Humber Dive Pro 6) at<br />

geographical coordinates, established by GIS, within the selected stations. These<br />

coordinates were exported to the D-GPS system used on the rubber zodiacs <strong>and</strong> allowed<br />

for a better degree of repeated positioning of the fishing gear during sampling.<br />

The gill <strong>and</strong> fyke nets were set in the afternoon <strong>and</strong> retrieved the next morning in the<br />

same order to ensure that active sampling time was approximately the same for each<br />

sample.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Figure 3.2.1. The area of the studies <strong>and</strong> the distribution of sampling stations. Stations were identical<br />

spring <strong>and</strong> autumn.<br />

<strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at Røds<strong>and</strong><br />

Cable trace<br />

q Mills<br />

Tranformer platform<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

q q<br />

q 1 q<br />

q q<br />

q 4 q<br />

q 7<br />

q<br />

q<br />

q<br />

q<br />

q q q 10 q<br />

q q q q q<br />

q q<br />

q q<br />

q 2 q q q<br />

q q<br />

q q q 5<br />

q 8<br />

q<br />

q<br />

q q q<br />

q q q 11<br />

q q q q q<br />

q q q q q<br />

q q q<br />

q 3<br />

q q q q<br />

6 q q q<br />

9 q q q<br />

q 12 q<br />

q q<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

Bio/consult as Page 13


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Bio/consult as Page 14


Bio/consult as Page 15<br />

Figure 3.2.1 Seaworthy high-speed rubber zodiacs (Humber Dive Pro 6) were used in the field<br />

studies of both baseline studies because of their exceptional steadiness.<br />

3.3. Applied gears<br />

Only passive (stationary) fishing gear was used for sampling as recommended (SEAS<br />

2000 <strong>and</strong> SEAS 2001). The catch efficiency of passive fishing gear such as gill <strong>and</strong> fyke<br />

nets depends on fish behaviour such as migration. Migration can be seasonal (e.g. while<br />

spawning) or daily (e.g. while foraging in shallower <strong>and</strong> deeper waters within the local<br />

area). The catch depends on factors such as the mesh size, time of day, oceanographic<br />

conditions <strong>and</strong> weather conditions.<br />

Biological sampling gill nets<br />

The biological survey gill net (Lundgren gill net) is 42 metres long <strong>and</strong> 1.5 metres high.<br />

It can be placed in a pelagic or benthic position. Pelagic nets are positioned 0.5-1 m<br />

under the surface to reduce the risk of rolling <strong>and</strong> tangling. The biological survey net is<br />

divided into 14 sections with different mesh sizes ranging from 6.25 mm to 60 mm (half<br />

meshes).<br />

Turbot net<br />

The benthic biological survey nets used in this <strong>study</strong> was equipped with two additional<br />

4 m long sections with mesh sizes of 90 <strong>and</strong> 110 mm, respectively, suitable for catching<br />

larger flatfish like turbot.<br />

St<strong>and</strong>ard fyke net<br />

The st<strong>and</strong>ard fyke net is a double-threaded cast net with a trap opening of 60 cm in<br />

diameter. In each fyke net, there are three funnels with a mesh size of 17 mm in the<br />

outer funnel, 14 mm in the middle funnel, <strong>and</strong> 11 mm in the innermost funnel. The<br />

leader between the two traps is eight metres long <strong>and</strong> has a mesh size of 18 mm. The<br />

leader has extra ballast to reduce rolling in bad weather.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 16<br />

Fry fyke nets<br />

The <strong>fry</strong> fyke net is a double-threaded cast net with a trap opening of 60 cm. The three<br />

funnels in each trap have diameters of 55 cm, 45 cm <strong>and</strong> 35 cm, with mesh sizes of 8<br />

mm, 8 mm <strong>and</strong> 5 mm, respectively. The leader between the two traps is eight metres<br />

long <strong>and</strong> 55 cm in height, <strong>and</strong> has a mesh size of 18 mm. The leader has extra ballast to<br />

reduce rolling in bad weather.<br />

Figure 3.3.1. Due to its small mesh size <strong>fry</strong> fyke net was capable of catching gobies <strong>and</strong> other small<br />

fish to a size less than two centimetres. Left; s<strong>and</strong> gobies <strong>and</strong> two-spotted gobies. Right;<br />

Just before spawning – a black goby female.<br />

3.3.1. <strong>Fish</strong> <strong>study</strong><br />

The baseline <strong>study</strong> of fish included the use of biological survey gill nets set in the<br />

pelagic, <strong>and</strong> benthos biological survey gill nets with additional sections of large mesh<br />

size, st<strong>and</strong>ard <strong>and</strong> <strong>fry</strong> fyke nets.<br />

3.3.2. Fry Study<br />

The baseline <strong>study</strong> of <strong>fry</strong>, juveniles <strong>and</strong> small fish only included the use of st<strong>and</strong>ard<br />

fyke nets <strong>and</strong> <strong>fry</strong> fyke nets, in both spring <strong>and</strong> autumn.<br />

3.4. Scope<br />

The baseline <strong>study</strong> of fish was undertaken in the spring <strong>and</strong> including sampling<br />

expeditions in May <strong>and</strong> June, respectively. The baseline <strong>study</strong> of <strong>fry</strong> was undertaken in<br />

autumn <strong>and</strong> consisted of expeditions in September, October <strong>and</strong> November,<br />

respectively. All sampling was repeated (replicates) at 12 stations in the wind farm area<br />

<strong>and</strong> 12 stations in the reference area, a total of 24 replicates in both areas.<br />

3.4.1. <strong>Fish</strong> <strong>study</strong><br />

Sampling <strong>and</strong> observations were conducted in the periods 16 th –27 th of May <strong>and</strong> 16 th –<br />

20 th of June 2001. As mentioned above, for each sampling period 24 samples were<br />

taken in the wind farm area <strong>and</strong> 24 samples in the reference area giving a total of 96<br />

samples in all.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 17<br />

Each sample consisted of fish from one pelagic <strong>and</strong> one benthic biological survey gill<br />

net, one turbot gill net, one st<strong>and</strong>ard fyke net <strong>and</strong> one <strong>fry</strong> fyke net.<br />

Figure 3.4.1. Tending of a biological survey net on a calm morning in May.<br />

3.4.2. Fry <strong>study</strong><br />

Samples <strong>and</strong> observations where conducted in the periods 24 th – 27 th of September, 25 th<br />

- 28 th of October <strong>and</strong> 24 th - 26 th of November, 2001. Each sample consisted of one<br />

st<strong>and</strong>ard fyke net <strong>and</strong> one <strong>fry</strong> fyke net.<br />

In both September <strong>and</strong> November 24 samples were taken in the wind farm <strong>and</strong> reference<br />

areas while in October, only 22 samples were gathered in the wind farm <strong>and</strong> the<br />

reference area for a total of 140 samples.<br />

The <strong>fry</strong> <strong>study</strong> also includes data of catch results from fyke nets obtained in connection<br />

with the fish <strong>study</strong>.<br />

Figure 3.4.2 Samples from fyke nets <strong>and</strong> <strong>fry</strong> fyke nets were h<strong>and</strong>led on board <strong>and</strong> stored in plastic<br />

bags together with all necessary information.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 18<br />

3.5. Information recorded<br />

In all, the total number of samples obtained during the Spring <strong>and</strong> Autumn programme<br />

was 236, consisting of 192 biological survey gill nets, 96 turbot gill nets, 236 st<strong>and</strong>ard<br />

fyke nets <strong>and</strong> 236 <strong>fry</strong> fyke nets.<br />

The following information was recorded for each net:<br />

• Station<br />

• Date<br />

• Net<br />

• Time of activity<br />

• Position<br />

• Depth<br />

• Species of fish<br />

• Number of each species<br />

• Total weight of each species<br />

• Length (total length) of each individual rounded down to the nearest half centimetre<br />

• Corresponding values of length (mm) <strong>and</strong> weight (1/10 g) for each individual of the<br />

important species<br />

In the fish <strong>study</strong>, the gonad index was also determined for important species <strong>and</strong> was<br />

classified on the basis of five developmental levels:<br />

1. Juvenile gonads undeveloped <strong>and</strong> impossible to tell the sex of the fish<br />

2. Sexually differentiated – the sex of the fish could be determined from the gonads<br />

3. Intermediary – gonads in development with differentiation of roe cells <strong>and</strong> milt<br />

4. Mature – roe <strong>and</strong> milt flow freely when the abdominal cavity is pressed<br />

5. Spent – gonads empty or partly empty, slack <strong>and</strong> bloodshot<br />

Figure 3.5.1 From each sample species was identified <strong>and</strong> sorted. Each individual was measured <strong>and</strong><br />

weighted <strong>and</strong> notes were carefully taken down.<br />

The following meteorological data for May, June, September, October <strong>and</strong> November<br />

was obtained from Danish Meteorological Institute <strong>and</strong> included for station 06149<br />

Gedser Odde:<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 19<br />

• Wind direction<br />

• Wind velocity<br />

• Current direction<br />

• Current velocity<br />

3.6. Data processing<br />

Information about the nets <strong>and</strong> related parameters along with catch results were entered<br />

into Bio/consult’s database, FISKSYS. All parameters <strong>and</strong> results were geographically<br />

oriented in relation to the Geographical Information System (GIS) Map Info.<br />

Figure 3.6.1. Identification of some species were time consuming because of less morphological<br />

differences between close related species. Pictures show identification of a longspined<br />

bullhead (Left) <strong>and</strong> a short-spined sea scorpion (Right).<br />

Catch Per Unit Effort (CPUE) for number <strong>and</strong> weight was calculated as the average<br />

catch per sample for a given species at a given station.<br />

In the fish <strong>study</strong>, one sample consisted of one pelagic gill net, one benthic gill net, one<br />

turbot gill net, one st<strong>and</strong>ard fyke net <strong>and</strong> one <strong>fry</strong> fyke net.<br />

In the <strong>fry</strong> <strong>study</strong>, one sample consisted of one st<strong>and</strong>ard fyke net <strong>and</strong> one <strong>fry</strong> fyke net.<br />

The unit of effort was one night of fishing with the sampling units mentioned above.<br />

Average values were calculated with regards to length, weight <strong>and</strong> condition factor. The<br />

condition factor (CF) was calculated for every fish as:<br />

CF = 100 · W/L 3<br />

where W = the weight of the fish<br />

L = the length of the fish<br />

In addition, the average weight of gonads was recorded along with their stage of<br />

development, broken down into five levels (the gonad index).<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 20<br />

With regard to uncertainty, exported data from FISKSYS was subjected to statistical<br />

comparisons in SPSS, as well as the power analyser in Sample Power from SPSS.<br />

The statistical analyses were carried out in preparation for use in a subsequent<br />

monitoring programme.<br />

Figure 3.6.2. Left: Different year classes of flounders. Right: Gonads of a flounder is removed for<br />

weighting <strong>and</strong> identification of gonad index.<br />

3.6.1. Statistical analyses<br />

Special emphasis was placed on statistical comparisons between the wind farm area <strong>and</strong><br />

the reference area to verify if the fish-fauna in the two areas is similar with respect to<br />

both space <strong>and</strong> time.<br />

The hypothesis determining analysis was as follows: There are no differences in the<br />

number <strong>and</strong> weight of the fish-fauna with respect to area, <strong>and</strong> that possible changes in<br />

time exhibit parallel changes for the two areas.<br />

Two-way analysis of Variance was carried out using the variables number <strong>and</strong> weight<br />

(logarithmical transformed), as an ordinary dual variable analysis with the factors of<br />

Area <strong>and</strong> Time. The special aspect of the Two-way Anova analysis is that the<br />

interesting source of variation here is the interaction between Area <strong>and</strong> Time. This must<br />

not be significantly greater than the variation between the stations within a given area<br />

<strong>and</strong> for a given time, also known as the effect of interactions.<br />

One of the preconditions of using the Two-way Anova is that the sample variances are<br />

similar to each other i.e. the individual cells fulfil the criteria of homogeneity. This was<br />

tested using Levene’s test.<br />

Areas for both the fish <strong>and</strong> <strong>fry</strong> <strong>study</strong> are defined as the wind farm area <strong>and</strong> the<br />

corresponding reference area. Time is the sampling period defined as May <strong>and</strong> June for<br />

the fish <strong>study</strong> <strong>and</strong> May, June, September, October <strong>and</strong> November for the <strong>fry</strong> <strong>study</strong>.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 21<br />

Differences between length distributions of the different fish species from the two areas<br />

(the wind farm <strong>and</strong> the reference area) were compared between studies <strong>and</strong> at different<br />

months.<br />

As the data for the distribution of fish length is often insufficient for a Two-way<br />

analysis of variance to be used, a Kolmogorov-Smirnov Z test was used instead. The<br />

Kolmogorov-Smirnov Z test is a non-parametric test for the difference in the<br />

distribution of frequency, where time <strong>and</strong> place are fixed. This test does not allow the<br />

interactions between time <strong>and</strong> place to be assessed.<br />

To determine if mean lengths of the separate fish species are similar in both the wind<br />

farm <strong>and</strong> the reference area a non-parametric Mann Whitney test was used. Length<br />

distribution results <strong>and</strong> length frequency for each species is to be included in evaluation<br />

of the non-parametric Mann Whitney test.<br />

3.6.2. Power analysis<br />

A power analysis was carried out after the statistical analysis to reveal the degree of<br />

certainty achieved in the analysis, in other words the extent to which there is a<br />

probability that the test will be able to show a real difference from a given amount of<br />

data.<br />

To run a power analysis at least three conditions that must be fulfilled:<br />

1) The starting point is a particular method of statistical analysis, for example<br />

the ANOVA test, in connection with the BACI design.<br />

2) The variance structure of the data must be known, including the number of<br />

replicates used.<br />

3) The selection of a difference in values that the analysis must be able to<br />

detect. This is normally called the size of effect. In this case, the size of<br />

effect was selected as 50%.<br />

The selection of the size of effect requires the balance of two contradictory factors. For<br />

certain biological processes, smaller sizes of effect can be of relevance, but selecting a<br />

smaller size of effect will mean a given <strong>study</strong> is less powerful. This creates a need for a<br />

larger number of samples in planning the subsequent sampling using the actual power<br />

analysis as the basis.<br />

If a power analysis returns a power of 10% for a given statistical test with a size of<br />

effect of 50%, results in only a 10% probability that the test will give a significant<br />

result, even though there is a real difference in the data of 50% for the variable selected<br />

between two studies of either time or space.<br />

A power analysis can also be used to calculate how many replicates are required to<br />

achieve the desired power (for example 80%) for a given test with a selected size of<br />

effect (for example 50%).<br />

Power analyses were used in this <strong>study</strong> for the dual variable analyses (BACI) for<br />

determining the difference in the number <strong>and</strong> total weight of the various species of fish.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 22<br />

The power analysis was carried out at a size of effect of 50% difference between the<br />

two areas.<br />

3.7. Margin of error in the method<br />

The physical design of the gill net can cause a selective distribution of sizes in the catch.<br />

A given mesh size is most effective for fish of a particular size, shape <strong>and</strong> morphology.<br />

An attempt was made to counter this degree of uncertainty by using a range of different<br />

mesh sizes. The biological survey gill nets can, become “saturated” to some extent, in<br />

particular sections, after which it will no longer work efficiently in catching fish of<br />

certain sizes.<br />

The methods used for setting the biological survey gill nets, without gaps between the<br />

individual sections, could also introduce selectivity (<strong>and</strong> thus cause an overestimation of<br />

CPUE values) for larger fish.<br />

The efficiency of the gill nets can also depend on the species of fish <strong>and</strong> the nature of<br />

the water. Some fish, such as sculpins <strong>and</strong> sticklebacks, have a rough exterior<br />

morphology with extruding appendages, which means they are easily caught in the nets.<br />

Other species are smooth <strong>and</strong> slippery, such as eel, s<strong>and</strong>eel <strong>and</strong> eelpout, <strong>and</strong> are only<br />

caught in the gill nets if an operculum is trapped in the mesh or the fish becomes<br />

entangled. A species such as eel is therefore only rarely caught in the type of sampling<br />

nets used in this <strong>study</strong>.<br />

Biological sampling nets <strong>and</strong> fyke nets are passive gear (stationary), the catch therefore<br />

depends on the behaviour of the fish. This behaviour in turn depends on many factors,<br />

including the weather conditions, disturbances, etc.<br />

Because of the above-mentioned biases in catching efficiency due to the gear <strong>and</strong><br />

sampling methods, it must be emphasised that the catch does not necessarily reflect the<br />

actual fish population with regard to species composition <strong>and</strong> size.<br />

Another possible source of uncertainty in the BACI design is the possible lack of<br />

homogeneity between the wind farm area <strong>and</strong> the reference area. The nature of the<br />

reference area, composed of four sub-areas, calls for greater variation in the catches,<br />

compared to the wind farm area when regarded as one complete area.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 23<br />

3.8. Results - <strong>Fish</strong> <strong>study</strong><br />

3.8.1. Observations<br />

The samplings in May <strong>and</strong> June 2001 were made difficult by the large occurrence of<br />

algae (Ectocarpus siliculosus / Pilayella littoralis). In addition, shore crabs (Carcinus<br />

maenas) were caught in large numbers. Algae <strong>and</strong> shore crabs entangled in the fishing<br />

gears are expected clearly to decline the catch efficiency of both gill nets <strong>and</strong> fyke nets.<br />

3.8.2. Overview of catches<br />

In all 26 species were registered during the sampling in May <strong>and</strong> June in the wind farm<br />

area <strong>and</strong> the reference area. Table 3.8.1 show the total catch of each species with respect<br />

to area, time <strong>and</strong> type of fishing gear.<br />

A total of 785 individuals divided among 23 species with a total weight of 47.4 kg were<br />

caught in the wind farm area. In the reference area, the corresponding total catch was<br />

685 individuals with a total weight of 67.8 kg divided among 24 different species.<br />

The largest number of a single category was 157 great s<strong>and</strong>eel caught in gill nets in the<br />

reference area in May. In addition, there were relatively large catches of cod, small<br />

s<strong>and</strong>eel, short-spined seas scorpion <strong>and</strong> flounder in gill nets <strong>and</strong> eelpout as regards fyke<br />

nets.<br />

There were relatively few individual catches of some species, which limits the<br />

possibility for statistical assessment. This problem has been thoroughly investigated in<br />

the section 3.10.2.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 24<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Table 3.8.1. The total catche in fish <strong>study</strong> distributed with respect to time, area <strong>and</strong><br />

applied gears.<br />

Gill net<br />

Wind farm area<br />

Fyke net<br />

May<br />

Gill net<br />

Reference area<br />

Species Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g)<br />

Baltic herring<br />

1 68 0 0 9 524 0 0 3 272 0 0 10 425 0 0<br />

Brisling<br />

3 75 0 0 5 61 0 0 15 99 0 0 8 95 0 0<br />

Common eel<br />

0 0 4 381 0 0 0 0 0 0 1 108 0 0 2 566<br />

Hornfish<br />

27 11340 0 0 49 20917 0 0 2 312 0 0 5 1125 0 0<br />

Snake pipefish<br />

0 0 0 0 0 0 0 0 0 0 1 11 0 0 0 0<br />

Straightnose pipefish<br />

0 0 1 1 0 0 0 0 2 2 1 1 0 0 1 0<br />

Fifteen-spined stickleback 2 18 15 113 2 12 5 32 0 0 6 49 0 0 3 19<br />

Whiting<br />

0 0 0 0 1 200 0 0 0 0 0 0 0 0 0 0<br />

Atlantic cod<br />

16 2051 6 630 61 16670 9 920 4 536 2 117 6 694 12 1960<br />

Small s<strong>and</strong>eel<br />

4 55 0 0 12 122 1 9 71 985 0 0 35 1065 0 0<br />

Great s<strong>and</strong>eel<br />

30 388 0 0 157 2076 0 0 44 506 0 0 49 737 0 0<br />

Two-spotted goby<br />

0 0 22 15 0 0 10 9 0 0 21 19 0 0 23 13<br />

S<strong>and</strong> goby<br />

8 13 2 3 7 11 7 13 5 19 13 16 5 5 7 7<br />

Black goby<br />

4 26 1 4 1 4 0 0 0 0 0 0 0 0 2 17<br />

Transparent goby<br />

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0<br />

Goby.sp.<br />

0 0 0 0 1 2 1 1 0 0 0 0 0 0 0 0<br />

Butterfish<br />

1 18 2 27 0 0 0 0 0 0 0 0 0 0 2 25<br />

Eelpout<br />

8 208 100 3532 2 140 17 938 3 32 63 848 0 0 17 297<br />

Short-spined sea scorpion 127 13823 40 3528 42 4788 18 1858 15 1071 3 258 8 777 5 417<br />

Longspined bullhead<br />

9 322 5 177 2 107 2 36 4 144 3 72 3 98 3 84<br />

Hooknose<br />

1 14 0 0 0 0 1 16 0 0 0 0 0 0 0 0<br />

Lumpsucker<br />

1 214 0 0 1 1074 0 0 0 0 0 0 0 0 0 0<br />

Turbot<br />

14 1539 2 370 4 1305 1 196 1 58 0 0 6 1896 1 82<br />

Flounder<br />

12 843 17 1117 20 2414 13 1528 12 681 3 220 6 427 6 363<br />

European plaice<br />

1 27 0 0 0 0 0 0 0 0 0 0 0 0 2 20<br />

Sea trout<br />

0 0 0 0 0 0 0 0 0 0 0 0 1 634 0 0<br />

Total<br />

269 31041 217 9899 376 50427 85 5555 181 4716 118 1720 142 7977 86 3870<br />

Fyke net<br />

Gill net<br />

Wind farm area<br />

Fyke net<br />

June<br />

Gill net<br />

Reference area<br />

Fyke net<br />

Bio/consult as Page 25


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Bio/consult as Page 26


Bio/consult as Page 27<br />

3.8.3. Selection of indicator species<br />

On the basis of the <strong>Baseline</strong> programme (Bio/consult 2001b) a number of fish species,<br />

which are more important due to their high occurrence, <strong>commercial</strong> interest, indicatorcharacter,<br />

specific behaviour etc., have been proposed as indicator selected species in<br />

the fish <strong>study</strong>. The following species is proposed: Atlantic cod, turbot, flounder, dab,<br />

brisling <strong>and</strong> herring. Other selected species will be discussed in the baseline <strong>study</strong> of <strong>fry</strong><br />

(this report) <strong>and</strong> <strong>Baseline</strong> <strong>study</strong> of fish at the cable trace (Bio/consult 2003a).<br />

These species <strong>and</strong> groups should form a part of the test of the 0-effect hypotheses with<br />

regard to the possible effects caused by reflections, noise <strong>and</strong> vibrations (brisling <strong>and</strong><br />

herring) (Bio/consult 2001c), changes in the food basis (Atlantic cod, turbot, flounder,<br />

small fish <strong>and</strong> fish <strong>fry</strong>), sediment (brisling <strong>and</strong> herring) (Bio/consult 2001d),<br />

electromagnetic fields (eel) (Bio/consult 2002; 2003a) <strong>and</strong> possible unexpected effects<br />

(small fish such as goby <strong>and</strong> fish <strong>fry</strong>). The abundance of a species is also an important<br />

parameter with respect to its selection as indicator species.<br />

On the bases of the results in the present baseline <strong>study</strong> the list of selected species might<br />

be reconsidered compared to the list given in the baseline program. The criteria for<br />

selection is based on evaluation the following conditions:<br />

• The total number caught in the <strong>study</strong><br />

• The ecological aspects of the species<br />

• Behaviour pattern of the fish, whether it is stationary or it is migratory<br />

• Commercial interest<br />

• Proposed selected species by the “<strong>Baseline</strong> Program for fish <strong>and</strong> <strong>fishery</strong>” .<br />

A total of 26 different species was caught. Most of the species were caught in relatively<br />

modest numbers. This fact limits the possibility for making statistic assessment in<br />

concern to the general abundance of these species.<br />

Including the selected species by the baseline programme a total of nine species are<br />

selected for further analysis. Table 3.8.2 Shows the selected species <strong>and</strong> outline roughly<br />

their preferred habitat.<br />

3.8.3.1.1 Species<br />

Behaviour Preferred habitat<br />

Stationary <br />

Migratory<br />

Boulder<br />

reef<br />

Gravel S<strong>and</strong> Soft<br />

Table 3.8.2. Overview of the selected species <strong>and</strong> their spatial behaviour <strong>and</strong> choice of habitat.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Vegetation<br />

Remarks<br />

Baltic herring X Pelagic<br />

Brisling X Pelagic<br />

Atlantic cod X X X X X X X Costal600m<br />

Small s<strong>and</strong>eel X (X) X X Costal<br />

Great s<strong>and</strong>eel X (X) X Costal<br />

Eelpout XX X X X Costal.<br />

Short-spined sea scorpion X X X X X Costal200 m.<br />

Turbot X X X X Depths >5m.<br />

Flounder X X X X Costal


Bio/consult as Page 28<br />

3.8.4. Individual selected species<br />

In the following sections concerning the individual selected species, figures showing<br />

thematic maps of CPUE number <strong>and</strong> CPUE weight are for the sake of clearness<br />

expressed as CPUE values with an effort of one of each of the four transects in the wind<br />

farm area (from west transect 1 to 4) <strong>and</strong> reference area (from west transect 5 to 8),<br />

respectively. Be aware of that CPUE values used in statistics are representing an effort<br />

of each of the 24 stations.<br />

3.8.4.1 Baltic herring (Clupea harengus)<br />

The Baltic herring was caught in relatively modest numbers. Highest CPUE values were<br />

obtained at transects eight in the Gedser reef area.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q q q<br />

q q<br />

q q q<br />

q q<br />

q q<br />

q q q q<br />

q q<br />

q q q<br />

q q<br />

q q<br />

q q q<br />

q q<br />

q q q<br />

q q<br />

q q q<br />

q q<br />

q q<br />

Baltic herring<br />

CPUE number<br />

1<br />

CPUE weight<br />

60<br />

Figure 3.8.1. Thematic map showing CPUE number <strong>and</strong> CPUE weight of Baltic herring grouped in<br />

eight transects, four within the area of the wind farm <strong>and</strong> four within the reference area.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

May<br />

June<br />

May<br />

June


Bio/consult as Page 29<br />

Figure 3.8.2. Length distribution of Baltic herring in the wind farm area <strong>and</strong> reference area in May<br />

<strong>and</strong> June.<br />

Most of the Baltic herring caught were regenerating their gonads at the time of<br />

sampling, <strong>and</strong> only one male had spent recently.<br />

Gonadeindeks N mean<br />

May Juv. Juvenile gonads<br />

June<br />

Number<br />

Number<br />

Male<br />

Female<br />

Juv.<br />

4<br />

3<br />

2<br />

1<br />

4<br />

3<br />

2<br />

1<br />

Male<br />

Female<br />

May<br />

sexual diff.<br />

sexual diff.<br />

intermediary<br />

sexual diff.<br />

Juvenile gonads<br />

Spent<br />

sexual diff.<br />

intermediary<br />

Længde<br />

(cm)<br />

K. F.<br />

mean<br />

Wind farm area<br />

Baltic herring<br />

Wind farm area Reference area<br />

May<br />

June June<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Gonadevægt (g)<br />

mean stdv<br />

% Gonadevægt<br />

mean stdv<br />

N mean<br />

1 20,0 ,70 ,0 ,0<br />

2 24,5 ,57 ,9 ,5 ,9 ,06<br />

1 20,5 ,70 ,6 1,0<br />

1 21,5 ,68 9,2 13,5 2 19,5 ,67 6,0 2,4 11,8 3,47<br />

3 18,8 ,67 ,4 ,3 ,8 ,51<br />

3 10,5 ,67 ,0 ,0 ,0 ,00<br />

1 25,0 ,68 1,8 1,7<br />

2 26,3 ,75 1,0 ,2 ,7 ,20 5 17,2 ,63 ,3 ,4 ,5 ,18<br />

1 24,6 ,67 ,6 ,6<br />

Table 3.8.3. Average of length, condition factor, weight <strong>and</strong> percentage of gonads as a function of<br />

the gonad index for Baltic herring.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Længde<br />

(cm)<br />

K. F.<br />

mean<br />

Reference area<br />

Gill net<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Gonadevægt (g)<br />

mean stdv<br />

% Gonadevægt<br />

mean stdv


Bio/consult as Page 30<br />

3.8.4.2 Brisling (Sprattus sprattus)<br />

The catch of brisling were low but relative even of distributed throughout all transects.<br />

The pelagic species exhibit great spatial distribution often resulting in huge catches or<br />

no catch at all. The limited catch unevenly distributed in space <strong>and</strong> time could reflect<br />

their shoaling behaviour.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q q q<br />

q q<br />

q q q<br />

q q<br />

q q<br />

q q q q<br />

q q<br />

q q q<br />

q q<br />

q q<br />

q q q<br />

q q<br />

q q q<br />

q q<br />

q q q<br />

q q<br />

q q<br />

Brisling<br />

CPUE number<br />

1<br />

CPUE weight<br />

10<br />

Figure 3.8.1.3. Thematic map showing CPUE number <strong>and</strong> CPUE weight of Brisling grouped in eight<br />

transects four within the area of the wind farm <strong>and</strong> four within the reference area.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

May<br />

June<br />

May<br />

June


Bio/consult as Page 31<br />

Number<br />

Number<br />

6<br />

4<br />

2<br />

0<br />

6<br />

4<br />

2<br />

Brisling<br />

Wind farm area Reference area<br />

May May<br />

June June<br />

0<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Gill net<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

Figure 3.8.4. Length distribution of brisling in the wind farm area <strong>and</strong> reference area in May <strong>and</strong><br />

June.<br />

Most of the brislings were regenerating their gonads. A single individual had mature<br />

genitals <strong>and</strong> a few were in the intermediary stage, which correlates with a diffuse<br />

spawning season for this species.<br />

Gonadeindeks N mean<br />

May Juv. Juvenile gonads<br />

June<br />

Male<br />

Female<br />

Juv.<br />

Male<br />

Female<br />

sexual diff.<br />

intermediary<br />

Mature<br />

Juvenile gonads<br />

sexual diff.<br />

sexual diff.<br />

Længde<br />

(cm)<br />

K. F.<br />

mean<br />

Wind farm area<br />

Gonadevægt (g)<br />

mean stdv<br />

1 13,6 ,64 ,1 ,6<br />

% Gonadevægt<br />

mean stdv<br />

1 10,6 ,58 ,0 ,0<br />

2 15,3 ,48 2,3 ,3 16,8 12,33 2 15,3 ,56 1,4 1,0 6,7 4,00<br />

6 10,6 ,63 ,1 ,0 1,3 ,15<br />

Længde<br />

(cm)<br />

N mean<br />

1 11,3 ,85 1,6 13,0<br />

2 9,3 1,24 ,0 ,0 ,0 ,00<br />

3 9,5 ,61 ,1 ,0 2,0 ,79 4 13,3 ,66 ,1 ,1 ,9 ,45<br />

K. F.<br />

mean<br />

Reference area<br />

Gonadevægt (g)<br />

mean stdv<br />

% Gonadevægt<br />

mean stdv<br />

Table 3.8.4. Average of length, condition factor, weight <strong>and</strong> percentage of gonads as a function of<br />

the gonad index for brisling.


Bio/consult as Page 32<br />

3.8.4.3 Atlantic cod (Gadus morhua)<br />

High CPUE values for Atlantic cod are found at transect 5, in the Hyllekrog area. The<br />

CPUE values at transect 5 is nearly three times the values of the second highest CPUE<br />

located in the wind farm area.<br />

13<br />

13<br />

14 14 14 14<br />

14 14<br />

15<br />

15<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

16<br />

16<br />

17<br />

17 17<br />

18<br />

18 18<br />

q q<br />

q q qqq<br />

q<br />

q<br />

q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q11<br />

q q<br />

q q qqq 4<br />

q q 7<br />

q q<br />

10 10 10<br />

10<br />

q<br />

q q q<br />

q22<br />

q q<br />

q<br />

q<br />

q q5<br />

q q 8<br />

q q q<br />

q q 11<br />

11<br />

q q q<br />

q q<br />

q q3<br />

q<br />

q q<br />

q6<br />

q99<br />

12 12 12<br />

12 12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19<br />

19 19<br />

20 20 20<br />

20 20<br />

21<br />

21 21<br />

Atlantic cod<br />

CPUE number<br />

3<br />

CPUE weight<br />

1.000<br />

Figure 3.8.5. Thematic map showing CPUE number <strong>and</strong> CPUE weight of Atlantic cod grouped in<br />

eight transects, four within the area of the wind farm <strong>and</strong> four within the reference area.<br />

At least three cohorts (size classes) of Atlantic cod were caught in the reference area in<br />

May (Figure 3.8.6). The juvenile cod was primarily caught in fyke nets in both wind<br />

farm <strong>and</strong> the reference area. The Atlantic cods caught in transect 8 consist of mainly<br />

lager individuals. A likely explanation to the high CPUE weight relative to CPUE<br />

number, is that a 60 cm cod was caught here, resulting in an over estimate of the general<br />

size of the Atlantic cods caught in transect 8.<br />

May<br />

June<br />

22 22 22 22<br />

22 22<br />

23 23 23 23<br />

23 23<br />

24 24 24<br />

24 24<br />

May<br />

June


Bio/consult as Page 33<br />

Number<br />

Number<br />

6<br />

4<br />

2<br />

0<br />

6<br />

4<br />

2<br />

Atlantic cod<br />

Wind farm area Reference area<br />

May May<br />

June June<br />

0<br />

0 15 30 45 60 75<br />

Total length (cm)<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Gill net<br />

Fyke net<br />

0 15 30 45 60 75<br />

Total length (cm)<br />

Figure 3.8.6. Length distribution of Atlantic cod in the wind farm area <strong>and</strong> reference area respectively<br />

in May <strong>and</strong> June.<br />

The main part of the Atlantic cod caught in both areas was less than 30 cm (Figure<br />

3.8.6). According to Table 3.8.5, only few fish processed intermediary gonads or had<br />

spent recently.<br />

Længde<br />

(cm)<br />

K. F.<br />

Wind farm area<br />

Gonadevægt (g)<br />

% Gonadevægt<br />

Gonadeindeks N mean mean mean stdv mean stdv N mean mean mean stdv mean stdv<br />

May Juv. Juvenile gonads 6 23,0 ,87 ,0 ,0 ,0 ,00 27 22,4 ,90 ,0 ,0 ,0 ,00<br />

Male sexual diff. 2 20,9 ,98 ,3 ,1 ,3 ,03 7 31,1 ,96 1,7 1,7 ,6 ,56<br />

intermediary<br />

1 38,0 ,94 7,3 1,4<br />

Female sexual diff. 12 23,5 ,93 ,8 1,3 ,5 ,30 19 28,7 1,00 2,0 2,1 ,8 1,30<br />

intermediary<br />

2 40,5 ,88 6,4 ,5 1,2 ,74<br />

Spent<br />

1 31,0 1,12 6,7 2,0<br />

June Juv. Juvenile gonads<br />

6 22,6 ,93 ,0 ,0 ,0 ,00<br />

Male sexual diff. 1 30,1 ,94 ,2 ,1 3 20,2 ,91 ,1 ,1 ,2 ,16<br />

Female sexual diff. 5 20,1 ,92 ,3 ,1 ,4 ,07 7 23,9 ,93 ,8 1,1 ,4 ,12<br />

Spent<br />

1 23,0 ,89 ,4 ,4<br />

Længde<br />

(cm)<br />

K. F.<br />

Reference area<br />

Gonadevægt (g)<br />

% Gonadevægt<br />

Table 3.8.5. Average of length, condition factor, weight, percentage of gonads as a function of the<br />

gonad index for Atlantic cod.


Bio/consult as Page 34<br />

3.8.4.4 Small s<strong>and</strong>eel (Ammodytes tobianus)<br />

The small s<strong>and</strong>eel was mainly caught in June <strong>and</strong> close to the wind farm area. All<br />

except one of the small s<strong>and</strong>eels were caught in gill nets.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

14<br />

15<br />

16<br />

17 17<br />

18<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q qq<br />

q<br />

qq<br />

q q<br />

q q<br />

q1<br />

q<br />

q q<br />

q<br />

4<br />

q q q7<br />

q q q 10<br />

q<br />

q q q q<br />

q2q<br />

q<br />

q<br />

q<br />

q q5<br />

q q8<br />

q q q<br />

q q 11<br />

q q q<br />

q q<br />

q q3<br />

q<br />

q 6q<br />

q q9<br />

12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19<br />

19<br />

20 20<br />

21 21<br />

P2148\mapinfo\Small_s<strong>and</strong>eel_fish.WOR<br />

Small s<strong>and</strong>eel<br />

CPUE number<br />

2<br />

May<br />

June<br />

22<br />

23<br />

24 24 24 24 24 24<br />

CPUE weight<br />

100<br />

Figure 3.8.7. Thematic map showing CPUE number <strong>and</strong> CPUE weight of small s<strong>and</strong>eel grouped in<br />

eight transects, four within the area of the wind farm <strong>and</strong> four within the reference area.<br />

Similar to other pelagic species it was very difficult to evaluate the population size <strong>and</strong><br />

structure of the small s<strong>and</strong>eel due to the spatial variation in the catch. The distribution<br />

of length within the population was narrow, indicating that the catches came from the<br />

same shoal.<br />

May<br />

June


Bio/consult as Page 35<br />

Number<br />

Number<br />

20<br />

15<br />

10<br />

5<br />

0<br />

20<br />

15<br />

10<br />

5<br />

Small s<strong>and</strong>eel<br />

Wind farm area Reference area<br />

May May<br />

June June<br />

0<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Gill net<br />

Fyke net<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

Figure 3.8.8. Length distribution of small s<strong>and</strong>eel in the wind farm area <strong>and</strong> reference area in May<br />

<strong>and</strong> June.<br />

The gonad weight of the small s<strong>and</strong>eels was highest in June, <strong>and</strong> the major part caught<br />

in the wind farm area had already spent, whereas only a few from the reference area had<br />

spent.<br />

Gonadeindeks N mean<br />

May Juv. Juvenile gonads<br />

June<br />

Male<br />

Female<br />

Juv.<br />

Male<br />

Female<br />

sexual diff.<br />

sexual diff.<br />

Juvenile gonads<br />

sexual diff.<br />

intermediary<br />

Spent<br />

sexual diff.<br />

intermediary<br />

Spent<br />

Længde<br />

(cm)<br />

K. F.<br />

mean<br />

Wind farm area<br />

Gonadevægt (g)<br />

mean stdv<br />

% Gonadevægt<br />

mean stdv<br />

Længde<br />

(cm)<br />

N mean<br />

1 12,1 ,30 ,1 1,9<br />

1 14,7 ,31 ,1 1,0 5 15,1 ,29 ,1 ,0 1,2 ,44<br />

6 15,2 ,30 ,1 ,0 1,0 ,41<br />

2 14,8 ,38 ,0 ,0 ,0 ,00 1 14,7 ,35 ,0 ,0<br />

3 14,1 ,36 ,1 ,1 1,4 ,62 8 15,6 ,37 ,1 ,1 ,9 ,49<br />

4 16,2 ,37 ,8 ,4 4,7 1,97 1 16,2 ,38 ,7 4,4<br />

3 15,2 ,35 ,8 1,1 6,7 9,64 1 18,3 ,26 ,1 ,6<br />

10 15,6 ,34 ,2 ,1 1,4 ,33 11 16,0 ,33 ,1 ,1 1,0 ,48<br />

2 16,5 ,38 ,9 ,1 4,9 ,75 2 17,4 ,34 ,5 ,0 2,8 ,21<br />

7 15,9 ,39 ,1 ,0 ,8 ,28 2 16,1 ,34 ,1 ,0 ,7 ,12<br />

K. F.<br />

mean<br />

Reference area<br />

Gonadevægt (g)<br />

mean stdv<br />

% Gonadevægt<br />

mean stdv<br />

Table 3.8.6. Average of length, condition factor, weight <strong>and</strong> percentage of gonads as a function of the<br />

gonad index for small s<strong>and</strong>eel.


Bio/consult as Page 36<br />

3.8.4.5 Great s<strong>and</strong>eel (Hyperoplus lanceolatus)<br />

The great s<strong>and</strong>eel had a complementary distribution in relation to the small s<strong>and</strong>eel,<br />

with larger catches in the reference areas compared to the of the wind farm area.<br />

Similar to the small s<strong>and</strong>eel the variation of the number caught was highly variable.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18 18 18 18 18 18 18<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q qq<br />

q<br />

qq<br />

q q<br />

q q<br />

q1<br />

q<br />

q q<br />

q<br />

4<br />

q q q7777777<br />

q q q 10<br />

q<br />

q q q q<br />

q2q<br />

q<br />

q<br />

q<br />

q q5<br />

q q8<br />

q q q<br />

q q 11<br />

q q q<br />

q q<br />

q q3<br />

q<br />

q 6q<br />

q q9<br />

12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19<br />

19<br />

20 20<br />

21 21<br />

P2148\mapinfo\Great_s<strong>and</strong>eel_fish.WOR<br />

Great s<strong>and</strong>eel<br />

CPUE number<br />

5<br />

May<br />

June<br />

CPUE weight<br />

140<br />

Figure 3.8.9. Thematic map showing CPUE number <strong>and</strong> CPUE weight of great s<strong>and</strong>eel grouped in<br />

eight transects, four within the area of the wind farm <strong>and</strong> four within the reference area.<br />

22 22 22 22 22 22 22<br />

23<br />

24 24 24 24 24 24<br />

May<br />

June


Bio/consult as Page 37<br />

Number<br />

Number<br />

25<br />

20<br />

15<br />

10<br />

5<br />

25<br />

20<br />

15<br />

10<br />

5<br />

May May<br />

June<br />

Great s<strong>and</strong>eel<br />

Wind farm area Reference area<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

June<br />

Gill net<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Figure 3.8.10. Length distribution of great s<strong>and</strong>eel in the wind farm area <strong>and</strong> reference area in May<br />

<strong>and</strong> June.<br />

Most of the great s<strong>and</strong>eels were in the intermediary stage with respect to their gonads,<br />

<strong>and</strong> only a minority has spent.<br />

Gonadeindeks N mean<br />

May Juv. Juvenile gonads<br />

June<br />

Male<br />

Female<br />

Juv.<br />

Male<br />

Female<br />

sexual diff.<br />

intermediary<br />

Mature<br />

Spent<br />

sexual diff.<br />

intermediary<br />

Mature<br />

Juvenile gonads<br />

sexual diff.<br />

intermediary<br />

Mature<br />

Spent<br />

sexual diff.<br />

intermediary<br />

Mature<br />

Spent<br />

Længde<br />

(cm)<br />

K. F.<br />

mean<br />

Wind farm area<br />

Gonadevægt (g)<br />

mean stdv<br />

13 15,5 ,29 ,0 ,0 ,0 ,00<br />

1 23,3 ,19 ,2 ,8 19 17,4 ,45 ,0 ,1 ,3 ,98<br />

4 16,8 ,32 2,0 1,1 11,5 3,71 16 17,3 ,29 1,5 ,7 10,1 4,02<br />

4 16,9 ,30 2,2 1,2 13,8 2,59<br />

2 17,0 ,26 ,1 ,0 ,8 ,08<br />

2 13,6 ,26 ,1 ,0 1,6 ,52 12 16,8 ,40 ,1 ,3 1,3 2,40<br />

3 17,7 ,24 ,8 ,6 5,6 1,50 15 18,8 ,27 1,8 1,2 9,6 4,60<br />

5 17,9 ,30 2,8 1,3 16,5 7,96<br />

3 14,1 ,27 ,0 ,0 ,0 ,00<br />

8 14,1 ,29 ,1 ,1 1,9 1,03 3 14,7 ,29 ,5 ,6 5,2 6,24<br />

7 17,5 ,29 1,5 ,9 8,9 1,65 10 18,5 ,27 1,7 1,0 9,5 3,58<br />

1 18,3 ,32 ,1 ,5<br />

% Gonadevægt<br />

mean stdv<br />

1 16,7 ,29 1,5 11,1<br />

7 15,6 ,26 ,2 ,1 1,7 1,04 11 15,3 ,29 ,1 ,1 1,3 ,76<br />

6 17,4 ,27 1,0 ,9 6,1 2,74 9 21,4 ,26 2,0 1,2 7,3 1,43<br />

1 15,8 ,29 ,7 6,2 1 17,0 ,30 2,5 16,9<br />

2 15,3 ,31 ,2 ,1 1,3 ,33<br />

Længde<br />

(cm)<br />

N mean<br />

K. F.<br />

mean<br />

Reference area<br />

Gonadevægt (g)<br />

mean stdv<br />

% Gonadevægt<br />

mean stdv<br />

Table 3.8.7. Average of length, condition factor, weight <strong>and</strong> percentage of gonads as a function of<br />

the gonad index for great s<strong>and</strong>eel.


Bio/consult as Page 38<br />

3.8.4.6 Eelpout (Zoarces viviparous)<br />

The catches of the eelpout was not surprisingly greatest in the fyke nets, <strong>and</strong> especially<br />

the wind farm area contributed with high CPUE values.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

13<br />

14<br />

14<br />

15 15<br />

15<br />

16<br />

16<br />

17<br />

17<br />

18<br />

18<br />

q q<br />

q q qqq<br />

q<br />

q<br />

q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q11<br />

q q<br />

q q qqq 4<br />

q q777<br />

q q<br />

10 10 10<br />

10<br />

q<br />

q q q<br />

q22<br />

q q<br />

q<br />

q<br />

q q5<br />

q q 8<br />

q q q<br />

q q 11<br />

11<br />

q q q<br />

q q<br />

q q3<br />

q<br />

q q<br />

q6<br />

q99<br />

12 12 12<br />

12 12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19<br />

19 19<br />

20<br />

20 20<br />

21<br />

21 21<br />

Eelpout<br />

CPUE number<br />

4<br />

May<br />

June<br />

CPUE weight<br />

200<br />

Figure 3.8.11. Thematic map showing CPUE number <strong>and</strong> CPUE weight of eelpout grouped in eight<br />

transects four within the area of the wind farm <strong>and</strong> four within the reference area.<br />

Most of the eelpout caught in May were large mature individuals whereas mainly small<br />

individuals were caught in June.<br />

22<br />

22<br />

23 23 23<br />

23 23<br />

24 24<br />

24 24<br />

May<br />

June


Bio/consult as Page 39<br />

Number<br />

Number<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

May May<br />

June<br />

Eelpout<br />

Wind farm area Reference area<br />

0<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Gill net<br />

Fyke net<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

June<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Figure 3.8.12. Length distribution of eelpout in the wind farm area <strong>and</strong> reference area respectively<br />

May <strong>and</strong> June.<br />

The fact that the eelpout is viviparous complicated the field examinations by making it<br />

difficult to distinguish a spent individual from an individual in the early development of<br />

the gonads before the stage referred to as intermediate.<br />

Længde<br />

(cm)<br />

K. F.<br />

Wind farm area<br />

Gonadevægt (g)<br />

% Gonadevægt<br />

Gonadeindeks N mean mean mean stdv mean stdv N mean mean mean stdv mean stdv<br />

May Juv. Juvenile gonads 5 13,1 ,42 ,0 ,0 ,0 ,00 6 22,3 ,49 ,0 ,0 ,0 ,00<br />

Male sexual diff. 28 17,8 ,49 ,4 ,4 1,3 ,66 3 16,4 ,42 ,2 ,2 ,8 ,67<br />

intermediary 7 21,3 ,49 1,2 ,9 2,3 ,63 3 23,1 ,44 1,2 ,5 2,1 ,55<br />

Female sexual diff. 19 19,2 ,49 ,4 ,3 1,0 ,46 2 21,2 ,49 ,5 ,4 ,9 ,20<br />

intermediary 10 21,1 ,45 ,6 ,5 1,0 ,42 6 22,4 ,49 ,5 ,3 1,0 ,32<br />

Mature<br />

1 16,0 ,26 1,9 17,8<br />

June Juv. Juvenile gonads 4 8,7 ,39 ,0 ,0 ,0 ,00 4 9,5 ,42 ,0 ,0 ,0 ,00<br />

Male sexual diff. 4 16,0 ,48 ,4 ,1 1,9 ,83 1 22,1 ,40 1,0 2,3<br />

intermediary 6 19,5 ,46 ,6 ,5 2,0 1,22 1 16,0 ,46 ,5 2,6<br />

Female sexual diff. 7 20,0 ,44 ,3 ,3 ,8 ,24 2 22,8 ,50 ,6 ,2 ,9 ,30<br />

Spent<br />

6 19,1 ,49 ,4 ,1 1,1 ,14 1 20,7 ,28 ,1 ,4<br />

Længde<br />

(cm)<br />

K. F.<br />

Reference area<br />

Gonadevægt (g)<br />

% Gonadevægt<br />

Table 3.8.8. Average of length, condition factor, weight <strong>and</strong> percentage of gonads as a function of<br />

the gonad index for eelpout.


Bio/consult as Page 40<br />

3.8.4.7 Short-spined sea scorpion (Myoxocephalus scorpius)<br />

The short-spined sea scorpion is represented with high CPUE values in the wind farm<br />

area mainly in May. In transects 5 <strong>and</strong> 6 low CPUE values were found in the western<br />

part of the area. In June low values were obtained from all transects.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

13<br />

14<br />

14<br />

15 15<br />

15<br />

16<br />

16<br />

17<br />

17<br />

18<br />

18<br />

q q<br />

q q qqq<br />

q<br />

q<br />

q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q11<br />

q q<br />

q q qqq 4<br />

q q777<br />

q q<br />

10 10 10<br />

10<br />

q<br />

q q q<br />

q22<br />

q q<br />

q<br />

q<br />

q q5<br />

q q 8<br />

q q q<br />

q q 11<br />

11<br />

q q q<br />

q q<br />

q q3<br />

q<br />

q q<br />

q6<br />

q99<br />

12 12 12<br />

12 12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19<br />

19 19<br />

20<br />

20 20<br />

21<br />

21 21<br />

Short-spined sea scorpion<br />

CPUE number<br />

5<br />

May<br />

June<br />

22<br />

22<br />

23 23 23<br />

23 23<br />

24 24<br />

24 24<br />

CPUE weight<br />

1.000<br />

Figure 3.8.13. Thematic map showing CPUE number <strong>and</strong> CPUE weight of Short-spined sea scorpion<br />

grouped in eight transects, four within the area of the wind farm <strong>and</strong> four within the<br />

reference area.<br />

May<br />

June


Bio/consult as Page 41<br />

Number<br />

Number<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

Short-spined sea scorpion<br />

Wind farm area Reference area<br />

May May<br />

June June<br />

0<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Gill net<br />

Fyke net<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Figure 3.8.14. Length distribution of short-spined sea scorpions in the wind farm area <strong>and</strong> reference<br />

area in May <strong>and</strong> June.<br />

Most of the individuals caught were sexually differentiated <strong>and</strong> probably in the process<br />

of regenerating their gonads, because only five had spent recently.<br />

Længde<br />

(cm)<br />

K. F.<br />

Wind farm area<br />

Gonadevægt (g)<br />

% Gonadevægt<br />

Gonadeindeks N mean mean mean stdv mean stdv N mean mean mean stdv mean stdv<br />

May Juv. Juvenile gonads 7 16,6 1,50 ,0 ,0 ,0 ,00 11 17,0 1,51 ,0 ,0 ,0 ,00<br />

Male sexual diff. 12 17,1 1,40 ,4 ,4 ,6 ,64 8 17,7 1,52 ,3 ,5 ,3 ,33<br />

Spent<br />

1 18,2 1,53 ,1 ,1<br />

Female sexual diff. 14 20,4 1,43 1,5 1,2 1,1 ,83 8 19,8 1,47 1,1 ,7 1,0 ,49<br />

intermediary 9 19,8 1,50 1,5 ,6 1,2 ,36 6 21,8 1,43 2,2 1,1 1,4 ,33<br />

Spent<br />

2 21,1 1,42 1,6 ,4 1,2 ,35 7 20,7 1,63 ,7 ,7 ,5 ,53<br />

June Male sexual diff. 7 18,0 1,40 ,2 ,1 ,2 ,12 1 16,8 1,45 ,2 ,3<br />

Spent<br />

2 17,5 ,85 ,2 ,1 ,3 ,01 5 17,8 1,38 ,1 ,0 ,2 ,04<br />

Female sexual diff. 7 16,9 1,33 ,6 ,4 ,8 ,27 4 19,4 1,40 ,9 ,7 ,8 ,42<br />

Spent<br />

2 18,4 1,26 ,4 ,4 ,4 ,40 3 19,1 1,50 ,7 ,6 ,6 ,42<br />

Længde<br />

(cm)<br />

K. F.<br />

Reference area<br />

Gonadevægt (g)<br />

% Gonadevægt<br />

Table 3.8.9. Average of length, condition factor, weight <strong>and</strong> percentage of gonads as a function of<br />

the gonad index for short-spined sea scorpion.


Bio/consult as Page 42<br />

3.8.4.8 Turbot (Psetta maxima)<br />

Few individuals of turbot were caught, despite the use of special designed turbot net.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q q q<br />

q q<br />

q q q<br />

q q<br />

q q<br />

q q q q<br />

q q<br />

q q q<br />

q q<br />

q q<br />

q q q<br />

q q<br />

q q q<br />

q q<br />

q q q<br />

q q<br />

q q<br />

Turbot<br />

CPUE number<br />

2<br />

CPUe weight<br />

260<br />

Figure 3.8.15. Thematic map showing CPUE number <strong>and</strong> CPUE weight of turbot grouped in eight<br />

transects four within the wind farm area <strong>and</strong> four within the reference area.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

May<br />

June<br />

May<br />

June


Bio/consult as Page 43<br />

Number<br />

Number<br />

4<br />

3<br />

2<br />

1<br />

4<br />

3<br />

2<br />

1<br />

Turbot<br />

Wind farm area Reference area<br />

May May<br />

June June<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Gill net<br />

Fyke net<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Figure 3.8.16. Length distribution of turbot in the wind farm area <strong>and</strong> reference area in May <strong>and</strong> June.<br />

According to the examination of the gonads of the turbots, most of them were found to<br />

be in the intermediary stage, though the biomass of the gonads was relatively large.<br />

Længde<br />

(cm)<br />

K. F.<br />

Wind farm area<br />

Gonadevægt (g)<br />

% Gonadevægt<br />

Gonadeindeks N mean mean mean stdv mean stdv N mean mean mean stdv mean stdv<br />

May Male sexual diff. 13 19,3 1,50 2,1 ,8 2,0 ,82<br />

intermediary 2 21,1 1,67 8,0 5,2 4,7 ,86 3 24,5 1,45 5,9 3,6 2,7 ,46<br />

Female intermediary 1 20,2 1,58 4,4 3,4 1 33,0 1,94 29,1 4,2<br />

June Male sexual diff. 1 15,4 1,60 ,4 ,7 4 20,9 1,52 1,2 ,8 ,8 ,13<br />

intermediary<br />

2 26,8 1,54 3,6 ,2 1,2 ,07<br />

Female intermediary<br />

1 35,5 1,77 79,7 10,0<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Længde<br />

(cm)<br />

K. F.<br />

Reference area<br />

Gonadevægt (g)<br />

% Gonadevægt<br />

Table 3.8.10. Average of length, condition factor, weight <strong>and</strong> percentage of gonads as a function of<br />

the gonad index for Turbot.


Bio/consult as Page 44<br />

3.8.4.9 Flounder (Platichthys flesus)<br />

The flounder was caught in reasonable numbers with highest values in May. The<br />

catches were distributed relatively equal throughout the transects.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

13<br />

14<br />

14<br />

15 15<br />

15<br />

16<br />

16<br />

17<br />

17<br />

18<br />

18<br />

q q<br />

q q qqq<br />

q<br />

q<br />

q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q11<br />

q q<br />

q q qqq 4<br />

q q777<br />

q q<br />

10 10 10<br />

10<br />

q<br />

q q q<br />

q22<br />

q q<br />

q<br />

q<br />

q q5<br />

q q 8<br />

q q q<br />

q q 11<br />

11<br />

q q q<br />

q q<br />

q q3<br />

q<br />

q q<br />

q6<br />

q99<br />

12 12 12<br />

12 12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19<br />

19 19<br />

20<br />

20 20<br />

21<br />

21 21<br />

Flounder<br />

CPUE number<br />

2<br />

May<br />

June<br />

CPUE weight<br />

200<br />

Figure 3.8.17. Thematic map showing CPUE number <strong>and</strong> CPUE weight of Flounder grouped in eight<br />

transects four within the wind farm area <strong>and</strong> four within the reference area.<br />

The catch in fyke net was fairly similar to the catch in gill net for this species.<br />

22<br />

22<br />

23 23 23<br />

23 23<br />

24 24<br />

24 24<br />

May<br />

June


Bio/consult as Page 45<br />

Number<br />

Number<br />

6<br />

4<br />

2<br />

0<br />

6<br />

4<br />

2<br />

Flounder<br />

Wind farm area Reference area<br />

May May<br />

June June<br />

0<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Gill net<br />

Fyke net<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Figure 3.8.18. Length distribution of flounders in the wind farm area <strong>and</strong> reference area in May <strong>and</strong><br />

June.<br />

Practically all the flounders found were in the phase of regenerating their sexual gl<strong>and</strong>s.<br />

Only one of the flounders spent even though, it is quite late in the spawning season.<br />

Længde<br />

(cm)<br />

K. F.<br />

Wind farm area<br />

Gonadevægt (g)<br />

% Gonadevægt<br />

Gonadeindeks N mean mean mean stdv mean stdv N mean mean mean stdv mean stdv<br />

May Juv. Juvenile gonads 3 17,0 1,19 ,0 ,0 ,0 ,00 13 18,6 1,17 ,0 ,0 ,0 ,06<br />

Male sexual diff. 8 18,7 1,06 ,2 ,3 ,3 ,38 5 24,2 1,05 ,5 ,6 ,2 ,22<br />

Spent<br />

1 33,5 1,07 ,1 ,0<br />

Female sexual diff. 13 18,2 1,09 ,5 ,3 ,8 ,34 12 19,9 1,31 2,3 3,4 2,2 2,94<br />

June Juv. Juvenile gonads 2 19,1 1,22 ,0 ,0 ,0 ,00 1 12,2 1,31 ,0 ,0<br />

Male sexual diff. 4 17,1 1,14 ,2 ,1 ,3 ,15 5 17,2 1,11 ,2 ,1 ,3 ,28<br />

Female sexual diff. 9 16,7 1,08 ,3 ,3 ,6 ,40 6 18,1 1,19 ,2 ,1 ,3 ,11<br />

intermediary<br />

1 21,1 1,21 1,4 1,2<br />

Længde<br />

(cm)<br />

K. F.<br />

Reference area<br />

Gonadevægt (g)<br />

% Gonadevægt<br />

Table 3.8.10. Average of length, condition factor, weight, percentage of gonads as a function of the<br />

gonad index for flounder.


Bio/consult as Page 46<br />

3.8.5. Comments on the remaining species<br />

No particularly rare species were caught in the present survey.<br />

The hornfish was not included as selected indicator species because of their extremely<br />

migratory behaviour, <strong>and</strong> because no specific stocks are strongly associated with Danish<br />

coastal waters in comparison to the Baltic herring. They do however, warrant<br />

mentioning due to the large abundance in the samples.<br />

The length of hornfish ranged from 50–80 cm. Most individuals caught during May<br />

were females with well-developed gonads whereas individuals caught in June primarily<br />

consisted of mature males. Due to the developmental stage of gonads, it is most<br />

probable that spawning occurs in both areas. Concerning reflection <strong>and</strong> shadowing from<br />

the mills the hornfish may be a potential indicator species because they reside near the<br />

water surface, are abundant <strong>and</strong> cover large areas.<br />

Only seven individuals of the common eel were caught, four in May three in June. All<br />

eels were small averaging 151 gram in weight.<br />

Figure 3.8.19. No particular rare species were caught during the execution of the baseline studies.<br />

Though, many species rarely seen by the public where caught in the area of Røds<strong>and</strong><br />

(Left; longspined bullhead: Right; Hooknose)<br />

3.8.6. Statistical comparison of areas.<br />

Figures 3.8.19. <strong>and</strong> 3.9.20 visualises the development of abundance <strong>and</strong> weight<br />

respectively over time between the wind farm area <strong>and</strong> reference area. This visualising<br />

can only be used as guidelines for most of the species because of the low catch<br />

numbers.<br />

There seems to be higher abundance of Baltic herring <strong>and</strong> Atlantic cod in the reference<br />

area, whereas eelpout seems to occur in higher number in the Wind farm area. As the<br />

only species, great s<strong>and</strong>eel <strong>and</strong> turbot indicate effect of interference for both number<br />

<strong>and</strong> weight, but according to the test results this seems not to be the case, probably<br />

caused by the low number caught.<br />

Effect of interference concerning number only occurs for the species short-spined sea<br />

scorpion <strong>and</strong> great s<strong>and</strong>eel, even though short-spined sea scorpion doesn’t indicate this<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 47<br />

fact according to the plot. Great s<strong>and</strong>eel on the other h<strong>and</strong> shows effect of interference<br />

in both the plot <strong>and</strong> the test.<br />

Estimated Marginal Means LN (number)<br />

Estimated Marginal Means LN (number)<br />

Estimated Marginal Means LN (number)<br />

,3<br />

,2<br />

,1<br />

0,0<br />

Wind farm area<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

0,0<br />

Wind farm area<br />

1,2<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

0,0<br />

Wind farm area<br />

Baltic herring<br />

(Clupea harengus)<br />

Atlantic cod<br />

(Gadus morhua)<br />

Small s<strong>and</strong>eel<br />

(Ammodytes tobianus)<br />

Month<br />

Reference<br />

Reference<br />

May<br />

June<br />

Month<br />

May<br />

June<br />

Month<br />

Reference<br />

May<br />

June<br />

0,0<br />

Wind farm area<br />

Brisling<br />

(Sprattus sprattus)<br />

June<br />

Reference<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Estimated Marginal Means LN (number)<br />

Estimated Marginal Means LN (number)<br />

Estimated Marginal Means LN (number)<br />

,4<br />

,3<br />

,2<br />

,1<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

Wind farm area<br />

2,0<br />

1,5<br />

1,0<br />

,5<br />

0,0<br />

Wind farm area<br />

Eelpout<br />

(Zoarces viviparus)<br />

Short-spined sea scorpion<br />

(Myoxocephalus scorpius)<br />

Month<br />

May<br />

Month<br />

May<br />

June<br />

Reference<br />

Month<br />

Reference<br />

Figure 3.8.19. The marginal means of LN (number) of the catches visualised to see eventual parallel<br />

development in time <strong>and</strong> space (See appendix 3). To be continued on next page.<br />

May<br />

June


Bio/consult as Page 48<br />

Estimated Marginal Means LN (number)<br />

Estimated Marginal Means LN (number)<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

Wind farm area<br />

,7<br />

,6<br />

,5<br />

,4<br />

,3<br />

,2<br />

,8<br />

,6<br />

,4<br />

Wind farm area<br />

Great s<strong>and</strong>eel<br />

(Hyperoplus lanceolatus)<br />

Flounder<br />

(Platichthys flesus)<br />

Month<br />

Reference<br />

Month<br />

Reference<br />

May<br />

June<br />

May<br />

June<br />

Wind farm area<br />

Turbot<br />

(Psetta maxima)<br />

Reference<br />

Figure 3.8.19. The marginal means of LN (number) of the catches visualised to see eventual parallel<br />

development in time <strong>and</strong> space (See appendix 3).<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Estimated Marginal Means LN (number)<br />

,3<br />

,2<br />

,1<br />

0,0<br />

Month<br />

May<br />

June


Bio/consult as Page 49<br />

Estimated Marginal Means LN (weight)<br />

1,4<br />

1,2<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

0,0<br />

Wind farm area<br />

Estimated Marginal Means LN (weight)<br />

Wind farm area<br />

Estimated Marginal Means LN (weight)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

Wind farm area<br />

Baltic herring<br />

(Clupea harengus)<br />

Atlantic cod<br />

(Gadus morhua)<br />

Great s<strong>and</strong>eel<br />

(Hyperoplus lanceolatus)<br />

Month<br />

Reference<br />

Reference<br />

May<br />

June<br />

Month<br />

Month<br />

May<br />

May<br />

June<br />

June<br />

Reference<br />

,3<br />

Wind farm area<br />

Brisling<br />

(Sprattus sprattus)<br />

June<br />

Reference<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Estimated Marginal Means LN (weight)<br />

Estimated Marginal Means LN (weight)<br />

Estimated Marginal Means LN (weight)<br />

,8<br />

,7<br />

,6<br />

,5<br />

,4<br />

5,0<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

Wind farm area<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Wind farm area<br />

Eelpout<br />

(Zoarces viviparus)<br />

Short-spined sea scorpion<br />

(Myoxocephalus scorpius)<br />

Month<br />

May<br />

Month<br />

May<br />

June<br />

Reference<br />

Month<br />

Reference<br />

Figure 3.8.20. The marginal means of LN (weight) of the catches visualised to see eventual parallel<br />

development in time <strong>and</strong> space (See appendix 4). To be continued on next page.<br />

May<br />

June


Bio/consult as Page 50<br />

Estimated Marginal Means LN (weight)<br />

Wind farm area<br />

Estimated Marginal Means LN (weight)<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

,5<br />

Wind farm area<br />

Great s<strong>and</strong>eel<br />

(Hyperoplus lanceolatus)<br />

Flounder<br />

(Platichthys flesus)<br />

Month<br />

Reference<br />

May<br />

June<br />

Month<br />

Reference<br />

May<br />

June<br />

Wind farm area<br />

Turbot<br />

(Psetta maxima)<br />

Reference<br />

Figure 3.8.20. The marginal means of LN (weight) of the catches visualised to see eventual parallel<br />

development in time <strong>and</strong> space (See appendix 4).<br />

The statistical results are summarized in tables 3.8.11 <strong>and</strong> 3.8.12. Most species do not<br />

fulfilling the test assumption of variance homogeneity (marked 1) ) <strong>and</strong> should only be<br />

evaluated as a guidance of a trend.<br />

The abundance of turbot <strong>and</strong> flounders appear to be equally distributed throughout the<br />

wind farm <strong>and</strong> reference areas. The eelpout <strong>and</strong> short-spined sea scorpion showed<br />

differences between the to areas, with highest catches in the wind farm area. Similarities<br />

in weight between the two areas appeared in brisling, small s<strong>and</strong>eel, short-spined sea<br />

scorpion, turbot <strong>and</strong> flounder, however the species small s<strong>and</strong>eel <strong>and</strong> turbot did not<br />

fulfil the test assumption of variance homogeneity.<br />

The length distribution of Atlantic cod, great s<strong>and</strong>eel <strong>and</strong> flounder was found to be<br />

different between the Wind farm <strong>and</strong> Reference areas. The mean length of Atlantic cod,<br />

small s<strong>and</strong>eel, great s<strong>and</strong>eel, turbot <strong>and</strong> flounder was larger in the reference area relative<br />

to the wind farm area.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Estimated Marginal Means LN (weight)<br />

1,4<br />

1,2<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

0,0<br />

Month<br />

May<br />

June


Bio/consult as Page 51<br />

Differences in the measured parameters over time occurred in some species. Both shortspined<br />

sea scorpion <strong>and</strong> flounder showed higher numbers <strong>and</strong> weight in May relative to<br />

June whereas the abundance of eelpout <strong>and</strong> turbot did not change.<br />

Differences in the length distribution over time only occurred with the Baltic herring,<br />

brisling <strong>and</strong> the eelpout. With respect to the eelpout, this is probably a result of a new<br />

cohort, which is also supported by the concurrent decline in the mean length.<br />

The mean length of the small s<strong>and</strong>eel increased between May <strong>and</strong> June, whereas the<br />

opposite was observed for short-spined sea scorpion <strong>and</strong> flounder.<br />

Species Number Weight<br />

Length<br />

distribution.<br />

Mean length.<br />

Baltic herring Ref > Wind 1) Ref > Wind 1) Ref = Wind Ref = Wind<br />

Brisling Ref = Wind 1) Ref = Wind Ref = Wind Ref = Wind<br />

Atlantic cod Ref > Wind Ref > Wind 1) Ref ≠ Wind Ref > wind<br />

Small s<strong>and</strong>eel Ref = Wind 1) Ref = Wind 1) Ref = Wind Ref > wind<br />

Great s<strong>and</strong>eel Ref > Wind 1) Ref > Wind 1) Ref ≠ Wind Ref > wind<br />

Eelpout Ref < Wind Ref < Wind 1) Ref = Wind Ref = Wind<br />

Short-spined sea scorpion Ref < Wind Ref = Wind Ref = Wind Ref = Wind<br />

Turbot Ref = Wind Ref = Wind 1) Ref = Wind Ref > wind<br />

Flounder Ref = Wind Ref = Wind Ref ≠ Wind Ref > wind<br />

1) No variance homogeneity.<br />

Red indicates rejection of the hypothesis of similarities.<br />

Table 3.8.11. The results of the statistical tests between areas at the 5 % significance level. (Appendix<br />

3 to appendix 6).<br />

Species Number Weight<br />

Length<br />

distribution.<br />

Mean length.<br />

Baltic herring May = June 1) May = June 1) May ≠ June May = June<br />

Brisling May = June 1) May = June May ≠ June May > June<br />

Atlantic cod May > June May > June 1) May = June May = June<br />

Small s<strong>and</strong>eel May < June 1) May < June 1) May = June May < June<br />

Great s<strong>and</strong>eel May = June 1), 2) May = June 1) May = June May = June<br />

Eelpout May = June May > June 1) May ≠ June May > June<br />

Short-spined sea scorpion May > June 2) May > June May =June May >June<br />

Turbot May = June May = June 1) May = June May = June<br />

Flounder May > June May > June May = June May > June<br />

1) No variance homogeneity.<br />

2) Effect of interaction.<br />

Red indicates rejection of the hypothesis of similarities.<br />

Table 3.8.12. The results of the statistical tests over time at the 5 % significance level. (Appendix 3 to<br />

appendix 6).<br />

Table 3.8.13 shows the results of the power analysis split into month for species caught<br />

in at least 50 % of the samples (one pelagic gill net, one benthic gill net, one st<strong>and</strong>ard<br />

fyke net <strong>and</strong> one <strong>fry</strong> fyke net). According to the fish <strong>study</strong>, only eelpout shows catches<br />

in 50% of the samples in both June <strong>and</strong> May. The s<strong>and</strong> lances show catches in 50% of<br />

the samples in June, whereas short-spined sea scorpion <strong>and</strong> flounder show catches in<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 52<br />

50% of the samples in May. The power analysis shows that a sample size of 12 stations<br />

in May is required to attain reliable results for flounder.<br />

Species Period<br />

# Stations per.<br />

Area<br />

80% power<br />

% Stations<br />

Number > 0<br />

% Stations<br />

Number= 0<br />

Small s<strong>and</strong>eel June 15 54.2 45.8<br />

Great s<strong>and</strong>eel June 15 60.4 39.6<br />

Eel pout May 14 70.8 29.2<br />

Eel pout June 10 64.6 35.4<br />

Short-spined sea scorpion May 24 83.3 17.7<br />

Flounder May 12 60.4 39.6<br />

Table 3.8.13. Results of the power-analysis giving 80% validity in detecting 50% change.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 53<br />

3.9. Results - Fry <strong>study</strong><br />

3.9.1. Observations<br />

During the spring sampling in May <strong>and</strong> June, nets were occasionally fouled by large<br />

quantities of drifting macro algae.<br />

In October, only 20 stations each with two replicates were sampled due to unfavourable<br />

weather conditions. The 20 stations were however, equally distributed between the<br />

<strong>study</strong> <strong>and</strong> reference areas.<br />

In September, a large number of jellyfish were caught together with the algae<br />

(Ectocarpus silicolosus/Pilayella littoralis). These two factors resulted in a reduction of<br />

the capture efficiency of the fishing gear during these periods.<br />

3.9.2. Overview of catches<br />

In all, 31 fish species were registered during the five sampling periods, in the wind farm<br />

area <strong>and</strong> the reference area. Table 3.9.1 shows the total catch of each species with<br />

respect to area, time <strong>and</strong> type of fishing gear.<br />

In the wind farm area, a total of 960 individuals distributed among 28 species with a<br />

total weight of 20.5 kg were caught. In the reference area, the corresponding total catch<br />

was 1234 individuals with a total weight of 19.1 kg distributed among 24 different<br />

species.<br />

Numerically, the s<strong>and</strong> goby was the fish species with the greatest overall abundance<br />

totalling 615 individuals in the reference area.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 54<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Table 3.9.1. The total catches in <strong>fry</strong> <strong>study</strong>, separated in area <strong>and</strong> month.<br />

Baltic herring<br />

Common eel<br />

Snake pipefish<br />

Straightnose pipefish<br />

Great pipefish<br />

Lesser pipefish<br />

Broad-nosed pipefish<br />

Fifteen-spined stickleback<br />

Whiting<br />

Atlantic cod<br />

Small s<strong>and</strong>eel<br />

S<strong>and</strong>eel sp.<br />

Great s<strong>and</strong>eel<br />

Two-spotted goby<br />

S<strong>and</strong> goby<br />

Painted goby<br />

Black goby<br />

Transparent goby<br />

Goby.sp.<br />

Butterfish<br />

Eelpout<br />

Short-spined sea scorpion<br />

Longspined bullhead<br />

Hooknose<br />

Striped seasnail<br />

Turbot<br />

Dab<br />

Flounder<br />

European plaice<br />

Common sole<br />

Total<br />

Wind farm area<br />

Fyke net<br />

May<br />

Reference area<br />

Fyke net<br />

Wind farm area<br />

Fyke net<br />

June<br />

Reference area<br />

Fyke net<br />

Wind farm area<br />

Species Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g) Number Weight (g)<br />

Fyke net<br />

September<br />

Reference area<br />

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 45 0 0<br />

4 381 0 0 1 108 2 566 1 37 5 1611 1 22 0 0 0 0 0 0<br />

0 0 0 0 1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0<br />

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0<br />

0 0 0 0 0 0 0 0 1 2 0 0 0 0 1 0 0 0 0 0<br />

0 0 0 0 0 0 0 0 1 1 4 5 3 5 1 2 1 0 5 4<br />

15 113 5 32 6 49 3 19 48 140 59 206 23 81 16 64 21 98 15 55<br />

0 0 0 0 0 0 0 0 0 0 0 0 1 24 3 123 0 0 0 0<br />

6 630 9 920 2 117 12 1960 3 395 2 625 5 126 5 469 4 118 2 34<br />

0 0 1 9 0 0 0 0 0 0 2 25 0 0 0 0 1 14 0 0<br />

0 0 0 0 0 0 0 0 0 0 0 0 1 19 0 0 0 0 0 0<br />

0 0 0 0 0 0 0 0 0 0 0 0 1 17 0 0 0 0 1 4<br />

22 15 10 9 21 19 23 13 11 7 123 61 9 5 17 8 4 3 3 5<br />

2 3 7 13 13 16 7 7 12 15 36 29 261 258 76 85 35 40 489 370<br />

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0<br />

1 4 0 0 0 0 2 17 4 26 10 82 1 11 4 24 1 5 0 0<br />

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0<br />

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2 27 0 0 0 0 2 25 1 15 1 11 0 0 0 0 0 0 0 0<br />

100 3532 17 938 63 848 17 297 15 206 64 933 72 541 29 324 10 196 5 50<br />

40 3528 18 1858 3 258 5 417 11 1155 13 874 11 643 7 647 5 395 8 1039<br />

5 177 2 36 3 72 3 84 8 153 22 232 9 186 13 238 2 12 5 44<br />

0 0 1 16 0 0 0 0 0 0 0 0 1 27 3 61 0 0 2 45<br />

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 0 0<br />

2 370 1 196 0 0 1 82 1 91 0 0 1 144 0 0 0 0 0 0<br />

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 51 1 173<br />

17 1117 13 1528 3 220 6 363 3 231 1 37 5 488 2 219 9 2843 7 867<br />

0 0 0 0 0 0 2 20 0 0 0 0 0 0 0 0 0 0 0 0<br />

0 0 0 0 0 0 0 0 1 61 0 0 0 0 0 0 0 0 0 0<br />

217 9899 85 5555 118 1720 86 3870 122 2535 342 4731 406 2596 178 2265 97 3834 543 2691<br />

Fyke net<br />

Wind farm area<br />

Fyke net<br />

October<br />

Reference area<br />

Fyke net<br />

Wind farm area<br />

Fyke net<br />

November<br />

Reference area<br />

Fyke net<br />

Bio/consult as Page 55


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Bio/consult as Page 56


Bio/consult as Page 57<br />

3.9.3. Selection of indicator species<br />

Most of the 31 species were caught in relatively modest numbers limiting the possibility<br />

of making statistical assessments in relation to the general abundance of these species.<br />

Seven species were selected from the data for further analysis, <strong>and</strong> are suggested as<br />

indicator species in the monitoring programme.<br />

The selection of species was based on:<br />

• The total number caught in the <strong>study</strong><br />

• The ecological importance of the species<br />

• Behaviour pattern of the fish (whether the species is stationary or migratory)<br />

• The economical interests of the species. .<br />

Species represented with at least 65 individuals were selected. Only one species of<br />

flatfish, the flounder, fulfilled this criterion, <strong>and</strong> is therefore the only flatfish<br />

representing the Order (pleuronectiformes).<br />

The majority of the selected species in the <strong>fry</strong> <strong>study</strong> are stationary. Only two-spotted<br />

goby <strong>and</strong> flounder appear to exhibit more or less migratory behaviours. Water currents<br />

mostly determine migration by the two-spotted goby, whereas the migration of flounder<br />

among others is driven by its search for food.<br />

The flounder was the only selected species of economical interests. Atlantic cod <strong>and</strong><br />

turbot were not selected due to the low abundances.<br />

The fifteen-spined stickleback is interesting because of their territorial behaviour, which<br />

makes them relatively stationary. The fifteen-spined sticklebacks also have an annual<br />

lifespan, <strong>and</strong> therefore respond quickly to eventual disturbances possibly connected to<br />

the wind farm.<br />

The s<strong>and</strong> <strong>and</strong> two-spotted goby were selected because they are placed in the lower part<br />

of the food web.<br />

The eelpout is chosen because of its stationary behaviour <strong>and</strong> it is easily sampled with<br />

fyke nets. Their stationary behaviour can be so strong that different races within narrow<br />

locations are formed.<br />

According to the baseline program, Atlantic cod among others were suggested as a<br />

possible indicator species. In this <strong>study</strong> however relatively few individuals of this<br />

species were caught.<br />

Silver eel were not represented in sufficient numbers even though more intensives<br />

sampling strategy relative to the preliminary <strong>study</strong> has been made.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 58<br />

3.9.3.1.1 Species<br />

Behaviour Preferred habitat<br />

Stationary <br />

Migratory<br />

Boulder<br />

reef<br />

Gravel S<strong>and</strong> Soft<br />

Table 3.9.2. Short overview of the spatial behaviour <strong>and</strong> choice of habitat for the selected species.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Vegetation<br />

Remarks<br />

Fifteen-spined stickleback. X X X X X Costal200m<br />

S<strong>and</strong> goby X X X Costal200m<br />

Two-spotted goby X (X) X X X (X) Costal200m<br />

Eelpout X X X X X Costal<br />

Short-spined sea scorpion X X X X Costal200m<br />

Longspined bullhead X X X Costal100m<br />

Flounder X X X X Costal<br />

Fifteen-spined stickleback. X X X X X Costal200m


Bio/consult as Page 59<br />

3.9.4. Individual selected species<br />

In the following sections concerning the individual selected species, figures showing<br />

thematic maps of CPUE number <strong>and</strong> CPUE weight are for the sake of clearness<br />

expressed as CPUE values with an effort of one of each of the four transects in the wind<br />

farm area (from west transect 1 to 4) <strong>and</strong> reference area (from west transect 5 to 8),<br />

respectively. Be aware of that CPUE values used in statistics are representing an effort<br />

of each of the 24 stations.<br />

3.9.4.1 Fifteen-spined stickleback (Spinachia spinachia)<br />

The CPUE values for fifteen-spined sticklebacks at transect 5 tended to be lower, in<br />

comparison to the easterly transects.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

13<br />

14<br />

14<br />

15 15<br />

15<br />

16<br />

16<br />

17<br />

17<br />

18<br />

18<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q11<br />

q q<br />

q q<br />

q q q 7<br />

q q q44<br />

10<br />

10 10<br />

q<br />

q q q q<br />

q22<br />

q q<br />

q<br />

q<br />

q q5<br />

q q 8<br />

q q q<br />

q q 11 11 11 11<br />

11 11<br />

q q q<br />

q q<br />

q q33<br />

q<br />

q q<br />

q6<br />

q9<br />

12 12 12<br />

12<br />

Fifteen-spined stickleback<br />

CPUE number<br />

2<br />

May<br />

June<br />

September<br />

October<br />

November<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19 19<br />

19<br />

20 20<br />

20<br />

21 21<br />

21<br />

CPUE weight<br />

14<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Figure 3.9.1. Thematic map showing CPUE number <strong>and</strong> CPUE weight of Fifteen-spined stickleback<br />

grouped in eight transects, four within the wind farm area <strong>and</strong> four within the reference<br />

area.<br />

According to their life history traits, the individuals caught in the Spring sampling have<br />

over-wintered, <strong>and</strong> during the period of sampling the males are assumed to be guarding<br />

newly spawned eggs, whereas the females die shortly after spawning.<br />

The abundance of fifteen-spined sticklebacks is higher in September due to the presence<br />

of a new cohort originating from the spring spawning. In Figure 3.9.2, it can be seen<br />

that the abundance of the population declines towards the onset of winter.<br />

22 22<br />

22<br />

23<br />

23<br />

24<br />

24


Bio/consult as Page 60<br />

Number<br />

Number<br />

Number<br />

Number<br />

Number<br />

8<br />

6<br />

4<br />

2<br />

8<br />

6<br />

4<br />

2<br />

8<br />

6<br />

4<br />

2<br />

8<br />

6<br />

4<br />

2<br />

8<br />

6<br />

4<br />

2<br />

May<br />

June<br />

Fyke net<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

May<br />

June<br />

September September<br />

October<br />

Fifteen-spined stickleback<br />

Wind farm area Reference area<br />

October<br />

November November<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

Figure 3.9.2. The length distribution of the fifteen-spined stickleback by area <strong>and</strong> month.


Bio/consult as Page 61<br />

3.9.4.2 Two-spotted goby (Gobiusculus flavescens)<br />

Overall, The CPUE number of two-spotted goby is slightly lower in the wind farm area<br />

in comparison to the reference area.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

14<br />

15<br />

16<br />

17 17 17 17 17<br />

18<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q qq<br />

q<br />

qq<br />

q q<br />

q q<br />

q1<br />

q q<br />

q q<br />

q q<br />

q 4 q7777777<br />

q q 10<br />

q<br />

q q q q<br />

q2q<br />

q<br />

q<br />

q<br />

q q5<br />

q q8<br />

q q q<br />

q q 11<br />

q q q<br />

q q<br />

q q3<br />

q<br />

q 6q<br />

q q9<br />

12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19 19<br />

19<br />

20 20 20 20<br />

21 21 21<br />

Two spotted goby<br />

CPUE number<br />

8<br />

May<br />

June<br />

September<br />

October<br />

November<br />

CPUE weight<br />

2,5<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Figure 3.9.3. Thematic map showing CPUE number <strong>and</strong> CPUE weight of two-spotted goby grouped<br />

in eight transects, four within the wind farm area <strong>and</strong> four within the reference area.<br />

This was particularly evident in September when a large number was caught in the<br />

reference area in comparison to the wind farm area. The number of captures in<br />

November was very low. The varying distribution in time <strong>and</strong> space is probably<br />

reflecting the semi-pelagic behavior of this species.<br />

22<br />

23<br />

24


Bio/consult as Page 62<br />

Number<br />

Number<br />

Number<br />

Number<br />

Number<br />

60<br />

40<br />

20<br />

0<br />

60<br />

40<br />

20<br />

0<br />

60<br />

40<br />

20<br />

0<br />

60<br />

40<br />

20<br />

0<br />

60<br />

40<br />

20<br />

Two-spotted goby<br />

Wind farm area Reference area<br />

May May<br />

June June<br />

Fyke net<br />

September September<br />

October October<br />

November November<br />

0<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

Figure 3.9.4. The length distribution of the two-spotted goby by area <strong>and</strong> month.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 63<br />

3.9.4.3 S<strong>and</strong> goby (Pomatoschistus minutus)<br />

Transects located farthest from the wind farm area exhibited lower CPUE values. This<br />

was especially true at transect 5 near Hyllekrog in the western part, which showed very<br />

low values during the entire sampling season (Figure 3.9.5).<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

13<br />

14<br />

14<br />

15<br />

15<br />

16 16<br />

16<br />

17<br />

17<br />

18<br />

18<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q11<br />

q q<br />

q q<br />

q q q 7<br />

q q q44<br />

10<br />

10<br />

q<br />

q q q q<br />

q22<br />

q q<br />

q<br />

q<br />

q q5<br />

q q 8<br />

q q q<br />

q q 11<br />

11<br />

q q q<br />

q q<br />

q q33<br />

q<br />

q q<br />

q6<br />

q9<br />

12 12 12<br />

12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19 19 19 19<br />

19<br />

20 20<br />

20<br />

21 21<br />

21<br />

S<strong>and</strong> goby<br />

CPUE number<br />

20<br />

May<br />

June<br />

September<br />

October<br />

November<br />

CPUE weight<br />

40<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Figure 3.9.5. Thematic map showing CPUE number <strong>and</strong> CPUE weight of s<strong>and</strong> goby grouped in eight<br />

transects, four within the wind farm area <strong>and</strong> four within the reference area.<br />

S<strong>and</strong> goby were predominantly caught in late autumn sampling. This is probably due to<br />

the seasonal distribution pattern originating from an annual lifecycle in which new<br />

cohorts become more apparent in the population in October <strong>and</strong> November (Figure<br />

3.9.6).<br />

22 22<br />

22<br />

23<br />

23<br />

24 24 24<br />

24


Bio/consult as Page 64<br />

Number<br />

Number<br />

Number<br />

Number<br />

Number<br />

100<br />

75<br />

50<br />

25<br />

0<br />

100<br />

75<br />

50<br />

25<br />

0<br />

100<br />

75<br />

50<br />

25<br />

0<br />

100<br />

75<br />

50<br />

25<br />

0<br />

100<br />

75<br />

50<br />

25<br />

S<strong>and</strong> goby<br />

Wind farm area Reference area<br />

May May<br />

June June<br />

September September<br />

October October<br />

Fyke net<br />

November November<br />

0<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

Figure 3.9.6. The length distribution of the s<strong>and</strong> goby by area <strong>and</strong> month.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 65<br />

3.9.4.4 Eelpout (Zoarces viviparus)<br />

CPUE values for the eelpout tended to be relatively higher in May <strong>and</strong> June, particularly<br />

in the wind farm area. A relatively high abundance was also observed in October. In<br />

May, sexual mature individuals were the most abundant together with a few juveniles,<br />

whereas juvenile individuals dominated in the rest of the samples. In general, the<br />

eelpouts caught in May consisted primarily of well-fed or pregnant individuals, which<br />

could be determined by comparing the CPUE number with the CPUE weight for each<br />

month (Figure 3.9.7), <strong>and</strong> by looking at the length distribution (Figure 3.9.8).<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

13<br />

14<br />

14<br />

15 15 15<br />

15<br />

16<br />

16<br />

17 17 17<br />

17<br />

18 18 18<br />

18 18<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q11<br />

q q<br />

q q<br />

q q q 7<br />

q q q44<br />

10<br />

10 10<br />

q<br />

q q q q<br />

q22<br />

q q<br />

q<br />

q<br />

q q5<br />

q q 8<br />

q q q<br />

q q 11<br />

11 11<br />

q q q<br />

q q<br />

q q33<br />

q<br />

q q<br />

q6<br />

q99<br />

12<br />

12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19 19 19<br />

19<br />

20 20<br />

20<br />

21 21<br />

21<br />

Eelpout<br />

CPUE number<br />

3<br />

May<br />

June<br />

September<br />

October<br />

November<br />

CPUE weight<br />

180<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Figure 3.9.7. Thematic map showing CPUE number <strong>and</strong> CPUE weight of eelpout grouped in eight<br />

transects four within the wind farm area <strong>and</strong> four within the reference area.<br />

The new cohort from spring spawning in May/June is clearly visible in the length<br />

distribution of the eelpout. This new cohort was also present in the September <strong>and</strong><br />

October samples, whereas in November just a few individuals were left in the area as<br />

the population migrated to deeper areas nearby to spend the winter.<br />

22 22<br />

22<br />

23<br />

23 23<br />

24 24 24<br />

24


Bio/consult as Page 66<br />

Number<br />

Number<br />

Number<br />

Number<br />

Number<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

Eelpout<br />

Wind farm area Reference area<br />

May May<br />

June June<br />

September September<br />

October October<br />

November November<br />

0<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Fyke net<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Figure 3.9.8. The length distribution of the eelpout by area <strong>and</strong> month.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 67<br />

3.9.4.5 Short-spined sea scorpion (Myoxocephalus scorpius)<br />

In May, a relatively greater abundance of short-spined sea scorpions were caught,<br />

especially in transect 4 in comparison to the other sampling periods.<br />

The length distribution of the fish caught in May ranged from 15–25 cm. The shortspined<br />

sea scorpion was not observed in transect 5 in any of the sampling periods, <strong>and</strong><br />

occurred only with minor CPUE in transect 6. In autumn juvenile fish were present in<br />

modest numbers.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

13<br />

14<br />

14<br />

15<br />

15<br />

16<br />

16<br />

17<br />

17<br />

18<br />

18<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q11<br />

q q<br />

q q<br />

q q q 7<br />

q q q44<br />

10<br />

10 10<br />

q<br />

q q q q<br />

q22<br />

q q<br />

q<br />

q<br />

q q5<br />

q q 8<br />

q q q<br />

q q 11 11 11 11<br />

11 11<br />

q q q<br />

q q<br />

q q33<br />

q<br />

q q<br />

q6<br />

q9<br />

12 12 12<br />

12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19 19<br />

19<br />

20 20<br />

20<br />

21 21<br />

21<br />

Short-spined sea scorpion<br />

CPUE number<br />

2<br />

May<br />

June<br />

September<br />

October<br />

November<br />

CPUE weight<br />

250<br />

22 22<br />

22<br />

23<br />

23<br />

24<br />

24<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Figure 3.9.9. Thematic map showing CPUE number <strong>and</strong> CPUE weight of short-spined sea scorpion<br />

grouped in eight transects, four within the wind farm area <strong>and</strong> four within the reference<br />

area.


Bio/consult as Page 68<br />

Number<br />

Number<br />

Number<br />

Number<br />

Number<br />

5<br />

4<br />

3<br />

2<br />

1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

May<br />

Short-spined sea scorpion<br />

Wind farm area Reference area<br />

May<br />

June June<br />

September September<br />

October October<br />

November November<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Fyke net<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Figure 3.9.10. The length distribution of the short-spined sea scorpion by area <strong>and</strong> month.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 69<br />

3.9.4.6 Longspined bullhead (Taurulus bubalis)<br />

In the spring sampling (May <strong>and</strong> June) longspined bullhead was only present in minor<br />

numbers, <strong>and</strong> it was not observed in transect 5 during these periods. A large abundance<br />

of longspined bullhead was observed in autumn sampling, especially at transect 8 in<br />

September.<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

13<br />

14<br />

14<br />

15<br />

15<br />

16 16<br />

16<br />

17<br />

17<br />

18<br />

18<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q11<br />

q q<br />

q q<br />

q q q 7<br />

q q q44<br />

10<br />

10<br />

q<br />

q q q q<br />

q22<br />

q q<br />

q<br />

q<br />

q q5<br />

q q 8<br />

q q q<br />

q q 11<br />

11<br />

q q q<br />

q q<br />

q q33<br />

q<br />

q q<br />

q6<br />

q9<br />

12 12 12<br />

12<br />

Longspined bullhead<br />

CPUE number<br />

1<br />

May<br />

June<br />

September<br />

October<br />

November<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19 19 19 19<br />

19<br />

20 20<br />

20<br />

21 21<br />

21<br />

CPUE weight<br />

20<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Figure 3.9.11. Thematic map showing CPUE number <strong>and</strong> CPUE weight of longspined bullhead<br />

grouped in eight transects, four within the wind farm area <strong>and</strong> four within the reference<br />

area.<br />

The length distribution ranged from 5-15 cm suggesting the presence of two cohorts.<br />

22 22<br />

22<br />

23<br />

23<br />

24 24 24<br />

24


Bio/consult as Page 70<br />

Number<br />

Number<br />

Number<br />

Number<br />

Number<br />

4<br />

3<br />

2<br />

1<br />

4<br />

3<br />

2<br />

1<br />

4<br />

3<br />

2<br />

1<br />

4<br />

3<br />

2<br />

1<br />

4<br />

3<br />

2<br />

1<br />

Longspined bullhead<br />

Wind farm area Reference area<br />

May May<br />

June June<br />

September September<br />

October October<br />

November November<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

Fyke net<br />

0 5 10 15 20 25<br />

Total length (cm)<br />

Figure 3.9.12. The length distribution of the longspined bullhead by area <strong>and</strong> month.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 71<br />

3.9.4.7 Flounder (Platichthys flesus)<br />

q<br />

Cabletrace<br />

Sampling stations in the reference area<br />

Sampling stations in the wind farm area<br />

Wind mills<br />

13<br />

13<br />

14<br />

14<br />

15<br />

15<br />

16<br />

16 16<br />

17<br />

17<br />

18<br />

18<br />

q q<br />

q q q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q<br />

q q<br />

q q<br />

qq<br />

q q<br />

q q<br />

q11<br />

q q<br />

q q<br />

q q q 7<br />

q q q44<br />

10 10 10<br />

10<br />

q<br />

q q q q<br />

q22<br />

q q<br />

q<br />

q<br />

q q5<br />

q q 8<br />

q q q<br />

q q 11<br />

11<br />

q q q<br />

q q<br />

q q33<br />

q<br />

q q<br />

q6<br />

q9<br />

12 12 12<br />

12<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

19<br />

19<br />

20<br />

20<br />

21 21<br />

21<br />

Flounder<br />

CPUE number<br />

1<br />

May<br />

June<br />

September<br />

October<br />

November<br />

CPUE weight<br />

200<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Figure 3.9.13. Thematic map showing CPUE number <strong>and</strong> CPUE weight of Fifteen-spined stickleback<br />

grouped in eight transects, four within the wind farm area <strong>and</strong> four within the reference<br />

area.<br />

The population consisted largely of adult individuals ranging from 15-30 cm. Only one<br />

juvenile smaller than 10 cm of length was caught in this investigation. Thirty<br />

individuals were caught during sampling in May, whereas only four individuals were<br />

caught during sampling in September.<br />

22<br />

22<br />

23<br />

23<br />

24<br />

24


Bio/consult as Page 72<br />

Number<br />

Number<br />

Number<br />

Number<br />

Number<br />

5<br />

4<br />

3<br />

2<br />

1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Flounder<br />

Wind farm area Reference area<br />

May May<br />

June June<br />

September September<br />

October October<br />

November November<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Fyke net<br />

0 10 20 30 40 50<br />

Total length (cm)<br />

Figure 3.9.14. The length distribution of the flounder by area <strong>and</strong> month.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 73<br />

3.9.5. Comments on some the remaining species.<br />

Only 50 individuals of Atlantic cod were caught, which was lower compared to<br />

abundances observed during the initial screening. Only a few of the individuals were<br />

considered 0-group juveniles.<br />

The presence of five species from the order pipefish contributed to increase the overall<br />

fish diversity, however none of them were found in large numbers.<br />

Four other species of flatfish were caught besides flounder, including one individual of<br />

the common sole (Solea solea), which was not represented in the preliminary screening<br />

investigation.<br />

3.9.6. Statistical comparison of sampling areas.<br />

The catch data of all species suffer from lack of variance homogeneity, in consideration<br />

to ln(number) <strong>and</strong> ln(weight) <strong>and</strong> by that, it was not possible to show effects of<br />

interaction, which makes it possible to establish temporal <strong>and</strong>/or spatial differences<br />

(Table 3.9.3). Though, especially eelpout but also two spotted goby indicated effect of<br />

interaction, which is deduced by the plots (Figure 3.9.15. <strong>and</strong> 3.9.16).<br />

The abundance of turbot <strong>and</strong> flounders appear to be equally distributed throughout the<br />

wind farm <strong>and</strong> reference areas. The eelpout <strong>and</strong> short-spined sea scorpion showed<br />

differences between the to areas, with highest catches in the wind farm area. Similarities<br />

in weight between the two areas appeared in brisling, small s<strong>and</strong>eel, short-spined sea<br />

scorpion, turbot <strong>and</strong> flounder, however the species small s<strong>and</strong>eel <strong>and</strong> turbot did not<br />

fulfil the test assumption of variance homogeneity.<br />

The length distribution of Atlantic cod, great s<strong>and</strong>eel <strong>and</strong> eelpout was found to be<br />

different between the Wind farm <strong>and</strong> Reference areas. The mean length of Atlantic cod<br />

<strong>and</strong> s<strong>and</strong> goby was larger in the wind farm area relative to the reference area.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 74<br />

Estimated Marginal Means LN (number)<br />

Estimated Marginal Means LN (number)<br />

Estimated Marginal Means LN(number)<br />

1,2<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

0,0<br />

Wind farm area<br />

1,2<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

0,0<br />

Wind farm area<br />

0,0<br />

Wind farm area<br />

Estimated Marginal Means LN(number)<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

,5<br />

,4<br />

,3<br />

,2<br />

,1<br />

0,0<br />

Wind farm area<br />

Fifteen spined stickleback<br />

(Spinachia spinachia)<br />

Two-spotted goby<br />

(Gobiusculcus flavescence)<br />

S<strong>and</strong> goby<br />

(Pomatoschistus minutus)<br />

Flounder<br />

(Platichthys flesus)<br />

Month<br />

Reference<br />

Reference<br />

May<br />

June<br />

Month<br />

Month<br />

May<br />

June<br />

September<br />

October<br />

November<br />

May<br />

June<br />

September<br />

October<br />

November<br />

November<br />

Reference<br />

Month<br />

Reference<br />

September<br />

October<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Wind farm area<br />

Eelpout<br />

(Zoraces viviparus)<br />

Reference<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Estimated Marginal Means LN (number)<br />

Estimated Marginal Means LN (number)<br />

Estimated Marginal Means LN (number)<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

0,0<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

0,0<br />

Wind farm area<br />

,5<br />

,4<br />

,3<br />

,2<br />

,1<br />

0,0<br />

Wind farm area<br />

Short-spined sea scorpion<br />

(Myoxocephalus scorpius)<br />

Longspined bullhead<br />

(Taurulus babulis)<br />

Month<br />

Reference<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Month<br />

Reference<br />

Figure 3.9.15. The marginal means of LN (number) of the catches are displayed to help visualise<br />

eventual parallel development in time <strong>and</strong> space.<br />

May<br />

June<br />

Month<br />

September<br />

October<br />

November<br />

May<br />

June<br />

September<br />

October<br />

November


Bio/consult as Page 75<br />

Estimated Marginal Means LN(weight)<br />

Estimated Marginal Means LN (weight)<br />

Estimated Marginal Means LN (weight)<br />

2,0<br />

1,5<br />

1,0<br />

,5<br />

0,0<br />

Wind farm area<br />

,8<br />

,6<br />

,4<br />

,2<br />

0,0<br />

Wind farm area<br />

0,0<br />

Wind farm area<br />

Estimated Marginal Means LN(weight)<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

,5<br />

0,0<br />

Wind farm area<br />

Fifteen-spined stickleback<br />

(Spinachia spinachia)<br />

Two-spotted goby<br />

(Gobiusculus flavescence)<br />

S<strong>and</strong> goby<br />

(Pomatoschistus minutus)<br />

Flounder<br />

(Platichthys flesus)<br />

Month<br />

Reference<br />

Reference<br />

May<br />

June<br />

Month<br />

Month<br />

May<br />

June<br />

September<br />

October<br />

November<br />

May<br />

June<br />

September<br />

October<br />

November<br />

November<br />

Reference<br />

Month<br />

September<br />

October<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Reference<br />

Wind farm area<br />

Eelpout<br />

(Zoarces viviparus)<br />

Reference<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Estimated Marginal Means LN (weight)<br />

Estimated Marginal Means LN (weight)<br />

Estimated Marginal Means LN (weight)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

,5<br />

0,0<br />

Wind farm area<br />

1,4<br />

1,2<br />

1,0<br />

,8<br />

,6<br />

,4<br />

,2<br />

0,0<br />

Wind farm area<br />

Short-spined sea scorpion<br />

(Myoxocephalus scorpius)<br />

Longspined bullhead<br />

(Taurulus babulis)<br />

Month<br />

Reference<br />

Reference<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Month<br />

Month<br />

May<br />

June<br />

September<br />

October<br />

November<br />

May<br />

June<br />

September<br />

October<br />

November<br />

Figure 3.9.16. The marginal means of LN (weight) of the catches are displayed to help visualize<br />

eventual parallel development in time <strong>and</strong> space.


Bio/consult as Page 76<br />

The length distributions were not significantly different (P < 0,05) in the wind farm <strong>and</strong><br />

reference areas, except for two-spotted goby, s<strong>and</strong> goby <strong>and</strong> eelpout. The mean lengths<br />

of the majority of species between the two areas were also similar, except for twospotted<br />

goby <strong>and</strong> s<strong>and</strong> goby, which were larger in the wind farm area.<br />

Species<br />

Number Weight Length<br />

distribution<br />

Mean length.<br />

Fifteen-spined stickleback Ref = Wind 1) Ref = Wind 1) Ref = Wind Ref = Wind<br />

Two-spotted goby Ref = Wind 1) 2). Ref = Wind 1) 2). Ref ≠ Wind Ref < Wind<br />

S<strong>and</strong> goby Ref = Wind 1) Ref = Wind 1) Ref ≠ Wind Ref < Wind<br />

Eelpout Ref < Wind 1) 2). Ref < Wind 1) 2). Ref ≠ Wind Ref = Wind<br />

Short-spined sea scorpion Ref = Wind 1) Ref = Wind 1) Ref = Wind Ref = Wind<br />

Longspined bullhead Ref = Wind 1) Ref = Wind 1) Ref = Wind Ref = Wind<br />

Flounder Ref = Wind 1) Ref = Wind 1) Ref = Wind Ref = Wind<br />

1) No variance homogeneity.<br />

2) Effect of interactions between area <strong>and</strong> time.<br />

Red indicates rejection of the hypothesis of similarities.<br />

Table 3.9.3. Statistical tests results between areas at the 5 % significance level (Note, No variance<br />

homogeneity). (Appendix 3 to appendix 6).<br />

Table 3.9.4 show the results of the power analysis for species caught in at least 50 % of<br />

the samples (one st<strong>and</strong>ard fyke net <strong>and</strong> one <strong>fry</strong> fyke net). In this <strong>fry</strong> <strong>study</strong>, only the<br />

eelpout in June <strong>and</strong> September fulfils the 50% criterion. From Table 3.9.5 it appears that<br />

a minimum of 16 stations per. area should be applied to attain reliable results for<br />

eelpout, if the criterion of variance homogeneity is fulfilled.<br />

Species Number Weight<br />

Fifteen-spined stickleback P < 0.05 P < 0.05<br />

Two-spotted goby P < 0.05** P < 0.05**<br />

S<strong>and</strong> goby P < 0.05. P < 0.05<br />

Eelpout P < 0.05** P < 0.05**<br />

Short-spined sea scorpion P < 0.05 P < 0.05<br />

Longspined bullhead P < 0.05 P < 0.05<br />

Flounder P < 0.05 P < 0.05<br />

All species lack variance homogeneity.<br />

(**) Effect of interactions between area <strong>and</strong> time.<br />

Table 3.9.4. Statistical tests results in time at the 5 % significance level. (Note, No variance<br />

homogeneity) (Appendix 3 to appendix 6).<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 77<br />

Species Period<br />

# stations per. Area % Stations Number<br />

80% power<br />

> 0<br />

% Stations<br />

Number= 0<br />

Eelpout June 13 64.58 35.42<br />

Eelpout September 16 52.08 47.92<br />

Table 3.9.5. Results of the power-analysis giving 80% validity in detecting 50% change. At least<br />

50% of the samples have caught the species.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 78<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 79<br />

3.10. Discussion<br />

3.10.1. Evaluation of methods<br />

Only a few adult turbot were caught, despite the use of an extra type of net especially<br />

aimed at catching turbot. According to the fishermen (Se section 4) the catches of turbot<br />

was abnormally low in 2001. Despite the lack of turbot in 2001, it is recommended to<br />

continue using these turbot nets because 2001 have been an abnormal year.<br />

Figure 3.10.1. Despite the use of specially designed net sections aimed to catch turbot (left) only a few<br />

were caught. Flounder (right) were caught in greater numbers due to higher abundance<br />

in the area of investigation.<br />

Overall, abundances in the <strong>fry</strong> <strong>study</strong> during spring were generally lower than catches in<br />

autumn. This would also be expected since <strong>fry</strong> from spring spawning species have<br />

reached a catchable size in the autumn. As would be expected the high occurrence of<br />

drifting filamentous algae (Ectocarpus siliculosus/Pilayella littoralis) in spring<br />

probably had a large impact on the efficiency of the fyke nets. This trend was observed<br />

in practically all species caught in the two spring sampling periods in May <strong>and</strong> June. In<br />

light of these observations it would be recommended to undertake a baseline <strong>study</strong><br />

using the described method in periods without high abundance of drifting algae, which<br />

normally occurs from late May to August, depending on light, temperature, nutrient<br />

level <strong>and</strong> current conditions. Early spring or autumn would be periods that are more<br />

appropriate.<br />

3.10.2. Evaluation of statistics<br />

The statistical evaluation was made in two steps. The initial evaluation identified a<br />

number of problems with the data set.<br />

The classic analytical techniques used could not deal with empty samples. Furthermore,<br />

high variation was recorded in many samples, which posed a problem concerning the<br />

use of the classic statistical methods in the BACI design, which require homogeneity of<br />

the variance.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 80<br />

After these problems were identified, the statistical part of the assignment was<br />

scrutinised <strong>and</strong> the possibility of other statistical tools <strong>and</strong> techniques were investigated<br />

(See Appendix 10).<br />

Based on this, two alternative statistical designs were tested <strong>and</strong> found reliable to<br />

answer one of the main questions of the baseline <strong>study</strong>; is the wind farm area <strong>and</strong> the<br />

reference area similar <strong>and</strong> are they of parallel progress?<br />

Depending on the purpose <strong>and</strong> taking into account the properties of the data at h<strong>and</strong>,<br />

both univariate <strong>and</strong> multivariate statistical analysis can be carried out according to an<br />

either a parametric or a non-parametric test. The latter contains the group of the most<br />

recent developed extensive permutation tests.<br />

In relation to the classic parametric design used hitherto it was realized that the problem<br />

with obtaining normal distribution could be solved by dividing the fish species into<br />

functional groups (see section 3.10.4.1).<br />

A new technique using non-parametric multivariate analysis is discussed in the next<br />

sections with the objective to improve the utilization <strong>and</strong> level of information from the<br />

data, <strong>and</strong> to improve the sampling regime.<br />

3.10.2.1 Parametric vs. non-parametric<br />

3.10.2.1.1 Parametric tests<br />

To be used in this group of tests, the data are assumed to follow known statistical<br />

distribution with parameters to be estimated such as average or variance. The linear<br />

normal distributed models are the most commonly used. Among these is the classic<br />

analysis of variance known as ANOVA or MANOVA when data are either univariate or<br />

multivariate. It is assumed that the data follow a normal distribution, are independent<br />

<strong>and</strong> have equality of variances in a set of samples. It is assumed in the models that the<br />

effects from the various factors such as time <strong>and</strong> place affects the observed data linearly<br />

<strong>and</strong> in the BACI model as a sum of the effect from time <strong>and</strong> place <strong>and</strong> their interaction.<br />

In its most simple form, the BACI analysis is carried out as a two-way analysis of<br />

variance with the test for cross effects between the two main groups as the significance<br />

test of interest.<br />

One of the advantages by the use of a linear normal model is that also the distribution of<br />

test parameter is known. This knowledge provides the basis to estimate the power of the<br />

test, to calculate how good the test is to detect an effect if there is one in “the real<br />

world”. The power is expressed as the probability to catch an effect of a certain,<br />

predetermined size according to a predetermined level of significance. The power or<br />

precision of the test increases with an increasing number of replicates. It is possible<br />

either to calculate the power of the test in relation to a certain effect size such as 50%<br />

change or to calculate the number of replications necessary if the structure of variance is<br />

known from a pilot <strong>study</strong>. It is therefore usually helpful to make a series of preliminary<br />

univariate analyses with selected variables to obtain an overview of the necessary<br />

number of samples for the final programme of biological surveys.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 81<br />

However, data from biological field programs such as abundance <strong>and</strong> biomass are very<br />

rarely normal distributed. In that case it is essential to use an appropriate transformation<br />

of data to bring them on a normal form but also to secure a homogenous structure of<br />

variance between the set of replicates (the cells) of the analysis of variance which are<br />

formed in the cross between the factors of the analysis. There are usually a relation<br />

between average <strong>and</strong> variance in that kind of data where increasing abundance results in<br />

increasing variation between the replicates. The most commonly used transformation is<br />

the logarithm, but because it is not defined for zero, empty samples cause problems<br />

which normally is solved by adding a small number such as adding the figure 1 to the<br />

raw data of abundance data. It can be difficult to fulfil the requirements for normality if<br />

many of the samples are empty.<br />

It is possible to design models, which are analogue to the univariate linear normally<br />

distributed models in the event that data are not normally distributed. The analysis can<br />

be carried out according to one of the “generalizing linear models” if they follow e.g. a<br />

Poisson or Binomial distribution. This method will also be influenced by the presence<br />

of empty samples resulting in difficulties in relation to an agreement with one of the<br />

distributions in that group. During the last ten years, a number of statistical models have<br />

been developed to treat data with univariate counting data with a surplus of zeros. A<br />

number of special editions of the Poisson distribution are often used because it, with an<br />

additional parameter, can treat the presence of empty samples. According to our<br />

knowledge, none of these models is useful in the present sampling programme.<br />

Moreover, it doesn’t affect the fact that an increasing number of empty samples<br />

gradually reduce the amount of information of the chosen variable.<br />

3.10.2.1.2 Non-parametric test.<br />

A number of non-parametric tests can be useful for carrying statistical tests within the<br />

overall BACI-frame.<br />

Bootstrap<br />

The bootstrap simulation is the obvious choice in the univariate instance, at least as a<br />

control of the parametric test, in case of difficulties with fulfilling the conditions for<br />

normality <strong>and</strong> homogeneity. The bootstrap simulation is a permutation technique, which<br />

function by extracting a number of r<strong>and</strong>om samples from the original data, of a similar<br />

size as the original. The selection can be made with or without replacement of the<br />

chosen figures. A full analysis is then carried out on the chosen data set. By repeating<br />

this process, a large number of times it is possible to construct an empirical distribution<br />

of the parameter used for testing. In that present case, it would be the test parameter for<br />

the interaction in a two-sided analysis of variance, which would be the parameter of<br />

choice.<br />

The advantage of that procedure is that the distribution for the data will not be estimated<br />

mathematically as in the case of a normal distribution, but reconstructed empirically<br />

based on the properties of the original data. As a result, the bootstrap estimation can be<br />

used in these cases when the data are not normally distributed but in contrarily have<br />

typical signs of deviations such as skew distributions, upper or lower truncations,<br />

outliers etc.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 82<br />

As a starting point, one should always attempt to use a parametric model such as a<br />

linear normal. If the assumptions are fulfilled, then the use of the parametric statistical<br />

analysis will result in a model of explanation, which can model the interactions <strong>and</strong><br />

relations from the real world where the data originally came from. The use of a<br />

parametric analysis can provide an overview of how the participating factors interact<br />

opposed to a permutation test, which only provide information about the structure of the<br />

data in h<strong>and</strong>.<br />

Ordination<br />

In case of multivariate biological data like the ones in the present <strong>study</strong>, a number of<br />

tools or methods have been developed. These methods are basically built on the<br />

assumption, that the variables, e.g. abundances of a number of species, are mutually<br />

correlated which make it possible to reduce the number of variables to a lower number<br />

of “synthetic” variables without the loss of information. As an example: species which<br />

are always co-occurring in proportional similar amounts, or species which might have a<br />

negative effect on the abundance of each other can be reduced to one pseudo-species<br />

without the loss of information.<br />

A number of these ordination methods are solely geometric calculations in the pdimensional<br />

space in between the p species of the investigation. The use of these<br />

geometric methods reduces the space to a manageable number of dimensions. The<br />

purpose of these reductions could be to continue the analysis using the new synthetic<br />

species or the new “species” (with the correct name: ordination axes) could be the<br />

product for final interpretation. A Principal Component Analysis (PCA) belongs to that<br />

group. However, experience shows that it is often very difficult to interpret the results,<br />

when data comes from biological fieldwork, typically abundance <strong>and</strong> biomass of a<br />

number of species. The analysis rarely makes it possible to reduce the number of<br />

dimensions sufficiently without loosing to much information from the original data set.<br />

On the other h<strong>and</strong>, would a PCA-analysis be the obvious choice if the data consists of<br />

measurements of chemical or physical variables (nutrients, temperature etc.), because<br />

this method can extract the essential information, <strong>and</strong> translate it to intuitively<br />

intelligible environmental gradients.<br />

Ordination based on distance<br />

Another class of ordination techniques is designed as an analysis based on calculations<br />

of a “distance” between every pair of samples (Fig. 3.10.1).<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 83<br />

Figur.3.10.1. Steps in a multivariate analysis based on calculations of a “distance” between every pair<br />

of samples (dis-similarity).<br />

The first step is to calculate “distance” between the samples based on an appropriate<br />

metric. There are a number of different measures of distance available with each their<br />

qualities. A commonly used measure for distance in between samples in investigations<br />

of benthic fauna is the Bray-Curtis similarity, which principally function as an index of<br />

the ratio between the number of common species <strong>and</strong> the total number of species. The<br />

ratio is typically weighed with one of parameters attached to a single species, e.g.<br />

biomass or abundance. If that index of similarity is scaled as percentage the similarities<br />

will be in the range from 0 to 100 representing from totally different to identical. Using<br />

a proper transformation of the raw data, it is possible to increase or decrease the weight<br />

of different parameters, such as the presence of rare species, in the calculation of the<br />

similarity index. The final product is an N*N distance matrix, which provides all the<br />

mutual distances between the studies N samples.<br />

The second step is a more complex set of single steps.<br />

• A graphic presentation of the similarities as a Multi-Dimensional Scaling plot or<br />

MDS-plot. MDS is a complex mathematical method to construct a map of the<br />

samples in a certain number of dimensions. The purpose of the map is to place the<br />

samples on the map in accordance with the calculated distances in similarity. If<br />

sample A is more like sample B than C then A should be closer to B than to<br />

sample C.<br />

• Test of the similarity between two different distance matrixes. This test is part of<br />

the detective work to identify the responsible factors affecting the composition of<br />

species <strong>and</strong> their abundance in the samples. To identify the cause similar MDSplots<br />

of the chemical parameters can be made <strong>and</strong> compared to the MDS-plot of<br />

the biological parameters. A match between the set of maps would indicate that<br />

the chemical parameters was responsible for or affected the biological data.<br />

• Test of independence in the matrix of similarities to factors grouping the data<br />

material. The tests are similar to the test used in an analysis of variance. In the<br />

actual <strong>study</strong>, time <strong>and</strong> place are the factors <strong>and</strong> the tests are performed as<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 84<br />

permutation tests of each criterion independent of the other. The tests are by<br />

nature not subjected to the assumptions of multivariate normality, which limits the<br />

use of the usual MANOVA on this kind of data, but still the data must be<br />

independent <strong>and</strong> with a similar statistical distribution. The permutation test is in<br />

general based on a large number of exchange of replicates between the tested<br />

factor groups, for each permutations calculation of a test statistic, <strong>and</strong> finally, a<br />

comparison of the test statistics based on the original data with all the r<strong>and</strong>ombased<br />

statistics.<br />

The distance based ordination techniques have within the last ten years got a lot of<br />

attention as a method to analyse this type of data, <strong>and</strong> in other fields such as analysis<br />

benthic fauna as a tool to investigate <strong>and</strong> explain the patterns of similarities.<br />

However, in the BACI framework, for theoretical reasons these methods cannot, be<br />

used to test effects of interaction in an ANOVA design. As mentioned it is possible to<br />

use permutation tests to test the main effects in the BACI-model while a permutation<br />

test for the interaction between time <strong>and</strong> place can not be done as permutations between<br />

the original replicates. It requires a<br />

model based linear such as<br />

ANOVA but the main problem is<br />

the requirements to the measure of<br />

distance, which are not fulfilled by<br />

the Bray-Curtis index. The main<br />

question is whether the similarity<br />

measurement is metric or not (se<br />

box at right).<br />

A measuremnt of distance, D, is metric, if the measurement full fills<br />

the following:<br />

• Positivity: Dij has to be 0 or positive<br />

• Symmetri: Dij = Dji : The distance between A <strong>and</strong> B is the<br />

same as the distance between B <strong>and</strong> A.<br />

• Identity: Djj = 0 : a sample is identical with it self.<br />

• Triangle inequality: Dik < = Dij + Djk : The distance<br />

between two samples can not be bigger than the sum of<br />

distances between two other pairs. The distances can be<br />

constructed as a triangle. For instance: Dik = 10 og Dij = 3<br />

og Djk = 4 . If it isn’t possible to construct a triangle then<br />

the measurement of distance is not metric.<br />

If the area in questioning in a<br />

BACI-design is not significantly different from the reference <strong>and</strong> effect area then the<br />

effect of interaction can be tested by proving a difference between the areas at a later<br />

time. However, this is rarely the case, <strong>and</strong> furthermore surveys will often consist of a<br />

number of measurements in time, which only can be analysed for trends using the entire<br />

data set.<br />

Db-RDA <strong>and</strong> NPMANOVA<br />

There is a need for a permutation-based test for the interaction term. In recent years, the<br />

theoretical basis for this test have been further developed <strong>and</strong> even fitted to the<br />

situation, where the fieldwork is established in concordance with the BACI-design. At<br />

present there are at least two suitable procedures, which can be used on the present data<br />

material. These techniques are not yet included in the st<strong>and</strong>ard statistical packages.<br />

The first one is called db-RDA (distance-based redundans analysis - Legendre <strong>and</strong><br />

Anderson, 1999). The method calculates the distance between replicates based on a<br />

metric of your own choice followed by a principal coordinates analysis <strong>and</strong> a<br />

redundancy analysis (Fig. 3.10.2).<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 85<br />

Figure: 3.10.2. Graphic outline of the procedures in a multivariate distance based test of interaction<br />

between criteria of sectioning. (Legendre <strong>and</strong> Anderson, 1999).<br />

The other method NPMANOVA (Non-parametric multivariate analysis of variance)<br />

(Anderson, 2001) provides a method based on distance-metric of your own choice <strong>and</strong><br />

the product is an analysis of a variance table similar to one from the well-known<br />

analysis of variance. In the variance analytical table, the total sums of squares of<br />

distances are divided into sums of squares belonging to each of the factors of the<br />

analysis such as time, place, <strong>and</strong> the interaction between them. Again, as in the common<br />

ANOVA, these sums of squares are the basis for the F ratios, which again can be tested<br />

for significance using permutations tests. If the distances are calculated as Bray-Curtis<br />

dissimilarities then they also have to be treated in different ways before they can be<br />

used in the NPMANOVA procedure.<br />

It is important to note that both methods can only be used if certain assumptions are<br />

fulfilled just like the requirements to a parametric ANOVA/MANOVA. In principle, the<br />

requirements are the same except that the data do not have to be normal distributed. The<br />

data should still be independent, the effects in the model (time <strong>and</strong> place) should be<br />

additive <strong>and</strong> finally the variation should be uniform between the groups. The<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 86<br />

distribution of the similarities should be the same regardless of time <strong>and</strong> place. The<br />

requirement of homogenous variance is important because it is possible to get a<br />

significant result in the test solely based on differences in variance. Whether that<br />

requirement has been meet can only be tested in a visual estimation of a graphical<br />

illustration of the plot for example such as a non-metric MDS-plot. In the actual <strong>study</strong>,<br />

it is necessary to estimate if the similarities between replicates in the chosen areas <strong>and</strong><br />

periods seem to be of similar magnitude. If not then a suitable transformation of raw<br />

data can often solve the problem.<br />

3.10.2.2 Univariate or multivariate analysis?<br />

As it appears from the previous, there is a fundamental choice to make regarding the<br />

analytical method for calculations the test statistics within the BACI design. Should the<br />

method be uni- or multivariate? It is crucial with respect to that choice whether the<br />

variables of the results are correlated or not. In relation to the data in the present <strong>study</strong>,<br />

it is important to consider if the occurrence of the fish species are independent of each<br />

other or if the presence of one species increase the probability to encounter certain<br />

species in the same area. Dependent variables are the rule of thumb in this kind of field<br />

<strong>study</strong> <strong>and</strong> accordingly so in the present investigation. The dependency was tested based<br />

on the null hypothesis of “no correlation different from zero among the p species” using<br />

Bartlett’s test for spericity. Intuitively it makes sense that certain species occur as<br />

functional groups attached to certain bottom conditions, food, water quality etc. The<br />

presence of correlation is the first indication to use a multivariate analysis to get the<br />

most information from the data.<br />

3.10.2.2.1 Univariate analysis<br />

If the data set is tested using a univariate BACI-analysis of the data from each<br />

individual species, then there are a number of conditions, which should be noted.<br />

• It is difficult to fulfil the requirements of normality <strong>and</strong> homogeneity of variance<br />

for most of the species even after transformation These dem<strong>and</strong>s must be meet<br />

to complete an ANOVA in its ordinary linear form. The main reason is the<br />

presence of empty samples when the data are considered separately for each<br />

species.<br />

• Furthermore, it is important to note the danger of deriving conclusions<br />

concerning overall significance based on what can be called mass tests. It is<br />

implicit to the choice of level of significance that one out of 20 analysis should<br />

show significance even if no interaction-effect in the BACI model exists in the<br />

real world. If the results from each of the individual species are gathered to a an<br />

overall level of significance then it is essential to adjust the level of significance<br />

for each test according to number of species. If five independent species are<br />

analysed using an univariate ANOVA then the level of significance should be<br />

adjusted as follows: 1-(1-0.05) 1/5 = 1.02%. Or if the level is fixated at 5 % in<br />

each sub-test, then there is a probability of 22.6 % for significance in at least one<br />

of the five sub-tests.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 87<br />

3.10.2.2.2 Multivariate analysis<br />

When the variables in question (species) are correlated as in the present baseline <strong>study</strong>,<br />

then the natural choice of method would be a multivariate analysis. If not for the test of<br />

significance, the ordination techniques can be used to explore the structures of the data<br />

<strong>and</strong> therefore be guidance to the final test of significance.<br />

The choice is between:<br />

• The usual multivariate analysis in a parametric, normal <strong>and</strong> linear model.<br />

Different aspect about this analysis have been mentioned, but one essential<br />

problem is the requirement for normality <strong>and</strong> homogeneity of variance now<br />

sharpened as these requirements apply to all variables at the same time. It is a<br />

precondition of the MANOVA test that the number of observations minus one<br />

subtracted from the number of groups should be bigger than the number of<br />

variables (species). If the numbers of observations are at least 2 to 3 times bigger<br />

than the number of variables, then the test is fairly robust to deviations from the<br />

conditions about normality <strong>and</strong> homogeneity of variance. That is the case in the<br />

present baseline <strong>study</strong> from Røds<strong>and</strong> where approximately 20 different species<br />

were caught.<br />

• The reduction of variables using the ordination technique. A PCA analysis can<br />

extract information from a large number of variables <strong>and</strong> represent that<br />

information using a smaller number of “synthetic” variables. These variables are<br />

by nature uncorrelated <strong>and</strong> can be used in univariate analysis. The catch is that it<br />

can be difficult to explain the real picture of the old variables using the new<br />

variables.<br />

• The reduction of number of variables by the use of scientific criteria to create<br />

functional groups of species which abundance <strong>and</strong> biomass can be tested in uni- or<br />

multivariate models. The obvious method is to make functional groups according<br />

to the expected biological effect in the actual investigation. As an example, it<br />

would be obvious to create a group of species with special attachment to the reef<br />

habitat. One of the effects of such a strategy would be fewer empty samples,<br />

making it easier to fulfil the preconditions to use the parametric<br />

ANOVA/MANOVA.<br />

• Extract various indices or statistics from the original data <strong>and</strong> use them in uni- or<br />

multivariate analysis. The two fundamental statistics are the total number of<br />

individuals <strong>and</strong> the total number of species per sample, but there are a number of<br />

diversity indexes etc. available. In general, this method does not provide useful<br />

results because of the difficulties involved in explaining a multidimensional real<br />

world using a model with only one dimension.<br />

• Use the full set of data in a non-parametric multi-step analysis based on measures<br />

of distance. Use permutation analysis to test for significant effects <strong>and</strong> use tools<br />

based on the calculated distances, in case of significance, to refer the explanation<br />

of the significance back to the particular species. The latter type of investigation<br />

can provide a grouping of species, which might fit the grouping in functional<br />

species.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 88<br />

3.10.2.3 Examples from the actual investigation.<br />

The data of each species in the present baseline investigation does not represent a<br />

normal distribution <strong>and</strong> it was only possible in a few cases to transform the data to a<br />

normal distribution. Furthermore, there are problems with the preconditions of<br />

homogeneity of variance between the cells in the model of variance analysis, which is<br />

formed in the cross between place (wind farm area versus reference area) <strong>and</strong> time (five<br />

sampling occasions).<br />

Figure 10.3.3 provides a typical example of the distribution of number of eelpout per<br />

sample.<br />

6<br />

4<br />

2<br />

0<br />

6<br />

4<br />

2<br />

0<br />

Eelpout<br />

5 6 9 10 11<br />

5 10 15 20 25<br />

5 10 15 20 25<br />

Figure 3.10.3. Distribution of number of eelpout per sample.<br />

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25<br />

To illustrate how data from a survey programme can be analysed with a distance based<br />

ordination analysis, there have been made calculations of similarities (Bray-Curtis<br />

index) between all the samples from the five months of the survey in 2001. All fish<br />

species have been included regardless of a biological evaluation if they were suitable.<br />

The similarities have been calculated based on square root transformed number of<br />

individuals, which result in a reasonable strong emphasis on abundance <strong>and</strong> less on rare<br />

species.<br />

The calculated similarities have since been illustrated in a map using a non-metric<br />

MDS, which is a MDS based on the rank of the distances instead of the calculation of<br />

the exact distances.<br />

Using the permutation technique, the differences between catch periods in the different<br />

areas <strong>and</strong> the difference between areas at the different sampling occasions. Furthermore<br />

the difference between areas seen isolated in each period were tested because the<br />

difference between areas in a BACI analysis is crucial for the later choice of analytical<br />

technique to test the effect of interaction between time <strong>and</strong> place.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Windfarm Reference


Bio/consult as Page 89<br />

All the catch periods gives different results, which was confirmed by the test results,<br />

unless in month 10 <strong>and</strong> 11 which were coinciding (Figure 10.3.4). The contribution<br />

from each species to these differences is not described in the present note.<br />

Abundance, MDS square root transformed , signature=months<br />

Stress: 0.24<br />

Figure 10.3.4. MDS-map of Bray-Curtis distances between all stations calculated as square root<br />

transformed data.<br />

Figure 3.1.0.5 shows the result of the same ordination with signatures marking the two<br />

areas. To facilitate the interpretation of the graph the samples have been separated into<br />

each of the five sampling occasions. If the graphs are placed on top of each other they<br />

will represent figure 3.10.4. A global permutation test shows significant areas if not<br />

considering the times. If each sampling occasion is tested isolated in each period only<br />

month 5 <strong>and</strong> 9 gives a significant difference between the areas.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

5<br />

6<br />

9<br />

10<br />

11


Bio/consult as Page 90<br />

Month: 11<br />

Month: 9 Month: 10<br />

Month: 5 Month: 6<br />

Reference<br />

Windfarm<br />

Figure 3.10.5. MDS-map of Bray-Curtis distances between all stations calculated as square root<br />

transformed data. The differences between the areas have been illustrated with different<br />

colours. Data from each month have been placed in each their sub plot but they<br />

originate from the same graph. The areas have been tested significant different in month<br />

5 <strong>and</strong> 9 using permutation test.<br />

To illustrate a significance test of the interaction effect of the BACI-model two sets of<br />

artificial data, which could have come from a baseline survey, were constructed. The<br />

sampling periods May <strong>and</strong> June were chosen <strong>and</strong> the number of individuals for<br />

stationary fish species in the wind farm area were increased with a factor 2 <strong>and</strong> 4<br />

respectively but only in the month of June. This could have been two data sets from a<br />

before <strong>and</strong> after situation where a change have occurred in the impact area <strong>and</strong> not in<br />

the reference area.<br />

The analysis was made using Bray-Curtis distances between all samples calculated on<br />

square root transformed data to reduce the effect of abundant species <strong>and</strong> to secure a<br />

uniform distribution of distances between the replicates from each sampling occasion. A<br />

NPMANOVA-test of significance was made using the same data set.<br />

The Figure 10.3.6 show the three nMDS plots from each their data set. Note that the<br />

points in the dense swarm moves away with an increase in number of individuals of the<br />

stationary species.<br />

This effect can also be found using the NPMANOVA analysis illustrated in the Table<br />

10.3.1. The results have been based on 5000 permutations per analysis.<br />

The results shows, that there are no interaction between area <strong>and</strong> time in the original<br />

data. There is an obvious difference between the areas <strong>and</strong> between the two sampling<br />

periods, but the change from May to June is parallel.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 91<br />

After a twofold increase of the abundance of stationary species the analysis gives a test<br />

probability of 5.9 %, which is close to a significant interaction.<br />

The interaction is highly significant (0.04 %) after a fourfold increase of the abundance<br />

of the stationary species.<br />

nMDS on abundance in wind farm area in June.<br />

Stress: 0.24<br />

Windfarm<br />

5<br />

Windfarm<br />

6<br />

Reference<br />

5<br />

Reference<br />

6<br />

nMDS on abundance in wind farm area in June. Abundance increased by a factor 2<br />

Stress: 0.25<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

W6<br />

W6<br />

Windfarm<br />

5<br />

Windfarm<br />

6<br />

Reference<br />

5<br />

Reference<br />

6<br />

nMDS on abundance in wind farm area in June. Abundance increased by a factor 4<br />

Stress: 0.24<br />

W6<br />

Windfarm<br />

5<br />

Windfarm<br />

6<br />

Reference<br />

5<br />

Reference<br />

6<br />

Figure 3.10.6. nMDS plots with increasing number of individuals of stationary species in the wind<br />

farm area in June (W6).


Bio/consult as Page 92<br />

Original data Non-parametric Multivariate Analysis of Variance<br />

Possible Denom.<br />

Source df SS MS F P No.perm. MS<br />

-----------------------------------------------------------------------------<br />

Omraa 1 7075.6513 7075.6513 4.6886 0.0004 >1.0E+10 Res<br />

maane 1 14002.8873 14002.8873 9.2789 0.0002<br />

The<br />

abundance<br />

of stationary<br />

species<br />

doubled in<br />

June.<br />

The<br />

abundance<br />

of stationary<br />

species<br />

increased<br />

fourfold in<br />

June.<br />

Res<br />

Omxma 1 1636.8030 1636.8030 1.0846 0.3842 >1.0E+10 Res<br />

Resid 44 66400.9367 1509.1122<br />

Total 47 89116.2784<br />

-----------------------------------------------------------------------------<br />

Non-parametric Multivariate Analysis of Variance<br />

Possible Denom.<br />

Source df SS MS F P No.perm. MS<br />

-----------------------------------------------------------------------------<br />

omraa 1 8109.9132 8109.9132 5.3740 0.0002 >1.0E+10 Res<br />

maane 1 12625.0607 12625.0607 8.3659 0.0002<br />

Res<br />

omxma 1 2889.3945 2889.3945 1.9146 0.0586 >1.0E+10 Res<br />

Resid 44 66400.9367 1509.1122<br />

Total 47 90025.3051<br />

-----------------------------------------------------------------------------<br />

Non-parametric Multivariate Analysis of Variance<br />

Possible Denom.<br />

Source df SS MS F P No.perm. MS<br />

-----------------------------------------------------------------------------<br />

omraa 1 10159.6715 10159.6715 6.7322 0.0002 >1.0E+10 Res<br />

maane 1 12271.9657 12271.9657 8.1319 0.0002<br />

Res<br />

omxma 1 5587.7770 5587.7770 3.7027 0.0004 >1.0E+10 Res<br />

Resid 44 66400.9367 1509.1122<br />

Total 47 94420.3510<br />

-----------------------------------------------------------------------------<br />

Table 10.3.1. Results from a NPMANOVA test on the spring sampling of two artificial data sets with<br />

a built-in effect in the samples from June at the windmill park.<br />

Based on the above-mentioned techniques, improvement <strong>and</strong> recommendations to the<br />

sampling regime are given in section 3.10.4.<br />

3.10.3. Biological evaluation<br />

3.10.3.1 <strong>Fish</strong> <strong>study</strong><br />

Pelagic species was found in both areas. The pelagic species is of less interest caused by<br />

their way of life, with great differences in time <strong>and</strong> space. Therefore, in an eventual<br />

future monitoring program, pelagic species can at first glance only be used as a<br />

qualitative measure coupled to the experience achieved from costal areas generally.<br />

However, pelagic species e.g. the hornfish may be a potential indicator species<br />

concerning impact caused by reflections <strong>and</strong> shadowing from the mills because they<br />

reside near the water surface, are abundant <strong>and</strong> cover large areas.<br />

Of the pelagic species, it is recommended to focus on the Baltic herring in the future,<br />

because of its documented ability to sense noise (Bio/consult 2001c), though it<br />

according to present baseline only can be assessed qualitatively.<br />

Of stationary species, eelpout <strong>and</strong> short-spined sea scorpion serve as representative<br />

caught in relatively high numbers. Both of these species was caught in higher numbers<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 93<br />

in the wind farm area than in the references area. Both species are recommended to be<br />

included in the monitoring program.<br />

The catch of the small s<strong>and</strong>eel <strong>and</strong> the great s<strong>and</strong>eel was very different in time <strong>and</strong><br />

space, probably because of their pelagic behaviour in the dark hours. The measured<br />

biological parameters; such as length <strong>and</strong> gonads could be used to evaluate the areas as<br />

potential spawning <strong>and</strong>/or nursery grounds on a qualitative basis.<br />

Flounder <strong>and</strong> turbot are optimal species from a statistical point of view <strong>and</strong> they could<br />

become useful in the monitoring program, though they do not display a normal<br />

distribution. The turbot was caught in low numbers, <strong>and</strong> therefore many of the samples,<br />

which makes this species less reliable than flounder as indicator species.<br />

3.10.3.2 Fry <strong>study</strong><br />

In the present design <strong>and</strong> scope, this <strong>study</strong> do not have basis for statistical verification of<br />

the 0-effect hypothesis because, data for all of the species lack variance homogeneity<br />

<strong>and</strong> for most of the species contain missing values in more than 50% of the samples<br />

(st<strong>and</strong>ard fyke net <strong>and</strong> <strong>fry</strong> fyke net). However, the <strong>study</strong> contributes to the knowledge of<br />

the fish fauna in the area of Røds<strong>and</strong> as concern <strong>fry</strong> <strong>and</strong> small <strong>fry</strong>.<br />

The <strong>study</strong> areas clearly function as a spawning <strong>and</strong> nursery area for eelpout. This can be<br />

seen from the length distributions between the seasons, where it is possible to follow a<br />

cohort from birth <strong>and</strong> throughout the rest of the period for the <strong>fry</strong> <strong>study</strong>, <strong>and</strong> by<br />

comparing the number <strong>and</strong> weight over time.<br />

The numbers of the three species of gobies caught seems stochastic, <strong>and</strong> not a reflection<br />

of the actually population size.<br />

3.10.4. Evaluation <strong>and</strong> development of the monitoring program<br />

It is realized, that the use of parametric statistical test on individual fish species does not<br />

return significant answers to the main question of the baseline <strong>study</strong> of a BACI design;<br />

is the wind farm area <strong>and</strong> the reference area similar <strong>and</strong> are they of parallel progress?<br />

However, dividing of fish species into functional groups <strong>and</strong> use of classic parametric<br />

analysis or the use of a non-parametric multivariate analysis of the fish community<br />

return a positive answer to that question.<br />

3.10.4.1 Recommendations in relation to parametric univariate analysis<br />

In an attempt to escape the biases applied by the large amounts of zeroes, grouping<br />

species according to their biology <strong>and</strong>/or trophic level must be considered.<br />

Alternatively, grouping of species can be executed according to their expected<br />

sensitivity to possible environmental effects of offshore wind farms e.g. changes in type<br />

of habitat (construction of reef structures <strong>and</strong> seize of existing habitats), vibration<br />

(noise), reflections of light <strong>and</strong> electromagnetic fields. The grouping should be chosen a<br />

priori <strong>and</strong> not based on the results of the investigation. It is only possible to create<br />

functional groups if it is considered biological relevant.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 94<br />

In biology similar grouping are most often used in examine plankton communities as<br />

well as benthic invertebrate communities. In relation to fish, grouping has been used in<br />

measuring energy flow through a system, by grouping into feeding guilds.<br />

The species caught in this <strong>study</strong> have been grouped into six different descriptive groups<br />

(Table 3.10.2). Some of the fish species occur in two groups if they fulfil the criterions<br />

for both groups. The groups are made by viewing the biology of the species <strong>and</strong> to a<br />

minor degree with respect to their trophic level. These groups have been used in both<br />

the fish <strong>study</strong> <strong>and</strong> <strong>fry</strong> <strong>study</strong>.<br />

Stationary species: Eelpout (Zoarces viviparous)<br />

Short-spined sea scorpion (Myoxocephalus scorpius)<br />

Longspined bullhead (Taurulus bubalis)<br />

Hooknose (Agonus cataprachtus)<br />

S<strong>and</strong> lances: Small s<strong>and</strong>eel (Ammodytes tobianus)<br />

Great s<strong>and</strong>eel (Hyperoplus lanceolatus)<br />

Prey species: S<strong>and</strong> goby (Pomatoschistus minutus)<br />

Two-spotted goby (Gobiusculus flavescens)<br />

Fifteen-spined stickleback (Spinachia spinachia)<br />

Black goby (Gobius niger)<br />

Pelagic species: Baltic herring (Clupea harengus)<br />

Brisling (Sprattus sprattus)<br />

Hornfish (Belone belone)<br />

Commercial species: Turbot (Psetta maxima)<br />

Atlantic cod (Gadus morhua)<br />

Flounder (Platichthys flesus)<br />

Reef species: Eelpout (Zoarces viviparous)<br />

Common eel (Anguilla anguilla)<br />

Atlantic cod (Gadus morhua)<br />

Turbot (Psetta maxima)<br />

Short-spined sea scorpius (Myoxocephalus scorpius)<br />

Table 3.10.2. <strong>Fish</strong> species caught in the baseline studies classified into descriptive groups. Rare<br />

occurring species are not included.<br />

To evaluate the groups a power analysis was used. Results of the power analysis within<br />

the groups are presented in Table 3.10.3. At least one individual from each group was<br />

caught in at least 50% of sample efforts (One effort being: one pelagic, one benthic, one<br />

fyke net <strong>and</strong> one <strong>fry</strong> fyke net.). The lowest values were obtained for the groups of s<strong>and</strong><br />

lances <strong>and</strong> the <strong>commercial</strong> species.<br />

According to table 3.10.3 a power of 80% can be achieved if the number of sampling<br />

stations are increased from 12 to 26 in each area. Since the variance between replicates<br />

differ only slightly compared to differences between stations it is recommended to<br />

redistribute the replicates into 12 new samplings stations <strong>and</strong> adding at least 2 new<br />

sampling stations in each areas.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 95<br />

Groups Period<br />

Stationary species<br />

S<strong>and</strong> lances<br />

Prey species<br />

# Stations per area.<br />

80% power<br />

% Stations<br />

Number > 0<br />

% Stations<br />

Number= 0<br />

May 20 89.6 10.4<br />

June 14 77.1 22.9<br />

May 25 56.3 43.7<br />

June 19 77.1 22.9<br />

May 15 62.5 37.5<br />

June 11 68.8 31.2<br />

Pelagic species May 19 62.5 37.5<br />

Commercial species<br />

Reef species<br />

May 26 81.3 18.7<br />

June 14 50.0 50.0<br />

May 16 97.9 2.1<br />

June 15 83.3 16.7<br />

Table 3.10.3. Results of the power-analysis giving 80% validity in detecting 50% change, within<br />

groups. At least 50 % of the efforts made in the fish <strong>study</strong>, caught species within the<br />

group.<br />

The suggested strategy of grouping can only be carried out on the level of numbers<br />

since the morphological features, of the grouped species differ greatly in weight, length<br />

distribution <strong>and</strong> mean length.<br />

The species from the <strong>fry</strong> <strong>study</strong> were grouped into: stationary species, prey species <strong>and</strong><br />

<strong>commercial</strong> species according to the groups mentioned previous, se Table 3.10.2.<br />

Grouping of species did not lead to any progress in the perquisites needed for unbiased<br />

result, since neither normal distribution nor variance homogeneity was achieved for any<br />

of the groups. Therefore, with the statistical technique used it is not to be recommended<br />

to continue the <strong>fry</strong> <strong>study</strong>, in an attempt to obtain quantitatively measure of <strong>fry</strong> <strong>and</strong> small<br />

<strong>fry</strong> (juvenile) in the area. Qualitatively, the <strong>fry</strong> <strong>study</strong> gives good ideas about usage of<br />

the area as a spawning <strong>and</strong> nursing ground.<br />

3.10.4.2 Recommendations in relation to non-parametric multivariate analysis<br />

Adjust the sampling programme with a focus to concentrate the effort at as many<br />

stations as possible. Multiple replicates are not necessary on each station because they<br />

will be considered as one sample in the final analysis because station is the basic unit in<br />

the comparison of areas. Adjust the effort pr. station to allow for a (biological)<br />

reasonable CPUE.<br />

Use eventually the liberated effort from avoiding replicates to include an additional<br />

reference area. Concentrate the effort on the species, which will be used in the test. Is<br />

there any reason to record the number of crabs <strong>and</strong> scrimps? On the other h<strong>and</strong>, to use<br />

de multivariate ordination techniques it is essential, that any species of biological<br />

relevance be accounted for.<br />

As a starting point for the size of the sampling program, use the result from the power<br />

analysis conducted in univariate BACI-models. The example illustrated in section<br />

3.10.2.3 of a multivariate analysis carried out on the data at h<strong>and</strong> shows, that plausible<br />

effects can be traced using these methods. Exact power calculations for the multivariate<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 96<br />

ordination techniques dem<strong>and</strong>s a very extensive simulation <strong>study</strong>, which is outside the<br />

scope of the programme of this baseline <strong>study</strong>.<br />

Consider the time of sampling thorough. A significant difference was found between<br />

most of the sampling occasions <strong>and</strong> the wind farm area <strong>and</strong> reference area at certain<br />

times It may be more biological relevant to time the sampling occasion according to a<br />

yearly recurrent occasion which can established by supervision instead of using fixed<br />

dates.<br />

Use the distance based multivariate ordination technique to analyse the data <strong>and</strong> the<br />

effects in the BACI–model. Refer the results to the explanations, which are based on the<br />

specific contribution of each individual species. Do not include species that are not<br />

directly or indirectly sensitive to expected impact from the wind farm.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 97<br />

4. Commercial <strong>fishery</strong><br />

4.1. Methods<br />

SEAS put forward the following hypothesis before the studies was conducted:<br />

The establishment of the wind farm will reduce the opportunities for fishing<br />

in <strong>and</strong> around the immediate area (i.e. the site of the wind farm) as a result<br />

of the mere physical structure <strong>and</strong> laying of cables.<br />

The fishermen’s logbooks, which form the basis for reports to the Directorate of<br />

<strong>Fish</strong>eries, show the l<strong>and</strong>ings for various species caught within a certain area (for<br />

example 38 G1, which includes Røds<strong>and</strong>, see appendix 9.3.). As the catch reports to the<br />

Ministry cover a wider area than the area studied in connection with the proposed wind<br />

farm (see appendix 9.2.), it is only the fishermen themselves, who can assess the<br />

proportion of the reported catch that came from the area south of Røds<strong>and</strong> It was<br />

therefore essential to make direct contact with these fishermen.<br />

4.1.1. Interviews with local <strong>commercial</strong> fishermen<br />

Advertisements were placed in 3 Danish publications addressed to <strong>commercial</strong> or semi<strong>commercial</strong><br />

fishermen. In 1999, attempts were made to arrange a meeting with each of<br />

the fishermen who worked in the area south of Røds<strong>and</strong>. Through personal meetings,<br />

the catch of each fisherman was established <strong>and</strong> questions concerning fish biology were<br />

discussed. In 1999, agreements were successfully made with nine fishermen who work<br />

in the area under <strong>study</strong> (wind mill area <strong>and</strong> reference area).<br />

It was agreed to have one or two meetings in the fishing harbours of Kramnitse, Gedser,<br />

Rødbyhavn <strong>and</strong> Hesnæs. Contact was made to other relevant harbours as Guldborg,<br />

Nakskov <strong>and</strong> <strong>Nysted</strong>. In most cases, the chairman of the local association was<br />

contacted. The response was that there were no fishermen with special interest in that<br />

area.<br />

The fishermen brought various types of evidence of catches to the meetings. Data for<br />

the catches are thus based on the fishermen’s own statements <strong>and</strong> reports in the form of<br />

logbooks, lot-sheets <strong>and</strong> annual statements from the Directorate of <strong>Fish</strong>eries<br />

supplemented with the fishermen’s own personal information about fishing sites. All<br />

interviews <strong>and</strong> records were treated as confidential.<br />

In 2002 a supplementary interview with the fishermen were done by phone, <strong>and</strong> the<br />

fishermen were asked to send relevant data to Bio/consult.<br />

Subjects for interview:<br />

All the fishermen interviewed were asked about the following (see appendix 9.1)<br />

• The basis of their catch reports (lot sheets, logbooks, annual statements from the<br />

Directorate for <strong>Fish</strong>eries, etc.).<br />

• Catch areas (a description of which part of the area they fished)<br />

• Type of nets<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 98<br />

• Approximate number of nets used in the area of <strong>study</strong><br />

• L<strong>and</strong>ing harbour<br />

• Approximate number of fishing days per year spent in the area of <strong>study</strong><br />

• L<strong>and</strong>ings of various species in the years 1997 to 2001.<br />

• Season <strong>and</strong> the reason for choosing this season<br />

• Other remarks<br />

4.1.2. Quality assurance<br />

The quality assurance system (QA) used in completing this task is built on the<br />

principles of the quality assurance system used by Carl Bro as.<br />

In relation to collecting <strong>and</strong> reporting data, a project manual was drawn up containing a<br />

description of the guidelines for carrying out each section of the task.<br />

It was not possible to assure the quality of the data collected from the fishermen. The<br />

collected data, however, were compared with official catch statistics from the Ministry<br />

of Food, Agriculture <strong>and</strong> <strong>Fish</strong>eries, although these figures are much less detailed.<br />

4.1.3. Review of existing information<br />

Material was obtained from the Directorate for <strong>Fish</strong>eries regarding the recorded<br />

l<strong>and</strong>ings in area 38G1 (ICES division of Danish coastal waters, see appendix 9.2.)<br />

The data recorded in logbooks do not include catches of fish under the coastal water<br />

regulation, as these catches were only recorded as having been made in ICES area IIIC<br />

(see appendix 9.2.). Including data for the whole area IIIC in the evaluation of the fish<br />

population at Røds<strong>and</strong> would not make sense, as this information covers the whole of<br />

the Belt area <strong>and</strong> the Baltic.<br />

4.2. Results<br />

This section examines the extent of the <strong>fishery</strong> from the data collected for 1997 to 2001,<br />

including:<br />

• Types of nets used at Røds<strong>and</strong><br />

• Intensity of fishing<br />

• Total annual catch of <strong>commercial</strong>ly important species<br />

• Total annual catch from trawling<br />

• Total annual catch with nets <strong>and</strong> hooks<br />

• The fishermen’s usual areas for using nets <strong>and</strong> hooks<br />

• Recorded trawling routes<br />

• The season for <strong>commercial</strong>ly important fish<br />

• Other information gathered from the fishermen including the reason for the<br />

seasons<br />

In addition:<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 99<br />

• Catch data reported to the Directorate for <strong>Fish</strong>eries for area 38G1 from 1982 to<br />

2001<br />

4.2.1. The scope of the <strong>fishery</strong><br />

A complete presentation of the fishermen’s statements is attached as appendix 9.6.<br />

Provision has been made for missing results from individual fishermen (some fishermen<br />

did not want to report their data).<br />

At least ten <strong>commercial</strong> fishermen fished at Røds<strong>and</strong> from 1997 to 2001. These<br />

consisted of three trawl fisherman, six gill net fishermen <strong>and</strong> one pound net fisherman.<br />

The fish was mainly l<strong>and</strong>ed at Gedser <strong>and</strong> Kramnitse (transferred to Esbjerg),<br />

Rødbyhavn <strong>and</strong> Hesnæs.<br />

Tables 4.2.1 <strong>and</strong> 4.2.2 show the type of nets <strong>and</strong> the intensity of the fishing.<br />

Type of fishing tackle 1997 1998 1999 2000 2001<br />

Turbot net, 220 mm mesh 430 430 430 350 350<br />

Cod net, 110–120 mm mesh 185 185 185 120 120<br />

Pound net 6 8 18 5 7<br />

Cod net sp. 375 375 375 ? ?<br />

Trawl 3 3 3 2 2<br />

Table 4.2.1. Approximate number of nets used at Røds<strong>and</strong> in 1997-2001 by type. The number of<br />

nets is an average.<br />

<strong>Fish</strong>ing intensity (number of fishing<br />

tackle * number of fishing days<br />

1997 1998 1999 2000 2001<br />

Turbot net, 220 mm mesh 26,860 22,380 25,500 5,950 10150<br />

Cod net, 110–120 mm mesh 17,700 12,100 16,000 2,040 3480<br />

Pound net 540 720 1,620 450 630<br />

Cod net sp. 22,500 22,500 22,500 ? ?<br />

Trawl 81 81 79 135 55<br />

Table 4.2.2. Approximate fishing intensity (number of nets used * number of fishing days per net) at<br />

Røds<strong>and</strong> in 1997-2001 by type.<br />

Table 4.2.3 <strong>and</strong> Figure 4.2.1 show the total catch with a breakdown of species at<br />

Røds<strong>and</strong> in 1997-2001. Tables 4.2.4 <strong>and</strong> 4.2.5 <strong>and</strong> Figures 4.2.2 <strong>and</strong> 4.2.3 show the<br />

catch with a breakdown of trawling <strong>and</strong> net fishing.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 100<br />

Total annual catch (tons) Cod Turbot Flounder Plaice Dab Eel<br />

1997 136,5 1,8 1,3 0,2 0,7 2,2<br />

1998 106,5 1,3 0,8 0,2 0,6 1,3<br />

1999 139,1 3,0 0,8 0,2 0,6 4,5<br />

2000 107,2 0,1 0,3 0,0 0,8 1,4<br />

2001 36,4 0,2 2,2 0,0 1,5 2,7<br />

Table 4.2.3. The total catch in the area of the wind farm <strong>and</strong> the reference area south of Røds<strong>and</strong> in<br />

1997-2001, divided into the species cod, turbot, flounder, plaice, dab <strong>and</strong> silver eel,<br />

which are the only species of <strong>commercial</strong> importance. The data was gathered through<br />

interviewing the fishermen.<br />

Trawling. Total annual catch (tons) Cod Turbot Flounder Plaice Dab Eel<br />

1997 72,6 0,3 0,8 0,2 0,6 0,0<br />

1998 52,4 0,3 0,8 0,2 0,6 0,0<br />

1999 64,9 0,3 0,8 0,2 0,6 0,0<br />

2000 87,1 0,1 0,3 0,0 0,8 0,0<br />

2001 25,8 0,2 2,2 0,0 1,4 0,0<br />

Table 4.2.4. The total number of fish caught by trawling in the wind farm area <strong>and</strong> the reference area<br />

south of Røds<strong>and</strong> in 1997-2001. Data is only given for species of <strong>commercial</strong><br />

importance. The data was gathered through interviewing the fishermen.<br />

Net fishing. Total annual catch (tons) Cod Turbot Flounder Plaice Dab Eel<br />

1997 63,9 1,5 0,6 0,0 0,0 2,2<br />

1998 54,2 1,1 0,0 0,0 0,0 1,3<br />

1999 74,1 2,7 0,0 0,0 0,0 4,5<br />

2000 20,1 0,0 0,0 0,0 0,0 1,4<br />

2001 10,6 0,0 0,0 0,0 0,2 2,7<br />

Table 4.2.5. The total number of fish caught with nets <strong>and</strong> hooks in the wind farm area <strong>and</strong> the<br />

reference area south of Røds<strong>and</strong> in 1997-2001. Data is only given for cod, turbot,<br />

flounder, plaice, dab <strong>and</strong> silver eel. The data was gathered through interviewing the<br />

fishermen.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 101<br />

Annual catch (ton) .<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Total catch at Røds<strong>and</strong> 1997-2001<br />

Figure 4.2.1. The total annual catch by <strong>commercial</strong> fishermen of various species within the wind farm<br />

area <strong>and</strong> the reference area south of Røds<strong>and</strong> from 1997 to 2001.<br />

Annual catch (ton) .<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Cod Turbot Flounder Dab Eel<br />

Trawl catch at Røds<strong>and</strong> 1997 - 2001<br />

Cod Turbot Flounder Dab Eel<br />

Figure 4.2.2. The total annual catch by trawl fishermen of various species within the wind farm area<br />

<strong>and</strong> the reference area south of Røds<strong>and</strong> from 1997 to 2001.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001


Bio/consult as Page 102<br />

Annual catch (ton) .<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Catch with fishing nets/hooks at Røds<strong>and</strong> 1997 - 2001<br />

Cod Turbot Flounder Dab Eel<br />

Figure 4.2.3. The total annual catch with fishing nets <strong>and</strong> hooks of various species within the wind<br />

farm area <strong>and</strong> the reference area south of Røds<strong>and</strong> from 1997 to 2001.<br />

The above tables <strong>and</strong> figures show that virtually the same amount of cod was caught in<br />

<strong>and</strong> around the wind farm area by trawling <strong>and</strong> with nets from 1997 to 1999. In 2000 to<br />

2001 the picture was different. The net <strong>fishery</strong> was reduced <strong>and</strong> net fishermen caught<br />

less cod <strong>and</strong> turbot than was caught by trawling. Silver eels were only caught by net<br />

fishermen all five years. Flounder, plaice <strong>and</strong> dab were a by-catch in both cod nets <strong>and</strong><br />

turbot nets. Silver eels were caught with pound nets. It is evident that 1999 was a good<br />

year for turbot <strong>and</strong> silver eels for the net fishermen. In 2000 <strong>and</strong> 2001 only a few turbot<br />

was caught.<br />

4.2.2. <strong>Fish</strong>ing grounds<br />

The number of fishermen working in the area of the windmills <strong>and</strong> in the reference area<br />

varied from year to year (se table 4.2.6.)<br />

Year Number of net fishermen Number of trawl fishermen Total number of fishermen<br />

1997 6 3 9<br />

1998 6 3 9<br />

1999 6 3 9<br />

2000 3 2 5<br />

2001 2 2 4<br />

Table 4.2.6. Number of fishermen working in the area of <strong>study</strong> divided between trawling <strong>and</strong> net<br />

fishing.<br />

Nine <strong>commercial</strong> fishermen were recorded to work in the area concerned from 1997 to<br />

1999. Of these, seven were net fishermen <strong>and</strong> three trawl fishermen. From 2000 to 2001<br />

the number of net fishermen recorded to work in the mill area <strong>and</strong> reference area were<br />

reduced to 3 net fishermen in year 2000 <strong>and</strong> 2 in 2001. 3 fishermen from Kramnitze<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001


Bio/consult as Page 103<br />

whose catch were registered tin 1997 to 1999 claimed they were still fishing in the area<br />

but refused to take part of the investigation in 2000 <strong>and</strong> 2001, <strong>and</strong> are therefore not<br />

registered from 2000 <strong>and</strong> 2001. Du to declining catch one fisherman from Gedser<br />

stopped in 1999 <strong>and</strong> another only reported his catch form 2000.<br />

The number of trawl fishermen operating in the mill area <strong>and</strong> reference area were<br />

reduced from 3 fishermen in 1997-1999 to 2 fishermen i year 2000 <strong>and</strong> 2001.<br />

The fishermen agreed that the area is good for fishing <strong>and</strong> that the food chain includes<br />

s<strong>and</strong>eel <strong>and</strong> shrimp, which are eaten particularly by cod <strong>and</strong> turbot.<br />

Appendix 9.4. show the parts of the wind farm <strong>and</strong> the reference area that are fished by<br />

trawling <strong>and</strong> with nets. The boundaries should be taken as rough sketches of the fishing<br />

grounds of the individual fishermen.<br />

Effectively, the whole area south of Røds<strong>and</strong> is fished with cod <strong>and</strong> turbot nets (see<br />

appendix 9.4.). <strong>Fish</strong>ing takes place in both the wind farm area <strong>and</strong> the reference area.<br />

Gill netters 1 <strong>and</strong> 5 are based in the same harbour <strong>and</strong> report that they fish the same<br />

areas. The same is true for gill net fishermen 2, 3 <strong>and</strong> 4.<br />

Below the 9–10 metre bathymetric contour south of Røds<strong>and</strong>, trawling takes place,<br />

mainly for cod. Seasons for the <strong>commercial</strong>ly important species <strong>and</strong> other information<br />

gathered from the fishermen, including the reason for the season.<br />

<strong>Fish</strong>ing is impeded in the summer by filamentous annual algal species (Ectocarpus spp.<br />

<strong>and</strong> Pilayella spp). In the deeper waters, fishing is also impeded in summer by the<br />

presence of crabs. The severe south-western <strong>and</strong> western storms make fishing difficult<br />

in the winter.<br />

The fishermen say that s<strong>and</strong>eels bury themselves in the s<strong>and</strong> in the evening <strong>and</strong> come up<br />

again in the morning, when they are prey for cod <strong>and</strong> turbot in particular. “If the sun<br />

shines early in the spring so the s<strong>and</strong>eels come out, there are lots of cod <strong>and</strong> turbot.”<br />

According to the fishermen, there is roe in the cod from March until June. The roe starts<br />

being released by the cod in April. There is no closed season for cod fishing (see<br />

appendix 9.7.), but cod quotas apply.<br />

Three trawl fisherman have been working at Røds<strong>and</strong> from 1997 to 2001. They fish<br />

from April to June <strong>and</strong> from September to November (see appendix 9.5). It is said that<br />

“the area along the southern part of Røds<strong>and</strong> below the 9–10 metre zone offers good<br />

fishing for trawling, especially in warm weather, as the cod gather over the stones there.<br />

As it becomes colder, they move out into deeper water.”<br />

Pound net fishing is done in September, October <strong>and</strong> November (see appendix 9.5),<br />

mainly for silver eel, which comm<strong>and</strong> a high price.<br />

The gill net <strong>fishery</strong> for cod takes place from December to May (see appendix 9.5). A<br />

single fisherman catches cod at Røds<strong>and</strong> all year round, but the cod in general is mainly<br />

caught during winter <strong>and</strong> spring.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 104<br />

Turbot is mainly caught in the spring <strong>and</strong> summer up to the spawning season. It is<br />

generally agreed that the area serves as spawning ground for turbot. Turbot is protected<br />

below the base line from 1 June to 31 July. The base line is north of the trawling route<br />

(appendix 9.7.). This means that trawling for turbot is limited by seasonal restrictions<br />

but gill netting is not.<br />

4.2.3. Catches recorded in the Danish Directorate for <strong>Fish</strong>eries logbook records<br />

from 1982 to 2001<br />

Table 4.2.7, 4.2.8 <strong>and</strong> 4.2.9 <strong>and</strong> Figures 4.2.41 <strong>and</strong> 4.2.5 show catches for the<br />

<strong>commercial</strong>ly important species from 1982 until 2001 in area 38G1, taken from the<br />

logbook records of the Directorate for <strong>Fish</strong>eries.<br />

As shown in Table 4.2.7, the most important species for <strong>fishery</strong> in area 38G1 are<br />

brisling, dab, herring <strong>and</strong> cod. Turbot is also important as it fetches a high price.<br />

38G1 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991<br />

Brisling 0 9 0 0 0 0 45 88 113 80<br />

Whiting 0 1 0 0 0 0 44 1 3 6<br />

Dab 9 2 1 1 1 11 27 32 12 15<br />

Turbot 0 0 0 0 0 0 2 1 1 1<br />

Plaice 0 0 1 0 0 2 0 0 0 0<br />

Baltic herring 0 169 0 0 10 6 8 420 114 180<br />

Flounder 18 2 1 0 1 1 3 8 11 6<br />

Atlantic cod 77 154 133 6 2 39 88 25 12 25<br />

38G1 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001<br />

Brisling 933 796 921 286 353 256 309 230 285 1209<br />

Whiting 11 11 5 4 1 3 1 2 6 3<br />

Dab 16 9 62 52 34 19 19 35 28 29<br />

Turbot 1 1 7 13 10 3 3 4 6 3<br />

Plaice 0 0 0 2 5 3 12 21 23 22<br />

Baltic herring 400 366 931 629 143 493 744 318 194 965<br />

Flounder 2 1 2 4 9 12 18 13 69 85<br />

Atlantic cod 18 52 104 415 585 790 452 648 934 625<br />

Table 4.2.7. Total catches of most important <strong>commercial</strong> species in area 38G1 (source: Danish<br />

Directorate for <strong>Fish</strong>eries logbook records).<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 105<br />

38G1 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991<br />

Eel 0 0 0 0 0 0 0 0 0 0<br />

Scrimp 0 0 0 0 0 0 0 0 0 0<br />

Brisling 0 0 0 0 0 0 0 0 0 0<br />

Whiting 0 0 0 0 0 0 0 0 0 0<br />

Dab 0 0 0 0 0 0 0 0 0 0<br />

Turbot 0 0 0 0 0 0 0 0 0 0<br />

Plaice 0 0 0 0 0 0 0 0 0 0<br />

Baltic herring 0 0 0 0 0 0 0 0 0 0<br />

Flounder 0 0 0 0 0 0 0 0 0 0<br />

Atlantic cod 0 0 47 0 0 3 0 1 0 7<br />

38G1 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001<br />

Eel 0 0 1 1 4 0 0 0 0 0<br />

Scrimp 0 0 1 0 0 0 0 0 0 0<br />

Brisling 0 0 0 0 0 0 0 0 0 1<br />

Whiting 0 0 0 0 0 0 0 0 0 0<br />

Dab 0 0 1 6 3 2 1 3 8 5<br />

Turbot 0 0 6 0 7 1 0 2 3 2<br />

Plaice 0 0 0 8 1 2 1 5 8 12<br />

Baltic herring 0 0 0 16 0 0 0 0 0 0<br />

Flounder 0 0 0 1 3 3 3 2 28 43<br />

Atlantic cod 0 0 47 168 165 69 58 86 80 114<br />

Table 4.2.8. Net <strong>and</strong> hook catches of most important <strong>commercial</strong> species in tons in area 38G1<br />

(source: Danish Directorate for <strong>Fish</strong>eries logbook records).<br />

ton<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1982<br />

1983<br />

1984<br />

1985<br />

1986<br />

1987<br />

Net <strong>and</strong> hook catches in area 38G1<br />

1988<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

Year<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

Figure 4.2.4. Net <strong>and</strong> hook catches in area 38G1 from year 1982 to year 2001.<br />

Atlantic cod<br />

Flounder<br />

Baltic herring<br />

Plaice<br />

Turbot<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Dab<br />

Whiting<br />

Brisling


Bio/consult as Page 106<br />

38G1 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991<br />

Eel 0 0 0 0 0 0 0 0 0 0<br />

Scrimp 0 0 0 0 0 0 0 0 0 0<br />

Brisling 0 1 0 0 0 0 45 88 113 80<br />

Whiting 0 2 0 0 0 0 44 1 3 6<br />

Dab 9 0 1 1 0 10 27 32 12 15<br />

Turbot 0 0 0 0 0 0 2 1 1 1<br />

Plaice 0 0 1 0 0 1 0 0 0 0<br />

Baltic herring 18 169 0 0 0 0 8 420 114 160<br />

Flounder 89 2 1 0 0 1 3 8 11 6<br />

Atlantic cod 124 154 86 6 2 26 88 25 12 17<br />

38G1 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001<br />

Eel 0 0 0 0 0 0 0 0 0 0<br />

Scrimp 0 0 0 0 0 0 0 0 0 0<br />

Brisling 933 796 921 286 353 256 309 230 285 1209<br />

Whiting 11 11 5 4 1 3 1 2 6 4<br />

Dab 16 9 61 46 31 17 18 32 20 25<br />

Turbot 1 1 1 4 3 2 3 1 3 1<br />

Plaice 0 0 0 2 3 1 10 16 14 10<br />

Baltic herring 400 338 931 613 143 493 744 318 194 965<br />

Flounder 2 1 2 2 7 10 15 11 42 41<br />

Atlantic cod 18 52 58 248 420 722 394 562 854 512<br />

Table 4.2.9. Trawl <strong>and</strong> not catches (tons) of most important <strong>commercial</strong> species in area 38G1<br />

(source: Danish Directorate for <strong>Fish</strong>eries logbook records).<br />

ton<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Trawl <strong>and</strong> not catches in area 38G1<br />

1982<br />

1983<br />

1984<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

Year<br />

Figure 4.2.5. Trawl <strong>and</strong> not catches in area 38G1 from year 1982 to year 2001<br />

Atlantic cod<br />

Flounder<br />

Baltic<br />

herring<br />

Plaice<br />

Turbot<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Dab<br />

Whiting<br />

4.2.4. Expectations for the occurrence of <strong>commercial</strong>ly important species<br />

On the basis of sections 4.2.1., 4.2.2. <strong>and</strong> 4.2.3. it can be anticipated that the<br />

<strong>commercial</strong>ly important species (cod, whiting, herring, brisling, whiting, flounder, dab,<br />

turbot <strong>and</strong> plaice) will be found in catches in the area around Røds<strong>and</strong>.


Bio/consult as Page 107<br />

4.2.5. Comparison between information on catches from the interview <strong>and</strong> data<br />

from the Directorate of <strong>Fish</strong>eries from area 38G1.<br />

The total catches from Røds<strong>and</strong> recorded in this <strong>study</strong> (Table 4.2.3) can be compared<br />

with data from the Directorate for <strong>Fish</strong>eries (logbook data from area 38G1 (Table<br />

4.2.10. <strong>and</strong> appendix 9.3.).<br />

Figures 4.2.6 <strong>and</strong> 4.2.7 compares table 4.2.3 <strong>and</strong> table 4.2.10.<br />

Area 38G1<br />

Total annual catch (tons)<br />

Cod Turbot Flounder Plaice Dab Silver eel<br />

1997 790 3 12 3 19 0<br />

1998 452 3 18 12 19 0<br />

1999 822 3 11 20 34 0<br />

2000 934 6 69 23 28 0<br />

2001 625 3 85 22 29 0<br />

Table 4.2.10. Total catch in area 38G1 in 1997 to 2001 for the species cod, turbot, flounder, plaice,<br />

dab <strong>and</strong> silver eel. The data is from the Directorate for <strong>Fish</strong>eries’ logbook records.<br />

Total aanual catch (tons) .<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Comparison between the reported catches in area 38G1 <strong>and</strong> the total<br />

annual catches as recorded in the interview survey<br />

0<br />

38G1<br />

1997 1998 1999 2000 2001<br />

Atlantic cod<br />

Baltic herring<br />

Brisling<br />

interview<br />

38G1<br />

interview<br />

38G1<br />

Figure 4.2.6. Comparison between the reported catches in area 38G1 <strong>and</strong> the total annual catches as<br />

recorded in the interview survey.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

interview<br />

38G1<br />

Year recorded <strong>and</strong> source of data<br />

interview<br />

38G1<br />

interview


Bio/consult as Page 108<br />

Total annual catch (tons) .<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Comparison between the reported catches in area 38G1 <strong>and</strong> the total<br />

annual catches as recorded in the interview survey<br />

1997 1998 1999 2000 2001<br />

38G1<br />

Flounder<br />

Plaice<br />

Turbot<br />

Whiting<br />

Eel<br />

Dab<br />

interview<br />

38G1<br />

interview<br />

38G1<br />

Figure 4.2.7. Comparison between the reported catches in area 38G1 <strong>and</strong> the total annual catches as<br />

recorded in the interview survey.<br />

The catch of cod in the area south of Røds<strong>and</strong> was amount to between 1 /8 <strong>and</strong> 1 /5 of the<br />

total data from logbook records for area 38G1 (Figure 4.2.6). The catches of flounder,<br />

plaice <strong>and</strong> dab in the area amount to just a small part of the catch in area 38G1 (figure<br />

4.2.7).<br />

The interviews did not provide information about catches of herring, whiting <strong>and</strong><br />

brisling at Røds<strong>and</strong> (see figures 4.2.6 <strong>and</strong> 4.2.7).<br />

There are no records for silver eel in these logbooks (figure 4.2.7), as the fishermen who<br />

catch silver eel around Røds<strong>and</strong> sail under coastal waters regulations. This means that<br />

data from these fishermen is not included in the logbook data for area 38G1.<br />

Vessels of less than 10 metres, or of under 12 metres but with trips of less than 24<br />

hours, or vessels that for other reasons are exempted from the Ministry of Agriculture<br />

<strong>and</strong> <strong>Fish</strong>eries <strong>and</strong> also sail under coastal waters regulations are exempted under<br />

Statutory Order no. 91 from the obligation to complete logbooks (appendix 9.8.)<br />

There can also be uncertainty in recording the fish on a l<strong>and</strong>ing as being from a single<br />

area, as the fishermen fish several areas within the same day.<br />

As discussed earlier, it is only the fishermen themselves who are able to assess how<br />

large a part of their catch originates from Røds<strong>and</strong>. The accuracy of their assessment<br />

inevitably depends on their memories.<br />

An interview survey from Øresund (Danish Institute for <strong>Fish</strong>eries Research, 1994)<br />

suggested that general problems with the official <strong>fishery</strong> statistics are:<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

interview<br />

38G1<br />

Year recorded <strong>and</strong> source of data<br />

interview<br />

38G1<br />

interview


Bio/consult as Page 109<br />

1) Unreported catches, especially of cod, eel <strong>and</strong> herring.<br />

2) Reports of catches from areas other than those actually fished.<br />

3) Reports of species subjected to restrictions as valuable species without<br />

restrictions.<br />

Any assessment as to how much this affects the official <strong>fishery</strong> statistics for area 38G1<br />

would be little mere speculation.<br />

However, the turbot <strong>fishery</strong> in the area under examination, including the area of the<br />

wind farm in 1999, appears to correspond to the total catch reported from area 38G1<br />

(figure 4.2.7). The turbot <strong>fishery</strong> in the area in 1997 <strong>and</strong> 1998 amounts to about 1 /3 of<br />

the catch of turbot in area 38G1. In 2000 <strong>and</strong> 2001, only a small part of the turbot<br />

caught in area 38G1 appears to be caught in the area of the wind farm <strong>and</strong> in the<br />

reference area.<br />

Six out of seven gill net fishermen come under the coastal waters regulations. These<br />

catches were not included in the data for area 38G1. All trawl fishermen kept a logbook<br />

<strong>and</strong> data are included in the data for area 38G1.<br />

There may well be more turbot caught in area 38G1 than shown in the official statistics<br />

for the area. As the fishermen consider Røds<strong>and</strong> to be a spawning ground for turbot, it is<br />

also probable that a large part of the catch of turbot in area 38G1 in 1997-1999 is from<br />

Røds<strong>and</strong>.<br />

4.2.6. Reported catches in area 38G1 from 1982 to 2001<br />

Figures 4.2.8 <strong>and</strong> 4.2.9 (as well as table 4.2.7) show the catches for <strong>commercial</strong>ly<br />

important species from 1982 until 1999 in area 38G1, taken from the logbook records of<br />

the Directorate for <strong>Fish</strong>eries.<br />

Catch, kg<br />

90.000<br />

80.000<br />

70.000<br />

60.000<br />

50.000<br />

40.000<br />

30.000<br />

20.000<br />

10.000<br />

0<br />

1982<br />

Catch of whiting, dab, turbot, plaice <strong>and</strong> flounder in area 38G1 from<br />

1982-1999<br />

1983<br />

Whiting<br />

Dab<br />

Turbot<br />

Plaice<br />

Flounder<br />

1984<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1990<br />

Figure 4.2.8. Catch of whiting, dab, turbot, plaice <strong>and</strong> flounder in area 38G1 from 1982 to 2001.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

1991<br />

1992<br />

Year<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001


Bio/consult as Page 110<br />

Very low catches were recorded in area 38G1 in the early 1980s. Towards the end of the<br />

1980s <strong>and</strong> the start of the 1990s, higher catches of dab <strong>and</strong> flounder were recorded,<br />

although the catch decreased again in 1992 <strong>and</strong> until 1994. Since the early 1990s, there<br />

has been an increase in the annual catch of herring, flounder, plaice <strong>and</strong> cod. The catch<br />

of turbot peaked in 1995.<br />

Catch, kg<br />

1.400.000<br />

1.200.000<br />

1.000.000<br />

800.000<br />

600.000<br />

400.000<br />

200.000<br />

Figure 4.2.9. Catch of brisling, herring <strong>and</strong> cod in area 38G1 from 1982 to 2001.<br />

4.2.7. Estimate of the catch within the wind farm site alone<br />

It was not possible to ascertain the precise catch within the wind farm site alone,<br />

because the fishermen’s daily records only show the catch for the whole area south of<br />

Røds<strong>and</strong>. However, an approximate estimate of the amounts caught in the wind farm<br />

area can be made for the gill net <strong>fishery</strong>. The estimate is based on the proportion the<br />

wind farm occupies in relation to the entire area fished. It is assumed that:<br />

1) Net fishing is conducted with the same effort in the area of the wind farm as in the<br />

rest of the area south of Røds<strong>and</strong> (appendix 9.4.).<br />

2) The wind farm site amounts to approximately 15% of the total area for which<br />

catches are recorded).<br />

It is thus possible to find the annual gill net catch within the wind farm site itself from<br />

1997 until 2001 (see table 4.2.11). There is no trawling within the proposed site.<br />

Estimate of fish catches with nets<br />

in the area of the wind farm<br />

0<br />

1982<br />

Catch of brisling, herring <strong>and</strong> cod in area 38G1 from<br />

1982-2001<br />

Brisling<br />

Herring<br />

Cod<br />

1984<br />

1986<br />

1988<br />

Cod Turbot Flounder Plaice Dab Silver eel<br />

1997 9.6 t .23 t .10 t 0 t 0 t .33 t<br />

1998 8.1 t .16 t 0 t 0 t 0 t .20 t<br />

1999 11.1 t .41 t 0 t 0 t 0 t .68 t<br />

2000 3.0 t .00 t 0 t 0 t 0 t .21 t<br />

2001 1,6 t .00 t 0 t 0 t .03 t .41 t<br />

Table 4.2.11. Approximation of the total annual catch with nets in the wind farm site itself.<br />

1990<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

1992<br />

Year<br />

1994<br />

1996<br />

1998<br />

2000


Bio/consult as Page 111<br />

4.3. Discussion<br />

As expected, cod, flounder, dab, turbot <strong>and</strong> plaice are fished at Røds<strong>and</strong>. In addition,<br />

silver eel are caught from September to November. The interviews did not produce any<br />

information about catches of whiting, herring or brisling.<br />

At least ten <strong>commercial</strong> fishermen have fished at Røds<strong>and</strong> from 1997 to 2001. These<br />

consist of three trawl fishermen, six gill net fishermen <strong>and</strong> one pound net fisherman.<br />

The fish were mainly l<strong>and</strong>ed at Gedser <strong>and</strong> Kramnitse, Rødbyhavn <strong>and</strong> Hesnæs.<br />

The fishermen agreed that the area is good for fishing mainly because of the abundance<br />

s<strong>and</strong>eel <strong>and</strong> shrimp, which serves especially as food for cod <strong>and</strong> turbot.<br />

Three trawl fishermen working at Røds<strong>and</strong> have been recorded. They fish, especially for<br />

cod, in the area south of the base line, from April to June <strong>and</strong> from September to<br />

November. Net fishing for cod takes place mainly from December to May effectively in<br />

the whole area south of Røds<strong>and</strong>.<br />

Turbot is mainly caught in the spring <strong>and</strong> summer up to spawning. There is agreement<br />

that the area serves as a spawning ground for turbot.<br />

Small numbers of plaice, flounder <strong>and</strong> dab are part of the by-catch for cod <strong>and</strong> turbot<br />

fishermen.<br />

Silver eel is easiest caught in pound nets from September to November because of their<br />

migration towards the Sargasso Sea.<br />

The annual catch of all species except turbot from 1997 to 1999 <strong>and</strong> silver eel amounts<br />

to a small part of the total recorded in logbooks from area 38G1.<br />

There are no records for silver eel in the logbooks, as the fishermen who catch silver eel<br />

around Røds<strong>and</strong> operate under coastal waters regulations. This means that data from<br />

these fishermen is not included in the logbook data for area 38G1.<br />

The total catches of turbot apparently equalled approximately 1 /3 of the turbot catch in<br />

the official statistics for area 38G1 from 1997 to 1999. The difference can partly be<br />

explained by the fact that the fishermen who catch turbot sail under the coastal waters<br />

regulations, <strong>and</strong> so their figures are not included in the official catch statistics for area<br />

38G1. In the years 2000 <strong>and</strong> 2001 only little turbot were recorded top be caught in the<br />

area of the wind farm <strong>and</strong> in the reference area (some fishermen claimed they were<br />

fishing in the area but refused to take part of the investigation these two years).<br />

The official catch statistics show very low catches in area 38G1 in the early1980s.<br />

Towards the end of the 1980s <strong>and</strong> the start of the 1990s, higher catches of dab <strong>and</strong><br />

flounder were recorded, although the catch decreased again from 1992 until 1994. From<br />

the early 1990s, there has been an increase in the annual catch of herring, flounder,<br />

plaice <strong>and</strong> cod. The catch of turbot peaked in 1995.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 112<br />

In the years 1997 to 2001, the annual net <strong>fishery</strong> catch in the wind farm site itself can be<br />

estimated as amounting to between 1,6 <strong>and</strong> 11.1 tons of cod, between 0.00 <strong>and</strong> 0.41 tons<br />

of turbot <strong>and</strong> between 0.20 <strong>and</strong> 0.68 tons of silver eel. There is no trawling within the<br />

proposed site itself.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 113<br />

5. Conclusion<br />

5.1. <strong>Fish</strong> <strong>study</strong><br />

• In the fish <strong>study</strong>, selected indicator species showed no effect of interaction in time<br />

<strong>and</strong> space. Eelpout, short-spined sea scorpion, turbot <strong>and</strong> flounder show<br />

homogeneity in variance. Turbot <strong>and</strong> flounder however do not fulfil the criterion<br />

of normal distributed data.<br />

• The sampling programme should be adjusted with a focus to concentrate the effort<br />

at as many stations as possible. Multiple replicates are not necessary on each<br />

station because they will be considered as one sample in the final analysis because<br />

station is the basic unit in the comparison of the wind farm area <strong>and</strong> the reference<br />

area.<br />

• The fish <strong>study</strong> should be restructured directing replicates into new stations <strong>and</strong><br />

adding stations to achieve at least 26 stations in each area. The period should as<br />

well be reconsidered in an attempt to avoided filamentous algae blooming.<br />

• A significant difference was found between most of the sampling occasions in the<br />

wind farm area <strong>and</strong> reference area at certain times. It may be more biological<br />

relevant to time the sampling occasions according to a yearly recurrent occasion,<br />

which can be established by supervision instead of using, fixed dates. The period<br />

should as well be reconsidered in an attempt to avoided filamentous algae<br />

blooming.<br />

• Univariate <strong>and</strong> multivariate tests in the normal linear model can also be made<br />

using groupings of the species. The grouping will reduce the occurrence of empty<br />

samples <strong>and</strong> improve the possibility to fulfil the conditions of the analysis. The<br />

grouping should be chosen a priori <strong>and</strong> not based on the results of the<br />

investigation. It is only possible to create functional groups if it is considered<br />

biological relevant. Especially the grouping in pelagic, stationary <strong>and</strong> reef species<br />

shows statistical potential.<br />

• Grouping fish shows potential to improve the statistical analysis, especially the<br />

groups of stationary, prey <strong>and</strong> reef species shows good statistical strength. S<strong>and</strong><br />

lances, pelagic <strong>and</strong> <strong>commercial</strong> species show no statistical improvement due to<br />

grouping.<br />

• One of the main problems of the investigation was to verify if the reference area<br />

can be used as control area in a future monitoring programme of the effects from<br />

the wind farm. The answer to that question requires a selection of the optimal<br />

statistical model, which depends on various factors such as the characteristics of<br />

the variance <strong>and</strong> the distribution of the data. The first statistical analysis of the<br />

data using ANOVA among others revealed problems, which resulted in a<br />

refinement of the statistical techniques. The classic BACI analysis does not take<br />

into account a high frequency of empty samples, which can result in erroneous<br />

interpretation of the data. The main improvement of the statistics was the<br />

application of parametric univariate or non-parametric multivariate techniques.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 114<br />

• The parametric univariate analysis of variance showed that the reference area <strong>and</strong><br />

the wind farm area was not significantly different within the present abundance of<br />

fish in fish groups of ?<br />

• The non parametric multivariate analysis of variance (NPMANOVA) showed that<br />

the reference area <strong>and</strong> the wind farm area was not significantly different with the<br />

present abundance of fish <strong>and</strong> number of species.<br />

5.2. Fry Study<br />

• It cannot be recommended to establish a monitoring program on a statistical basis,<br />

in association to the <strong>fry</strong> <strong>study</strong> according to the spatial distribution of <strong>fry</strong> <strong>and</strong> small<br />

<strong>fry</strong>. This distribution results in large sampling efforts, in relation to the amount of<br />

success. However, the <strong>fry</strong> <strong>study</strong> can be used to qualitatively evaluate the<br />

importance of the area as spawning <strong>and</strong> nursery ground.<br />

5.3. Commercial <strong>fishery</strong><br />

• As expected, cod, flounder, dab, turbot <strong>and</strong> plaice are fished at Røds<strong>and</strong>. In<br />

addition, silver eel are caught from September to November. In the years 1997 to<br />

2001, the annual net <strong>fishery</strong> catch in the wind farm site itself can be estimated as<br />

amounting to between 1,6 <strong>and</strong> 11.1 tons of cod, between 0.00 <strong>and</strong> 0.41 tons of<br />

turbot <strong>and</strong> between 0.20 <strong>and</strong> 0.68 tons of silver eel. There is no trawling within<br />

the proposed site itself.<br />

• The trawl fishermen especially catch cod in the area south of the wind farm area<br />

from April to June <strong>and</strong> from September to November. Net fishing for cod takes<br />

place mainly from December to May in effectively the whole area south of<br />

Røds<strong>and</strong>.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 115<br />

6. References<br />

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of<br />

variance. Austral Ecology 26: 32-46.<br />

Bio/consult 2000a. EIA <strong>study</strong> of the proposed offshore wind farm at Røds<strong>and</strong>.<br />

Technical background report concerning fish. Report prepared by Bio/consult as.<br />

SEAS Distributions A.m.b.A., July 2000.<br />

Bio/consult 2000b. EIA <strong>study</strong> of the proposed offshore wind farm at Røds<strong>and</strong>.<br />

Technical background report concerning <strong>fishery</strong>. Report prepared by Bio/consult<br />

as. SEAS Distributions A.m.b.A., July 2000.<br />

Bio/consult 2001a. Monitoring programme for fish <strong>and</strong> <strong>fishery</strong> for the offshore wind<br />

farm at Røds<strong>and</strong>. Report prepared by Bio/consult as. SEAS Distributions<br />

A.m.b.A., November 2001.<br />

Bio/consult 2001b. <strong>Baseline</strong> programme for fish <strong>and</strong> <strong>fishery</strong>. <strong>Offshore</strong> wind farm at<br />

Røds<strong>and</strong>. Report prepared by Bio/consult as. SEAS Distributions A.m.b.A.,<br />

December 2001.<br />

Bio/consult 2001c. Evaluation of the Effect of Noise from <strong>Offshore</strong> Pile-Driving on<br />

Marine <strong>Fish</strong>. Technical report prepared by Bio/consult as. SEAS Distributions<br />

A.m.b.A., January 2001.<br />

Bio/consult 2001d. Evaluation of the Effect of Sediment Spill from <strong>Offshore</strong> Wind<br />

Farm Construction on Marine <strong>Fish</strong>. Technical report prepared by Bio/consult as.<br />

SEAS, January 2001.<br />

Bio/consult 2001e. Røds<strong>and</strong>. <strong>Fish</strong> <strong>and</strong> <strong>Fish</strong>ery. Pilot <strong>study</strong>: Evaluation of the possibility<br />

of using by-catches from pound netting in a future monitoring programme for<br />

Røds<strong>and</strong>, including the possibility for using <strong>fry</strong> trawl as a complementary gear for<br />

the pound nets. Note prepared by Bio/consult as, Doc. no. 1919-02-03-<br />

003.rev1doc. SEAS Distributions A.m.b.A., April 2001.<br />

Bio/consult 2002. <strong>Baseline</strong> <strong>study</strong> <strong>Fish</strong> at the cable trace – <strong>Nysted</strong> <strong>Offshore</strong> Wind Farm<br />

at Røds<strong>and</strong>. Report prepared by Bio/consult as. SEAS Distributions A.m.b.A.,<br />

May 2002.<br />

Bio/consult 2003a. <strong>Baseline</strong> <strong>study</strong> <strong>Fish</strong> at the cable trace – <strong>Nysted</strong> <strong>Offshore</strong> Wind Farm<br />

at Røds<strong>and</strong>. Report prepared by Bio/consult as. SEAS Distributions A.m.b.A.,<br />

February 2003.<br />

Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community<br />

structure. Australian Journal of Ecology 18: 117-143.<br />

Clarke, K.R.; Green, R.H. 1988 Statistical design <strong>and</strong> analysis for a ’biological effects’<br />

<strong>study</strong>. Marine Ecology Progress Series 46: 213-226.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 116<br />

DHI 2000. EIA of an offshore wind park at Røds<strong>and</strong>. Technical report concerning<br />

Marine Biological Conditions (bottom vegetation <strong>and</strong> bottom fauna) in the wind<br />

farm area. Report prepared by DHI Water <strong>and</strong> Environment. SEAS Distributions<br />

A.m.b.A., May 2000.<br />

Green, R. H. 1979. Sampling design <strong>and</strong> statistical methods for environmental<br />

biologists. New York: Wiley.<br />

Manly, Bryan F. J: 1997 R<strong>and</strong>omization, Bootstrap <strong>and</strong> Monte Carlo Methods in<br />

Biology, Second Edition. CRC Press;<br />

Podlich, H.M.; Faddy, M.J.; Smyth, G.K. (in press): A general approach to modelling<br />

<strong>and</strong> analysis of species abundance data with extra zeros.<br />

Legendre, P.; Anderson, M.J. 1999: Distance-based Redundancy Analysis: Testing<br />

multispecies responces in multifactorial ecological experiments. Ecol. Mon.<br />

69(1): 1-24.<br />

Krog, Karsten. Fiskeri og havmiljø G.E.C. Gads forlag 1993.<br />

Muus, B . Nielsen, J.G. Dahlstrøn, P & Nyström, B.O. Havfisk og foskeri Gads forlag<br />

1998.<br />

SEAS 2000. Havmøllepark ved Røds<strong>and</strong>. Vurdering af Virkningern på Miljøet – VVMredegørelse.<br />

Rapport udarbejdet for Energi E2 A/S af SEAS Distrubution A.m.b.a.<br />

Energi E2 A/S juli 2000.<br />

Westerberg, H. 1994. Fiskeriundersökninger vid havbaseret vindkraftverk1990-1993.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 117<br />

Appendix 1. Review of the biology of fish species<br />

Baltic herring (Clupea harengus)<br />

The herring occurs throughout northern Europe, <strong>and</strong> in all Danish waters, from brackish<br />

fjords to the more saline North Sea. There are several different strains of herring. At an<br />

early stage, approx. 1 year old, the herring <strong>fry</strong> begin to move out to open sea. They form<br />

shoals, which can include herring of different strains. When they approach sexual<br />

maturity (approx. 3–9 years old, depending on the strain, earliest in the Baltic) they<br />

migrate inshore.<br />

Each female produces between 20,000 <strong>and</strong> 50,000 eggs, which is a moderate amount<br />

compared with other pelagic fish. The herring spawns in free bodies of water, <strong>and</strong> the<br />

eggs quickly precipitate to the bottom. They attach to stones, macroalgae <strong>and</strong> other<br />

fixed objects. The <strong>fry</strong> hatch within around 14 days, depending on the temperature of the<br />

water (the higher the temperature, the sooner they hatch).<br />

When the yolk sac has been eaten, the <strong>fry</strong> start to forage for microscopic zooplankton.<br />

Over time, the diet becomes more varied <strong>and</strong> consists of opossum shrimps, krill,<br />

copepods, pteropods, fish <strong>fry</strong> <strong>and</strong> pelagic crustacean larvae. The herring <strong>fry</strong> themselves<br />

are often eaten by cod (Gadus morhua), mackerel (Scomber scombrus) <strong>and</strong> whiting<br />

(Merlangius merlangus). In addition, they are important food items for several sea<br />

birds, including gulls <strong>and</strong> terns, as well as marine mammals such as seals <strong>and</strong> porpoises.<br />

In general, growth is slower in the Baltic than in the North Sea, <strong>and</strong> Baltic herring<br />

mature earlier.<br />

Herring are mainly caught with lampara nets, trawl nets or driftnets, <strong>and</strong> are of<br />

considerable <strong>commercial</strong> importance.<br />

Brisling (Sprattus sprattus)<br />

Brisling belongs to the same family as the herring <strong>and</strong>, in many respects, is very similar,<br />

although it is somewhat smaller, <strong>and</strong> rarely grows to longer than 15–17 cm. Brisling is<br />

found all over Europe <strong>and</strong> in all Danish waters. It is pelagic in habit, <strong>and</strong>, like the<br />

herring, it forms shoals. In the winter, the shoals move out into deeper water, up to 150<br />

metres deep. During the day, the fish stay close together at the bottom, whereas at night,<br />

they rise <strong>and</strong> spread out. The diet of the brisling is very similar to that of the herring,<br />

<strong>and</strong> it forages for copepods in particular. They are themselves an important food item<br />

for other fish <strong>and</strong> are often attacked by parasites, especially crustaceans.<br />

The fish spawn some distance offshore in approx. 10–15 metres of water. They spawn<br />

6–14,000 pelagic eggs, which follow the currents <strong>and</strong> are thus moved away from the<br />

spawning ground. Spawning is in late spring (April–May). The <strong>fry</strong> hatch after about<br />

eight days. They can easily be confused with herring <strong>fry</strong>, although they are somewhat<br />

smaller. About ten days later, they have eaten the umbilical sac <strong>and</strong> begin to feed on<br />

diatoms <strong>and</strong> the larvae of benthic fauna. The brisling first spawns at two years <strong>and</strong><br />

rarely lives more than six. Brisling are fished with lampara nets, <strong>and</strong> benthic <strong>and</strong> pelagic<br />

trawling. The fish caught are typically between 1 <strong>and</strong> 2 years old.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 118<br />

Brisling are often known as Norwegian sardines, <strong>and</strong> are marinated <strong>and</strong> eaten as<br />

“anchovies”.<br />

Common eel (Anguilla anguilla)<br />

The European eel is found throughout Europe, <strong>and</strong> occurs all over Denmark. It has no<br />

lower limitation for salinity <strong>and</strong> so lives in fresh water too. It also tolerates high<br />

temperatures, although it has been observed that the sexual organs develop more rapidly<br />

at high temperatures. The eel is most numerous in the eelgrass belt, which is also an<br />

important foraging area. It completely avoids s<strong>and</strong>y or fine silt beds.<br />

The eel probably spawns in the Sargasso Sea. Then the larvae migrate with the sea<br />

current to European coasts, where they arrive as elvers. On arrival, they settle in the<br />

vegetation zones, where they develop a black pigment. Some then move up into fresh<br />

water (most probably mainly females) while others remain in salt water (most probably<br />

mainly males). At first they are characterised as yellow eels, but when they are between<br />

8 <strong>and</strong> 16 years old they change appearance <strong>and</strong> become silver eels. It is these silver eels<br />

that migrate back to the Sargasso Sea. They do not feed while migrating, which means<br />

that the stomach sac contracts <strong>and</strong> the anus constricts. If the eel does not migrate, it<br />

begins to feed again, <strong>and</strong> can achieve an age of more than 50.<br />

Eels mainly hunt in the twilight. Their diet is principally made up of benthic fauna, such<br />

as worms, crayfish, gammarus, crabs, shrimp, insect larvae <strong>and</strong> smaller fish. The eel<br />

normally grows slowly once it has passed 4–5 years. Before then, growth depends on<br />

the food supply <strong>and</strong> the water temperature.<br />

Attempts to track <strong>and</strong> catch eels in the Sargasso Sea have not proved possible. This<br />

means that the number of eels reaching the sea, or the number of eggs each female<br />

spawns are unknown. In recent years, eel-farming has begun, but the eels have not<br />

spawned in captivity to date. This has made it necessary to catch elvers <strong>and</strong> raise them.<br />

Elvers are typically caught in the English Channel, but in recent years, there has been a<br />

dramatic reduction in the number of elvers, <strong>and</strong> a corresponding decrease in eel <strong>fishery</strong>.<br />

Hornfish (Belone belone)<br />

The hornfish occurs throughout Europe, <strong>and</strong> is found in all Danish waters. This species<br />

has a pelagic habit <strong>and</strong> forms shoals close to the surface. Each spring, in April-May, the<br />

shoals arrive in the Danish coastal areas from the northern Atlantic. Hornfish are<br />

observed both in salt <strong>and</strong> freshwater, most often being found in saltwater. The hornfish<br />

is a long slender fish, reaching 90 cm in length <strong>and</strong> weighing up to 1.3 kg. They are<br />

perfect swimmers, <strong>and</strong> jump out of the water when chased by predators such as<br />

porpoises <strong>and</strong> tuna fish.<br />

Hornfish spawn in vegetated areas, mainly in shallow water. The eggs attach to<br />

seaweeds, stones <strong>and</strong> boulders via sticky adhesive filaments. Each female spawns<br />

1,000-35,000 eggs, depending on the size of the female. Eggs hatch after 3-5 weeks of<br />

incubation, the energing larvae being 12mm long <strong>and</strong> without hornlike jaws. At the<br />

length of 12 cm, the fish has developed its characteristic jaws.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 119<br />

The <strong>fry</strong> remain near the coast feeding on copepods <strong>and</strong> other zooplankton. They grow<br />

very fast, becoming 20-25 cm by the first year. After the second year, they reach the<br />

length of approximately 45 cm, <strong>and</strong> are sexual mature. The adults spend the post<br />

spawning time roaming about in the coastal waters off Denmark, feeding on herring,<br />

brisling, s<strong>and</strong>eels <strong>and</strong> other shoaling fish. Hornfish hunt primarily by vision during the<br />

daytime. In the autumn, the fish return to the areas west <strong>and</strong> south of the British Isles.<br />

So far, there are no <strong>commercial</strong> fisheries for hornfish, but they are caught as by-catch in<br />

pound nets <strong>and</strong> with hooks, though only in small quantities. Hornfish consist of low fat<br />

meat, but owing to having green bones it is not a popular culinary species, even though<br />

the pigment is harmless.<br />

Fifteen-spined stickleback (Spinachia spinacia)<br />

This is a member of the same family as the three-spined stickleback. The fifteen-spined<br />

stickleback is found in the whole northern part of Europe. It typically lives in<br />

microalgae zones, in both brackish <strong>and</strong> salt water. It feeds on small crustaceans,<br />

opossum shrimps <strong>and</strong> shrimp <strong>fry</strong>. It is not a good swimmer, so its hunting strategy is to<br />

lie in wait. The adult fifteen-spined stickleback has few enemies. The spines become<br />

erect when the fish is threatened. It is also well camouflaged, as its pigmentation makes<br />

it easily mistaken for a piece of eelgrass (Zostera marina).<br />

It spawns in May–June, when the male builds a nest in which the female lays around<br />

100 eggs. The nest is built of macrophytes (usually green <strong>and</strong> brown algae). After<br />

fertilisation the male stays <strong>and</strong> guards the nest. Once the eggs hatch, the male dies <strong>and</strong><br />

the <strong>fry</strong> have to fend for themselves. They grow very rapidly <strong>and</strong> are mature as early as<br />

one year old.<br />

Whiting (Merlangius merlangus)<br />

Whiting is common throughout Europe, although it does not occur in certain places in<br />

the Mediterranean. It is semi-pelagic, as it sometimes remains at the bottom. The largest<br />

numbers, however, are found at the bottom of deeper water. Juveniles stay in shallow<br />

water near the coast.<br />

The diet is very wide, a natural result of their habits. They eat anything from benthic<br />

crustaceans (shrimp) to pelagic fish, <strong>and</strong> can be cannibalistic.<br />

The whiting is migratory by nature. Soon after the <strong>fry</strong> hatch in the northern part of the<br />

North Sea, the spawning area, they are carried by the current into Danish waters. On the<br />

journey they survive on jellyfish <strong>and</strong> horse mackerel <strong>fry</strong>. When they arrive in Danish<br />

coastal waters, they are 10–20 mm long. They spend the first year inshore at the bottom.<br />

At the age of 2–4 they become sexually mature <strong>and</strong> begin a more active migration to the<br />

spawning grounds. Both migrations involve a large number of individuals.<br />

The eggs, like those of the cod, are pelagic, <strong>and</strong> spawning takes place between January<br />

<strong>and</strong> May. The females spawn anything between 100,000 <strong>and</strong> 1 million eggs. In<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 120<br />

Denmark, they are not considered a table fish. They are, however, used as an industrial<br />

fish for processing for meal <strong>and</strong> oil.<br />

Atlantic cod (Gadus morhua)<br />

The cod is common in northern Europe <strong>and</strong> occurs in all Danish waters. They live from<br />

the coast out to a depth of 500 m. They are very tolerant of different temperatures. In<br />

summer, they can be observed in water at 20 degrees, <strong>and</strong> in winter, in water close to<br />

freezing point. The cod has very variable habits, although they prefer to stay near the<br />

bottom where they can use their barbels to guide them. They are also sometimes<br />

pelagic. Cod includes a number of strains, even in an area as small as Danish waters.<br />

There are at least two strains that share the Skagerrak <strong>and</strong> Kattegat, <strong>and</strong> two special<br />

Baltic strains, one being the Bornholm strain, <strong>and</strong> the other, a less populous strain found<br />

to the west of Bornholm.<br />

The diet is very varied. As <strong>fry</strong>, some strains forage for the copepod (Calanus<br />

finmarchicus), especially the Icel<strong>and</strong>ic strain (one of the North Sea strains). Juvenile<br />

cod eat anything of the right size, including crustacea, fan worms <strong>and</strong> molluscs. When<br />

they grow bigger, they begin to forage for fish such as whiting (Merlangius marlangus),<br />

herring (Clupea harengus) <strong>and</strong> s<strong>and</strong>eels (Ammodytes sp./Hyperoplus sp.), as well as<br />

larger crustaceans including the green crab (Cercinus maenas). The cod <strong>fry</strong> are<br />

important food elements for larger planktonic animals such as jellyfish, crustaceans <strong>and</strong><br />

arrow worms. When they become bigger, they have other predators, including their own<br />

species <strong>and</strong> other predatory fish. Birds such as gulls <strong>and</strong> terns also take their share of<br />

small cod.<br />

In winter <strong>and</strong> early spring, the sexually mature cod gather in bodies of water of approx.<br />

4–6 degrees. Typically, this is at a depth of 30–60 m. These temperatures occur earlier<br />

in the North Sea than in the Baltic, which means the cod spawn earlier there. The egg<br />

<strong>and</strong> milt are released freely in the water, while the fish stay in large shoals. Each female<br />

releases 0.5–5 million eggs, which, as may be expected, are relatively small. The eggs<br />

have to remain in the head of water all the time, as they are dependent on the<br />

availability of dissolved oxygen.<br />

This is probably why the reproductive success of the Baltic strain is doubtful in some<br />

years. The <strong>fry</strong> hatch in 2–4 weeks, depending on the temperature of the water. They<br />

feed on the yolk sacs to start with, <strong>and</strong> once these have been consumed, they eat<br />

microscopic plankton organisms.<br />

The age of sexual maturity varies according to the strain. The large migratory North Sea<br />

strain attains maturity later than the more stationary coastal strain. A high pressure of<br />

fishing can also mean that the fish attain maturity earlier <strong>and</strong> at a shorter length.<br />

Cod is fished with many types of gear, including hooks, bottom nets, set gillnets,<br />

bottom trawl <strong>and</strong> Danish seine. It is the most popular table fish, <strong>and</strong> thus the most<br />

important <strong>commercial</strong>ly.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 121<br />

Broad-nosed pipefish (Syngnathus typhle)<br />

Max. length 35 cm.<br />

This lives in the seaweed belts as a stationary fish inshore <strong>and</strong> in brackish waters. It<br />

occurs all along the coastline of Europe from northern Norway to the Mediterranean,<br />

except in the Gulf of Bothnia.<br />

Spawning takes place in the summer. The eggs are placed in the male’s brood pouch by<br />

the female to be fertilised. The brood pouch is an oblong space formed by two folds of<br />

skin on the ventral side, <strong>and</strong> can hold 50–100 eggs. The eggs are supplied with nutrients<br />

from the mucous membranes of the pouch. The eggs hatch after 4 weeks, but the <strong>fry</strong>,<br />

which resemble the adults in appearance, remain in the pouch for a short time. The <strong>fry</strong><br />

mature as juveniles <strong>and</strong> live for 2–3 years.<br />

They feed on small crustaceans <strong>and</strong> fish <strong>fry</strong>.<br />

Great s<strong>and</strong>eel (Hyperoplus lanceolatus)<br />

The great s<strong>and</strong>eel is found throughout Europe, except in the Mediterranean. Like the<br />

small s<strong>and</strong>eel, it buries itself in the sea bed during the day, only coming out when it is<br />

dark or just before dawn. Until it reaches a length of approx. 15 cm, it lives on plankton,<br />

after which it feeds mainly on the <strong>fry</strong> of herring <strong>and</strong> small s<strong>and</strong>eel.<br />

The great s<strong>and</strong>eeel is itself an important food item for other species, including salmon<br />

(Salmo salar), sea trout (Salmo trutta) <strong>and</strong> cod (Gadus morhua).<br />

The fish spawns at the age of 2 years. In the North Sea, it spawns at a depth of between<br />

20 <strong>and</strong> 100 metres, from April to August, when it deposits up to 35,000 eggs in a cluster<br />

on the s<strong>and</strong>. It takes around three weeks for the eggs to hatch.<br />

It is mainly fished in the North Sea, with a fine meshed bottom trawl, but is also<br />

sporadically caught at certain locations in the Skagerrak <strong>and</strong> Kattegat. The main catch is<br />

juveniles. This means that if reproduction is not successful in a given year, there are<br />

significant consequent effects both for commerce <strong>and</strong> the food chain in the following<br />

year.<br />

Small s<strong>and</strong>eel (Ammodytes tobianus)<br />

The small s<strong>and</strong>eel is widespread throughout Europe, except in the Mediterranean. They<br />

prefer a bed with mixed coarse s<strong>and</strong> <strong>and</strong> shell breccia on a reef or the slope of a bank.<br />

The small s<strong>and</strong>eel buries itself down in the s<strong>and</strong> when the light intensity falls below 10<br />

lux, which means at night <strong>and</strong> in the winter. When it moves off the bed, the small<br />

s<strong>and</strong>eel moves in large shoals looking for food. The diet consists of phytoplankton<br />

filtered out of the water. The s<strong>and</strong>eel itself is eaten by predatory fish, especially salmon<br />

(Salmo salmo), sea trout (Salmo trutta) <strong>and</strong> cod (Gadus morhua).<br />

It becomes sexually mature around the age of two. There are two strains, one of which<br />

spawns in spring <strong>and</strong> the other in autumn. The eggs, around 4–25,000, are very adhesive<br />

<strong>and</strong> released on the s<strong>and</strong> in batches. S<strong>and</strong>eels are often used as bait by anglers. They are<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 122<br />

also often caught in the North Sea along with Raitt’s s<strong>and</strong>eel, <strong>and</strong> used as an industrial<br />

fish.<br />

S<strong>and</strong> goby (Pomatoschistus minutus)<br />

The s<strong>and</strong> goby is one of the best-known fish around s<strong>and</strong>y beaches all along the Danish<br />

coasts. It lives in very shallow waters out to a depth of a few metres. Spawning takes<br />

place in the spring <strong>and</strong> early summer. The male finds a shell with the aperture facing<br />

down, <strong>and</strong> digs underneath it. The male then attracts a female <strong>and</strong> guides her into the<br />

cavity, where she lays her eggs. The male then fertilises the eggs <strong>and</strong> guards them for<br />

10–14 days, until they hatch. While the male is protecting the eggs, he ensures that the<br />

water circulates so that the eggs do not become covered in s<strong>and</strong>.<br />

Once the <strong>fry</strong> hatch, they start a brief pelagic phase of around two weeks. Then they seek<br />

the bottom <strong>and</strong> remain there for the rest of the two years of their lives.<br />

The diet consists principally of crustaceans, shellfish <strong>and</strong> young snails. This diet means<br />

they compete with many of the <strong>fry</strong> of <strong>commercial</strong>ly important species. Several table fish<br />

feed on them, such as cod (Gadus morhua), turbot (Psetta maxima) <strong>and</strong> eel (Anguilla<br />

anguilla).<br />

Two-spotted goby (Gobiusculus flavescens)<br />

The two-spotted goby occurs throughout Europe, except in the inner Baltic. It forms<br />

shoals in depths of 0–5 metres. They are not especially benthic, <strong>and</strong> prefer habitats<br />

where there is vegetation. They also avoid water with low salinity. Spawning is in<br />

relatively deep water, <strong>and</strong> the eggs are released onto macrophytes, in April–May. By the<br />

approach of winter, the <strong>fry</strong> have achieved an adult size, <strong>and</strong> they attain maturity the<br />

following year. Like the s<strong>and</strong> goby, they form an important part of the food chain,<br />

firstly as a competitor with table fish, but also as food.<br />

Black goby (Gobius niger)<br />

The black goby occurs throughout Europe, except in the inner Baltic. It is very tolerant<br />

of low salinity <strong>and</strong> can thus also be found in the lower reaches of larger streams <strong>and</strong><br />

rivers. It mainly stays in shallow waters, but can be found out to depths of about 50<br />

metres.<br />

It matures at the age of two, <strong>and</strong> spawns between 1,000 <strong>and</strong> 6,000 eggs, which attach to<br />

stationary surfaces such as stones <strong>and</strong> net stakes. The male remains near the eggs until<br />

they hatch.<br />

The diet consists principally of worms <strong>and</strong> crustacea. The black goby is an important<br />

food source for predatory fish, <strong>and</strong> is also used for bait by anglers.<br />

Transparent goby (Aphya minuta)<br />

As its name implies, this fish is virtually transparent when alive. When dead, it turns<br />

white <strong>and</strong> is therefore easier to spot. It is widespread throughout Europe, mainly in<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 123<br />

shoals in shallow waters. It lives near the bottom, except at night, when it moves up to<br />

forage. Its main diet consists of crustacea, small shellfish <strong>and</strong> other creatures of suitable<br />

size.<br />

Its reproductive behaviour is very similar to that of the s<strong>and</strong> goby. It lives for a year,<br />

<strong>and</strong> the adults die soon after spawning.<br />

Butterfish (Pholis gunnellus)<br />

The butterfish is found all over northern Europe, down to the French coast. They live in<br />

tidal waters out to a depth of 30 metres. They are extremely tolerant of cold, <strong>and</strong> do not<br />

therefore move out to deeper waters in the winter. They inhabit the seaweed on reefs<br />

<strong>and</strong> slowly seek food in these areas. Sometimes they hide under shells to lie in wait for<br />

food. Spawning takes place when they are 3 years old in January–July, <strong>and</strong> the female<br />

releases 100–200 eggs. The eggs rest on the sea bed in the form of a cone. Both sexes<br />

look after the eggs until they hatch. The <strong>fry</strong> are pelagic initially, until they are 3 cm<br />

long. At this point they seek the bottom. Their diet consists of crustacea <strong>and</strong> other small<br />

animals.<br />

Eelpout (Zoarces viviparus)<br />

Eelpout are widespread in Europe from the English Channel north. They live near the<br />

bottom of eelgrass zones, <strong>and</strong> are distinctly stationary fish. They stay in shallow water<br />

in the summer <strong>and</strong> move out to deeper waters in the winter. Their diet consists<br />

principally of gammarus, shellfish, snails <strong>and</strong> small crustaceans. In brackish waters they<br />

sometimes also take insect larvae. They move slowly around amongst the eelgrass,<br />

examining one clump of macroalgae after another.<br />

The eelpout is viviparous. The number of young varies, but is between 50 <strong>and</strong> 300. Like<br />

their parents, the young are benthic, <strong>and</strong> they very quickly begin to forage for<br />

themselves after birth. They grow very rapidly <strong>and</strong> are mature as early as their second<br />

year.<br />

They are treated as part of the by-catch in <strong>commercial</strong> <strong>fishery</strong>, <strong>and</strong> only occasionally<br />

used as a table fish. Many anglers use them as bait.<br />

Short-spined sea scorpion (Myoxocephalus scorpius)<br />

The short-spined sea scorpion occurs throughout northern Europe. It lives amongst<br />

stones <strong>and</strong> seaweed at depths from 1 to 200 metres. It tolerates low temperatures, which<br />

means it can also be found in the arctic region. It is a distinctly stationary fish, which<br />

means there are local varieties.<br />

Breeding takes place in December–January. Fertilised eggs have been found in females,<br />

indicating that fertilisation is internal. Once the female has spawned, the male looks<br />

after the eggs until they hatch 5 weeks later. The <strong>fry</strong> are pelagic in habit, until they<br />

achieve a length of approximately 15 mm, at which point they seek the bottom.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 124<br />

Despite its somewhat somnolent behaviour, the short-spined sea scorpion is, in fact,<br />

predatory, <strong>and</strong> it eats anything that enters its vicinity.<br />

Longspined bullhead (Taurulus bubalis) occurs throughout the whole of Europe, <strong>and</strong><br />

thus extends further south than the short-spined sea scorpion. In other respects, it is very<br />

similar to the short-spined sea scorpion (see above) in behaviour, reproduction <strong>and</strong> diet.<br />

Hooknose (Agonus cataphractus)<br />

The hooknose is distributed throughout the northern part of Europe, except the<br />

innermost parts of the Baltic. It is a typically benthic fish, preferring a soft bed. It lives a<br />

rather anonymous life, as it is not sought-after prey for other fish, <strong>and</strong> is only rarely<br />

found in nets. It breeds in February–April, when 2,500–3,000 eggs are attached to<br />

microalgae. The development from egg to <strong>fry</strong> is unusually long, taking around 11<br />

months. The <strong>fry</strong> are initially pelagic, but then they become benthic.<br />

The diet consists mainly of small crustaceans. The fish has virtually no importance as<br />

food for <strong>commercial</strong> fish.<br />

Lumpsucker (Cyclopterus lumpus)<br />

The lumpsucker is widespread in the northern part of Europe <strong>and</strong> is also found in the<br />

arctic. In Denmark, it is typically a seasonal fish <strong>and</strong> exists in two strains. The North<br />

Sea strain grows longer, up to 50 cm. The Baltic strain is a miniature form, only<br />

reaching around 20 cm. The lumpsucker lives on reefs, where it attaches itself to stones<br />

with its specially developed ventral fins. There is a large difference between the sexes,<br />

with regard to both colour <strong>and</strong> size. The male is the more colourful (shades of red), but<br />

is also the smaller. The female is greenish <strong>and</strong> can be around a third longer than the<br />

male.<br />

Spawning is in early spring in relatively shallow waters. The female releases around<br />

350,000 eggs in a single cluster. Then she ab<strong>and</strong>ons them, <strong>and</strong> the male remains to look<br />

after the eggs.<br />

The eggs hatch after approximately 7–8 weeks, at which point the male also leaves. The<br />

newly hatched <strong>fry</strong> are already equipped with suckers, which they use to attach<br />

themselves to large objects. When winter approaches, the <strong>fry</strong> migrate out of the shallow<br />

waters <strong>and</strong> do not return until they are sexually mature <strong>and</strong> ready to spawn.<br />

Their initial diet consists of small planktonic animals. Later they start to eat krill, small<br />

jellyfish <strong>and</strong> parts of larger jellyfish.<br />

Lumpsucker are fished in considerable quantities in Danish waters. It is the meat of the<br />

male that is particularly prized. The roe are also used, however, <strong>and</strong> are sold<br />

unprocessed (often as “caviar”).<br />

Striped seasnail (Liparis liparis)<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 125<br />

The striped seasnail is closely related to the lumpsucker, both being representatives of<br />

the Cyclopteridae family. It is distributed along the coastlines of northern Europe, from<br />

the English Channel to the Polar Circle. The striped seasnail reaches a maximum length<br />

of 15 cm. The fish uses a suction disc (larger than the eye diameter <strong>and</strong> being modified<br />

pectoral fins), to attach to stones. Smaller fish are also found attached to seaweed,<br />

especially brown algae of the family Laminaria spp..<br />

It is mostly found in near coastal waters, associated with stony vegetated areas, but is<br />

also found in shallow offshore reef areas with relatively calm water.<br />

The striped seasnail spawns in the wintertime. The transparent <strong>and</strong> spherical eggs are<br />

1.5 mm in size, <strong>and</strong> are placed on the seabed at the time of spawning. The eggs incubate<br />

for 6 to 8 weeks before they hatch. The larvae, which are pelagic, migrate with the<br />

water current. The fish are carnivores <strong>and</strong> feed primarily on small crustaceans.<br />

No <strong>commercial</strong> exploitation of this species occurs, properly due to its moderate size.<br />

Turbot (Psetta maxima)<br />

The turbot is a sinistral flat fish, found from northern Norway to North Africa. It is not<br />

especially numerous anywhere in Danish waters. It prefers a hard bed with gravel or<br />

stone. It is mainly a stationary benthic fish, <strong>and</strong> can be hard to see because of its<br />

camouflage. It lies in wait for its prey, which mainly consists of other benthic fish,<br />

shellfish <strong>and</strong> larger crustaceans. It will, however, also take pelagic fish. It matures at the<br />

age of 3–5 years. The spawning grounds are not particularly defined, as it spawns where<br />

it lives, normally between April <strong>and</strong> August. Each female releases between 5 <strong>and</strong> 15<br />

million eggs, which hatch after 7–9 days. Once the <strong>fry</strong> reach a length of around 2.5 mm,<br />

they seek the bottom. As the spawning period approaches, they become more active.<br />

They prefer to spawn in waters between 10 <strong>and</strong> 40 m deep. The turbot moves out to<br />

deeper, warmer, waters in the winter, <strong>and</strong> moves back towards the coast in summer.<br />

There is an imbalance between the sexes. For reasons currently unknown, there are<br />

more males than females in the population, especially in the Baltic.<br />

As they are not numerous, they are not fished to any great extent. Despite this, they are<br />

highly valued as table fish, <strong>and</strong> thus a welcome by-catch. They are normally caught in<br />

nets in the period when they move around. In recent years, the catch of turbot has been<br />

increasing.<br />

Dab (Lim<strong>and</strong>a lim<strong>and</strong>a)<br />

The dab is widespread along the coasts of northern Europe, <strong>and</strong> is found in all Danish<br />

waters. It lives on s<strong>and</strong>y <strong>and</strong> soft beds at depths between 6 <strong>and</strong> 70 m. It is a very<br />

stationary fish <strong>and</strong> spawns where it lives. It has sharp pointed teeth <strong>and</strong> mainly lives on<br />

fan worms, crustacea, smaller echinoderms, thin-shelled shellfish <strong>and</strong> small fish. It is<br />

often used as a substitute for plaice as it is rare that both species are numerous in the<br />

same area.<br />

Growth is slow, <strong>and</strong> it therefore matures when it is not especially big, at the age of 2<br />

years. Their size means that they spawn before they are of a size to be caught in nets. As<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 126<br />

a result, the population is not affected to the same extent as species that mature after<br />

attaining a size where they can be caught.<br />

The dab spawns in April–June in the North Sea, <strong>and</strong> April–August in the Baltic. The<br />

female lays 50–150,000 eggs. Once the <strong>fry</strong> hatch, they begin a short pelagic period in<br />

relatively deep water (6–12 m). When they seek the bottom, they stay at these depths,<br />

which means they do not come into conflict with the <strong>fry</strong> of other species of flat fish,<br />

which mainly stay <strong>and</strong> feed in shallower waters.<br />

Flounder (Platichthys flesus)<br />

Flounder is common throughout Europe, although it does not occur in the southern<br />

Mediterranean. It is very common along the Danish coasts, although the population in<br />

the North Sea is not especially large, as the flounder prefers lower salinity. It can also<br />

stay for long periods in fresh water. It lives in the tidal zone, the younger fish close to<br />

the shore <strong>and</strong> the older fish further out. They like places where they can bury<br />

themselves, either pure s<strong>and</strong> or mud. The flounder can be sinistral or dextral, although<br />

around two thirds are dextral.<br />

Flounder <strong>fry</strong> mainly eat microscopic planktonic animals. After metamorphosis, the <strong>fry</strong><br />

move towards the bottom <strong>and</strong> change their diet to microscopic crustacea. As an adult,<br />

the flounder forages at night, mainly for benthic invertebrates such as shellfish,<br />

mosquito larvae, bristleworms <strong>and</strong> crustacea. Juvenile flounder form small shoals. In<br />

winter they feed only to a limited extent <strong>and</strong> move out to deeper waters.<br />

Spawning is from February to May, <strong>and</strong> requires a certain level of salinity so the pelagic<br />

eggs do not sink to the bottom <strong>and</strong> perish due to lack of oxygen. Spawnings are around<br />

1.5–2 million eggs per female. In the Baltic, this takes place in the Bornholm deep,<br />

which has a salinity of approximately 10 promille. Flounder can cross-breed with plaice.<br />

Flounder is a valuable table fish, caught with gill <strong>and</strong> fyke nets.<br />

European plaice (Pleuronectes platessa)<br />

The European plaice is distributed throughout the north eastern Atlantic, from<br />

Greenl<strong>and</strong> <strong>and</strong> the Bering Strait south to the coastlines of Morocco. This fish lives on<br />

mixed substrates at depths down to 200m. The adult is usually found in the deeper<br />

areas, whereas the <strong>fry</strong> is often seen around shallow bathing beaches. Plaice can reach<br />

100 cm in length <strong>and</strong> achieve a weight of 7 kg.<br />

This species lives both in brackish <strong>and</strong> marine water, though requires a salinity higher<br />

than 12 per mille for successful reproduction. The plaice is considered relatively<br />

sedentary, but tagging experiments show that they perform long migrations, up to 18-30<br />

km each day.<br />

The plaice is sexually mature at the age of 2-6 years depending on sex (earliest for the<br />

male) <strong>and</strong> location. Spawning occurs at a water temperature of approximately 6ºC, the<br />

timing differing from place to place depending on latitude, though in Danish waters they<br />

spawn in January-April. In the Baltic Sea the period of spawning is extended <strong>and</strong> take<br />

places from November to March, owing to the fact that temperatures in the deeper high<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 127<br />

saline water bodies stay colder for a longer period. European plaice spawn 50,000-<br />

500,000 transparent eggs, each measuring 1.6 mm in diameter <strong>and</strong> being pelagic. The<br />

eggs hatch after 10-20 days of incubation. As soon as the yolk sac is used, the plaice<br />

larva begin to feed on planktonic organisms. During this life stage, a high mortality<br />

occurs due to numerous jellyfish, <strong>and</strong>/or shortage in food supply. At the length of 12-<br />

14mm, plaice ab<strong>and</strong>on the pelagic habit <strong>and</strong> search towards the sea bottom, <strong>and</strong> now<br />

exhibiting a benthic life habit. The Wadden sea has been shown to be of major<br />

importance as a nursery area in relation to the North Sea population.<br />

The plaice is most active during the night, the daytime being spent buried in s<strong>and</strong>. Its<br />

diet consists primarily of thin-shelled molluscs <strong>and</strong> polychaetes. Plaice are thus easily<br />

affected by nutrient enrichment of water <strong>and</strong> associated deoxygenation, which has<br />

resulted in a lowering of the quality of off shore nursery areas.<br />

The <strong>fishery</strong> on this species is highly <strong>commercial</strong>, <strong>and</strong> plaice are probably the most<br />

important species of flatfish in Europe. <strong>Fish</strong>ing involves a variety of gear, including gill<br />

nets, bottom trawl, Danish seine <strong>and</strong> beam trawl.<br />

Common sole (Solea solea)<br />

The common sole is distributed from Trondheim Fjord in Norway southward, it is found<br />

in the Mediterranean, <strong>and</strong> as far south as the coasts of Senegal. In the inner Danish<br />

waters, the sole is only distributed in the Kattegat <strong>and</strong> the western Baltic Sea. The<br />

maximum length for this species is in Danish waters 60 cm, but rarely exceeds 50cm.<br />

The age of the sole at this length is more than 20 years.<br />

The sole lives at various depths from shallow water down to 150m. Favouring s<strong>and</strong>y<br />

<strong>and</strong> fine silt beds rich in detritus.<br />

In the North Sea, the common sole exists near its most northerly limit, <strong>and</strong> is thereby<br />

vulnerable to cold winters. The Kattegat contains a strain distinct from the population<br />

occurring in the North Sea, this particular strain being more resistant to cold waters.<br />

The common sole reaches maturity at a length of 25-35 cm <strong>and</strong> an age of 3-5 years. The<br />

preferred spawning areas are at 20-25 meters depth, with water temperatures of 6-12° C.<br />

In Danish areas, the spawning period is during April-June. At this time they spawn<br />

100,000-150,000 pelagic eggs, each measuring 3-4 mm <strong>and</strong> hatching after 10 days of<br />

incubation. The larvae search for the seabed after 4-6 weeks in the pelagic environment,<br />

this primarily taking place in shallow water near the coast.<br />

The Wadden Sea is an important nursery area for the North Sea population. The<br />

recruitment of common sole is very variable, but since the 1960’s the population growth<br />

rate of this species has improved, apparently due to the rise in nutrient levels in the<br />

nursery areas.<br />

The common sole is primarily nocturnal, searching the seabed for food items by using<br />

sensitive papilla on the head. Food consists of molluscs, polychaetes <strong>and</strong> small<br />

crustaceans, <strong>and</strong> thin-shelled mussels are particularly favoured.<br />

The common sole is a highly valued fish <strong>and</strong> is a by-catch in the fisheries for European<br />

plaice <strong>and</strong> lobsters. It is mainly caught in bottom trawl, Danish seine <strong>and</strong> beam trawl.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 128<br />

Appendix 2. List of research positions (stations), WGS-84.<br />

EASTING NORTHING X Y<br />

STATION TRANSEKT<br />

Degree-min-dec. Degree-min-dec. Degree-decimal Degree-decimal<br />

1 1 11,40817 54,33947 11,68028 54,56578<br />

2 1 11,40819 54,33175 11,68032 54,55291<br />

3 1 11,40818 54,32404 11,68030 54,54007<br />

4 2 11,42410 54,33559 11,70684 54,55932<br />

5 2 11,42409 54,32756 11,70682 54,54593<br />

6 2 11,42399 54,32002 11,70665 54,53337<br />

7 3 11,43200 54,33714 11,71999 54,56191<br />

8 3 11,43212 54,32936 11,72020 54,54893<br />

9 3 11,43197 54,32149 11,71995 54,53582<br />

10 4 11,44789 54,33304 11,74648 54,55507<br />

11 4 11,44788 54,32509 11,74647 54,54182<br />

12 4 11,44765 54,31734 11,74609 54,52890<br />

13 5 11,29936 54,34998 11,49893 54,58331<br />

14 5 11,29936 54,34377 11,49893 54,57295<br />

15 5 11,29921 54,33673 11,49868 54,56122<br />

16 6 11,37425 54,34006 11,62376 54,56677<br />

17 6 11,37427 54,33077 11,62378 54,55128<br />

18 6 11,37435 54,32286 11,62391 54,53810<br />

19 7 11,48945 54,33243 11,81575 54,55405<br />

20 7 11,48921 54,32197 11,81536 54,53662<br />

21 7 11,48923 54,31228 11,81538 54,52046<br />

22 8 11,54433 54,33012 11,90722 54,55020<br />

23 8 11,54452 54,32215 11,90754 54,53692<br />

24 8 11,54431 54,31389 11,90719 54,52315<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 129<br />

Appendix 3. Levene’s test <strong>and</strong> Uni-ANOVA analysis of<br />

abundance.<br />

<strong>Fish</strong> <strong>study</strong><br />

Levene's Test of Equality of Error Variances LN (number)<br />

Species F df1 df2 Sig.<br />

Baltic herring 8,262239742 3 44 0,000<br />

Brisling 5,2193355 3 44 0,004<br />

Common eel 11,21300138 3 44 0,000<br />

Hornfish 22,24999645 3 44 0,000<br />

Snake pipefish 4,84 3 44 0,005<br />

Straightnose pipefish 4,599371916 3 44 0,007<br />

Great pipefish , 3 44 ,<br />

Lesser pipefish , 3 44 ,<br />

Broad-nosed pipefish , 3 44 ,<br />

Fifteen-spined stickleback 1,310710315 3 44 0,283<br />

Whiting 4,84 3 44 0,005<br />

Atlantic cod 2,557290842 3 44 0,067<br />

Small s<strong>and</strong>eel 2,945414261 3 44 0,043<br />

S<strong>and</strong>eel sp. , 3 44 ,<br />

Great s<strong>and</strong>eel 6,320867596 3 44 0,001<br />

Two-spotted goby 0,211588419 3 44 0,888<br />

S<strong>and</strong> goby 1,161056066 3 44 0,335<br />

Painted goby , 3 44 ,<br />

Black goby 5,942175034 3 44 0,002<br />

Transparent goby 4,84 3 44 0,005<br />

Goby.sp. 13,75 3 44 0,000<br />

Butterfish 15,02486679 3 44 0,000<br />

Eelpout 0,920565718 3 44 0,439<br />

Short-spined sea scorpion 2,446645861 3 44 0,076<br />

Longspined bullhead 1,116911036 3 44 0,352<br />

Hooknose 3,226666667 3 44 0,031<br />

Lumpsucker 3,226666667 3 44 0,031<br />

Striped seasnail , 3 44 ,<br />

Turbot 2,673437415 3 44 0,059<br />

Dab , 3 44 ,<br />

Flounder 0,462443956 3 44 0,710<br />

European plaice 6,920448179 3 44 0,001<br />

Common sole , 3 44 ,<br />

Sea trout 4,84 3 44 0,005<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 130<br />

Species<br />

Unianova tests of Between-Subjects Effects LN (number)<br />

Type III df Mean F Sig.<br />

Sum of Squares Square<br />

Baltic herring Source Corrected Model 0,4475 3 0,1492 2,1966 0,102<br />

Intercept 1,0352 1 1,0352 15,2461 0,000<br />

AREA 0,4340 1 0,4340 6,3919 0,015<br />

MONTH 0,0100 1 0,0100 0,1474 0,703<br />

AREA * MONTH 0,0034 1 0,0034 0,0504 0,823<br />

Error 2,9877 44 0,0679<br />

Total 4,4704 48<br />

Corrected Total 3,4352 47<br />

Brisling Source Corrected Model 0,2928 3 0,0976 1,6625 0,189<br />

Intercept 1,5335 1 1,5335 26,1247 0,000<br />

AREA 0,0063 1 0,0063 0,1071 0,745<br />

MONTH 0,2299 1 0,2299 3,9166 0,054<br />

AREA * MONTH 0,0566 1 0,0566 0,9639 0,332<br />

Error 2,5827 44 0,0587<br />

Total 4,4089 48<br />

Corrected Total 2,8754 47<br />

Common eel Source Corrected Model 0,0876 3 0,0292 2,0370 0,122<br />

Intercept 0,1226 1 0,1226 8,5556 0,005<br />

AREA 0,0225 1 0,0225 1,5714 0,217<br />

MONTH 0,0025 1 0,0025 0,1746 0,678<br />

AREA * MONTH 0,0626 1 0,0626 4,3651 0,042<br />

Error 0,6306 44 0,0143<br />

Total 0,8408 48<br />

Corrected Total 0,7182 47<br />

Hornfish Source Corrected Model 4,4144 3 1,4715 5,9097 0,002<br />

Intercept 6,8359 1 6,8359 27,4543 0,000<br />

AREA 0,3099 1 0,3099 1,2448 0,271<br />

MONTH 3,9891 1 3,9891 16,0210 0,000<br />

AREA * MONTH 0,1153 1 0,1153 0,4633 0,500<br />

Error 10,9557 44 0,2490<br />

Total 22,2061 48<br />

Corrected Total 15,3701 47<br />

Snake pipefish Source Corrected Model 0,0075 3 0,0025 1,0000 0,402<br />

Intercept 0,0025 1 0,0025 1,0000 0,323<br />

AREA 0,0025 1 0,0025 1,0000 0,323<br />

MONTH 0,0025 1 0,0025 1,0000 0,323<br />

AREA * MONTH 0,0025 1 0,0025 1,0000 0,323<br />

Error 0,1101 44 0,0025<br />

Total 0,1201 48<br />

Corrected Total 0,1176 47<br />

Straightnose<br />

pipefish Source Corrected Model 0,0475 3 0,0158 0,9543 0,423<br />

Intercept 0,0626 1 0,0626 3,7671 0,059<br />

AREA 0,0225 1 0,0225 1,3562 0,250<br />

MONTH 0,0225 1 0,0225 1,3562 0,250<br />

AREA * MONTH 0,0025 1 0,0025 0,1507 0,700<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 131<br />

Error 0,7307 44 0,0166<br />

Total 0,8408 48<br />

Corrected Total 0,7782 47<br />

Great pipefish Source Corrected Model 0,0000 3 0,0000 , ,<br />

Intercept 0,0000 1 0,0000 , ,<br />

AREA 0,0000 1 0,0000 , ,<br />

MONTH 0,0000 1 0,0000 , ,<br />

AREA * MONTH 0,0000 1 0,0000 , ,<br />

Error 0,0000 44 0,0000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Lesser pipefish Source Corrected Model 0,0000 3 0,0000 , ,<br />

Intercept 0,0000 1 0,0000 , ,<br />

AREA 0,0000 1 0,0000 , ,<br />

MONTH 0,0000 1 0,0000 , ,<br />

AREA * MONTH 0,0000 1 0,0000 , ,<br />

Error 0,0000 44 0,0000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Broad-nosed<br />

pipefish Source Corrected Model 0,0000 3 0,0000 , ,<br />

Intercept 0,0000 1 0,0000 , ,<br />

AREA 0,0000 1 0,0000 , ,<br />

MONTH 0,0000 1 0,0000 , ,<br />

AREA * MONTH 0,0000 1 0,0000 , ,<br />

Error 0,0000 44 0,0000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Fifteen-spined<br />

stickleback Source Corrected Model 0,8210 3 0,2737 3,9385 0,014<br />

Intercept 2,1183 1 2,1183 30,4850 0,000<br />

AREA 0,3358 1 0,3358 4,8333 0,033<br />

MONTH 0,4071 1 0,4071 5,8588 0,020<br />

AREA * MONTH 0,0781 1 0,0781 1,1233 0,295<br />

Error 3,0573 44 0,0695<br />

Total 5,9966 48<br />

Corrected Total 3,8783 47<br />

Whiting Source Corrected Model 0,0075 3 0,0025 1,0000 0,402<br />

Intercept 0,0025 1 0,0025 1,0000 0,323<br />

AREA 0,0025 1 0,0025 1,0000 0,323<br />

MONTH 0,0025 1 0,0025 1,0000 0,323<br />

AREA * MONTH 0,0025 1 0,0025 1,0000 0,323<br />

Error 0,1101 44 0,0025<br />

Total 0,1201 48<br />

Corrected Total 0,1176 47<br />

Atlantic cod Source Corrected Model 3,9256 3 1,3085 3,5768 0,021<br />

Intercept 9,4917 1 9,4917 25,9450 0,000<br />

AREA 1,6818 1 1,6818 4,5972 0,038<br />

MONTH 1,9991 1 1,9991 5,4644 0,024<br />

AREA * MONTH 0,2447 1 0,2447 0,6689 0,418<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 132<br />

Error 16,0970 44 0,3658<br />

Total 29,5143 48<br />

Corrected Total 20,0226 47<br />

Small s<strong>and</strong>eel Source Corrected Model 6,0779 3 2,0260 8,1829 0,000<br />

Intercept 10,2080 1 10,2080 41,2302 0,000<br />

AREA 0,1944 1 0,1944 0,7851 0,380<br />

MONTH 5,0152 1 5,0152 20,2566 0,000<br />

AREA * MONTH 0,8683 1 0,8683 3,5070 0,068<br />

Error 10,8938 44 0,2476<br />

Total 27,1797 48<br />

Corrected Total 16,9717 47<br />

S<strong>and</strong>eel sp. Source Corrected Model 0,0000 3 0,0000 , ,<br />

Intercept 0,0000 1 0,0000 , ,<br />

AREA 0,0000 1 0,0000 , ,<br />

MONTH 0,0000 1 0,0000 , ,<br />

AREA * MONTH 0,0000 1 0,0000 , ,<br />

Error 0,0000 44 0,0000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Great s<strong>and</strong>eel Source Corrected Model 6,7503 3 2,2501 5,2179 0,004<br />

Intercept 38,4167 1 38,4167 89,0864 0,000<br />

AREA 3,8415 1 3,8415 8,9082 0,005<br />

MONTH 0,4292 1 0,4292 0,9952 0,324<br />

AREA * MONTH 2,4796 1 2,4796 5,7502 0,021<br />

Error 18,9741 44 0,4312<br />

Total 64,1411 48<br />

Corrected Total 25,7244 47<br />

Two-spotted goby Source Corrected Model 0,7009 3 0,2336 0,9432 0,428<br />

Intercept 6,8216 1 6,8216 27,5404 0,000<br />

AREA 0,0346 1 0,0346 0,1397 0,710<br />

MONTH 0,5601 1 0,5601 2,2614 0,140<br />

AREA * MONTH 0,1061 1 0,1061 0,4285 0,516<br />

Error 10,8986 44 0,2477<br />

Total 18,4211 48<br />

Corrected Total 11,5994 47<br />

S<strong>and</strong> goby Source Corrected Model 0,1685 3 0,0562 0,4574 0,713<br />

Intercept 4,7707 1 4,7707 38,8526 0,000<br />

AREA 0,0034 1 0,0034 0,0279 0,868<br />

MONTH 0,0901 1 0,0901 0,7336 0,396<br />

AREA * MONTH 0,0750 1 0,0750 0,6106 0,439<br />

Error 5,4028 44 0,1228<br />

Total 10,3420 48<br />

Corrected Total 5,5713 47<br />

Painted goby Source Corrected Model 0,0000 3 0,0000 , ,<br />

Intercept 0,0000 1 0,0000 , ,<br />

AREA 0,0000 1 0,0000 , ,<br />

MONTH 0,0000 1 0,0000 , ,<br />

AREA * MONTH 0,0000 1 0,0000 , ,<br />

Error 0,0000 44 0,0000<br />

Total 0,0000 48<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 133<br />

Corrected Total 0,0000 47<br />

Black goby Source Corrected Model 0,0868 3 0,0289 1,3440 0,272<br />

Intercept 0,1085 1 0,1085 5,0403 0,030<br />

AREA 0,0050 1 0,0050 0,2327 0,632<br />

MONTH 0,0292 1 0,0292 1,3556 0,251<br />

AREA * MONTH 0,0526 1 0,0526 2,4435 0,125<br />

Error 0,9472 44 0,0215<br />

Total 1,1425 48<br />

Corrected Total 1,0340 47<br />

Transparent goby Source Corrected Model 0,0075 3 0,0025 1,0000 0,402<br />

Intercept 0,0025 1 0,0025 1,0000 0,323<br />

AREA 0,0025 1 0,0025 1,0000 0,323<br />

MONTH 0,0025 1 0,0025 1,0000 0,323<br />

AREA * MONTH 0,0025 1 0,0025 1,0000 0,323<br />

Error 0,1101 44 0,0025<br />

Total 0,1201 48<br />

Corrected Total 0,1176 47<br />

Goby.sp. Source Corrected Model 0,0300 3 0,0100 2,2000 0,101<br />

Intercept 0,0100 1 0,0100 2,2000 0,145<br />

AREA 0,0100 1 0,0100 2,2000 0,145<br />

MONTH 0,0100 1 0,0100 2,2000 0,145<br />

AREA * MONTH 0,0100 1 0,0100 2,2000 0,145<br />

Error 0,2002 44 0,0045<br />

Total 0,2402 48<br />

Corrected Total 0,2302 47<br />

Butterfish Source Corrected Model 0,0676 3 0,0225 2,1064 0,113<br />

Intercept 0,0626 1 0,0626 5,8511 0,020<br />

AREA 0,0025 1 0,0025 0,2340 0,631<br />

MONTH 0,0025 1 0,0025 0,2340 0,631<br />

AREA * MONTH 0,0626 1 0,0626 5,8511 0,020<br />

Error 0,4704 44 0,0107<br />

Total 0,6006 48<br />

Corrected Total 0,5380 47<br />

Eelpout Source Corrected Model 8,7917 3 2,9306 11,3129 0,000<br />

Intercept 34,8403 1 34,8403 134,4934 0,000<br />

AREA 8,1663 1 8,1663 31,5242 0,000<br />

MONTH 0,4097 1 0,4097 1,5816 0,215<br />

AREA * MONTH 0,2158 1 0,2158 0,8329 0,366<br />

Error 11,3981 44 0,2590<br />

Total 55,0301 48<br />

Corrected Total 20,1898 47<br />

Short-spined sea<br />

scorpion Source Corrected Model 16,5746 3 5,5249 15,6370 0,000<br />

Intercept 34,0469 1 34,0469 96,3631 0,000<br />

AREA 2,3099 1 2,3099 6,5378 0,014<br />

MONTH 12,6739 1 12,6739 35,8710 0,000<br />

AREA * MONTH 1,5907 1 1,5907 4,5022 0,040<br />

Error 15,5461 44 0,3533<br />

Total 66,1675 48<br />

Corrected Total 32,1206 47<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 134<br />

Longspined<br />

bullhead Source Corrected Model 0,3427 3 0,1142 1,4197 0,250<br />

Intercept 1,8938 1 1,8938 23,5343 0,000<br />

AREA 0,1740 1 0,1740 2,1629 0,148<br />

MONTH 0,0400 1 0,0400 0,4976 0,484<br />

AREA * MONTH 0,1286 1 0,1286 1,5987 0,213<br />

Error 3,5406 44 0,0805<br />

Total 5,7771 48<br />

Corrected Total 3,8833 47<br />

Hooknose Source Corrected Model 0,0100 3 0,0033 0,6667 0,577<br />

Intercept 0,0100 1 0,0100 2,0000 0,164<br />

AREA 0,0000 1 0,0000 0,0000 1,000<br />

MONTH 0,0100 1 0,0100 2,0000 0,164<br />

AREA * MONTH 0,0000 1 0,0000 0,0000 1,000<br />

Error 0,2202 44 0,0050<br />

Total 0,2402 48<br />

Corrected Total 0,2302 47<br />

Lumpsucker Source Corrected Model 0,0100 3 0,0033 0,6667 0,577<br />

Intercept 0,0100 1 0,0100 2,0000 0,164<br />

AREA 0,0000 1 0,0000 0,0000 1,000<br />

MONTH 0,0100 1 0,0100 2,0000 0,164<br />

AREA * MONTH 0,0000 1 0,0000 0,0000 1,000<br />

Error 0,2202 44 0,0050<br />

Total 0,2402 48<br />

Corrected Total 0,2302 47<br />

Striped seasnail Source Corrected Model 0,0000 3 0,0000 , ,<br />

Intercept 0,0000 1 0,0000 , ,<br />

AREA 0,0000 1 0,0000 , ,<br />

MONTH 0,0000 1 0,0000 , ,<br />

AREA * MONTH 0,0000 1 0,0000 , ,<br />

Error 0,0000 44 0,0000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Turbot Source Corrected Model 0,3706 3 0,1235 1,1519 0,339<br />

Intercept 1,1215 1 1,1215 10,4582 0,002<br />

AREA 0,0000 1 0,0000 0,0000 1,000<br />

MONTH 0,1602 1 0,1602 1,4935 0,228<br />

AREA * MONTH 0,2104 1 0,2104 1,9622 0,168<br />

Error 4,7183 44 0,1072<br />

Total 6,2103 48<br />

Corrected Total 5,0889 47<br />

Dab Source Corrected Model 0,0000 3 0,0000 , ,<br />

Intercept 0,0000 1 0,0000 , ,<br />

AREA 0,0000 1 0,0000 , ,<br />

MONTH 0,0000 1 0,0000 , ,<br />

AREA * MONTH 0,0000 1 0,0000 , ,<br />

Error 0,0000 44 0,0000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Flounder Source Corrected Model 1,4672 3 0,4891 2,3710 0,083<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 135<br />

Intercept 10,1834 1 10,1834 49,3671 0,000<br />

AREA 0,0103 1 0,0103 0,0497 0,825<br />

MONTH 1,3983 1 1,3983 6,7789 0,013<br />

AREA * MONTH 0,0587 1 0,0587 0,2844 0,597<br />

Error 9,0763 44 0,2063<br />

Total 20,7269 48<br />

Corrected Total 10,5435 47<br />

European plaice Source Corrected Model 0,0275 3 0,0092 1,3011 0,286<br />

Intercept 0,0225 1 0,0225 3,1935 0,081<br />

AREA 0,0025 1 0,0025 0,3548 0,554<br />

MONTH 0,0025 1 0,0025 0,3548 0,554<br />

AREA * MONTH 0,0225 1 0,0225 3,1935 0,081<br />

Error 0,3103 44 0,0071<br />

Total 0,3603 48<br />

Corrected Total 0,3378 47<br />

Common sole Source Corrected Model 0,0000 3 0,0000 , ,<br />

Intercept 0,0000 1 0,0000 , ,<br />

AREA 0,0000 1 0,0000 , ,<br />

MONTH 0,0000 1 0,0000 , ,<br />

AREA * MONTH 0,0000 1 0,0000 , ,<br />

Error 0,0000 44 0,0000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Sea trout Source Corrected Model 0,0075 3 0,0025 1,0000 0,402<br />

Intercept 0,0025 1 0,0025 1,0000 0,323<br />

AREA 0,0025 1 0,0025 1,0000 0,323<br />

MONTH 0,0025 1 0,0025 1,0000 0,323<br />

AREA * MONTH 0,0025 1 0,0025 1,0000 0,323<br />

Error 0,1101 44 0,0025<br />

Total 0,1201 48<br />

Corrected Total 0,1176 47<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 136<br />

Fry <strong>study</strong><br />

Levene's Test of Equality of Error Variances LN (number)<br />

Species F df1 df2 Sig.<br />

Baltic herring , 115 116 ,<br />

Brisling , 115 116 ,<br />

Common eel , 115 116 ,<br />

Hornfish , 115 116 ,<br />

Snake pipefish , 115 116 ,<br />

Straightnose pipefish , 115 116 ,<br />

Great pipefish , 115 116 ,<br />

Lesser pipefish , 115 116 ,<br />

Broad-nosed pipefish , 115 116 ,<br />

Fifteen-spined stickleback , 115 116 ,<br />

Whiting , 115 116 ,<br />

Atlantic cod , 115 116 ,<br />

Small s<strong>and</strong>eel , 115 116 ,<br />

S<strong>and</strong>eel sp. , 115 116 ,<br />

Great s<strong>and</strong>eel , 115 116 ,<br />

Two-spotted goby , 115 116 ,<br />

S<strong>and</strong> goby , 115 116 ,<br />

Painted goby , 115 116 ,<br />

Black goby , 115 116 ,<br />

Transparent goby , 115 116 ,<br />

Goby.sp. , 115 116 ,<br />

Butterfish , 115 116 ,<br />

Eelpout , 115 116 ,<br />

Short-spined sea scorpion , 115 116 ,<br />

Longspined bullhead , 115 116 ,<br />

Hooknose , 115 116 ,<br />

Lumpsucker , 115 116 ,<br />

Striped seasnail , 115 116 ,<br />

Turbot , 115 116 ,<br />

Dab , 115 116 ,<br />

Flounder , 115 116 ,<br />

European plaice , 115 116 ,<br />

Common sole , 115 116 ,<br />

Sea trout , 115 116 ,<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 137<br />

Unianova- tests of Between-Subjects Effects LN (number)<br />

Species Type III df Mean F Sig.<br />

Baltic herring Intercept Hypothesis 0,001929667 1 0,00193 0,92887 0,3373<br />

Error 0,220207631 106 0,00208<br />

REF Hypothesis 0,001938344 1 0,00194 0,93305 0,3363<br />

Error 0,220207631 106 0,00208<br />

MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

REF * MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

SEKTION(REF * MM) Hypothesis 0,220207631 106 0,00208 1,00314 0,4923<br />

Error 0,240226507 116 0,00207<br />

Brisling Intercept Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

REF Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

REF * MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

SEKTION(REF * MM) Hypothesis 0 106 0 , ,<br />

Error 0 116 0<br />

Common eel Intercept Hypothesis 0,366342241 1 0,36634 11,5489 0,001<br />

Error 3,362420238 106 0,03172<br />

REF Hypothesis 0,000690509 1 0,00069 0,02177 0,883<br />

Error 3,362420238 106 0,03172<br />

MM Hypothesis 0,192269268 4 0,04807 1,51532 0,203<br />

Error 3,362420238 106 0,03172<br />

REF * MM Hypothesis 0,310455895 4 0,07761 2,44677 0,0508<br />

Error 3,362420238 106 0,03172<br />

SEKTION(REF * MM) Hypothesis 3,362420238 106 0,03172 1,35048 0,0569<br />

Error 2,724692553 116 0,02349<br />

Hornfish Intercept Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

REF Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

REF * MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

SEKTION(REF * MM) Hypothesis 0 106 0 , ,<br />

Error 0 116 0<br />

Snake pipefish Intercept Hypothesis 0,001929667 1 0,00193 0,92887 0,3373<br />

Error 0,220207631 106 0,00208<br />

REF Hypothesis 0,001938344 1 0,00194 0,93305 0,3363<br />

Error 0,220207631 106 0,00208<br />

MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 138<br />

REF * MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

SEKTION(REF * MM) Hypothesis 0,220207631 106 0,00208 1,00314 0,4923<br />

Error 0,240226507 116 0,00207<br />

Straightnose pipefish Intercept Hypothesis 0,033934835 1 0,03393 4,1024 0,0453<br />

Error 0,87682675 106 0,00827<br />

REF Hypothesis 6,40775E-05 1 6,4E-05 0,00775 0,93<br />

Error 0,87682675 106 0,00827<br />

MM Hypothesis 0,028923824 4 0,00723 0,87415 0,4821<br />

Error 0,87682675 106 0,00827<br />

REF * MM Hypothesis 0,022020763 4 0,00551 0,66553 0,6173<br />

Error 0,87682675 106 0,00827<br />

SEKTION(REF * MM) Hypothesis 0,87682675 106 0,00827 0,99858 0,5018<br />

Error 0,960906028 116 0,00828<br />

Great pipefish Intercept Hypothesis 0,002748922 1 0,00275 1,34774 0,2483<br />

Error 0,216203856 106 0,00204<br />

REF Hypothesis 0,002707274 1 0,00271 1,32732 0,2519<br />

Error 0,216203856 106 0,00204<br />

MM Hypothesis 0,009940407 4 0,00249 1,21839 0,3074<br />

Error 0,216203856 106 0,00204<br />

REF * MM Hypothesis 0,009940407 4 0,00249 1,21839 0,3074<br />

Error 0,216203856 106 0,00204<br />

SEKTION(REF * MM) Hypothesis 0,216203856 106 0,00204 0,98491 0,5307<br />

Error 0,240226507 116 0,00207<br />

Lesser pipefish Intercept Hypothesis 0,001929667 1 0,00193 0,92887 0,3373<br />

Error 0,220207631 106 0,00208<br />

REF Hypothesis 0,001938344 1 0,00194 0,93305 0,3363<br />

Error 0,220207631 106 0,00208<br />

MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

REF * MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

SEKTION(REF * MM) Hypothesis 0,220207631 106 0,00208 1,00314 0,4923<br />

Error 0,240226507 116 0,00207<br />

Broad-nosed pipefish Intercept Hypothesis 0,364857975 1 0,36486 14,4063 0,0002<br />

Error 2,68457671 106 0,02533<br />

REF Hypothesis 0,013351014 1 0,01335 0,52716 0,4694<br />

Error 2,68457671 106 0,02533<br />

MM Hypothesis 0,266676986 4 0,06667 2,63242 0,0383<br />

Error 2,68457671 106 0,02533<br />

REF * MM Hypothesis 0,277956483 4 0,06949 2,74376 0,0322<br />

Error 2,68457671 106 0,02533<br />

SEKTION(REF * MM) Hypothesis 2,68457671 106 0,02533 0,81398 0,8589<br />

Error 3,60921403 116 0,03111<br />

Fifteen-spined<br />

stickleback Intercept Hypothesis 44,4706371 1 44,4706 145,509 1E-21<br />

Error 32,39581264 106 0,30562<br />

REF Hypothesis 0,664595492 1 0,6646 2,17457 0,1433<br />

Error 32,39581264 106 0,30562<br />

MM Hypothesis 19,43185559 4 4,85796 15,8954 3E-10<br />

Error 32,39581264 106 0,30562<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 139<br />

REF * MM Hypothesis 0,988541791 4 0,24714 0,80863 0,5223<br />

Error 32,39581264 106 0,30562<br />

SEKTION(REF * MM) Hypothesis 32,39581264 106 0,30562 1,38777 0,0424<br />

Error 25,54607562 116 0,22022<br />

Whiting Intercept Hypothesis 0,043982759 1 0,04398 6,46913 0,0124<br />

Error 0,720679521 106 0,0068<br />

REF Hypothesis 0,010829096 1 0,01083 1,59278 0,2097<br />

Error 0,720679521 106 0,0068<br />

MM Hypothesis 0,159046515 4 0,03976 5,84828 0,0003<br />

Error 0,720679521 106 0,0068<br />

REF * MM Hypothesis 0,039761629 4 0,00994 1,46207 0,2189<br />

Error 0,720679521 106 0,0068<br />

SEKTION(REF * MM) Hypothesis 0,720679521 106 0,0068 0,82075 0,8489<br />

Error 0,960906028 116 0,00828<br />

Atlantic cod Intercept Hypothesis 4,101285264 1 4,10129 28,7032 5E-07<br />

Error 15,14591064 106 0,14289<br />

REF Hypothesis 0,069370494 1 0,06937 0,4855 0,4875<br />

Error 15,14591064 106 0,14289<br />

MM Hypothesis 0,53583041 4 0,13396 0,93751 0,4453<br />

Error 15,14591064 106 0,14289<br />

REF * MM Hypothesis 0,395985307 4 0,099 0,69283 0,5985<br />

Error 15,14591064 106 0,14289<br />

SEKTION(REF * MM) Hypothesis 15,14591064 106 0,14289 2,63969 2E-07<br />

Error 6,279064349 116 0,05413<br />

Small s<strong>and</strong>eel Intercept Hypothesis 0,024799999 1 0,0248 2,64573 0,1068<br />

Error 0,993600203 106 0,00937<br />

REF Hypothesis 0,004869326 1 0,00487 0,51947 0,4727<br />

Error 0,993600203 106 0,00937<br />

MM Hypothesis 0,018548296 4 0,00464 0,4947 0,7396<br />

Error 0,993600203 106 0,00937<br />

REF * MM Hypothesis 0,039961279 4 0,00999 1,06579 0,3772<br />

Error 0,993600203 106 0,00937<br />

SEKTION(REF * MM) Hypothesis 0,993600203 106 0,00937 1,00314 0,4923<br />

Error 1,083927494 116 0,00934<br />

S<strong>and</strong>eel sp. Intercept Hypothesis 0,002748922 1 0,00275 1,34774 0,2483<br />

Error 0,216203856 106 0,00204<br />

REF Hypothesis 0,002707274 1 0,00271 1,32732 0,2519<br />

Error 0,216203856 106 0,00204<br />

MM Hypothesis 0,009940407 4 0,00249 1,21839 0,3074<br />

Error 0,216203856 106 0,00204<br />

REF * MM Hypothesis 0,009940407 4 0,00249 1,21839 0,3074<br />

Error 0,216203856 106 0,00204<br />

SEKTION(REF * MM) Hypothesis 0,216203856 106 0,00204 0,98491 0,5307<br />

Error 0,240226507 116 0,00207<br />

Great s<strong>and</strong>eel Intercept Hypothesis 0,009284892 1 0,00928 2,25521 0,1361<br />

Error 0,436411488 106 0,00412<br />

REF Hypothesis 6,40775E-05 1 6,4E-05 0,01556 0,901<br />

Error 0,436411488 106 0,00412<br />

MM Hypothesis 0,01373709 4 0,00343 0,83415 0,5064<br />

Error 0,436411488 106 0,00412<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 140<br />

REF * MM Hypothesis 0,022020763 4 0,00551 1,33716 0,261<br />

Error 0,436411488 106 0,00412<br />

SEKTION(REF * MM) Hypothesis 0,436411488 106 0,00412 0,99403 0,5114<br />

Error 0,480453014 116 0,00414<br />

Two-spotted goby Intercept Hypothesis 27,65265544 1 27,6527 72,8819 1E-13<br />

Error 40,21824162 106 0,37942<br />

REF Hypothesis 0,935826169 1 0,93583 2,46648 0,1193<br />

Error 40,21824162 106 0,37942<br />

MM Hypothesis 9,306211434 4 2,32655 6,13191 0,0002<br />

Error 40,21824162 106 0,37942<br />

REF * MM Hypothesis 7,063309574 4 1,76583 4,65405 0,0017<br />

Error 40,21824162 106 0,37942<br />

SEKTION(REF * MM) Hypothesis 40,21824162 106 0,37942 1,29911 0,0842<br />

Error 33,87900351 116 0,29206<br />

S<strong>and</strong> goby Intercept Hypothesis 58,47688134 1 58,4769 54,3105 4E-11<br />

Error 114,1317593 106 1,07671<br />

REF Hypothesis 0,144506922 1 0,14451 0,13421 0,7148<br />

Error 114,1317593 106 1,07671<br />

MM Hypothesis 23,14432758 4 5,78608 5,37383 0,0006<br />

Error 114,1317593 106 1,07671<br />

REF * MM Hypothesis 9,448724279 4 2,36218 2,19388 0,0746<br />

Error 114,1317593 106 1,07671<br />

SEKTION(REF * MM) Hypothesis 114,1317593 106 1,07671 1,76307 0,0015<br />

Error 70,84156512 116 0,6107<br />

Painted goby Intercept Hypothesis 0,001929667 1 0,00193 0,92887 0,3373<br />

Error 0,220207631 106 0,00208<br />

REF Hypothesis 0,001938344 1 0,00194 0,93305 0,3363<br />

Error 0,220207631 106 0,00208<br />

MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

REF * MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

SEKTION(REF * MM) Hypothesis 0,220207631 106 0,00208 1,00314 0,4923<br />

Error 0,240226507 116 0,00207<br />

Black goby Intercept Hypothesis 0,765742389 1 0,76574 15,0613 0,0002<br />

Error 5,3892356 106 0,05084<br />

REF Hypothesis 0,078201796 1 0,0782 1,53814 0,2176<br />

Error 5,3892356 106 0,05084<br />

MM Hypothesis 1,00708743 4 0,25177 4,95206 0,0011<br />

Error 5,3892356 106 0,05084<br />

REF * MM Hypothesis 0,290551754 4 0,07264 1,4287 0,2295<br />

Error 5,3892356 106 0,05084<br />

SEKTION(REF * MM) Hypothesis 5,3892356 106 0,05084 1,66912 0,0036<br />

Error 3,533389477 116 0,03046<br />

Transparent goby Intercept Hypothesis 0,007718669 1 0,00772 1,85774 0,1758<br />

Error 0,440415263 106 0,00415<br />

REF Hypothesis 0,007753376 1 0,00775 1,8661 0,1748<br />

Error 0,440415263 106 0,00415<br />

MM Hypothesis 0,011735203 4 0,00293 0,70611 0,5895<br />

Error 0,440415263 106 0,00415<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 141<br />

REF * MM Hypothesis 0,011735203 4 0,00293 0,70611 0,5895<br />

Error 0,440415263 106 0,00415<br />

SEKTION(REF * MM) Hypothesis 0,440415263 106 0,00415 1,00314 0,4923<br />

Error 0,480453014 116 0,00414<br />

Goby.sp. Intercept Hypothesis 0,001929667 1 0,00193 0,92887 0,3373<br />

Error 0,220207631 106 0,00208<br />

REF Hypothesis 0,001938344 1 0,00194 0,93305 0,3363<br />

Error 0,220207631 106 0,00208<br />

MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

REF * MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

SEKTION(REF * MM) Hypothesis 0,220207631 106 0,00208 1,00314 0,4923<br />

Error 0,240226507 116 0,00207<br />

Butterfish Intercept Hypothesis 0,069468022 1 0,06947 5,9328 0,0165<br />

Error 1,241170286 106 0,01171<br />

REF Hypothesis 0 1 0 0 1<br />

Error 1,241170286 106 0,01171<br />

MM Hypothesis 0,0455602 4 0,01139 0,97275 0,4257<br />

Error 1,241170286 106 0,01171<br />

REF * MM Hypothesis 0,080075502 4 0,02002 1,70968 0,1533<br />

Error 1,241170286 106 0,01171<br />

SEKTION(REF * MM) Hypothesis 1,241170286 106 0,01171 0,94235 0,6213<br />

Error 1,441359042 116 0,01243<br />

Eelpout Intercept Hypothesis 97,97756201 1 97,9776 161,63 5E-23<br />

Error 64,25541521 106 0,60618<br />

REF Hypothesis 5,815339673 1 5,81534 9,59337 0,0025<br />

Error 64,25541521 106 0,60618<br />

MM Hypothesis 16,0259338 4 4,00648 6,60936 9E-05<br />

Error 64,25541521 106 0,60618<br />

REF * MM Hypothesis 16,36621884 4 4,09155 6,7497 7E-05<br />

Error 64,25541521 106 0,60618<br />

SEKTION(REF * MM) Hypothesis 64,25541521 106 0,60618 2,36514 4E-06<br />

Error 29,73063533 116 0,2563<br />

Short-spined sea<br />

scorpion Intercept Hypothesis 18,17066452 1 18,1707 68,3411 4E-13<br />

Error 28,18347449 106 0,26588<br />

REF Hypothesis 0,315111887 1 0,31511 1,18516 0,2788<br />

Error 28,18347449 106 0,26588<br />

MM Hypothesis 6,334442946 4 1,58361 5,95607 0,0002<br />

Error 28,18347449 106 0,26588<br />

REF * MM Hypothesis 1,712689114 4 0,42817 1,61039 0,177<br />

Error 28,18347449 106 0,26588<br />

SEKTION(REF * MM) Hypothesis 28,18347449 106 0,26588 2,00396 0,0001<br />

Error 15,39069089 116 0,13268<br />

Longspined bullhead Intercept Hypothesis 8,07105823 1 8,07106 57,5123 1E-11<br />

Error 14,87562836 106 0,14034<br />

REF Hypothesis 0,180837313 1 0,18084 1,2886 0,2589<br />

Error 14,87562836 106 0,14034<br />

MM Hypothesis 3,525764404 4 0,88144 6,28093 0,0001<br />

Error 14,87562836 106 0,14034<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 142<br />

REF * MM Hypothesis 0,613337271 4 0,15333 1,09262 0,3641<br />

Error 14,87562836 106 0,14034<br />

SEKTION(REF * MM) Hypothesis 14,87562836 106 0,14034 1,38023 0,045<br />

Error 11,79436455 116 0,10168<br />

Hooknose Intercept Hypothesis 0,116625395 1 0,11663 9,21689 0,003<br />

Error 1,341264664 106 0,01265<br />

REF Hypothesis 0,055763435 1 0,05576 4,40698 0,0382<br />

Error 1,341264664 106 0,01265<br />

MM Hypothesis 0,140753405 4 0,03519 2,78093 0,0305<br />

Error 1,341264664 106 0,01265<br />

REF * MM Hypothesis 0,046319536 4 0,01158 0,91516 0,458<br />

Error 1,341264664 106 0,01265<br />

SEKTION(REF * MM) Hypothesis 1,341264664 106 0,01265 0,87287 0,7612<br />

Error 1,681585549 116 0,0145<br />

Lumpsucker Intercept Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

REF Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

REF * MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

SEKTION(REF * MM) Hypothesis 0 106 0 , ,<br />

Error 0 116 0<br />

Striped seasnail Intercept Hypothesis 0,001929667 1 0,00193 0,92887 0,3373<br />

Error 0,220207631 106 0,00208<br />

REF Hypothesis 0,001938344 1 0,00194 0,93305 0,3363<br />

Error 0,220207631 106 0,00208<br />

MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

REF * MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

SEKTION(REF * MM) Hypothesis 0,220207631 106 0,00208 1,00314 0,4923<br />

Error 0,240226507 116 0,00207<br />

Turbot Intercept Hypothesis 0,074022117 1 0,07402 4,46409 0,037<br />

Error 1,757657276 106 0,01658<br />

REF Hypothesis 0,009227158 1 0,00923 0,55647 0,4573<br />

Error 1,757657276 106 0,01658<br />

MM Hypothesis 0,047562087 4 0,01189 0,71709 0,5821<br />

Error 1,757657276 106 0,01658<br />

REF * MM Hypothesis 0,033755966 4 0,00844 0,50893 0,7293<br />

Error 1,757657276 106 0,01658<br />

SEKTION(REF * MM) Hypothesis 1,757657276 106 0,01658 2,00173 0,0001<br />

Error 0,960906028 116 0,00828<br />

Dab Intercept Hypothesis 0,007718669 1 0,00772 1,85774 0,1758<br />

Error 0,440415263 106 0,00415<br />

REF Hypothesis 0 1 0 0 1<br />

Error 0,440415263 106 0,00415<br />

MM Hypothesis 0,031754079 4 0,00794 1,91066 0,114<br />

Error 0,440415263 106 0,00415<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 143<br />

REF * MM Hypothesis 0 4 0 0 1<br />

Error 0,440415263 106 0,00415<br />

SEKTION(REF * MM) Hypothesis 0,440415263 106 0,00415 1,00314 0,4923<br />

Error 0,480453014 116 0,00414<br />

Flounder Intercept Hypothesis 5,836101885 1 5,8361 41,6283 3E-09<br />

Error 14,86073619 106 0,1402<br />

REF Hypothesis 0,115028512 1 0,11503 0,82049 0,3671<br />

Error 14,86073619 106 0,1402<br />

MM Hypothesis 2,692765545 4 0,67319 4,8018 0,0013<br />

Error 14,86073619 106 0,1402<br />

REF * MM Hypothesis 0,113909143 4 0,02848 0,20313 0,9362<br />

Error 14,86073619 106 0,1402<br />

SEKTION(REF * MM) Hypothesis 14,86073619 106 0,1402 1,14912 0,2317<br />

Error 14,15225954 116 0,122<br />

European plaice Intercept Hypothesis 0,007718669 1 0,00772 2,04352 0,1558<br />

Error 0,400377512 106 0,00378<br />

REF Hypothesis 0,007753376 1 0,00775 2,05271 0,1549<br />

Error 0,400377512 106 0,00378<br />

MM Hypothesis 0,031754079 4 0,00794 2,10172 0,0857<br />

Error 0,400377512 106 0,00378<br />

REF * MM Hypothesis 0,031754079 4 0,00794 2,10172 0,0857<br />

Error 0,400377512 106 0,00378<br />

SEKTION(REF * MM) Hypothesis 0,400377512 106 0,00378 0,91195 0,6846<br />

Error 0,480453014 116 0,00414<br />

Common sole Intercept Hypothesis 0,001929667 1 0,00193 0,92887 0,3373<br />

Error 0,220207631 106 0,00208<br />

REF Hypothesis 0,001938344 1 0,00194 0,93305 0,3363<br />

Error 0,220207631 106 0,00208<br />

MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

REF * MM Hypothesis 0,00793852 4 0,00198 0,95533 0,4353<br />

Error 0,220207631 106 0,00208<br />

SEKTION(REF * MM) Hypothesis 0,220207631 106 0,00208 1,00314 0,4923<br />

Error 0,240226507 116 0,00207<br />

Sea trout Intercept Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

REF Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

REF * MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

SEKTION(REF * MM) Hypothesis 0 106 0 , ,<br />

Error 0 116 0<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 144<br />

Appendix 4. Levene’s test <strong>and</strong> Uni-ANOVA analysis of weight<br />

<strong>Fish</strong> <strong>study</strong><br />

Levene's Test of Equality of Error Variances, LN (Weight)<br />

Species F df1 df2 Sig.<br />

Baltic herring 7,434238446 3 44 0,000<br />

Brisling 0,325430858 3 44 0,807<br />

Common eel 9,010944852 3 44 0,000<br />

Hornfish 11,38609633 3 44 0,000<br />

Snake pipefish 4,84 3 44 0,005<br />

Straightnose pipefish 6,530872207 3 44 0,001<br />

Great pipefish , 3 44 ,<br />

Lesser pipefish , 3 44 ,<br />

Broad-nosed pipefish , 3 44 ,<br />

Fifteen-spined stickleback 1,598102133 3 44 0,203<br />

Whiting 4,84 3 44 0,005<br />

Atlantic cod 3,757804303 3 44 0,017<br />

Small s<strong>and</strong>eel 3,254313229 3 44 0,030<br />

S<strong>and</strong>eel sp. , 3 44 ,<br />

Great s<strong>and</strong>eel 4,163121243 3 44 0,011<br />

Two-spotted goby 0,105642071 3 44 0,956<br />

S<strong>and</strong> goby 2,747903475 3 44 0,054<br />

Painted goby , 3 44 ,<br />

Black goby 4,923109583 3 44 0,005<br />

Transparent goby 4,84 3 44 0,005<br />

Goby.sp. 8,738914542 3 44 0,000<br />

Butterfish 15,37761305 3 44 0,000<br />

Eelpout 3,379320869 3 44 0,026<br />

Short-spined sea scorpion 1,569477481 3 44 0,210<br />

Longspined bullhead 0,649655161 3 44 0,587<br />

Hooknose 3,228693462 3 44 0,031<br />

Lumpsucker 3,280543936 3 44 0,030<br />

Striped seasnail , 3 44 ,<br />

Turbot 5,811667637 3 44 0,002<br />

Dab , 3 44 ,<br />

Flounder 1,018763173 3 44 0,393<br />

European plaice 5,456160999 3 44 0,003<br />

Common sole , 3 44 ,<br />

Sea trout 4,84 3 44 0,005<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 145<br />

Species<br />

Tests of Between-Subjects Effects LN (weight)<br />

Type III df Mean F Sig.<br />

Sum of Squares Square<br />

Baltic herring Source Corrected Model 10,9395 3 3,646 2,1893 0,103<br />

Intercept 24,3901 1 24,390 14,6433 0,000<br />

REF 10,7715 1 10,772 6,4670 0,015<br />

MONTH 0,0006 1 0,001 0,0004 0,984<br />

REF * MONTH 0,1673 1 0,167 0,1004 0,753<br />

Error 73,2869 44 1,666<br />

Total 108,6164 48<br />

Corrected Total 84,2263 47<br />

Brisling Source Corrected Model 0,7110 3 0,237 0,4611 0,711<br />

Intercept 13,7240 1 13,724 26,7038 0,000<br />

REF 0,0063 1 0,006 0,0123 0,912<br />

MONTH 0,6852 1 0,685 1,3332 0,254<br />

REF * MONTH 0,0195 1 0,019 0,0379 0,846<br />

Error 22,6132 44 0,514<br />

Total 37,0482 48<br />

Corrected Total 23,3241 47<br />

Common eel Source Corrected Model 3,6301 3 1,210 1,7731 0,166<br />

Intercept 5,5696 1 5,570 8,1612 0,007<br />

REF 0,7602 1 0,760 1,1139 0,297<br />

MONTH 0,0379 1 0,038 0,0556 0,815<br />

REF * MONTH 2,8320 1 2,832 4,1498 0,048<br />

Error 30,0276 44 0,682<br />

Total 39,2273 48<br />

Corrected Total 33,6577 47<br />

Hornfish Source Corrected Model 107,4091 3 35,803 6,0572 0,002<br />

Intercept 199,9874 1 199,987 33,8339 0,000<br />

REF 3,9077 1 3,908 0,6611 0,421<br />

MONTH 102,7111 1 102,711 17,3767 0,000<br />

REF * MONTH 0,7903 1 0,790 0,1337 0,716<br />

Error 260,0775 44 5,911<br />

Total 567,4740 48<br />

Corrected Total 367,4866 47<br />

Snake pipefish Source Corrected Model 0,0965 3 0,032 1,0000 0,402<br />

Intercept 0,0322 1 0,032 1,0000 0,323<br />

REF 0,0322 1 0,032 1,0000 0,323<br />

MONTH 0,0322 1 0,032 1,0000 0,323<br />

REF * MONTH 0,0322 1 0,032 1,0000 0,323<br />

Error 1,4150 44 0,032<br />

Total 1,5437 48<br />

Corrected Total 1,5115 47<br />

Straightnose pipefish Source Corrected Model 0,0553 3 0,018 1,2913 0,289<br />

Intercept 0,0455 1 0,045 3,1852 0,081<br />

REF 0,0349 1 0,035 2,4476 0,125<br />

MONTH 0,0128 1 0,013 0,8976 0,349<br />

REF * MONTH 0,0075 1 0,008 0,5288 0,471<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 146<br />

Error 0,6282 44 0,014<br />

Total 0,7290 48<br />

Corrected Total 0,6835 47<br />

Great pipefish Source Corrected Model 0,0000 3 0,000 , ,<br />

Intercept 0,0000 1 0,000 , ,<br />

REF 0,0000 1 0,000 , ,<br />

MONTH 0,0000 1 0,000 , ,<br />

REF * MONTH 0,0000 1 0,000 , ,<br />

Error 0,0000 44 0,000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Lesser pipefish Source Corrected Model 0,0000 3 0,000 , ,<br />

Intercept 0,0000 1 0,000 , ,<br />

REF 0,0000 1 0,000 , ,<br />

MONTH 0,0000 1 0,000 , ,<br />

REF * MONTH 0,0000 1 0,000 , ,<br />

Error 0,0000 44 0,000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Broad-nosed pipefish Source Corrected Model 0,0000 3 0,000 , ,<br />

Intercept 0,0000 1 0,000 , ,<br />

REF 0,0000 1 0,000 , ,<br />

MONTH 0,0000 1 0,000 , ,<br />

REF * MONTH 0,0000 1 0,000 , ,<br />

Error 0,0000 44 0,000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Fifteen-spined stickleback Source Corrected Model 6,6390 3 2,213 4,4740 0,008<br />

Intercept 16,3006 1 16,301 32,9551 0,000<br />

REF 3,1437 1 3,144 6,3557 0,015<br />

MONTH 2,9276 1 2,928 5,9187 0,019<br />

REF * MONTH 0,5677 1 0,568 1,1477 0,290<br />

Error 21,7638 44 0,495<br />

Total 44,7034 48<br />

Corrected Total 28,4028 47<br />

Whiting Source Corrected Model 0,4395 3 0,146 1,0000 0,402<br />

Intercept 0,1465 1 0,146 1,0000 0,323<br />

REF 0,1465 1 0,146 1,0000 0,323<br />

MONTH 0,1465 1 0,146 1,0000 0,323<br />

REF * MONTH 0,1465 1 0,146 1,0000 0,323<br />

Error 6,4453 44 0,146<br />

Total 7,0313 48<br />

Corrected Total 6,8848 47<br />

Atlantic cod Source Corrected Model 71,4724 3 23,824 4,2721 0,010<br />

Intercept 190,3771 1 190,377 34,1377 0,000<br />

REF 35,2881 1 35,288 6,3277 0,016<br />

MONTH 32,5588 1 32,559 5,8383 0,020<br />

REF * MONTH 3,6254 1 3,625 0,6501 0,424<br />

Error 245,3767 44 5,577<br />

Total 507,2262 48<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 147<br />

Corrected Total 316,8491 47<br />

Small s<strong>and</strong>eel Source Corrected Model 46,6122 3 15,537 10,3576 0,000<br />

Intercept 73,9830 1 73,983 49,3188 0,000<br />

REF 1,1992 1 1,199 0,7994 0,376<br />

MONTH 40,8057 1 40,806 27,2020 0,000<br />

REF * MONTH 4,6073 1 4,607 3,0713 0,087<br />

Error 66,0043 44 1,500<br />

Total 186,5995 48<br />

Corrected Total 112,6165 47<br />

S<strong>and</strong>eel sp. Source Corrected Model 0,0000 3 0,000 , ,<br />

Intercept 0,0000 1 0,000 , ,<br />

REF 0,0000 1 0,000 , ,<br />

MONTH 0,0000 1 0,000 , ,<br />

REF * MONTH 0,0000 1 0,000 , ,<br />

Error 0,0000 44 0,000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Great s<strong>and</strong>eel Source Corrected Model 23,1041 3 7,701 3,3224 0,028<br />

103,615<br />

Intercept 240,1806 1 240,181 8 0,000<br />

REF 13,8622 1 13,862 5,9803 0,019<br />

MONTH 0,0691 1 0,069 0,0298 0,864<br />

REF * MONTH 9,1728 1 9,173 3,9572 0,053<br />

Error 101,9917 44 2,318<br />

Total 365,2763 48<br />

Corrected Total 125,0958 47<br />

Two-spotted goby Source Corrected Model 0,4705 3 0,157 0,8470 0,476<br />

Intercept 4,6671 1 4,667 25,2078 0,000<br />

REF 0,1306 1 0,131 0,7055 0,405<br />

MONTH 0,3398 1 0,340 1,8356 0,182<br />

REF * MONTH 0,0000 1 0,000 0,0000 0,998<br />

Error 8,1463 44 0,185<br />

Total 13,2838 48<br />

Corrected Total 8,6168 47<br />

S<strong>and</strong> goby Source Corrected Model 0,4028 3 0,134 0,7216 0,544<br />

Intercept 7,1291 1 7,129 38,3103 0,000<br />

REF 0,0492 1 0,049 0,2646 0,610<br />

MONTH 0,0423 1 0,042 0,2272 0,636<br />

REF * MONTH 0,3113 1 0,311 1,6729 0,203<br />

Error 8,1879 44 0,186<br />

Total 15,7199 48<br />

Corrected Total 8,5908 47<br />

Painted goby Source Corrected Model 0,0000 3 0,000 , ,<br />

Intercept 0,0000 1 0,000 , ,<br />

REF 0,0000 1 0,000 , ,<br />

MONTH 0,0000 1 0,000 , ,<br />

REF * MONTH 0,0000 1 0,000 , ,<br />

Error 0,0000 44 0,000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Black goby Source Corrected Model 0,4202 3 0,140 1,1656 0,334<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 148<br />

Intercept 0,5733 1 0,573 4,7713 0,034<br />

REF 0,0145 1 0,015 0,1209 0,730<br />

MONTH 0,1140 1 0,114 0,9485 0,335<br />

REF * MONTH 0,2917 1 0,292 2,4275 0,126<br />

Error 5,2871 44 0,120<br />

Total 6,2806 48<br />

Corrected Total 5,7073 47<br />

Transparent goby Source Corrected Model 0,0075 3 0,003 1,0000 0,402<br />

Intercept 0,0025 1 0,003 1,0000 0,323<br />

REF 0,0025 1 0,003 1,0000 0,323<br />

MONTH 0,0025 1 0,003 1,0000 0,323<br />

REF * MONTH 0,0025 1 0,003 1,0000 0,323<br />

Error 0,1101 44 0,003<br />

Total 0,1201 48<br />

Corrected Total 0,1176 47<br />

Goby.sp. Source Corrected Model 0,0353 3 0,012 1,7532 0,170<br />

Intercept 0,0118 1 0,012 1,7532 0,192<br />

REF 0,0118 1 0,012 1,7532 0,192<br />

MONTH 0,0118 1 0,012 1,7532 0,192<br />

REF * MONTH 0,0118 1 0,012 1,7532 0,192<br />

Error 0,2957 44 0,007<br />

Total 0,3428 48<br />

Corrected Total 0,3311 47<br />

Butterfish Source Corrected Model 1,0461 3 0,349 2,1507 0,107<br />

Intercept 0,9474 1 0,947 5,8431 0,020<br />

REF 0,0494 1 0,049 0,3045 0,584<br />

MONTH 0,0494 1 0,049 0,3045 0,584<br />

REF * MONTH 0,9474 1 0,947 5,8431 0,020<br />

Error 7,1339 44 0,162<br />

Total 9,1274 48<br />

Corrected Total 8,1800 47<br />

Eelpout Source Corrected Model 60,8244 3 20,275 8,9182 0,000<br />

138,427<br />

Intercept 314,7017 1 314,702 4 0,000<br />

REF 34,1751 1 34,175 15,0326 0,000<br />

MONTH 22,9662 1 22,966 10,1021 0,003<br />

REF * MONTH 3,6831 1 3,683 1,6201 0,210<br />

Error 100,0298 44 2,273<br />

Total 475,5559 48<br />

Corrected Total 160,8542 47<br />

Short-spined sea scorpion Source Corrected Model 160,9302 3 53,643 14,9935 0,000<br />

141,992<br />

Intercept 508,0178 1 508,018 2 0,000<br />

REF 9,6045 1 9,604 2,6845 0,108<br />

MONTH 144,6100 1 144,610 40,4189 0,000<br />

REF * MONTH 6,7157 1 6,716 1,8770 0,178<br />

Error 157,4226 44 3,578<br />

Total 826,3705 48<br />

Corrected Total 318,3528 47<br />

Longspined bullhead Source Corrected Model 5,8635 3 1,955 1,2370 0,308<br />

Intercept 36,0678 1 36,068 22,8268 0,000<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 149<br />

REF 2,2615 1 2,261 1,4312 0,238<br />

MONTH 0,9628 1 0,963 0,6093 0,439<br />

REF * MONTH 2,6393 1 2,639 1,6704 0,203<br />

Error 69,5228 44 1,580<br />

Total 111,4541 48<br />

Corrected Total 75,3863 47<br />

Hooknose Source Corrected Model 0,1594 3 0,053 0,6671 0,577<br />

Intercept 0,1592 1 0,159 1,9987 0,164<br />

REF 0,0001 1 0,000 0,0013 0,972<br />

MONTH 0,1592 1 0,159 1,9987 0,164<br />

REF * MONTH 0,0001 1 0,000 0,0013 0,972<br />

Error 3,5035 44 0,080<br />

Total 3,8220 48<br />

Corrected Total 3,6629 47<br />

Lumpsucker Source Corrected Model 0,8215 3 0,274 0,6778 0,570<br />

Intercept 0,7945 1 0,794 1,9666 0,168<br />

REF 0,0135 1 0,013 0,0334 0,856<br />

MONTH 0,7945 1 0,794 1,9666 0,168<br />

REF * MONTH 0,0135 1 0,013 0,0334 0,856<br />

Error 17,7754 44 0,404<br />

Total 19,3913 48<br />

Corrected Total 18,5968 47<br />

Striped seasnail Source Corrected Model 0,0000 3 0,000 , ,<br />

Intercept 0,0000 1 0,000 , ,<br />

REF 0,0000 1 0,000 , ,<br />

MONTH 0,0000 1 0,000 , ,<br />

REF * MONTH 0,0000 1 0,000 , ,<br />

Error 0,0000 44 0,000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Turbot Source Corrected Model 9,6477 3 3,216 1,2149 0,316<br />

Intercept 41,9513 1 41,951 15,8483 0,000<br />

REF 1,7747 1 1,775 0,6704 0,417<br />

MONTH 4,0505 1 4,051 1,5302 0,223<br />

REF * MONTH 3,8226 1 3,823 1,4441 0,236<br />

Error 116,4700 44 2,647<br />

Total 168,0690 48<br />

Corrected Total 126,1177 47<br />

Dab Source Corrected Model 0,0000 3 0,000 , ,<br />

Intercept 0,0000 1 0,000 , ,<br />

REF 0,0000 1 0,000 , ,<br />

MONTH 0,0000 1 0,000 , ,<br />

REF * MONTH 0,0000 1 0,000 , ,<br />

Error 0,0000 44 0,000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Flounder Source Corrected Model 40,7582 3 13,586 4,0605 0,012<br />

Intercept 222,0578 1 222,058 66,3673 0,000<br />

REF 0,0392 1 0,039 0,0117 0,914<br />

MONTH 37,6266 1 37,627 11,2456 0,002<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 150<br />

REF * MONTH 3,0924 1 3,092 0,9242 0,342<br />

Error 147,2192 44 3,346<br />

Total 410,0352 48<br />

Corrected Total 187,9774 47<br />

European plaice Source Corrected Model 0,3593 3 0,120 1,0732 0,370<br />

Intercept 0,3393 1 0,339 3,0406 0,088<br />

REF 0,0100 1 0,010 0,0896 0,766<br />

MONTH 0,0100 1 0,010 0,0896 0,766<br />

REF * MONTH 0,3393 1 0,339 3,0406 0,088<br />

Error 4,9098 44 0,112<br />

Total 5,6084 48<br />

Corrected Total 5,2691 47<br />

Common sole Source Corrected Model 0,0000 3 0,000 , ,<br />

Intercept 0,0000 1 0,000 , ,<br />

REF 0,0000 1 0,000 , ,<br />

MONTH 0,0000 1 0,000 , ,<br />

REF * MONTH 0,0000 1 0,000 , ,<br />

Error 0,0000 44 0,000<br />

Total 0,0000 48<br />

Corrected Total 0,0000 47<br />

Sea trout Source Corrected Model 0,6508 3 0,217 1,0000 0,402<br />

Intercept 0,2169 1 0,217 1,0000 0,323<br />

REF 0,2169 1 0,217 1,0000 0,323<br />

MONTH 0,2169 1 0,217 1,0000 0,323<br />

REF * MONTH 0,2169 1 0,217 1,0000 0,323<br />

Error 9,5446 44 0,217<br />

Total 10,4123 48<br />

Corrected Total 10,1954 47<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 151<br />

Fry <strong>study</strong><br />

Levene's Test of Equality of Error Variances LN (weight)<br />

Species F df1 df2 Sig.<br />

Baltic herring , 115 116 ,<br />

Brisling , 115 116 ,<br />

Common eel , 115 116 ,<br />

Hornfish , 115 116 ,<br />

Snake pipefish , 115 116 ,<br />

Straightnose pipefish , 115 116 ,<br />

Great pipefish , 115 116 ,<br />

Lesser pipefish , 115 116 ,<br />

Broad-nosed pipefish , 115 116 ,<br />

Fifteen-spined stickleback , 115 116 ,<br />

Whiting , 115 116 ,<br />

Atlantic cod , 115 116 ,<br />

Small s<strong>and</strong>eel , 115 116 ,<br />

S<strong>and</strong>eel sp. , 115 116 ,<br />

Great s<strong>and</strong>eel , 115 116 ,<br />

Two-spotted goby , 115 116 ,<br />

S<strong>and</strong> goby , 115 116 ,<br />

Painted goby , 115 116 ,<br />

Black goby , 115 116 ,<br />

Transparent goby , 115 116 ,<br />

Goby.sp. , 115 116 ,<br />

Butterfish , 115 116 ,<br />

Eelpout , 115 116 ,<br />

Short-spined sea scorpion , 115 116 ,<br />

Longspined bullhead , 115 116 ,<br />

Hooknose , 115 116 ,<br />

Lumpsucker , 115 116 ,<br />

Striped seasnail , 115 116 ,<br />

Turbot , 115 116 ,<br />

Dab , 115 116 ,<br />

Flounder , 115 116 ,<br />

European plaice , 115 116 ,<br />

Common sole , 115 116 ,<br />

Sea trout , 115 116 ,<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 152<br />

Unianova- tests of Between-Subjects Effects LN (weight)<br />

Species Type III df Mean F Sig.<br />

Baltic herring Intercept Hypothesis 0,058940444 1 0,058940444 0,92887 0,33735<br />

Error 6,726100268 106 0,063453776<br />

REF Hypothesis 0,05920547 1 0,05920547 0,93305 0,33627<br />

Error 6,726100268 106 0,063453776<br />

MM Hypothesis 0,242476969 4 0,060619242 0,95533 0,43529<br />

Error 6,726100268 106 0,063453776<br />

REF * MM Hypothesis 0,242476969 4 0,060619242 0,95533 0,43529<br />

Error 6,726100268 106 0,063453776<br />

SEKTION(REF * MM) Hypothesis 6,726100268 106 0,063453776 1,00314 0,49228<br />

Error 7,337563929 116 0,063254861<br />

Brisling Intercept Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

REF Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

REF * MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

SEKTION(REF * MM) Hypothesis 0 106 0 , ,<br />

Error 0 116 0<br />

Common eel Intercept Hypothesis 15,2768547 1 15,2768547 12,2965 0,00067<br />

Error 131,6920289 106 1,242377631<br />

REF Hypothesis 0,019710218 1 0,019710218 0,01586 0,90001<br />

Error 131,6920289 106 1,242377631<br />

MM Hypothesis 8,661817376 4 2,165454344 1,74299 0,14597<br />

Error 131,6920289 106 1,242377631<br />

REF * MM Hypothesis 14,13095972 4 3,532739929 2,84353 0,02765<br />

Error 131,6920289 106 1,242377631<br />

SEKTION(REF * MM) Hypothesis 131,6920289 106 1,242377631 1,06711 0,3654<br />

Error 135,052207 116 1,164243164<br />

Hornfish Intercept Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

REF Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

REF * MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

SEKTION(REF * MM) Hypothesis 0 106 0 , ,<br />

Error 0 116 0<br />

Snake pipefish Intercept Hypothesis 0,024799999 1 0,024799999 0,92887 0,33735<br />

Error 2,830098818 106 0,026699045<br />

REF Hypothesis 0,024911513 1 0,024911513 0,93305 0,33627<br />

Error 2,830098818 106 0,026699045<br />

MM Hypothesis 0,102025506 4 0,025506376 0,95533 0,43529<br />

Error 2,830098818 106 0,026699045<br />

REF * MM Hypothesis 0,102025506 4 0,025506376 0,95533 0,43529<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 153<br />

Error 2,830098818 106 0,026699045<br />

SEKTION(REF * MM) Hypothesis 2,830098818 106 0,026699045 1,00314 0,49228<br />

Error 3,087380529 116 0,026615349<br />

Straightnose pipefish Intercept Hypothesis 0,020698907 1 0,020698907 3,59025 0,06084<br />

Error 0,611122713 106 0,005765309<br />

REF Hypothesis 0,001046536 1 0,001046536 0,18152 0,67093<br />

Error 0,611122713 106 0,005765309<br />

MM Hypothesis 0,014570967 4 0,003642742 0,63184 0,64086<br />

Error 0,611122713 106 0,005765309<br />

REF * MM Hypothesis 0,022446501 4 0,005611625 0,97334 0,42537<br />

Error 0,611122713 106 0,005765309<br />

SEKTION(REF * MM) Hypothesis 0,611122713 106 0,005765309 0,99844 0,50213<br />

Error 0,669820171 116 0,005774312<br />

Great pipefish Intercept Hypothesis 0,003149532 1 0,003149532 1,34774 0,24828<br />

Error 0,247711961 106 0,002336905<br />

REF Hypothesis 0,003101814 1 0,003101814 1,32732 0,25187<br />

Error 0,247711961 106 0,002336905<br />

MM Hypothesis 0,011389056 4 0,002847264 1,21839 0,30742<br />

Error 0,247711961 106 0,002336905<br />

REF * MM Hypothesis 0,011389056 4 0,002847264 1,21839 0,30742<br />

Error 0,247711961 106 0,002336905<br />

SEKTION(REF * MM) Hypothesis 0,247711961 106 0,002336905 0,98491 0,53069<br />

Error 0,275235512 116 0,00237272<br />

Lesser pipefish Intercept Hypothesis 0,003666936 1 0,003666936 0,92887 0,33735<br />

Error 0,418459306 106 0,003947729<br />

REF Hypothesis 0,003683424 1 0,003683424 0,93305 0,33627<br />

Error 0,418459306 106 0,003947729<br />

MM Hypothesis 0,015085524 4 0,003771381 0,95533 0,43529<br />

Error 0,418459306 106 0,003947729<br />

REF * MM Hypothesis 0,015085524 4 0,003771381 0,95533 0,43529<br />

Error 0,418459306 106 0,003947729<br />

SEKTION(REF * MM) Hypothesis 0,418459306 106 0,003947729 1,00314 0,49228<br />

Error 0,456501061 116 0,003935354<br />

Broad-nosed pipefish Intercept Hypothesis 0,433618161 1 0,433618161 14,1001 0,00028<br />

Error 3,259791764 106 0,030752752<br />

REF Hypothesis 0,007960127 1 0,007960127 0,25884 0,61197<br />

Error 3,259791764 106 0,030752752<br />

MM Hypothesis 0,30190204 4 0,07547551 2,45427 0,05024<br />

Error 3,259791764 106 0,030752752<br />

REF * MM Hypothesis 0,46686778 4 0,116716945 3,79533 0,00634<br />

Error 3,259791764 106 0,030752752<br />

SEKTION(REF * MM) Hypothesis 3,259791764 106 0,030752752 0,7999 0,87825<br />

Error 4,459692018 116 0,038445621<br />

Fifteen-spined stickleback Intercept Hypothesis 179,3551142 1 179,3551142 156,94 1,2E-22<br />

Error 121,1393081 106 1,142823661<br />

REF Hypothesis 3,874024587 1 3,874024587 3,38987 0,06839<br />

Error 121,1393081 106 1,142823661<br />

MM Hypothesis 43,5629828 4 10,8907457 9,52968 1,3E-06<br />

Error 121,1393081 106 1,142823661<br />

REF * MM Hypothesis 6,171361807 4 1,542840452 1,35002 0,25636<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 154<br />

Error 121,1393081 106 1,142823661<br />

SEKTION(REF * MM) Hypothesis 121,1393081 106 1,142823661 1,23601 0,13218<br />

Error 107,2543942 116 0,924606846<br />

Whiting Intercept Hypothesis 1,185824086 1 1,185824086 6,53106 0,01202<br />

Error 19,2460844 106 0,181566834<br />

REF Hypothesis 0,360545525 1 0,360545525 1,98575 0,16171<br />

Error 19,2460844 106 0,181566834<br />

MM Hypothesis 4,288070842 4 1,07201771 5,90426 0,00025<br />

Error 19,2460844 106 0,181566834<br />

REF * MM Hypothesis 1,323829592 4 0,330957398 1,82279 0,12982<br />

Error 19,2460844 106 0,181566834<br />

SEKTION(REF * MM) Hypothesis 19,2460844 106 0,181566834 0,80922 0,8656<br />

Error 26,02713076 116 0,224371817<br />

Atlantic cod Intercept Hypothesis 104,1783213 1 104,1783213 25,9418 1,5E-06<br />

Error 425,6800753 106 4,015849767<br />

REF Hypothesis 3,81209527 1 3,81209527 0,94926 0,33213<br />

Error 425,6800753 106 4,015849767<br />

MM Hypothesis 12,16860713 4 3,042151782 0,75754 0,55521<br />

Error 425,6800753 106 4,015849767<br />

REF * MM Hypothesis 7,890476827 4 1,972619207 0,49121 0,74218<br />

Error 425,6800753 106 4,015849767<br />

SEKTION(REF * MM) Hypothesis 425,6800753 106 4,015849767 3,18481 1,1E-09<br />

Error 146,2689962 116 1,260939622<br />

Small s<strong>and</strong>eel Intercept Hypothesis 0,278071777 1 0,278071777 2,73594 0,10107<br />

Error 10,77347247 106 0,101636533<br />

REF Hypothesis 0,032815942 1 0,032815942 0,32288 0,57109<br />

Error 10,77347247 106 0,101636533<br />

MM Hypothesis 0,191276771 4 0,047819193 0,47049 0,75728<br />

Error 10,77347247 106 0,101636533<br />

REF * MM Hypothesis 0,454642887 4 0,113660722 1,11831 0,35185<br />

Error 10,77347247 106 0,101636533<br />

SEKTION(REF * MM) Hypothesis 10,77347247 106 0,101636533 1,00314 0,49228<br />

Error 11,75287906 116 0,101317923<br />

S<strong>and</strong>eel sp. Intercept Hypothesis 0,051518411 1 0,051518411 1,34774 0,24828<br />

Error 4,051943734 106 0,038225884<br />

REF Hypothesis 0,050737863 1 0,050737863 1,32732 0,25187<br />

Error 4,051943734 106 0,038225884<br />

MM Hypothesis 0,186296264 4 0,046574066 1,21839 0,30742<br />

Error 4,051943734 106 0,038225884<br />

REF * MM Hypothesis 0,186296264 4 0,046574066 1,21839 0,30742<br />

Error 4,051943734 106 0,038225884<br />

SEKTION(REF * MM) Hypothesis 4,051943734 106 0,038225884 0,98491 0,53069<br />

Error 4,502159704 116 0,038811722<br />

Great s<strong>and</strong>eel Intercept Hypothesis 0,101172234 1 0,101172234 2,20056 0,14093<br />

Error 4,873416262 106 0,045975625<br />

REF Hypothesis 0,013170372 1 0,013170372 0,28646 0,59362<br />

Error 4,873416262 106 0,045975625<br />

MM Hypothesis 0,1732051 4 0,043301275 0,94183 0,44283<br />

Error 4,873416262 106 0,045975625<br />

REF * MM Hypothesis 0,251942515 4 0,062985629 1,36998 0,2493<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 155<br />

Error 4,873416262 106 0,045975625<br />

SEKTION(REF * MM) Hypothesis 4,873416262 106 0,045975625 0,98918 0,52164<br />

Error 5,391521138 116 0,04647863<br />

Two-spotted goby Intercept Hypothesis 16,00313179 1 16,00313179 61,1994 4,1E-12<br />

Error 27,71809943 106 0,261491504<br />

REF Hypothesis 0,262408644 1 0,262408644 1,00351 0,31874<br />

Error 27,71809943 106 0,261491504<br />

MM Hypothesis 4,793833564 4 1,198458391 4,58316 0,00188<br />

Error 27,71809943 106 0,261491504<br />

REF * MM Hypothesis 3,69680061 4 0,924200152 3,53434 0,0095<br />

Error 27,71809943 106 0,261491504<br />

SEKTION(REF * MM) Hypothesis 27,71809943 106 0,261491504 1,41002 0,03536<br />

Error 21,51251696 116 0,185452732<br />

S<strong>and</strong> goby Intercept Hypothesis 60,8574229 1 60,8574229 58,8199 8,8E-12<br />

Error 109,6718219 106 1,03463983<br />

REF Hypothesis 0,001651928 1 0,001651928 0,0016 0,9682<br />

Error 109,6718219 106 1,03463983<br />

MM Hypothesis 22,5965 4 5,649125001 5,45999 0,00049<br />

Error 109,6718219 106 1,03463983<br />

REF * MM Hypothesis 7,981511931 4 1,995377983 1,92857 0,11101<br />

Error 109,6718219 106 1,03463983<br />

SEKTION(REF * MM) Hypothesis 109,6718219 106 1,03463983 1,65851 0,00396<br />

Error 72,36492315 116 0,623835544<br />

Painted goby Intercept Hypothesis 0,000887225 1 0,000887225 0,92887 0,33735<br />

Error 0,101247397 106 0,000955164<br />

REF Hypothesis 0,000891215 1 0,000891215 0,93305 0,33627<br />

Error 0,101247397 106 0,000955164<br />

MM Hypothesis 0,003649985 4 0,000912496 0,95533 0,43529<br />

Error 0,101247397 106 0,000955164<br />

REF * MM Hypothesis 0,003649985 4 0,000912496 0,95533 0,43529<br />

Error 0,101247397 106 0,000955164<br />

SEKTION(REF * MM) Hypothesis 0,101247397 106 0,000955164 1,00314 0,49228<br />

Error 0,110451706 116 0,00095217<br />

Black goby Intercept Hypothesis 6,55229701 1 6,55229701 16,1247 0,00011<br />

Error 43,07328775 106 0,406351771<br />

REF Hypothesis 0,784072431 1 0,784072431 1,92954 0,16772<br />

Error 43,07328775 106 0,406351771<br />

MM Hypothesis 8,632074777 4 2,158018694 5,31072 0,00062<br />

Error 43,07328775 106 0,406351771<br />

REF * MM Hypothesis 2,597109474 4 0,649277369 1,59782 0,18028<br />

Error 43,07328775 106 0,406351771<br />

SEKTION(REF * MM) Hypothesis 43,07328775 106 0,406351771 1,55675 0,01003<br />

Error 30,27893919 116 0,261025338<br />

Transparent goby Intercept Hypothesis 0,004847529 1 0,004847529 1,73853 0,19017<br />

Error 0,295558527 106 0,002788288<br />

REF Hypothesis 0,004869326 1 0,004869326 1,74635 0,18918<br />

Error 0,295558527 106 0,002788288<br />

MM Hypothesis 0,008232112 4 0,002058028 0,7381 0,56803<br />

Error 0,295558527 106 0,002788288<br />

REF * MM Hypothesis 0,008232112 4 0,002058028 0,7381 0,56803<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 156<br />

Error 0,295558527 106 0,002788288<br />

SEKTION(REF * MM) Hypothesis 0,295558527 106 0,002788288 1,00314 0,49228<br />

Error 0,322427484 116 0,002779547<br />

Goby.sp. Intercept Hypothesis 0,000660296 1 0,000660296 0,92887 0,33735<br />

Error 0,075350896 106 0,000710858<br />

REF Hypothesis 0,000663265 1 0,000663265 0,93305 0,33627<br />

Error 0,075350896 106 0,000710858<br />

MM Hypothesis 0,002716412 4 0,000679103 0,95533 0,43529<br />

Error 0,075350896 106 0,000710858<br />

REF * MM Hypothesis 0,002716412 4 0,000679103 0,95533 0,43529<br />

Error 0,075350896 106 0,000710858<br />

SEKTION(REF * MM) Hypothesis 0,075350896 106 0,000710858 1,00314 0,49228<br />

Error 0,082200977 116 0,000708629<br />

Butterfish Intercept Hypothesis 1,005092483 1 1,005092483 5,91858 0,01666<br />

Error 18,00091391 106 0,169819943<br />

REF Hypothesis 0,000620222 1 0,000620222 0,00365 0,95192<br />

Error 18,00091391 106 0,169819943<br />

MM Hypothesis 0,659360272 4 0,164840068 0,97068 0,42683<br />

Error 18,00091391 106 0,169819943<br />

REF * MM Hypothesis 1,157521942 4 0,289380486 1,70404 0,15453<br />

Error 18,00091391 106 0,169819943<br />

SEKTION(REF * MM) Hypothesis 18,00091391 106 0,169819943 0,94267 0,62057<br />

Error 20,89712363 116 0,180147618<br />

Eelpout Intercept Hypothesis 771,3391371 1 771,3391371 199,15 4,4E-26<br />

Error 410,5555904 106 3,873165947<br />

REF Hypothesis 18,93798486 1 18,93798486 4,88954 0,02917<br />

Error 410,5555904 106 3,873165947<br />

MM Hypothesis 177,6028052 4 44,40070131 11,4637 9E-08<br />

Error 410,5555904 106 3,873165947<br />

REF * MM Hypothesis 80,23175554 4 20,05793888 5,17869 0,00075<br />

Error 410,5555904 106 3,873165947<br />

SEKTION(REF * MM) Hypothesis 410,5555904 106 3,873165947 2,04776 9E-05<br />

Error 219,4041682 116 1,891415243<br />

Short-spined sea scorpion Intercept Hypothesis 443,1865741 1 443,1865741 82,045 7,4E-15<br />

Error 572,5853217 106 5,401748318<br />

REF Hypothesis 2,365726705 1 2,365726705 0,43796 0,50955<br />

Error 572,5853217 106 5,401748318<br />

MM Hypothesis 111,9997948 4 27,9999487 5,1835 0,00075<br />

Error 572,5853217 106 5,401748318<br />

REF * MM Hypothesis 26,29605537 4 6,574013843 1,21702 0,30799<br />

Error 572,5853217 106 5,401748318<br />

SEKTION(REF * MM) Hypothesis 572,5853217 106 5,401748318 1,49917 0,01666<br />

Error 417,9662155 116 3,60315703<br />

Longspined bullhead Intercept Hypothesis 92,51785125 1 92,51785125 59,8118 6,4E-12<br />

Error 163,9624961 106 1,546816001<br />

REF Hypothesis 0,260744921 1 0,260744921 0,16857 0,68222<br />

Error 163,9624961 106 1,546816001<br />

MM Hypothesis 35,10651681 4 8,776629203 5,674 0,00035<br />

Error 163,9624961 106 1,546816001<br />

REF * MM Hypothesis 3,363949825 4 0,840987456 0,54369 0,70399<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 157<br />

Error 163,9624961 106 1,546816001<br />

SEKTION(REF * MM) Hypothesis 163,9624961 106 1,546816001 1,16611 0,20889<br />

Error 153,8707421 116 1,326471915<br />

Hooknose Intercept Hypothesis 2,27712216 1 2,27712216 9,10912 0,00319<br />

Error 26,49815218 106 0,249982568<br />

REF Hypothesis 1,006988756 1 1,006988756 4,02824 0,04729<br />

Error 26,49815218 106 0,249982568<br />

MM Hypothesis 2,804914244 4 0,701228561 2,80511 0,02934<br />

Error 26,49815218 106 0,249982568<br />

REF * MM Hypothesis 0,848530307 4 0,212132577 0,84859 0,49754<br />

Error 26,49815218 106 0,249982568<br />

SEKTION(REF * MM) Hypothesis 26,49815218 106 0,249982568 0,87686 0,75371<br />

Error 33,07028974 116 0,285088705<br />

Lumpsucker Intercept Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

REF Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

REF * MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

SEKTION(REF * MM) Hypothesis 0 106 0 , ,<br />

Error 0 116 0<br />

Striped seasnail Intercept Hypothesis 0,029454044 1 0,029454044 0,92887 0,33735<br />

Error 3,36120395 106 0,031709471<br />

REF Hypothesis 0,029586484 1 0,029586484 0,93305 0,33627<br />

Error 3,36120395 106 0,031709471<br />

MM Hypothesis 0,121171929 4 0,030292982 0,95533 0,43529<br />

Error 3,36120395 106 0,031709471<br />

REF * MM Hypothesis 0,121171929 4 0,030292982 0,95533 0,43529<br />

Error 3,36120395 106 0,031709471<br />

SEKTION(REF * MM) Hypothesis 3,36120395 106 0,031709471 1,00314 0,49228<br />

Error 3,666767946 116 0,031610068<br />

Turbot Intercept Hypothesis 3,741840457 1 3,741840457 4,33722 0,03969<br />

Error 91,44907707 106 0,862727142<br />

REF Hypothesis 0,493549646 1 0,493549646 0,57208 0,45111<br />

Error 91,44907707 106 0,862727142<br />

MM Hypothesis 2,783589109 4 0,695897277 0,80662 0,52362<br />

Error 91,44907707 106 0,862727142<br />

REF * MM Hypothesis 1,544176009 4 0,386044002 0,44747 0,77402<br />

Error 91,44907707 106 0,862727142<br />

SEKTION(REF * MM) Hypothesis 91,44907707 106 0,862727142 2,15177 3,2E-05<br />

Error 46,50879498 116 0,400937888<br />

Dab Intercept Hypothesis 0,332839782 1 0,332839782 1,82536 0,17955<br />

Error 19,32820234 106 0,182341532<br />

REF Hypothesis 0,005930698 1 0,005930698 0,03253 0,85722<br />

Error 19,32820234 106 0,182341532<br />

MM Hypothesis 1,369280179 4 0,342320045 1,87736 0,11977<br />

Error 19,32820234 106 0,182341532<br />

REF * MM Hypothesis 0,024289269 4 0,006072317 0,0333 0,99784<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 158<br />

Error 19,32820234 106 0,182341532<br />

SEKTION(REF * MM) Hypothesis 19,32820234 106 0,182341532 1,00314 0,49228<br />

Error 21,08531165 116 0,181769928<br />

Flounder Intercept Hypothesis 164,1018498 1 164,1018498 48,785 2,6E-10<br />

Error 356,5604987 106 3,363778289<br />

REF Hypothesis 3,776281275 1 3,776281275 1,12263 0,29176<br />

Error 356,5604987 106 3,363778289<br />

MM Hypothesis 75,37136623 4 18,84284156 5,60169 0,0004<br />

Error 356,5604987 106 3,363778289<br />

REF * MM Hypothesis 2,563996818 4 0,640999205 0,19056 0,94286<br />

Error 356,5604987 106 3,363778289<br />

SEKTION(REF * MM) Hypothesis 356,5604987 106 3,363778289 0,99502 0,50931<br />

Error 392,1504487 116 3,380607317<br />

European plaice Intercept Hypothesis 0,08979176 1 0,08979176 2,02598 0,15757<br />

Error 4,697942538 106 0,044320213<br />

REF Hypothesis 0,09019551 1 0,09019551 2,03509 0,15664<br />

Error 4,697942538 106 0,044320213<br />

MM Hypothesis 0,369397179 4 0,092349295 2,08368 0,08805<br />

Error 4,697942538 106 0,044320213<br />

REF * MM Hypothesis 0,369397179 4 0,092349295 2,08368 0,08805<br />

Error 4,697942538 106 0,044320213<br />

SEKTION(REF * MM) Hypothesis 4,697942538 106 0,044320213 0,91326 0,68196<br />

Error 5,62946586 116 0,048529878<br />

Common sole Intercept Hypothesis 0,068624803 1 0,068624803 0,92887 0,33735<br />

Error 7,831249198 106 0,073879709<br />

REF Hypothesis 0,068933375 1 0,068933375 0,93305 0,33627<br />

Error 7,831249198 106 0,073879709<br />

MM Hypothesis 0,282317761 4 0,07057944 0,95533 0,43529<br />

Error 7,831249198 106 0,073879709<br />

REF * MM Hypothesis 0,282317761 4 0,07057944 0,95533 0,43529<br />

Error 7,831249198 106 0,073879709<br />

SEKTION(REF * MM) Hypothesis 7,831249198 106 0,073879709 1,00314 0,49228<br />

Error 8,543180943 116 0,073648112<br />

Sea trout Intercept Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

REF Hypothesis 0 1 0 , ,<br />

Error 0 106 0<br />

MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

REF * MM Hypothesis 0 4 0 , ,<br />

Error 0 106 0<br />

SEKTION(REF * MM) Hypothesis 0 106 0 , ,<br />

Error 0 116 0<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 159<br />

Appendix 5. Non-parametric Kolmogov/Smirnoff analysis of<br />

distribution of length<br />

<strong>Fish</strong> <strong>study</strong><br />

Species Total length<br />

(cm)<br />

Baltic herring Most Extreme Differences Absolute .539<br />

Positive .539<br />

Negative -.145<br />

Kolmogorov-Smirnov Z .981<br />

Asymp. Sig. (2-tailed) .291<br />

Brisling Most Extreme Differences Absolute .406<br />

Positive .162<br />

Negative -.406<br />

Kolmogorov-Smirnov Z 1.115<br />

Asymp. Sig. (2-tailed) .166<br />

Common eel Most Extreme Differences Absolute .500<br />

Positive .500<br />

Negative -.300<br />

Kolmogorov-Smirnov Z .598<br />

Asymp. Sig. (2-tailed) .867<br />

Hornfish Most Extreme Differences Absolute .123<br />

Positive .099<br />

Negative -.123<br />

Kolmogorov-Smirnov Z .533<br />

Asymp. Sig. (2-tailed) .939<br />

Fifteen-spined stickleback Most Extreme Differences Absolute .157<br />

Positive .043<br />

Negative -.157<br />

Kolmogorov-Smirnov Z .413<br />

Asymp. Sig. (2-tailed) .996<br />

Atlantic cod Most Extreme Differences Absolute .333<br />

Positive .000<br />

Negative -.333<br />

Kolmogorov-Smirnov Z 1.534<br />

Asymp. Sig. (2-tailed) .018<br />

Small s<strong>and</strong>eel Most Extreme Differences Absolute .231<br />

Positive .231<br />

Negative -.071<br />

Kolmogorov-Smirnov Z 1.262<br />

Asymp. Sig. (2-tailed) .083<br />

Great s<strong>and</strong>eel Most Extreme Differences Absolute .308<br />

Positive .073<br />

Negative -.308<br />

Kolmogorov-Smirnov Z 2.304<br />

Asymp. Sig. (2-tailed) .000<br />

Two-spotted goby Most Extreme Differences Absolute .056<br />

Positive .016<br />

Negative -.056<br />

Kolmogorov-Smirnov Z .241<br />

Asymp. Sig. (2-tailed) 1.000<br />

S<strong>and</strong> goby Most Extreme Differences Absolute .247<br />

Positive .000<br />

Negative -.247<br />

Kolmogorov-Smirnov Z .908<br />

Asymp. Sig. (2-tailed) .382<br />

Black goby Most Extreme Differences Absolute .267<br />

Positive .200<br />

Negative -.267<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 160<br />

Kolmogorov-Smirnov Z .365<br />

Asymp. Sig. (2-tailed) .999<br />

Butterfish Most Extreme Differences Absolute .667<br />

Positive .000<br />

Negative -.667<br />

Kolmogorov-Smirnov Z .730<br />

Asymp. Sig. (2-tailed) .660<br />

Eelpout Most Extreme Differences Absolute .175<br />

Positive .175<br />

Negative -.035<br />

Kolmogorov-Smirnov Z .957<br />

Asymp. Sig. (2-tailed) .319<br />

Short-spined sea scorpion Most Extreme Differences Absolute .095<br />

Positive .095<br />

Negative -.017<br />

Kolmogorov-Smirnov Z .684<br />

Asymp. Sig. (2-tailed) .737<br />

Longspined bullhead Most Extreme Differences Absolute .186<br />

Positive .186<br />

Negative -.100<br />

Kolmogorov-Smirnov Z .483<br />

Asymp. Sig. (2-tailed) .974<br />

Turbot Most Extreme Differences Absolute .466<br />

Positive .466<br />

Negative .000<br />

Kolmogorov-Smirnov Z 1.235<br />

Asymp. Sig. (2-tailed) .095<br />

Flounder Most Extreme Differences Absolute .330<br />

Positive .021<br />

Negative -.330<br />

Kolmogorov-Smirnov Z 1.556<br />

Asymp. Sig. (2-tailed) .016<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 161<br />

Fry <strong>study</strong><br />

Total length (cm)<br />

Common eel Most Extreme Differences Absolute .571<br />

Positive .571<br />

Negative -.143<br />

Kolmogorov-Smirnov Z 1.069<br />

Asymp. Sig. (2-tailed) .203<br />

Straightnose pipefish Most Extreme Differences Absolute .500<br />

Positive .000<br />

Negative -.500<br />

Kolmogorov-Smirnov Z .500<br />

Asymp. Sig. (2-tailed) .964<br />

Broad-nosed pipefish Most Extreme Differences Absolute .200<br />

Positive .100<br />

Negative -.200<br />

Kolmogorov-Smirnov Z .365<br />

Asymp. Sig. (2-tailed) .999<br />

Fifteen-spined stickleback Most Extreme Differences Absolute .069<br />

Positive .069<br />

Negative -.049<br />

Kolmogorov-Smirnov Z .503<br />

Asymp. Sig. (2-tailed) .962<br />

Atlantic cod Most Extreme Differences Absolute .400<br />

Positive .000<br />

Negative -.400<br />

Kolmogorov-Smirnov Z 1.386<br />

Asymp. Sig. (2-tailed) .043<br />

Two-spotted goby Most Extreme Differences Absolute .289<br />

Positive .289<br />

Negative -.006<br />

Kolmogorov-Smirnov Z 2.012<br />

Asymp. Sig. (2-tailed) .001<br />

S<strong>and</strong> goby Most Extreme Differences Absolute .230<br />

Positive .230<br />

Negative .000<br />

Kolmogorov-Smirnov Z 3.354<br />

Asymp. Sig. (2-tailed) .000<br />

Black goby Most Extreme Differences Absolute .313<br />

Positive .313<br />

Negative -.125<br />

Kolmogorov-Smirnov Z .690<br />

Asymp. Sig. (2-tailed) .728<br />

Butterfish Most Extreme Differences Absolute .667<br />

Positive .000<br />

Negative -.667<br />

Kolmogorov-Smirnov Z .816<br />

Asymp. Sig. (2-tailed) .518<br />

Eelpout Most Extreme Differences Absolute .211<br />

Positive .211<br />

Negative -.184<br />

Kolmogorov-Smirnov Z 1.974<br />

Asymp. Sig. (2-tailed) .001<br />

Short-spined sea scorpion Most Extreme Differences Absolute .078<br />

Positive .073<br />

Negative -.078<br />

Kolmogorov-Smirnov Z .424<br />

Asymp. Sig. (2-tailed) .994<br />

Longspined bullhead Most Extreme Differences Absolute .222<br />

Positive .222<br />

Negative .000<br />

Kolmogorov-Smirnov Z .913<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 162<br />

Asymp. Sig. (2-tailed) .375<br />

Turbot Most Extreme Differences Absolute .500<br />

Positive .250<br />

Negative -.500<br />

Kolmogorov-Smirnov Z .577<br />

Asymp. Sig. (2-tailed) .893<br />

Flounder Most Extreme Differences Absolute .164<br />

Positive .164<br />

Negative -.145<br />

Kolmogorov-Smirnov Z .661<br />

Asymp. Sig. (2-tailed) .774<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 163<br />

Appendix 6. Mann-Whitney U<br />

<strong>Fish</strong> <strong>study</strong><br />

Test between areas.<br />

Species Total length (cm)<br />

Baltic herring Mann-Whitney U 22<br />

Wilcoxon W 212<br />

Z -1,303905912<br />

Asymp. Sig. (2-tailed) 0,192265664<br />

Exact Sig. [2*(1-tailed Sig.)] 0,218181819<br />

Brisling Mann-Whitney U 99<br />

Wilcoxon W 190<br />

Z -0,730133928<br />

Asymp. Sig. (2-tailed) 0,465308324<br />

Exact Sig. [2*(1-tailed Sig.)] 0,489216745<br />

Common eel Mann-Whitney U 4<br />

Wilcoxon W 19<br />

Z -0,387298335<br />

Asymp. Sig. (2-tailed) 0,698535358<br />

Exact Sig. [2*(1-tailed Sig.)] 0,857142866<br />

Hornfish Mann-Whitney U 774,5<br />

Wilcoxon W 2259,5<br />

Z -0,081353899<br />

Asymp. Sig. (2-tailed) 0,935160511<br />

Straightnose pipefish Mann-Whitney U 0<br />

Wilcoxon W 1<br />

Z -1,414213562<br />

Asymp. Sig. (2-tailed) 0,157299207<br />

Exact Sig. [2*(1-tailed Sig.)] 0,400000006<br />

Fifteen-spined stickleback Mann-Whitney U 101,5<br />

Wilcoxon W 156,5<br />

Z -0,540524399<br />

Asymp. Sig. (2-tailed) 0,588835439<br />

Exact Sig. [2*(1-tailed Sig.)] 0,602683485<br />

Atlantic cod Mann-Whitney U 827,5<br />

Wilcoxon W 1233,5<br />

Z -2,611690256<br />

Asymp. Sig. (2-tailed) 0,009009584<br />

Small s<strong>and</strong>eel Mann-Whitney U 1422,5<br />

Wilcoxon W 4582,5<br />

Z -2,379437662<br />

Asymp. Sig. (2-tailed) 0,017339075<br />

Great s<strong>and</strong>eel Mann-Whitney U 5706<br />

Wilcoxon W 8709<br />

Z -3,642683242<br />

Asymp. Sig. (2-tailed) 0,000269811<br />

Two-spotted goby Mann-Whitney U 691<br />

Wilcoxon W 1252<br />

Z -0,230871986<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 164<br />

Asymp. Sig. (2-tailed) 0,817414255<br />

S<strong>and</strong> goby Mann-Whitney U 237,5<br />

Wilcoxon W 588,5<br />

Z -2,233715918<br />

Asymp. Sig. (2-tailed) 0,025501771<br />

Black goby Mann-Whitney U 6,5<br />

Wilcoxon W 12,5<br />

Z -0,301756376<br />

Asymp. Sig. (2-tailed) 0,762837788<br />

Exact Sig. [2*(1-tailed Sig.)] 0,785714269<br />

Butterfish Mann-Whitney U 1<br />

Wilcoxon W 4<br />

Z -1,154700538<br />

Asymp. Sig. (2-tailed) 0,248213079<br />

Exact Sig. [2*(1-tailed Sig.)] 0,400000006<br />

Eelpout Mann-Whitney U 2575<br />

Wilcoxon W 17800<br />

Z -1,680093041<br />

Asymp. Sig. (2-tailed) 0,092939215<br />

Short-spined sea scorpion Mann-Whitney U 6012<br />

Wilcoxon W 23217<br />

Z -1,375557969<br />

Asymp. Sig. (2-tailed) 0,168958527<br />

Longspined bullhead Mann-Whitney U 97<br />

Wilcoxon W 328<br />

Z -0,338985603<br />

Asymp. Sig. (2-tailed) 0,734620576<br />

Exact Sig. [2*(1-tailed Sig.)] 0,755380273<br />

Hooknose Mann-Whitney U 0<br />

Wilcoxon W 1<br />

Z -1<br />

Asymp. Sig. (2-tailed) 0,317310508<br />

Exact Sig. [2*(1-tailed Sig.)] 1<br />

Lumpsucker Mann-Whitney U 0<br />

Wilcoxon W 1<br />

Z -1<br />

Asymp. Sig. (2-tailed) 0,317310508<br />

Exact Sig. [2*(1-tailed Sig.)] 1<br />

Turbot Mann-Whitney U 37<br />

Wilcoxon W 190<br />

Z -2,888225005<br />

Asymp. Sig. (2-tailed) 0,003874226<br />

Exact Sig. [2*(1-tailed Sig.)] 0,003137818<br />

Flounder Mann-Whitney U 675<br />

Wilcoxon W 1665<br />

Z -2,594201336<br />

Asymp. Sig. (2-tailed) 0,009481095<br />

European plaice Mann-Whitney U 0<br />

Wilcoxon W 3<br />

Z -1,224744871<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 165<br />

Test between periods.<br />

Asymp. Sig. (2-tailed) 0,220671362<br />

Exact Sig. [2*(1-tailed Sig.)] 0,666666687<br />

Speceis Total length (cm)<br />

Baltic herring Mann-Whitney U 50<br />

Wilcoxon W 141<br />

Z -0,934657835<br />

Asymp. Sig. (2-tailed) 0,349964664<br />

Exact Sig. [2*(1-tailed Sig.)] 0,375819236<br />

Brisling Mann-Whitney U 36,5<br />

Wilcoxon W 312,5<br />

Z -2,538762209<br />

Asymp. Sig. (2-tailed) 0,011124541<br />

Exact Sig. [2*(1-tailed Sig.)] 0,010061448<br />

Common eel Mann-Whitney U 5<br />

Wilcoxon W 15<br />

Z -0,353553391<br />

Asymp. Sig. (2-tailed) 0,72367361<br />

Exact Sig. [2*(1-tailed Sig.)] 0,857142866<br />

Hornfish Mann-Whitney U 107<br />

Wilcoxon W 135<br />

Z -2,610938438<br />

Asymp. Sig. (2-tailed) 0,009029415<br />

Straightnose pipefish Mann-Whitney U 1<br />

Wilcoxon W 2<br />

Z -0,707106781<br />

Asymp. Sig. (2-tailed) 0,479500122<br />

Exact Sig. [2*(1-tailed Sig.)] 0,800000012<br />

Fifteen-spined stickleback Mann-Whitney U 97,5<br />

Wilcoxon W 142,5<br />

Z -0,433818308<br />

Asymp. Sig. (2-tailed) 0,664420386<br />

Exact Sig. [2*(1-tailed Sig.)] 0,67668891<br />

Atlantic cod Mann-Whitney U 884,5<br />

Wilcoxon W 1184,5<br />

Z -1,497126455<br />

Asymp. Sig. (2-tailed) 0,134360357<br />

Small s<strong>and</strong>eel Mann-Whitney U 612<br />

Wilcoxon W 765<br />

Z -2,311374041<br />

Asymp. Sig. (2-tailed) 0,020812204<br />

Great s<strong>and</strong>eel Mann-Whitney U 8729,5<br />

Wilcoxon W 13385,5<br />

Z -0,379341947<br />

Asymp. Sig. (2-tailed) 0,704433954<br />

Two-spotted goby Mann-Whitney U 632,5<br />

Wilcoxon W 1160,5<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 166<br />

Z -0,89576775<br />

Asymp. Sig. (2-tailed) 0,370376818<br />

S<strong>and</strong> goby Mann-Whitney U 318<br />

Wilcoxon W 783<br />

Z -0,74573778<br />

Asymp. Sig. (2-tailed) 0,455825832<br />

Black goby Mann-Whitney U 4,5<br />

Wilcoxon W 25,5<br />

Z -0,506060827<br />

Asymp. Sig. (2-tailed) 0,612813949<br />

Exact Sig. [2*(1-tailed Sig.)] 0,642857134<br />

Butterfish Mann-Whitney U 1<br />

Wilcoxon W 4<br />

Z -1,154700538<br />

Asymp. Sig. (2-tailed) 0,248213079<br />

Exact Sig. [2*(1-tailed Sig.)] 0,400000006<br />

Eelpout Mann-Whitney U 1949<br />

Wilcoxon W 5435<br />

Z -7,723201439<br />

Asymp. Sig. (2-tailed) 1,13444E-14<br />

Short-spined sea scorpion Mann-Whitney U 2672<br />

Wilcoxon W 3168<br />

Z -2,178383384<br />

Asymp. Sig. (2-tailed) 0,029377506<br />

Longspined bullhead Mann-Whitney U 104<br />

Wilcoxon W 195<br />

Z -0,521838765<br />

Asymp. Sig. (2-tailed) 0,601782596<br />

Exact Sig. [2*(1-tailed Sig.)] 0,621742785<br />

Turbot Mann-Whitney U 59<br />

Wilcoxon W 290<br />

Z -1,22410344<br />

Asymp. Sig. (2-tailed) 0,220913208<br />

Exact Sig. [2*(1-tailed Sig.)] 0,237274364<br />

Flounder Mann-Whitney U 556,5<br />

Wilcoxon W 934,5<br />

Z -2,512354149<br />

Asymp. Sig. (2-tailed) 0,011992867<br />

European plaice Mann-Whitney U 0<br />

Wilcoxon W 3<br />

Z -1,224744871<br />

Asymp. Sig. (2-tailed) 0,220671362<br />

Exact Sig. [2*(1-tailed Sig.)] 0,666666687<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 167<br />

Fry <strong>study</strong><br />

Test between areas.<br />

Species Total length (cm)<br />

Common eel Mann-Whitney U 14<br />

Wilcoxon W 42<br />

Z -1,341640786<br />

Asymp. Sig. (2-tailed) 0,179712495<br />

Exact Sig. [2*(1-tailed Sig.)] 0,208624706<br />

Straightnose pipefish Mann-Whitney U 1<br />

Wilcoxon W 4<br />

Z -0,774596669<br />

Asymp. Sig. (2-tailed) 0,438578026<br />

Exact Sig. [2*(1-tailed Sig.)] 0,666666687<br />

Lesser pipefish Mann-Whitney U 0<br />

Wilcoxon W 1<br />

Z -1<br />

Asymp. Sig. (2-tailed) 0,317310508<br />

Exact Sig. [2*(1-tailed Sig.)] 1<br />

Broad-nosed pipefish Mann-Whitney U 22,5<br />

Wilcoxon W 37,5<br />

Z -0,309520467<br />

Asymp. Sig. (2-tailed) 0,756925645<br />

Exact Sig. [2*(1-tailed Sig.)] 0,767898738<br />

Fifteen-spined stickleback Mann-Whitney U 5471,5<br />

Wilcoxon W 10322,5<br />

Z -0,148833259<br />

Asymp. Sig. (2-tailed) 0,881685206<br />

Whiting Mann-Whitney U 0<br />

Wilcoxon W 1<br />

Z -1,341640786<br />

Asymp. Sig. (2-tailed) 0,179712495<br />

Exact Sig. [2*(1-tailed Sig.)] 0,5<br />

Atlantic cod Mann-Whitney U 195<br />

Wilcoxon W 405<br />

Z -2,081259592<br />

Asymp. Sig. (2-tailed) 0,037410152<br />

Small s<strong>and</strong>eel Mann-Whitney U 1,5<br />

Wilcoxon W 7,5<br />

Z 0<br />

Asymp. Sig. (2-tailed) 1<br />

Exact Sig. [2*(1-tailed Sig.)] 1<br />

Great s<strong>and</strong>eel Mann-Whitney U 0<br />

Wilcoxon W 1<br />

Z -1<br />

Asymp. Sig. (2-tailed) 0,317310508<br />

Exact Sig. [2*(1-tailed Sig.)] 1<br />

Two-spotted goby Mann-Whitney U 3767<br />

Wilcoxon W 19343<br />

Z -4,614665366<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 168<br />

Asymp. Sig. (2-tailed) 3,93729E-06<br />

S<strong>and</strong> goby Mann-Whitney U 73091,5<br />

Wilcoxon W 262511,5<br />

Z -6,746311022<br />

Asymp. Sig. (2-tailed) 1,51651E-11<br />

Black goby Mann-Whitney U 48<br />

Wilcoxon W 184<br />

Z -0,542902361<br />

Asymp. Sig. (2-tailed) 0,58719703<br />

Exact Sig. [2*(1-tailed Sig.)] 0,624350905<br />

Butterfish Mann-Whitney U 1,5<br />

Wilcoxon W 7,5<br />

Z -1,328422328<br />

Asymp. Sig. (2-tailed) 0,184038627<br />

Exact Sig. [2*(1-tailed Sig.)] 0,200000003<br />

Eelpout Mann-Whitney U 16268,5<br />

Wilcoxon W 50198,5<br />

Z -0,841655366<br />

Asymp. Sig. (2-tailed) 0,399980889<br />

Short-spined sea scorpion Mann-Whitney U 1739,5<br />

Wilcoxon W 4224,5<br />

Z -0,239223223<br />

Asymp. Sig. (2-tailed) 0,810932496<br />

Longspined bullhead Mann-Whitney U 467,5<br />

Wilcoxon W 1502,5<br />

Z -1,632608988<br />

Asymp. Sig. (2-tailed) 0,10255126<br />

Hooknose Mann-Whitney U 0,5<br />

Wilcoxon W 21,5<br />

Z -1,272937693<br />

Asymp. Sig. (2-tailed) 0,203040152<br />

Exact Sig. [2*(1-tailed Sig.)] 0,285714298<br />

Turbot Mann-Whitney U 3<br />

Wilcoxon W 6<br />

Z -0,46291005<br />

Asymp. Sig. (2-tailed) 0,643428844<br />

Exact Sig. [2*(1-tailed Sig.)] 0,800000012<br />

Dab Mann-Whitney U 0<br />

Wilcoxon W 1<br />

Z -1<br />

Asymp. Sig. (2-tailed) 0,317310508<br />

Exact Sig. [2*(1-tailed Sig.)] 1<br />

Flounder Mann-Whitney U 520<br />

Wilcoxon W 1223<br />

Z -0,213666696<br />

Asymp. Sig. (2-tailed) 0,830806985<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 169<br />

Appendix 7. Power analysis part 1.<br />

Background for power calculations.<br />

The basis is the BACI model, tested as a dual variance analysis as shown in the<br />

following tables:<br />

AREA<br />

i<br />

TIME, j<br />

Before After<br />

(B) (A)<br />

Control (C) BC AC<br />

Impact (I) BI AI<br />

Model for variance analysis<br />

Yijk = μ + αi + βj + (αβ)ij + εijk<br />

where μ is the parametric analysis for the population, αi is the impact on Area i, βj is the<br />

effect of the time j, (αβ)ij is the interaction between Area i <strong>and</strong> Time j <strong>and</strong> εijk is the<br />

error in the coordinated replicate in group ij. The BACI model is analysed for a<br />

significant effect in the interaction under the usual assumption that εijk is normally<br />

distributed with a median of 0 <strong>and</strong> a variance of σ 2 .<br />

The power analysis was conducted for an effect corresponding to a 50% change in the<br />

wind farm site in relation to the reference area. As in every case in this <strong>study</strong>, we<br />

analyse on the basis of logarithmically converted numbers, <strong>and</strong> a 50% change in the<br />

original scale corresponds to a fixed change of –LOG(1-0.5) ~ 0.7 on the logarithmic<br />

scale. If all non-productive parts are ignored, the following table of averages can be<br />

drawn up:<br />

μij Before<br />

(B)<br />

TIME, j<br />

After<br />

(A)<br />

μi.<br />

AREA<br />

i<br />

Control (C) 0 0 0<br />

Impact (I) 0 0.7 0.35<br />

μ.j 0 0.35 0.175<br />

When transferred to the model parameters, this corresponds to:<br />

TIME,j<br />

(αβ)ij Before<br />

(B)<br />

After<br />

(A)<br />

αi<br />

AREA Control (C) 0.175 -0.175 -<br />

i<br />

0.175<br />

Impact (I) -0.175 0.175 0.175<br />

βj -0.175 0.175<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 170<br />

The power of the BACI analysis is calculated on the basis of the ratio between the<br />

dispersion of (αβ)ij <strong>and</strong> the variation between the k replicates within each cell.<br />

The dispersion of (αβ)ij can be expressed as D = ∑(αβ)ij 2 / ((a-1)(b-1) + 1) = 0.1225/2 =<br />

0.0612.<br />

The non-centralising parameter Φ can be expressed as √(nD) / σ.<br />

For each unit of data in the dataset, the above are processed partly to establish the power<br />

for the BACI analysis, with the actual replicant n, <strong>and</strong> partly to find the n, which would<br />

give a power corresponding to 80%.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 171<br />

Appendix 8. Power analysis part 2.<br />

<strong>Fish</strong> <strong>study</strong><br />

POWER small s<strong>and</strong>eel June<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.814<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.372<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.555 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

4 0.279<br />

5 0.347<br />

6 0.412<br />

7 0.473<br />

8 0.530<br />

9 0.582<br />

10 0.630<br />

11 0.674<br />

12 0.714<br />

13 0.749<br />

14 0.781<br />

15 0.809<br />

Total Sample Size = 60<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

Power Curve (Alpha = 0.050)<br />

0.3<br />

0 10 20<br />

Sample Size<br />

30 40<br />

POWER Great s<strong>and</strong>eel June<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.818<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.371<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.549 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

4 0.276<br />

5 0.344<br />

6 0.409<br />

7 0.469<br />

8 0.526<br />

9 0.578<br />

10 0.626<br />

11 0.670<br />

12 0.709<br />

13 0.745<br />

14 0.777<br />

15 0.805<br />

Total Sample Size = 60<br />

Power Curve (Alpha = 0.050)<br />

0.3<br />

0 10 20<br />

Sample Size<br />

30 40<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4


Power<br />

Bio/consult as Page 172<br />

POWER eelpout May<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.780<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.389<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.604 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

2 0.137<br />

3 0.221<br />

4 0.299<br />

5 0.372<br />

6 0.441<br />

7 0.506<br />

8 0.565<br />

9 0.618<br />

10 0.667<br />

11 0.711<br />

12 0.750<br />

13 0.784<br />

14 0.814<br />

Total Sample Size = 56<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Power Curve (Alpha = 0.050)<br />

0.2<br />

0 5 10 15 20 25 30 35<br />

Sample Size<br />

POWER eelpout June<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.654<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.463<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.859 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

2 0.175<br />

3 0.294<br />

4 0.400<br />

5 0.495<br />

6 0.580<br />

7 0.653<br />

8 0.716<br />

9 0.769<br />

10 0.814<br />

Total Sample Size = 40<br />

Power Curve (Alpha = 0.050)<br />

0.2<br />

0 5 10 15 20 25<br />

Sample Size<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3


Power<br />

Bio/consult as Page 173<br />

POWER short-spined sea scorpion May<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 1.036<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.293<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.342 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

12 0.509<br />

13 0.543<br />

14 0.575<br />

15 0.605<br />

16 0.634<br />

17 0.661<br />

18 0.687<br />

19 0.711<br />

20 0.733<br />

21 0.755<br />

22 0.774<br />

23 0.792<br />

24 0.810<br />

Total Sample Size = 96<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Power Curve (Alpha = 0.050)<br />

0.2<br />

0 10 20 30 40 50 60<br />

Sample Size<br />

POWER flounder May<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.722<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.420<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.705 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

2 0.152<br />

3 0.250<br />

4 0.339<br />

5 0.423<br />

6 0.499<br />

7 0.568<br />

8 0.630<br />

9 0.685<br />

10 0.734<br />

11 0.775<br />

12 0.812<br />

Total Sample Size = 48<br />

Power Curve (Alpha = 0.050)<br />

0.2<br />

0 10 20 30<br />

Sample Size<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3


Bio/consult as Page 174<br />

Grouping species from the fish <strong>study</strong>.<br />

POWER stationary May<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.948<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.320<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.409 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

9 0.461<br />

10 0.504<br />

11 0.544<br />

12 0.582<br />

13 0.618<br />

14 0.652<br />

15 0.683<br />

16 0.712<br />

17 0.738<br />

18 0.763<br />

19 0.786<br />

20 0.806<br />

Total Sample Size = 80<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Power Curve (Alpha = 0.050)<br />

0.2<br />

0 10 20 30 40 50<br />

Sample Size<br />

POWER stationary June<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.787<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.385<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.593 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

3 0.218<br />

4 0.294<br />

5 0.367<br />

6 0.435<br />

7 0.498<br />

8 0.557<br />

9 0.611<br />

10 0.659<br />

11 0.703<br />

12 0.742<br />

13 0.777<br />

14 0.807<br />

Total Sample Size = 56<br />

Power Curve (Alpha = 0.050)<br />

0.2<br />

0 5 10 15 20 25 30 35<br />

Sample Size<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3


Bio/consult as Page 175<br />

POWER prey species May<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.806<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.376<br />

Estimate to be based on interaction<br />

effects.<br />

Noncentrality parameter = 0.566 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

3 0.210<br />

4 0.283<br />

5 0.353<br />

6 0.419<br />

7 0.480<br />

8 0.538<br />

9 0.590<br />

10 0.639<br />

11 0.682<br />

12 0.722<br />

13 0.757<br />

14 0.789<br />

15 0.817<br />

Total Sample Size = 60<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

Power Curve (Alpha = 0.050)<br />

0.3<br />

0 10 20<br />

Sample Size<br />

30 40<br />

POWER prey species June<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.680<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.446<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.794 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

2 0.165<br />

3 0.275<br />

4 0.375<br />

5 0.465<br />

6 0.547<br />

7 0.619<br />

8 0.682<br />

9 0.736<br />

10 0.783<br />

11 0.822<br />

Total Sample Size = 44<br />

Power Curve (Alpha = 0.050)<br />

0.2<br />

0 10 20 30<br />

Sample Size<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3


Bio/consult as Page 176<br />

POWER reef species May<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.825<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.367<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.540 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

4 0.272<br />

5 0.339<br />

6 0.403<br />

7 0.462<br />

8 0.518<br />

9 0.570<br />

10 0.618<br />

11 0.662<br />

12 0.701<br />

13 0.737<br />

14 0.770<br />

15 0.798<br />

16 0.824<br />

Total Sample Size = 64<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

Power Curve (Alpha = 0.050)<br />

0.3<br />

0 10 20<br />

Sample Size<br />

30 40<br />

POWER reef species June<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.804<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.377<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.569 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

3 0.211<br />

4 0.284<br />

5 0.354<br />

6 0.420<br />

7 0.482<br />

8 0.540<br />

9 0.593<br />

10 0.641<br />

11 0.685<br />

12 0.724<br />

13 0.760<br />

14 0.791<br />

15 0.819<br />

Total Sample Size = 60<br />

Power Curve (Alpha = 0.050)<br />

0.3<br />

0 10 20<br />

Sample Size<br />

30 40<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4


Bio/consult as Page 177<br />

Fry <strong>study</strong><br />

Power eelpout June<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.761<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.398<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.635 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

2 0.142<br />

3 0.230<br />

4 0.311<br />

5 0.388<br />

6 0.459<br />

7 0.525<br />

8 0.585<br />

9 0.640<br />

10 0.688<br />

11 0.732<br />

12 0.770<br />

13 0.804<br />

Total Sample Size = 52<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Power Curve (Alpha = 0.050)<br />

0.2<br />

0 10 20 30<br />

Sample Size<br />

POWER eelpout September<br />

Alpha = 0.050<br />

Power = 0.800<br />

Model = Twoway<br />

Number of rows = 2<br />

Number of columns = 2<br />

Within cell S.D. = 0.845<br />

Effect(01) = 0.000<br />

Effect(02) = 0.000<br />

Effect(03) = 0.000<br />

Effect(04) = 0.700<br />

Effect Size = 0.359<br />

Estimate to be based on interaction effects.<br />

Noncentrality parameter = 0.514 * sample<br />

size<br />

SAMPLE<br />

SIZE POWER<br />

(per cell)<br />

5 0.326<br />

6 0.387<br />

7 0.445<br />

8 0.500<br />

9 0.551<br />

10 0.598<br />

11 0.641<br />

12 0.681<br />

13 0.717<br />

14 0.750<br />

15 0.779<br />

16 0.806<br />

Total Sample Size = 64<br />

Power Curve (Alpha = 0.050)<br />

0.3<br />

0 10 20<br />

Sample Size<br />

30 40<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4


Bio/consult as Page 178<br />

Appendix 9. Commercial <strong>Fish</strong>ery<br />

Appendix 9.1. Inquiry form used for questioning the fishermen<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 179<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 180<br />

Appendix 9.2. Division of Danish Waters according to ICES areas.<br />

60°N<br />

59,5°N<br />

59°N<br />

58,5°N<br />

58°N<br />

57,5°N<br />

57°N<br />

56,5°N<br />

56°N<br />

55,5°N<br />

55°N<br />

54,5°N<br />

54°N<br />

53,5°N<br />

48<br />

47<br />

46<br />

45<br />

44<br />

43<br />

42<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

IVb<br />

NORWAY<br />

Division of Danish waters<br />

according to ICES areas<br />

IIIaN<br />

GERMANY<br />

Skagerrak<br />

IIIc<br />

IIIaS<br />

Kattegat<br />

SWEDEN<br />

F7 F8 F9 G0 G1 G2 G3 G4 G5<br />

7°E 8°E 9°E 10°E 11°E 12°E 13°E 14°E 15°E 16°E<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

IIIb<br />

IIIb<br />

39G1<br />

38G1<br />

IIId


Bio/consult as Page 181<br />

Appendix 9.3. Data regarding l<strong>and</strong>ings in area 38G1 obtained from the Directorate<br />

of <strong>Fish</strong>eries, Ministry of Food <strong>and</strong> <strong>Fish</strong>eries.<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 1982<br />

Mængde i tons<br />

Garnredskaber Trawlredskaber Total<br />

Mængde Mængde Mængde<br />

Uspecificeret Art . 7 7<br />

Blåhvilling . 0 0<br />

Ising 0 9 9<br />

Pighvar . 0 0<br />

Rødspætte 0 0 0<br />

Skrubbe 0 18 18<br />

Torsk 0 89 89<br />

Total 0 124 124<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 1983<br />

Mængde i tons<br />

Trawlredskaber Total<br />

Mængde Mængde<br />

Uspecificeret Art 1 1<br />

Brisling 9 9<br />

Hvilling 1 1<br />

Ising 2 2<br />

Pighvar 0 0<br />

Rødspætte 0 0<br />

Sild 169 169<br />

Skrubbe 2 2<br />

Torsk 154 154<br />

Total 338 338<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 182<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 1984<br />

Mængde i tons<br />

Garnredskaber Trawlredskaber Total<br />

Mængde Mængde Mængde<br />

Uspecificeret Art 0 1 1<br />

Hvilling . 0 0<br />

Ising . 1 1<br />

Kulmule . 0 0<br />

Kuller . 0 0<br />

Laks . 0 0<br />

Lange . 0 0<br />

Mørksej . 0 0<br />

Pighvar 0 0 0<br />

Rødspætte 0 1 1<br />

Skrubbe 0 1 1<br />

Torsk 47 86 133<br />

Total 47 89 136<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 1985<br />

Mængde i tons<br />

Trawlredskaber Total<br />

Mængde Mængde<br />

Ising 1 1<br />

Rødspætte 0 0<br />

Skrubbe 0 0<br />

Torsk 6 6<br />

Total 7 7<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 1986<br />

Mængde i tons<br />

Trawlredskaber Uspecificeret Total<br />

Mængde Mængde Mængde<br />

Uspecificeret Art . 0 0<br />

Ising 0 0 1<br />

Pighvar 0 0 0<br />

Pighaj 0 . 0<br />

Rødspætte 0 . 0<br />

Sild . 10 10<br />

Skrubbe 0 1 1<br />

Torsk 2 0 2<br />

Total 2 12 14<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 183<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fiskeridirektoratet Fordelt på art, år og (Statistiksektionen redksb. TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt År= 1987på<br />

art, år og redksb.<br />

Mængde i tons<br />

Garnredskaber Trawlredskaber Partrawl Snurrevod Uspecificeret Total<br />

År= 1991<br />

Mængde Mængde Mængde Mængde Mængde Mængde<br />

Hvilling<br />

Mængde i tons<br />

Ising<br />

Garnredskaber .<br />

Mængde .<br />

Trawlredskaber 0<br />

Mængde 10<br />

Partrawl<br />

Mængde<br />

.<br />

.<br />

Uspecificeret .<br />

Mængde .<br />

Total<br />

Mængde<br />

.<br />

1<br />

0<br />

11<br />

Pighvar Uspecificeret Art 0. 0 1 . . . . 1.<br />

0<br />

Rødspætte Brisling . . 34 1 46 . 0 . 80.<br />

2<br />

Hvilling Sild . . 6 0 6 . 0. 6.<br />

6<br />

Ising Skærising 0. 15. 00 0. 15.<br />

0<br />

Kulmule Skrubbe . . 0 1 0 . . . 00<br />

1<br />

Laks Torsk 0 3 26 . . . 7. 04<br />

39<br />

Mørksej Total 3. 39 0 7. 07 05<br />

61<br />

Pighvar Note: Fra 1983-1994 har fartøjer over 12 meter 0 pligt til at føre logbog. 1 . 0 1<br />

Rødspætte<br />

Note: Fra 1994- har fartøjer over 10 meter . pligt til at føre logbog. 0 . 0 0<br />

Sild<br />

Note: Mængdeoplysninger er fartøjsførens . fangstskøn. 64 97 . 160<br />

Skrubbe<br />

Kilde: Fiskeridirektoratets logbogsregister. 0 5 0 1 6<br />

Tunge . 0 . . 0<br />

Torsk 7 13 4 0 25<br />

Total 7 138 148 1 294<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 1988<br />

Mængde i tons<br />

Trawlredskaber Partrawl Snurrevod Uspecificeret Total<br />

Mængde Mængde Mængde Mængde Mængde<br />

Uspecificeret Art 0 . . . 0<br />

Brisling . 43 . 2 45<br />

Hundestejle . . . 29 29<br />

Hvilling 0 44 . 0 44<br />

Ising 23 . 1 3 27<br />

Pighvar 1 . . 0 2<br />

Rødspætte 0 . . . 0<br />

Sild 1 5 . 2 8<br />

Skrubbe 3 . . 0 3<br />

Torsk 69 6 8 5 88<br />

Total 98 98 8 42 246<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 184<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

Fordelt på art, år og redksb.<br />

År= 1989<br />

År= 1993<br />

Mængde i tons<br />

Mængde i tons<br />

Garnredskaber<br />

Garnredskaber<br />

Mængde<br />

Trawlredskaber<br />

Trawlredskaber<br />

Mængde<br />

Partrawl<br />

Partrawl<br />

Mængde<br />

Snurrevod<br />

Snurrevod<br />

Mængde<br />

Uspecificeret<br />

Uspecificeret<br />

Mængde<br />

Total<br />

Total<br />

Mængde<br />

Uspecificeret Art Mængde Mængde Mængde<br />

. 0 .<br />

Uspecificeret Art<br />

Brisling 0 1 .<br />

. 3 85<br />

Brisling<br />

Hvilling . 14 782<br />

. 1 .<br />

Hvilling<br />

Ising . 5 1<br />

. 32 .<br />

Ising<br />

Pighvar . 6 .<br />

. 1 .<br />

Pighvar<br />

Rødspætte . 1 .<br />

. 0 .<br />

Rødspætte<br />

Sild 0 0 .<br />

. 37 333<br />

Sild<br />

Skrubbe . 14 324<br />

. 8 .<br />

Skrubbe<br />

Torsk . 1 .<br />

1 23 .<br />

Slethvar<br />

Total . 0 .<br />

1 105 418<br />

Tunge . 1 .<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Torsk . 41 2<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Total 0 84 1.110<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Mængde<br />

0<br />

. . 1<br />

.<br />

2<br />

.<br />

0<br />

.<br />

. . .<br />

0<br />

.<br />

0<br />

.<br />

9<br />

12<br />

Mængde<br />

.<br />

. . 3<br />

.<br />

0<br />

.<br />

. .<br />

50<br />

. . .<br />

50<br />

.<br />

.<br />

4<br />

Mængde<br />

0<br />

1<br />

88<br />

796<br />

1<br />

11<br />

32<br />

9<br />

1<br />

1<br />

0<br />

0<br />

420<br />

338<br />

8<br />

1<br />

25<br />

0<br />

575<br />

1<br />

52<br />

1.210<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 1990<br />

Mængde i tons<br />

Trawlredskaber Partrawl Total<br />

Mængde Mængde Mængde<br />

Uspecificeret Art 0 . 0<br />

Brisling . 113 113<br />

Hvilling 3 0 3<br />

Ising 12 . 12<br />

Pighvar 1 . 1<br />

Rødspætte 0 0 0<br />

Sild . 114 114<br />

Skrubbe 11 0 11<br />

Torsk 10 2 12<br />

Total 38 228 267<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 185<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 1997<br />

Mængde i tons<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 1994<br />

Mængde i tons<br />

Bundgarn Garnredsk. Krogredsk. Andet Trawlredsk. Snurpenot Partrawl Snurrevod Uspec. Total<br />

Mængde Mængde Mængde Mængde Mængde Mængde Mængde Mængde Mængde Mængde<br />

Uspecificeret Art . 1 . . 1 . . 0 0 2<br />

Blanke Ål 1 . . . . . . . . 1<br />

Brisling . . . . . . 921 . . 921<br />

Dybv<strong>and</strong>srejer . 1 . . . . . . . 1<br />

Fjæsing . 0 . . . . . . . 0<br />

Gule Ål 0 . . . . . . . . 0<br />

Hornfisk 0 . . . . . . . . 0<br />

Hvilling . 0 . . 3 0 0 1 . 5<br />

Ising . 1 . . 14 1 8 39 . 62<br />

Kulso . 1 . . . . . . . 1<br />

Laks 0 . . . . . . . . 0<br />

Makrel 0 . . . . . . . . 0<br />

Multe 0 . . . . . . . . 0<br />

Mørksej . . . . 9 . . . . 9<br />

Mulle 0 . . . . . . . . 0<br />

Ørred 0 . . . . . . . . 0<br />

Pighvar . 6 . . 0 . . 0 0 7<br />

Rødspætte . 0 . . 0 0 . 0 . 0<br />

Sild 0 . . . 87 . 844 . . 931<br />

Skrubbe 0 0 . . 0 . . 2 . 2<br />

Slethvar . 0 . . 0 . . . . 0<br />

Sperling . . . . . . 10 . . 10<br />

Stenbider . 2 . . . . . . . 2<br />

Tunge . 0 . . 0 . 6 . . 6<br />

Torsk 0 34 7 6 10 2 13 33 0 104<br />

Total 2 45 7 6 124 2 1.801 75 0 2.062<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

Bundgarn Garnredskaber Krogredsk. Andet Trawlredsk. Partrawl Snurrevod Uspec. Total<br />

Mængde Mængde Mængde Mængde Mængde Mængde Mængde Mængde Mængde<br />

Uspecificeret Art 0 1 . . 6 . 1 . 8<br />

Brisling . . . . . 256 . . 256<br />

Hvilling . . . . 0 . 3 . 3<br />

Ising . 2 . 0 13 . 4 . 19<br />

Kulso . 2 . . . . . . 2<br />

Mørksej . 0 . . . . . . 0<br />

Mulle . . . . 0 . . . 0<br />

Pighvar . 1 . . 2 0 0 . 3<br />

Rødspætte . 2 . . 1 0 0 . 3<br />

Rødtunge . 0 . . 0 . . . 0<br />

Sild . . . . . 493 . . 493<br />

Skrubbe . 3 . . 8 0 2 . 12<br />

Slethvar . 0 . . . . . . 0<br />

Stenbider . 2 . . 0 . . . 2<br />

Tunge . 0 . . 0 . . . 0<br />

Torsk 4 60 2 3 624 21 77 0 790<br />

Total 5 71 2 3 654 770 87 0 1.592<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 186<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 1998<br />

Mængde i tons<br />

Garnredskaber Krogredskaber Andet Trawlredsk. Partrawl Snurrevod Total<br />

Mængde Mængde Mængde Mængde Mængde Mængde Mængde<br />

Uspecificeret Art 1 . 0 6 0 1 8<br />

Brisling . . . 31 278 . 309<br />

Hvilling 0 . 0 1 0 . 1<br />

Ising 1 . 0 17 0 1 19<br />

Kulso 0 . . 0 . . 0<br />

Laks . . . 0 . . 0<br />

Lange 0 . . . . . 0<br />

Multe 0 . . . . . 0<br />

Ørred 3 . . . . . 3<br />

Pighvar 0 . 0 3 0 . 3<br />

Rødspætte 1 . 0 10 0 0 12<br />

Rødtunge 0 . . 0 . . 0<br />

Sild . . . 79 665 . 744<br />

Skrubbe 3 . 0 14 0 1 18<br />

Slethvar . . . 0 . . 0<br />

Stenbider 0 . . . . . 0<br />

Tobiskonge 0 . . . . . 0<br />

Tunge 0 . . 0 . . 0<br />

Torsk 52 0 6 355 13 26 452<br />

Total 61 0 7 515 957 29 1.569<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 1999<br />

Mængde i tons<br />

Bundgarn Garnredskaber Krogredsk. Andet Trawlredsk. Partrawl Snurrevod Total<br />

Mængde Mængde Mængde Mængde Mængde Mængde Mængde Mængde<br />

Uspecificeret Art . 1 . 2 6 2 5 16<br />

Ansjos . . . . 0 . . 0<br />

Brisling . . . . . 230 . 230<br />

Dybv<strong>and</strong>shummer . . . . 0 . . 0<br />

Hvilling . . . . 2 . . 2<br />

Invertibrater . . . . 0 . . 0<br />

Ising . 1 . 2 21 . 11 35<br />

Kulso . 8 . . . . . 8<br />

Mørksej . . . . 0 . . 0<br />

Ørred . 2 . . . . . 2<br />

Pighvar . 2 . 0 1 . . 4<br />

Rødspætte . 2 . 3 13 0 3 21<br />

Rødtunge . 0 . 0 0 . . 0<br />

Sild . . . . 15 303 . 318<br />

Skrubbe . 1 . 1 8 . 3 13<br />

Slethvar . . 0 . 0 . . 0<br />

Stenbider . 2 . . 0 . . 2<br />

Tunge . 0 . . 0 . . 0<br />

Torsk 0 66 0 20 456 2 104 648<br />

Ulk . . . . 0 . . 0<br />

Total 0 85 0 28 522 537 125 1.298<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 187<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

År= 2000<br />

Mængde i tons<br />

Bundgarn Garnredskaber Andet Trawlredsk. Partrawl Snurrevod Uspecificeret Total<br />

Mængde Mængde Mængde Mængde Mængde Mængde Mængde Mængde<br />

Uspecificeret Art 0 2 0 9 . 2 . 13<br />

Brisling . 0 . . 285 . . 285<br />

Hvilling . . . 6 . 0 . 6<br />

Ising . 8 0 18 0 2 . 28<br />

Kulso . 1 0 0 . . . 1<br />

Kuller . . . 0 . . . 0<br />

Kvabbe . 0 . . . . . 0<br />

Laks . 0 . . . . . 0<br />

Makrel . 0 . 0 . . . 0<br />

Multe . 0 . . . . . 0<br />

Ørred . 0 . . . . . 0<br />

Pighvar . 3 0 3 . . . 6<br />

Rokke . 0 . . . . . 0<br />

Rødspætte . 8 0 13 0 1 . 23<br />

Rødtunge . 0 . 0 . . . 0<br />

Sild . 0 . . 194 . . 194<br />

Skrubbe . 28 0 38 0 4 . 69<br />

Slethvar . 1 . 0 . . . 1<br />

Småplettet Rødhaj . 0 . . . . . 0<br />

Stenbider . 0 . 0 . . . 0<br />

Tunge . 0 . . . . . 0<br />

Torsk 0 80 0 759 3 91 1 934<br />

Total 0 133 1 845 481 100 1 1.561<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 188<br />

Fiskeridirektoratet (Statistiksektionen TPA) 14:51 - torsdag d. 28. februar 2002<br />

Logbogsoplysninger vedr. danske og udenl<strong>and</strong>ske fiskeres fangster i ICES-område 38G1 1982-2001.<br />

Fordelt på art, år og redksb.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

Mængde i tons År= Bundgarn Garnredskaber Krogredsk. Andet Trawlredsk. Partrawl Snurrevod Uspec. Total<br />

2001<br />

Mængde Mængde Mængde Mængde Mængde Mængde Mængde Mængde Mængde<br />

Aborre . 0 . . . . . . 0<br />

Uspecificeret Art 0 1 . . 7 0 2 0 10<br />

Brisling . . . . 7 1.202 . . 1.209<br />

Dybv<strong>and</strong>shummer . 0 . . . . . . 0<br />

Glyse . . . . 0 . . . 0<br />

Hvilling . 0 0 . 3 1 0 . 3<br />

Invertibrater . . . . . 0 . . 0<br />

Ising . 5 . . 21 0 4 . 29<br />

Kulmule . 0 . . . . . . 0<br />

Kulso . 7 . 1 . . . . 7<br />

Kuller . 1 . . . . . . 1<br />

Laks . 0 . . . . . . 0<br />

Lyssej . . . . . . 0 . 0<br />

Multe . 0 . . . . . . 0<br />

Mørksej . 0 . . 0 . . . 0<br />

Østers . 0 . . 0 . . . 0<br />

Ørred . 0 . . . . . . 0<br />

Pighvar . 2 . 0 1 0 0 . 3<br />

Rødspætte . 12 . 0 9 0 1 . 22<br />

Rødtunge . 0 . . 0 . . . 0<br />

Sild . . . . 7 958 . . 965<br />

Skrubbe . 43 . 0 39 0 2 . 85<br />

Langebarn . 0 . . . . . . 0<br />

Slethvar . 3 . . 0 . . . 3<br />

Sperling . . . . . 6 . . 6<br />

Stenbider . 2 . 0 0 . . . 2<br />

Sværdfisk . 0 . . . . . . 0<br />

Tunge . 0 . . 0 . . . 0<br />

Torsk 0 112 0 2 431 23 58 0 625<br />

Tunfisk . 0 . . . . . . 0<br />

Total 0 188 0 2 524 2.190 66 0 2.970<br />

Note: Fra 1983-1994 har fartøjer over 12 meter pligt til at føre logbog.<br />

Note: Fra 1994- har fartøjer over 10 meter pligt til at føre logbog.<br />

Note: Mængdeoplysninger er fartøjsførens fangstskøn.<br />

Kilde: Fiskeridirektoratets logbogsregister.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 189<br />

Appendix 9.4. Map of all fishermen’s recorded fishing locations within the wind farm area<br />

<strong>and</strong> reference area south of Røds<strong>and</strong> for the years 1997 to 2001.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 190<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Titel:<br />

Layout<br />

Oprettet af:<br />

ADOBEPS4.DRV Version 4.24<br />

Eksempel:<br />

EPS-billedet blev ikke gemt<br />

med et eksempel.<br />

Kommentar:<br />

EPS-billedet kan udskrives på en<br />

PostScript printer, men ikke på<br />

<strong>and</strong>re printere.<br />

Appendix 9.4.1. Map of all fishermen’s recorded net locations within the wind farm area <strong>and</strong> reference area south of Røds<strong>and</strong> in 1997. <strong>Fish</strong>erman 1-5 uses gillnet.<br />

Bio/consult as Page 191


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Titel:<br />

Layout<br />

Oprettet af:<br />

ADOBEPS4.DRV Version 4.24<br />

Eksempel:<br />

EPS-billedet blev ikke gemt<br />

med et eksempel.<br />

Kommentar:<br />

EPS-billedet kan udskrives på en<br />

PostScript printer, men ikke på<br />

<strong>and</strong>re printere.<br />

Appendix 9.4.2. Map of all fishermen’s recorded net locations within the wind farm area <strong>and</strong> reference area south of Røds<strong>and</strong> in 1998. <strong>Fish</strong>erman 1-5 uses gillnet.<br />

Bio/consult as Page 192


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Titel:<br />

Layout<br />

Oprettet af:<br />

ADOBEPS4.DRV Version 4.24<br />

Eksempel:<br />

EPS-billedet blev ikke gemt<br />

med et eksempel.<br />

Kommentar:<br />

EPS-billedet kan udskrives på en<br />

PostScript printer, men ikke på<br />

<strong>and</strong>re printere.<br />

Appendix 9.4.3.. Map of all fishermen’s recorded net locations within the wind farm area <strong>and</strong> reference area south of Røds<strong>and</strong> in 1999. <strong>Fish</strong>erman 1-5 uses gillnet.<br />

Bio/consult as Page 193


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Titel:<br />

Layout<br />

Oprettet af:<br />

ADOBEPS4.DRV Version 4.24<br />

Eksempel:<br />

EPS-billedet blev ikke gemt<br />

med et eksempel.<br />

Kommentar:<br />

EPS-billedet kan udskrives på en<br />

PostScript printer, men ikke på<br />

<strong>and</strong>re printere.<br />

Appendix 9.4.4. Map of all fishermen’s recorded net locations within the wind farm area <strong>and</strong> reference area south of Røds<strong>and</strong> in 2000. <strong>Fish</strong>erman 5 <strong>and</strong> 7 uses gillnet.<br />

Bio/consult as Page 194


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Titel:<br />

Layout<br />

Oprettet af:<br />

ADOBEPS4.DRV Version 4.24<br />

Eksempel:<br />

EPS-billedet blev ikke gemt<br />

med et eksempel.<br />

Kommentar:<br />

EPS-billedet kan udskrives på en<br />

PostScript printer, men ikke på<br />

<strong>and</strong>re printere.<br />

Appendix 9.4.5.. Map of all fishermen’s recorded net locations within the wind farm area <strong>and</strong> reference area south of Røds<strong>and</strong> in 2001. <strong>Fish</strong>erman 5 uses gillnet.<br />

Bio/consult as Page 195


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Title:<br />

Layout<br />

Creator:<br />

ADOBEPS4.DRV Version 4.24<br />

Preview:<br />

This EPS picture was not saved<br />

with a preview included in it.<br />

Comment:<br />

This EPS picture will print to a<br />

PostScript printer, but not to<br />

other types of printers.<br />

Appendix 9.4.6.. Map of all trawl stretch in 1997 to 1999 within the windfarm area <strong>and</strong> the reference area south of Røds<strong>and</strong>.<br />

Bio/consult as Page 196


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Title:<br />

Layout<br />

Creator:<br />

ADOBEPS4.DRV Version 4.24<br />

Preview:<br />

This EPS picture was not saved<br />

with a preview included in it.<br />

Comment:<br />

This EPS picture will print to a<br />

PostScript printer, but not to<br />

other types of printers.<br />

Appendix 9.4.7. Map of all trawl stretch in 2000 <strong>and</strong> 2001 within the wind farm area <strong>and</strong> the reference area south of Røds<strong>and</strong>.<br />

Bio/consult as Page 197


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Bio/consult as Page 198


Bio/consult as Page 199<br />

Appendix 9.5. Seasons for the <strong>fishery</strong> of <strong>commercial</strong>ly important species<br />

Cod <strong>fishery</strong><br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

Appendix 9.5.1. List of reported seasons for cod catches in the wind farm site <strong>and</strong> the reference area south of Røds<strong>and</strong>.<br />

Each line represents one boat, <strong>and</strong> a break in the line means there is no fishing in that period.<br />

Turbot <strong>fishery</strong><br />

Trawling<br />

Røds<strong>and</strong><br />

Appendix 9.5.2. List of reported seasons for catching turbot in the wind farm site <strong>and</strong> the reference area south of<br />

Røds<strong>and</strong>. Each line represents one fisherman, <strong>and</strong> a break in the line means there is no fishing in that<br />

period.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Nets<br />

Trawling<br />

Nets<br />

Røds<strong>and</strong><br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec


Bio/consult as Page 200<br />

Plaice, flounder <strong>and</strong> dab <strong>fishery</strong><br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

Appendix 9.5.3. List of reported seasons for plaice, flounder <strong>and</strong> dab in the wind farm site <strong>and</strong> the reference area south<br />

of Røds<strong>and</strong>. Each line represents one fisherman, <strong>and</strong> a break in the line means there is no fishing in<br />

that period.<br />

Silver eel <strong>fishery</strong><br />

Trawling<br />

Røds<strong>and</strong><br />

Appendix 9.5.4. List of reported seasons for silver eel in the wind farm site <strong>and</strong> the reference area south of Røds<strong>and</strong>.<br />

Each line represents one boat, <strong>and</strong> a break in the line means there is no fishing in that period.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Nets<br />

Nets<br />

Røds<strong>and</strong><br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec


Bio/consult as Page 201<br />

Appendix 9.6. Presentation of the fishermen’s statements<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 202<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Net fisherman 1<br />

Year Type of tackle No. of tackles Pilot harbour <strong>Fish</strong>ing days <strong>Fish</strong>ing effort Species Number of kg caught Season of fishing Remarks<br />

Before 1997 Cod nets 130 mm 100 units Gedser 75 6000 Atlantic cod All seasons Atlantic cod migrate into warmer water<br />

Net fisherman 2<br />

Turbot nets 220 mm 80 units 75 7500 Turbot 1 March - Sept. when it is warm<br />

S<strong>and</strong>eels hide in the s<strong>and</strong> during the day, <strong>and</strong><br />

becomes active in the night time<br />

1997 Cod nets 130 mm 100 units Gedser 117 9360 Atlantic cod 14541 All seasons The Atlantic cod are most active when they hunt<br />

Turbot nets 220 mm 80 units 117 11700 Turbot 474 1 March - Sept. s<strong>and</strong>eels<br />

1998 Cod nets 130 mm 100 units Gedser 61 4880 Atlantic cod 7612 All seasons<br />

Turbot nets 220 mm 80 units 61 6100 Turbot 85 1 March - Sept.<br />

Eels are to be caught in the (evening-night-morning)<br />

Turbot spawn at the flat s<strong>and</strong> in the area<br />

There are a lot of filamentous algae when it is warm<br />

1999 Cod nets 130 mm 100 units Gedser 100 8000 Atlantic cod 12000 All seasons Roe are found in cods from february until june ,<br />

Turbot nets 220 mm 80 units 100 10000 Turbot 500 1 March - Sept. <strong>and</strong> they are ready to spawn in April.<br />

2000 0 units Gedser 0 0 Atlantic cod 0<br />

0 units 0 0 Turbot 0<br />

2001 0 units Gedser 0 0 Atlantic cod 0<br />

0 units 0 0 Turbot 0<br />

Year Type of tackle No. of tackles Pilot harbour <strong>Fish</strong>ing days <strong>Fish</strong>ing effort Species Number of kg caught Season of fishing Remarks<br />

1996 Cod nets (gill nets) 100-150 units Kramnitse 60 7500 Atlantic cod 20000 Dec. - May Good fishing area<br />

Turbot 1000<br />

1997 Cod nets (gill nets) 100-150 units Kramnitse 60 7500 Atlantic cod 20000 Dec. - May S<strong>and</strong>eels food chain<br />

Turbot 1000<br />

1998 Cod nets (gill nets) 100-150 units Kramnitse 60 7500 Atlantic cod 20000 Dec. - May<br />

Shrimp food chain<br />

Turbot 1000 Filamentous algae<br />

1999 Cod nets (gill nets) 100-150 units Kramnitse 60 7500 Atlantic cod 20000 Dec. - May<br />

Turbot 1000<br />

2000 Kramnitse Atlantic cod ? Refuse to take part of the investigation this year<br />

Turbot ?<br />

2001 Kramnitse Atlantic cod ? Refuse to take part of the investigation this year<br />

Turbot ?<br />

Bio/consult as Page 203


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Trawl fisherman 3<br />

Year Type of tackle No. of tackles Pilot harbour <strong>Fish</strong>ing days <strong>Fish</strong>ing effort Species Number of kg caught Season of fishing Remarks<br />

Before 1997 Trawl 1 unit Gedser 20 - 30 25 Atlantic cod 1 April - 1 July 20% of the Atlantic cod are in size class 4,<br />

Turbot <strong>and</strong> 80% are in size class 5<br />

Flounder<br />

Plaice The cod migrate into deeper waters<br />

Dab when it becomes cold<br />

1997 Trawl 1 unit Gedser 21 21 Atlantic cod 29500 1 April - 1 July There are not as many Atlantic cods as<br />

Turbot 250 there used to be.<br />

Flounder 750<br />

Plaice 200 When it is warm the cods zare gathered at<br />

Dab 625 the top of the booulders.<br />

1998 Trawl 1 unit Gedser 21 21 Atlantic cod 21500 1 April - 1 July From 1. July the fisheries are concentrated<br />

Turbot 250 at deeper areas<br />

Flounder 750<br />

Plaice 200 When the hypoxia conditions enters the area<br />

Dab 625 the fish are gathered at the top of the boulders.<br />

1999 Trawl 1 unit Gedser 19 19 Atlantic cod 21000 1 April - 1 July The Atlantic cod are joint at the boulder reef.<br />

Turbot 250<br />

Flounder 750<br />

Plaice 200<br />

Dab 625<br />

2000 Trawl 1 unit Gedser Atlantic cod 888 1 April - 1 July Data reported app. identical to data from 2001<br />

Turbot 2<br />

Flounder 24<br />

Plaice 7<br />

Dab 5<br />

2001 Trawl 1 unit Gedser Atlantic cod 888 1 April - 1 July<br />

Turbot 2<br />

Flounder 24<br />

Plaice 7<br />

Dab 5<br />

Bio/consult as Page 204


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Net fisherman 5<br />

Year Type of tackle No. of tackles Pilot harbour <strong>Fish</strong>ing days <strong>Fish</strong>ing effort Species Number of kg caught Season of fishing Remarks<br />

Before 1997 Cod nets 110-120 mm 120 units Gedser/Hesnæs 50 6000 Atlantic cod 15. March - 31. May Early in spring, when the sun is shinin, the<br />

Turbot nets 220 mm 350 units 50 17500 Turbot s<strong>and</strong>eels comes out of the s<strong>and</strong>.<br />

Flounder This attracts a lot of Atlantic cod <strong>and</strong> turbot.<br />

Plaice<br />

Dab In the area between the 2 <strong>and</strong> the 10 meter zones,<br />

Silvereel/eel<br />

Salmon/trout there are a lot of crabs during the summer.<br />

Lumpsucker<br />

The <strong>fishery</strong> are to be continued until there<br />

1997 Cod nets 110-120 mm 120 units Gedser/Hesnæs 50 6000 Atlantic cod 7987 15. March - 31. May are too many filamentous algae.<br />

Turbot nets 220 mm 350 units 50 17500 Turbot 2<br />

Flounder 9 Turbot seeks lower areas in the beginning<br />

Plaice 0 of the spawning season.<br />

Dab 2<br />

Silvereel/eel 0 In the end of March there are no roe left<br />

Salmon/trout 2 in the cod in the area.<br />

Lumpsucker 5<br />

From 1. July to 1. August it is aa closed<br />

1998 Cod nets 110-120 mm 120 units Gedser/Hesnæs 50 6000 Atlantic cod 5721 15. March - 31. May season for fishing turbot (outside the baseline).<br />

Turbot nets 220 mm 350 units 50 17500 Turbot 2<br />

Flounder 11 In the winter time the fisherman doesn't<br />

Plaice 0 bother to fish in the area because of the<br />

Dab 1 weather conditions.<br />

Silvereel/eel 0<br />

Salmon/trout 1<br />

Lumpsucker<br />

1999 Cod nets 110-120 mm 120 units Gedser/Hesnæs 50 6000 Atlantic cod 16136 15. March - 31. May<br />

Turbot nets 220 mm 350 units 50 17500 Turbot 1230<br />

Flounder 22<br />

Plaice 2<br />

Dab 3<br />

Silvereel/eel 0<br />

Salmon/trout 9<br />

Lumpsucker 90<br />

2000 Cod nets 110-120 mm 120 units Gedser/Hesnæs 17 2040 Atlantic cod 7861 23. March - 27. April<br />

Turbot nets 220 mm 350 units 17 5950 Turbot 5,5<br />

Flounder 4<br />

Plaice 0<br />

Dab 0<br />

Silvereel/eel 0<br />

Salmon/trout 0<br />

Lumpsucker 6<br />

2001 Cod nets 110-120 mm 120 units Gedser/Hesnæs 29 3480 Atlantic cod 7319 14. March - 5. May<br />

Turbot nets 220 mm 350 units 29 10150 Turbot 5<br />

Size of Atlantic cod<br />

Size class 1997 1998 I 1999 I 2000 I 2001<br />

3 82 59 0 24<br />

4 4851 1949 8098 3316 2176<br />

5 3136 3690 7979 4545 5119<br />

Flounder 26<br />

Plaice 0<br />

Dab 0<br />

Silvereel/eel 0<br />

Salmon/trout 0<br />

Lumpsucker 9<br />

Bio/consult as Page 205


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Net fisherman 7 (pound net fisher)<br />

Year Type of tackle No. of tackles Pilot harbour <strong>Fish</strong>ing days <strong>Fish</strong>ing effort Species Number of kg caught Season of fishing Remarks<br />

1996 pound nets 8 units Rødbyhavn 90 720 Cod 4970 Sept. - Nov. The silvereel migrate in Sept, Oct. And Nov.<br />

Turbot 25<br />

Silvereel 4174 The fishing tackle are only placed in the area<br />

1997 pound nets 10 units Rødbyhavn 90 900 Cod 1381 Sept. - Nov.<br />

Turbot 55<br />

Flounder 514<br />

Plaice 12<br />

Dab 27<br />

Silvereel 2222<br />

1998 pound nets 12 units Rødbyhavn 90 1080 Cod 839 Sept. - Nov.<br />

Turbot<br />

Silvereel 1304<br />

1999 pound nets 21 units Rødbyhavn 90 1890 Cod 6000 Sept. - Nov.<br />

Turbot<br />

Silvereel 4500<br />

2000 pound nets 12 units Rødbyhavn 90 1080 Cod 4270 Sept. - Nov.<br />

Turbot 3<br />

Flounder 0<br />

Plaice 0<br />

Dab 0<br />

Silvereel 1388<br />

2001 pound nets 14 units Rødbyhavn 90 1260 Cod 3263 Sept. - Nov.<br />

Turbot 4<br />

Flounder 0<br />

Plaice 0<br />

Dab 170<br />

Silvereel 2723<br />

during the season.<br />

Bio/consult as Page 206


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Trawl fisherman 1<br />

Year Type of tackle No. of tackles Pilot harbour <strong>Fish</strong>ing days <strong>Fish</strong>ing effort Species Number of kg caught Season of fishing Remarks<br />

Before 1997 Trawl 1 unit Rødbyhavn 25 25 Atlantic cod 9389<br />

Trawl fisherman 2<br />

1997 Trawl 1 unit Rødbyhavn 30 30 Atlantic cod 21539<br />

1998 Trawl 1 unit Rødbyhavn 30 30 Atlantic cod 15428<br />

1999 Trawl 1 unit Rødbyhavn 30 30 Atlantic cod 21961<br />

2000 Trawl 1 unit Rødbyhavn 135 135 Atlantic cod 87050 3. Jan.- 17 Dec.<br />

Turbot 115<br />

Flounder 311<br />

Plaice 0<br />

Dab 835<br />

Lumpsucker 26<br />

2001 Trawl 1 unit Rødbyhavn 55 55 Atlantic cod 25770 2. Jan. - 26. April<br />

Turbot 157<br />

Flounder 2210<br />

Plaice 0<br />

Dab 1366<br />

Lumpsucker 5<br />

Year Type of tackle No. of tackles Pilot harbour <strong>Fish</strong>ing days <strong>Fish</strong>ing effort Species Number of kg caught Season of fishing Remarks<br />

Before 1997 Trawl 1 unit Rødbyhavn 25 25 Atlantic cod 9389<br />

Net fisherman 7<br />

1997 Trawl 1 unit Rødbyhavn 30 30 Atlantic cod 21539<br />

1998 Trawl 1 unit Rødbyhavn 30 30 Atlantic cod 15428<br />

1999 Trawl 1 unit Rødbyhavn 30 30 Atlantic cod 21961<br />

2000 Trawl 1 unit Rødbyhavn 0 0 Atlantic cod 0<br />

2001 Trawl 1 unit Rødbyhavn 0 0 Atlantic cod 0<br />

Year Type of tackle No. of tackles Pilot harbour <strong>Fish</strong>ing days <strong>Fish</strong>ing effort Species Number of kg caught Season of fishing Remarks<br />

2000 Cod nets 120 mm ? Rødbyhavn ? ? Atlantic cod 8000 February to 5. May Retires, will not apply for compensation <strong>and</strong><br />

2001 Cod nets 120 mm O units Rødbyhavn 0 0 Atlantic cod 0<br />

has therefore not informed the accurate data<br />

Bio/consult as Page 207


SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc<br />

Bio/consult as Page 208


Bio/consult as Page 209<br />

Total fangst pr.år. ( kilo)<br />

Årstal Torsk Pighvarre Skrubbe Rødspætte Ising Blankål/Ål Stenbider<br />

I 1997 136487 1781 1273 212 654 2222 5<br />

I 1998 106538 1337 761 200 626 1304<br />

I 1999 139058 2979,5 772 202 628 4500 90<br />

I 2000 108069 125,5 315 0 840 1388 32<br />

I 2001 37240 164 2260 0 1541 2723 14<br />

I 1997, 1998, 1999 527392 6097,5 2806 614 1908 8026 95<br />

Total fangst pr.år i trawl (kilo).<br />

Årstal Torsk Pighvarre Skrubbe Rødspætte Ising Blankål/Ål Stenbider<br />

I 1997 72578 250 750 200 625 0 0<br />

I 1998 52356 250 750 200 625 0 0<br />

I 1999 64922 250 750 200 625 0 0<br />

I 2000 87938 117 335 0 840 0 26<br />

I 2001 26658 159 2234 7 1371 0 5<br />

Total fangst pr.år i garn (kilo)<br />

Årstal Torsk Pighvarre Skrubbe Rødspætte Ising Blankål/Ål Stenbider<br />

I 1997 63909 1531 613 12 29 2222 5<br />

I 1998 54172 1087 11 0 1 1304 0<br />

I 1999 74136 2730 22 2 3 4500 90<br />

I 2000 20131 8,5 -20 0 0 1388 6<br />

I 2001 10582 4,5 26 -7 170 2723 9<br />

Type of fishing tackle 1997 1998 1999 2000 2001<br />

Turbot net, 220 mm mesh 430 430 430 350 350<br />

Cod net, 110 - 120 mm mesh 185 185 185 120 120<br />

Trap net 6 8 18 5 7<br />

Cod net sp. 375 375 375 ? ?<br />

Trawl 3 3 3 2 2<br />

*The number of nets is an average<br />

Fiskeintensitet (antal redskaber * 1997 antal fiskedage) 1998 1999 2000 2001<br />

Turbot net, 220 mm mesh 26860 22380 25500 5950 10150<br />

Cod net, 110 - 120 mm mesh 17700 12100 16000 2040 3480<br />

Trap net 540 720 1620 450 630<br />

Cod net sp. 22500 22500 22500 ? ?<br />

Trawl 81 81 79 135 55<br />

*Average number<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 210<br />

Total fangst pr.år. ( kilo)<br />

Årstal Torsk Pighvarre Skrubbe Rødspætte Ising Blankål/Ål Stenbider<br />

I 1997 136487 1781 1273 212 654 2222 5<br />

I 1998 106538 1337 761 200 626 1304 0<br />

I 1999 139058 2979,5 772 202 628 4500 90<br />

I 2000 108069 125,5 339 7 840 1388 32<br />

I 2001 37240 163,5 2260 7 1541 2723 14<br />

Total fangst pr.år i trawl (kilo).<br />

Årstal Torsk Pighvarre Skrubbe Rødspætte Ising Blankål/Ål Stenbider<br />

I 1997 72578 250 750 200 625 0 0<br />

I 1998 52356 250 750 200 625 0 0<br />

I 1999 64922 250 750 200 625 0 0<br />

I 2000 87938 117 335 7 840 0 26<br />

I 2001 26658 159 2234 7 1371 0 5<br />

Total fangst pr.år i garn (kilo)<br />

Årstal Torsk Pighvarre Skrubbe Rødspætte Ising Blankål/Ål Stenbider<br />

I 1997 63909 1531 613 12 29 2222 5<br />

I 1998 54172 1087 11 0 1 1304 0<br />

I 1999 74136 2730 22 2 3 4500 90<br />

I 2000 20131 8,5 4 0 0 1388 6<br />

I 2001 10582 4,5 26 0 170 2723 9<br />

Total annual catch (ton)<br />

Year Cod Turbot Flounder Plaice Dab Eel Lumpsucker<br />

1997 136,5 1,8 1,3 0,2 0,7 2,2 0,0<br />

1998 106,5 1,3 0,8 0,2 0,6 1,3 0,0<br />

1999 139,1 3,0 0,8 0,2 0,6 4,5 0,1<br />

2000 108,1 0,1 0,3 0,0 0,8 1,4 0,0<br />

2001 37,2 0,2 2,3 0,0 1,5 2,7 0,0<br />

Trawling Total annual catch<br />

Year Cod Turbot Flounder Plaice Dab Eel Lumpsucker<br />

1997 72,6 0,3 0,8 0,2 0,6 0,0 0,0<br />

1998 52,4 0,3 0,8 0,2 0,6 0,0 0,0<br />

1999 64,9 0,3 0,8 0,2 0,6 0,0 0,0<br />

2000 87,9 0,1 0,3 0,0 0,8 0,0 0,0<br />

2001 26,7 0,2 2,2 0,0 1,4 0,0 0,0<br />

Net fishing Total annual catch<br />

Year Cod Turbot Flounder Plaice Dab Eel Lumpsucker<br />

1997 63,9 1,5 0,6 0,0 0,0 2,2 0,0<br />

1998 54,2 1,1 0,0 0,0 0,0 1,3 0,0<br />

1999 74,1 2,7 0,0 0,0 0,0 4,5 0,1<br />

2000 20,1 0,0 0,0 0,0 0,0 1,4 0,0<br />

2001 10,6 0,0 0,0 0,0 0,2 2,7 0,0<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 211<br />

Appendix 9.7. Announcements on seasonal protections of fish <strong>and</strong> shellfish in<br />

saltwater. A map of the baseline around Sjæll<strong>and</strong> <strong>and</strong> Loll<strong>and</strong>-Falster is included.<br />

Title:<br />

(Layout:2)<br />

Creator:<br />

(AdobePS5.dll Version 5.1.2)<br />

Preview:<br />

This EPS picture was not saved<br />

with a preview included in it.<br />

Comment:<br />

This EPS picture will print to a<br />

PostScript printer, but not to<br />

other types of printers.<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 212<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 213<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 214<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 215<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 216<br />

SEAS. <strong>Baseline</strong> <strong>study</strong> – <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Bio/consult as Page 217<br />

Appendix 9.8. Announcement no. 91 of Jan. 22 1991 regarding logbooks etc.<br />

Statistical analysis of data from the fisheries survey<br />

<strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at Røds<strong>and</strong> Dok. nr. 2148-03-001-rev3 2P.doc


Appendix 10. Note concerning statistical analysis of data from the fisheries survey.<br />

Statistical analysis of data<br />

from the fisheries survey<br />

<strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at Røds<strong>and</strong><br />

Technical note


Prepared for:<br />

SEAS Distribution A.m.b.A., Slagterivej 25 4690 Haslev<br />

Performed by:<br />

Bio/consult as, Johs. Ewalds Vej 42-44, 8230 Åbyhøj<br />

Text: Statistics: Editing<br />

John Pedersen John Pedersen Michael Bech<br />

jop@bioconsult.dk jop@bioconsult.dk mbe@bioconsult.dk<br />

Project manager:<br />

Christian B. Hvidt<br />

cbh@bioconsult.dk<br />

10.03.2003


Table of contents<br />

1. Introduction ..............................................................................................................1<br />

2. Considerations in relation to the analysis of data .......................................................2<br />

2.1. Parametric vs. non-parametric............................................................................2<br />

2.1.1. Parametric tests...........................................................................................2<br />

2.1.2. Non-parametric test.....................................................................................3<br />

2.1.2.1 Bootstrap.................................................................................................3<br />

2.1.2.2 Ordination...............................................................................................4<br />

2.1.2.3 Ordination based on distance...................................................................4<br />

2.1.2.4 Db-RDA <strong>and</strong> NPMANOVA....................................................................6<br />

3. Univariate or multivariate analysis? ..........................................................................9<br />

3.1.1.1 Univariate analysis ..................................................................................9<br />

3.1.1.2 Multivariate analysis ...............................................................................9<br />

4. Examples from the actual investigation. .................................................................. 11<br />

5. Recommendations................................................................................................... 16<br />

5.1.1.1 Sampling ............................................................................................... 16<br />

5.1.1.2 Data analysis ......................................................................................... 16<br />

6. References .............................................................................................................. 18


Bio/consult as Page 1<br />

1. Introduction<br />

In 2001, a baseline stock assessment of fish <strong>and</strong> <strong>fry</strong> was made in the area around <strong>Nysted</strong><br />

<strong>Offshore</strong> Wind Farm at Røds<strong>and</strong>. The data was collected at a number of stations in the<br />

wind farm area <strong>and</strong> in an adjacent area referred to as a reference area. The relevant<br />

information about the locations of stations, amount of data <strong>and</strong> the detailed content of<br />

the data can be found in the report from the survey (Bio/consult, , 2003).<br />

The main purpose with the investigation was to collect enough baseline data to support<br />

a future survey programme in the area. In the baseline report a number of null<br />

hypothesis were established to test the effect of changes in abundance <strong>and</strong> biomass of<br />

the fish populations in the wind farm area opposed to the reference area. During the<br />

survey period as part of the investigation power analysis were made to back up the<br />

assessment <strong>and</strong> possible adjustment of the size of the sampling programme. The<br />

calculations <strong>and</strong> results can’t be regarded as absolute truths but as the best bid based on<br />

simplified statistical models in which these calculations are possible. Within these<br />

limitations, the calculations are made in a normal BACI-model of baseline<br />

investigations conducted on chosen species <strong>and</strong> various groupings of the species<br />

present.<br />

However, it is not necessarily, given that the final survey programme will be based on<br />

the same statistical models <strong>and</strong> uses the same methods as in the baseline investigation.<br />

The results from the baseline investigation revealed a number of problems in the datamaterial<br />

questioning whether it is possible to pursue the established null-hypothesis<br />

with a reasonable sampling effort. One of the main problems is the large number of<br />

empty samples, which appeared when each species in the investigation was regarded<br />

isolated, which could pose problems regarding the m<strong>and</strong>atory assumptions to use the<br />

BACI-analysis in the simple form.<br />

Thus, the purpose of this note is to point out some other statistical methods with a better<br />

utilisation of the data in the present form. The note solely deals with the sampling of<br />

fish <strong>and</strong> <strong>fry</strong>, representing 2 of the 7 hypotheses outlined in the baseline report. They are<br />

the most important hypotheses covering the main part of the data material.<br />

In order to provide a comprehensive base for the evaluation of the final monitoring<br />

programme the note also gives a survey of the main statistical methods with relevance<br />

to the present data.<br />

The following sections therefore contains an examination of the chosen statistical<br />

models viewed from two different perspectives:<br />

1. Parametric or non-parametric models<br />

2. Univariate or multivariate analysis<br />

During the examination, it has been attempted to evaluate both advantages <strong>and</strong><br />

disadvantages of the specific methods in relation to the actual data. On purpose, the<br />

examination does not contain either mathematical or statistical details.


Bio/consult as Page 2<br />

2. Considerations in relation to the analysis of data<br />

In monitoring programmes when the actual time of any e.g. environmental effects is<br />

known in advance a more or less sophisticated variant of the BACI design is<br />

traditionally used as sampling design. The BACI design in its most simple form is a test<br />

of the interaction between time <strong>and</strong> place during the monitoring of a control <strong>and</strong> an<br />

impact area in relation to time before <strong>and</strong> after the impact. The situation before impact<br />

is evaluated during the baseline sampling.<br />

However, within this overall frame of design many variations are possible. Contents of<br />

data <strong>and</strong> the chosen statistical methods could be very different. The basis for the<br />

statistical analysis can be a test with only one variable or multivariate where several<br />

variables are included simultaneously <strong>and</strong> the possible correlation among the variables<br />

are accounted for.<br />

Depending on the purpose <strong>and</strong> taking into account the properties of the data at h<strong>and</strong>,<br />

both the univariate <strong>and</strong> the multivariate statistical analysis can be carried out according<br />

to an either a parametric or a non-parametric test. The latter contains the group of the<br />

most recent developed extensive permutation test.<br />

2.1. Parametric vs. non-parametric<br />

2.1.1. Parametric tests<br />

To be used in this group of tests, the data are assumed to follow known statistical<br />

distribution with parameters to be estimated such as average or variance. The linear<br />

normal distributed models are the most commonly used. Among these is the classic<br />

analysis of variance known as ANOVA or MANOVA when data are either univariate or<br />

multivariate. It is assumed that the data follow a normal distribution, are independent<br />

<strong>and</strong> have equality of variances in a set of samples. It is assumed in the models that the<br />

effects from the various factors such as time <strong>and</strong> place affects the observed data linearly<br />

<strong>and</strong> in the BACI model as a sum of the effect from time <strong>and</strong> place <strong>and</strong> their interaction.<br />

The its most simple form, the BACI analysis is carried out as a two-way analysis of<br />

variance with the test for cross effects between the two main groups as the significance<br />

test of interest.<br />

One of the advantages by the use of a linear normal model is that also the distribution of<br />

test parameter is known. This knowledge provides the basis to estimate the power of the<br />

test, to calculate how good the test is to detect an effect if there is one in “the real<br />

world”. The power is expressed as the probability to catch an effect of a certain,<br />

predetermined size according to a predetermined level of significance. The power or<br />

precision of the test increases with an increasing number of replicates. It is possible<br />

either to calculate the power of the test in relation to a certain effect size such as 50%<br />

change or to calculate the number of replications necessary if the structure of variance is<br />

known from a pilot <strong>study</strong>. It is therefore usually helpful to make a series of preliminary<br />

univariate analyses with selected variables to obtain an overview of the necessary<br />

number of samples for the final programme of biological surveys.


Bio/consult as Page 3<br />

However, data from biological field programs such as abundance <strong>and</strong> biomass are very<br />

rarely normal distributed. In that case it is essential to use an appropriate transformation<br />

of data to bring them on a normal form but also to secure a homogenous structure of<br />

variance between the set of replicates (the cells) of the analysis of variance which are<br />

formed in the cross between the factors of the analysis. There are usually a relation<br />

between average <strong>and</strong> variance in that kind of data where increasing abundance results in<br />

increasing variation between the replicates. The most commonly used transformation is<br />

the logarithm, but because it is not defined for zero, empty samples cause problems<br />

which normally is solved by adding a small number such as adding the figure 1 to the<br />

raw data of abundance data. It can be difficult to fulfil the requirements for normality if<br />

many of the samples are empty.<br />

It is possible to design models, which are analogue to the univariate linear normally<br />

distributed models in the event that data are not normally distributed. The analysis can<br />

be carried out according to one of the “generalizing linear models” if they follow e.g. a<br />

Poisson or Binomial distribution. This method will also be influenced by the presence<br />

of empty samples resulting in difficulties in relation to an agreement with one of the<br />

distributions in that group. During the last ten years, a number of statistical models have<br />

been developed to treat data with univariate counting data with a surplus of zeros. A<br />

number of special editions of the Poisson distribution are often used because it, with an<br />

additional parameter, can treat the presence of empty samples. According to our<br />

knowledge, none of these models is useful in the present sampling programme.<br />

Moreover, it doesn’t affect the fact that an increasing number of empty samples<br />

gradually reduce the amount of information of the chosen variable.<br />

2.1.2. Non-parametric test.<br />

A number of non-parametric tests can be useful for carrying statistical tests within the<br />

overall BACI-frame.<br />

2.1.2.1. Bootstrap<br />

The bootstrap simulation is the obvious choice in the univariate instance, at least as a<br />

control of the parametric test, in case of difficulties with fulfilling the conditions for<br />

normality <strong>and</strong> homogeneity. The bootstrap simulation is a permutation technique, which<br />

function by extracting a number of r<strong>and</strong>om samples from the original data, of a similar<br />

size as the original. The selection can be made with or without replacement of the<br />

chosen figures. A full analysis is then carried out on the chosen data set. By repeating<br />

this process, a large number of times it is possible to construct an empirical distribution<br />

of the parameter used for testing. In that present case, it would be the test parameter for<br />

the interaction in a two-sided analysis of variance, which would be the parameter of<br />

choice.<br />

The advantage of that procedure is that the distribution for the data will not be estimated<br />

mathematically as in the case of a normal distribution, but reconstructed empirically<br />

based on the properties of the original data. As a result, the bootstrap estimation can be<br />

used in these cases when the data are not normally distributed but in contrarily have<br />

typical signs of deviations such as skew distributions, upper or lower truncations,<br />

outliers etc.


Bio/consult as Page 4<br />

As a starting point, one should always attempt to use a parametric model such as a<br />

linear normal. If the assumptions are fulfilled, then the use of the parametric statistical<br />

analysis will result in a model of explanation, which can model the interactions <strong>and</strong><br />

relations from the real world where the data originally came from. The use of a<br />

parametric analysis can provide an overview of how the participating factors interact<br />

opposed to a permutation test, which only provide information about the structure of the<br />

data in h<strong>and</strong>.<br />

2.1.2.2. Ordination<br />

In case of multivariate biological data like the ones in the present <strong>study</strong>, a number of<br />

tools or methods have been developed. These methods are basically built on the<br />

assumption, that the variables, e.g. abundances for number of species, are mutually<br />

correlated which make it possible to reduce the number of variables to a lower number<br />

of “synthetic” variables without the loss of information. As an example: species which<br />

are always co-occurring in proportional similar amounts, or species which might have a<br />

negative effect on the abundance of each other can be reduced to one pseudo-species<br />

without the loss of information.<br />

A number of these ordination methods are solely geometric calculations in the pdimensional<br />

space in between the p species of the investigation. The use of these<br />

geometric methods reduces the space to a manageable number of dimensions. The<br />

purpose of these reductions could be to continue the analysis using the new synthetic<br />

species or the new “species” (with the correct name: ordination axes) could be the<br />

product for final interpretation. A Principal Component Analysis (PCA) belongs to that<br />

group. However, experience shows that it is often very difficult to interpret the results,<br />

when data comes from biological fieldwork, typically abundance <strong>and</strong> biomass of a<br />

number of species. The analysis rarely makes it possible to reduce the number of<br />

dimensions sufficiently without loosing to much information from the original data set.<br />

On the other h<strong>and</strong>, would a PCA-analysis be the obvious choice if the data consists of<br />

measurements of chemical or physical variables (nutrients, temperature etc.), because<br />

this method can extract the essential information, <strong>and</strong> translate it to intuitively<br />

intelligible environmental gradients.<br />

2.1.2.3 Ordination based on distance<br />

Another class of ordination techniques is designed as an analysis based on calculations<br />

of a “distance” between every pair of samples (Fig. 1).


Bio/consult as Page 5<br />

Figur.1 Steps in a multivariate analysis based on calculations of a “distance” between every pair<br />

of samples (dis-similarity).<br />

The first step is to calculate “distance” between the samples based on an appropriate<br />

metric. There are a number of different measures of distance available with each their<br />

qualities. A commonly used measure for distance in between samples in investigations<br />

of benthic fauna is the Bray-Curtis similarity, which principally function as an index of<br />

the ratio between the number of common species <strong>and</strong> the total number of species. The<br />

ratio is typically weighed with one of parameters attached to a single species, e.g.<br />

biomass or abundance. If that index of similarity is scaled as percentage the similarities<br />

will be in the range from 0 to 100 representing from totally different to identical. Using<br />

the proper transformation of the raw data, it is possible to increase or decrease the<br />

weight of different parameters, such as the presence of rare species, in the calculation of<br />

the similarity index. The final product is an N*N distance matrix, which provides all the<br />

mutual distances between the studies N samples.<br />

The second step is a more complex set of single steps.<br />

• A graphic presentation of the similarities as a Multi-Dimensional Scaling plot or<br />

MDS-plot. MDS is a complex mathematical method to construct a map of the<br />

samples in a certain number of dimensions. The purpose of the map is to place<br />

the samples on the map in accordance with the calculated distances in similarity.<br />

If sample A is more like sample B than C then A should be closer to B than to<br />

sample C.<br />

• Test of the similarity between two different distance matrixes. This test is part of<br />

the detective work to identify the responsible factors affecting the composition<br />

of species <strong>and</strong> their abundance in the samples. To identify the cause similar<br />

MDS-plots of the chemical parameters can be made <strong>and</strong> compared to the MDSplot<br />

of the biological parameters. A match between the set of maps would<br />

indicate that the chemical parameters was responsible for or affected the<br />

biological data.<br />

• Test of independence in the matrix of similarities to factors grouping the data<br />

material. The tests are similar to the test used in an analysis of variance. In the<br />

actual <strong>study</strong>, time <strong>and</strong> place are the factors <strong>and</strong> the tests are performed as


Bio/consult as Page 6<br />

permutation tests of each criterion independent of the other. The tests are by<br />

nature not subjected to the assumptions of multivariate normality, which limits<br />

the use of the usual MANOVA on this kind of data, but still the data must be<br />

independent <strong>and</strong> with a similar statistical distribution. The permutation test is in<br />

general based on a large number of exchange of replicates between the tested<br />

factor groups, for each permutations calculation of a test statistic, <strong>and</strong> finally, a<br />

comparison of the test statistics based on the original data with all the r<strong>and</strong>ombased<br />

statistics.<br />

The distance based ordination techniques have within the last ten years got a lot of<br />

attention as a method to analyse this type of data, <strong>and</strong> in other fields such as analysis<br />

benthic fauna as a tool to investigate <strong>and</strong> explain the patterns of similarities.<br />

However, in the BACI framework, these methods cannot, of theoretical reasons, be used<br />

to test effects of interaction in an ANOVA design. As mentioned it is possible to use<br />

permutation tests to test the main effects in the BACI-model while a permutation test for<br />

the interaction between time <strong>and</strong><br />

place can not be done as<br />

permutations between the original<br />

replicates. It requires a model<br />

based linear such as ANOVA but<br />

the main problem is the<br />

requirements to the measure of<br />

distance, which are not fulfilled by<br />

the Bray-Curtis index. The main<br />

question is whether the similarity<br />

measurement is metric or not (se<br />

box).<br />

A measuremnt of distance, D, is metric, if the measurement full fills<br />

the following:<br />

• Positivity: Dij has to be 0 or positive<br />

• Symmetri: Dij = Dji : The distance between A <strong>and</strong> B is the<br />

same as the distance between B <strong>and</strong> A.<br />

• Identity: Djj = 0 : a sample is identical with it self.<br />

• Triangle inequality: Dik < = Dij + Djk : The distance<br />

between two samples can not be bigger than the sum of<br />

distances between two other pairs. The distances can be<br />

constructed as a triangle. For instance: Dik = 10 og Dij = 3<br />

og Djk = 4 . If it isn’t possible to construct a triangle then<br />

the measurement of distance is not metric.<br />

If the area in questioning in a BACI-design is not significantly different from the<br />

reference, - <strong>and</strong> effect area then the effect of interaction can be tested by proving a<br />

difference between the areas at a later time. However, this is rarely the case, <strong>and</strong><br />

furthermore surveys will often consist of a number of measurements in time, which only<br />

can be analysed for trends using the entire data set.<br />

2.1.2.4 Db-RDA <strong>and</strong> NPMANOVA<br />

There is a need for a permutation-based test for the interaction term. In recent years, the<br />

theoretical basis for this test have been further developed <strong>and</strong> even fitted to the<br />

situation, where the fieldwork is established in concordance with the BACI-design. At<br />

present there are at least two suitable procedures which can be used on the present data<br />

material. These techniques are not yet included in the st<strong>and</strong>ard statistical packages.<br />

The first one is called db-RDA (distance-based redundans analysis - Legendre <strong>and</strong><br />

Anderson, 1999). The method calculates the distance between replicates based on a<br />

metric of your own choice followed by a principal coordinates analysis <strong>and</strong> a<br />

redundancy analysis (Fig. 2).


Bio/consult as Page 7<br />

Figure: 2. Graphic outline of the procedures in a multivariate distance based test of interaction<br />

between criteria of sectioning. (Legendre <strong>and</strong> Anderson, 1999).<br />

The other method NPMANOVA (Non-parametric multivariate analysis of variance)<br />

(Anderson, 2001) provides a method based on distance-metric of your own choice <strong>and</strong><br />

the product is an analysis of a variance table similar to one from the well-known<br />

analysis of variance. In the variance analytical table the total sums of squares of<br />

distances are divided into sums of squares belonging to each of the factors of the<br />

analysis such as time, place, <strong>and</strong> the interaction between them. Again, as in the common<br />

ANOVA, these sums of squares are the basis for the F ratios, which again can be tested<br />

for significance using permutations tests. If the distances are calculated as Bray-Curtis<br />

dissimilarities then they also have to be treated in different ways before they can be<br />

used in the NPMANOVA procedure.<br />

It is important to note that both methods can only be used if certain assumptions are<br />

fulfilled just like the requirements to a parametric ANOVA/MANOVA. In principle, the<br />

requirements are the same except that the data do not have to be normal distributed. The<br />

data should still be independent, the effects in the model (time <strong>and</strong> place) should be<br />

additive <strong>and</strong> finally the variation should be uniform between the groups. The<br />

distribution of the similarities should be the same regardless of time <strong>and</strong> place. The<br />

requirement of homogenous variance is important because it is possible to get a


Bio/consult as Page 8<br />

significant result in the test solely based on differences in variance. Whether that<br />

requirement has been meet can only be tested in a visual estimation of a graphical<br />

illustration of the plot for example such as a non-metric MDS-plot. In the actual <strong>study</strong>,<br />

it is necessary to estimate if the similarities between replicates in the chosen areas <strong>and</strong><br />

time periods seems to be of similar magnitude. If not then a suitable transformation of<br />

raw data can often solve the problem.


Bio/consult as Page 9<br />

3. Univariate or multivariate analysis?<br />

As it appears from the previous, there is a fundamental choice to make regarding the<br />

analytical method for calculations the test statistics within the >BACI design. Should<br />

the method be uni- or multivariate? It is crucial with respect to that choice whether the<br />

variables of the results are correlated or not. In relation to the data in the present <strong>study</strong> it<br />

is important to consider if the occurrence of the fish species are independent of each<br />

other or if the presence of one species increase the probability to encounter certain<br />

species in the same area. Dependent variables are the rule of thumb in this kind of field<br />

<strong>study</strong> <strong>and</strong> accordingly so in the present investigation. The dependency was tested based<br />

on the null hypothesis of “no correlation different from zero among the p species” using<br />

Bartlett’s test for spericity. Intuitively it makes sense that certain species occur as<br />

functional groups attached to certain bottom conditions, food, water quality etc. The<br />

presence of correlation is the first indication to use a multivariate analysis to get the<br />

most information from the data.<br />

3.1. Univariate analysis<br />

If the data set is tested using a univariate BACI-analysis of the data from each<br />

individual species, then there are a number of conditions, which should be noted.<br />

• It is difficult to fulfil the requirements of normality <strong>and</strong> homogeneity of variance<br />

for most of the species even after transformation These dem<strong>and</strong>s must be meet<br />

to complete an ANOVA in its ordinary linear form. The main reason is the<br />

presence of empty samples when the data are considered separately for each<br />

species.<br />

• Furthermore, it is important to note the danger of deriving conclusions<br />

concerning overall significance based on what can be called mass tests. It is<br />

implicit to the choice of level of significance that one out of 20 analysis should<br />

show significance even if no interaction-effect in the BACI model exists in the<br />

real world. If the results from each of the individual species are gathered to a an<br />

overall level of significance then it is essential to adjust the level of significance<br />

for each test according to number of species. If five independent species are<br />

analysed using an univariate ANOVA then the level of significance should be<br />

adjusted as follows: 1-(1-0.05) 1/5 = 1.02%. Or if the level is fixated at 5 % in<br />

each sub-test, then there is a probability of 22.6 % for significance in at least one<br />

of the five sub-tests.<br />

3.2. Multivariate analysis<br />

When the variables in question (species) are correlated as in the present baseline <strong>study</strong>,<br />

then the natural choice of method would be a multivariate analysis. If not for the test of<br />

significance, the ordination techniques can be used to explore the structures of the data<br />

<strong>and</strong> therefore be guidance to the final test of significance.


Bio/consult as Page 10<br />

The choice is between:<br />

• The usual multivariate analysis in a parametric, normal <strong>and</strong> linear model.<br />

Different aspect about this analysis have been mentioned, but one essential<br />

problem is the requirement for normality <strong>and</strong> homogeneity of variance now<br />

sharpened as these requirements apply to all variables at the same time. It is a<br />

precondition of the MANOVA test that the number of observations minus one<br />

subtracted from the number of groups should be bigger than the number of<br />

variables (species). If the numbers of observations are at least 2 to 3 times bigger<br />

than the number of variables, then the test is fairly robust to deviations from the<br />

conditions about normality <strong>and</strong> homogeneity of variance. That is the case in the<br />

present baseline <strong>study</strong> from Røds<strong>and</strong> where approximately 20 different species<br />

were caught.<br />

• The reduction of variables using the ordination technique. A PCA analysis can<br />

extract information from a large number of variables <strong>and</strong> represent that<br />

information using a smaller number of “synthetic” variables. These variables are<br />

by nature uncorrelated <strong>and</strong> can be used in univariate analysis. The catch is that it<br />

can be difficult to explain the real picture of the old variables using the new<br />

variables.<br />

• The reduction of number of variables by the use of scientific criteria to create<br />

functional groups of species which abundance <strong>and</strong> biomass can be tested in uni-<br />

or multivariate models. The obvious method is to make functional groups<br />

according to the expected biological effect in the actual investigation. As an<br />

example, it would be obvious to create a group of species with special<br />

attachment to the reef habitat. One of the effects of such a strategy would be<br />

fewer empty samples, making it easier to fulfil the preconditions to use the<br />

parametric ANOVA/MANOVA.<br />

• Extract various indices or statistics from the original data <strong>and</strong> use them in uni- or<br />

multivariate analysis. The two fundamental statistics are the total number of<br />

individuals <strong>and</strong> the total number of species per sample, but there are a number of<br />

diversity indexes etc. available. In general, this method does not provide useful<br />

results because of the difficulties involved in explaining a multidimensional real<br />

world using a model with only one dimension.<br />

• Use the full set of data in a non-parametric multi-step analysis based on<br />

measures of distance. Use permutation analysis to test for significant effects <strong>and</strong><br />

use tools based on the calculated distances, in case of significance, to refer the<br />

explanation of the significance back to the particular species. The latter type of<br />

investigation can provide a grouping of species, which might fit the grouping in<br />

functional species.


Bio/consult as Page 11<br />

4. Examples from the actual investigation.<br />

The data of each species in the present baseline investigation does not represent a<br />

normal distribution <strong>and</strong> it was only possible in a few cases to transform the data to a<br />

normal distribution. Furthermore, there are problems with the preconditions of<br />

homogeneity of variance between the cells in the model of variance analysis, which is<br />

formed in the cross between place (wind farm area versus reference area) <strong>and</strong> time (five<br />

sampling occasions).<br />

Figure 3 provides a typical example of the distribution of number of eelpout per sample.<br />

6<br />

4<br />

2<br />

0<br />

6<br />

4<br />

2<br />

0<br />

Eelpout<br />

5 6 9 10 11<br />

5 10 15 20 25<br />

5 10 15 20 25<br />

Figure 3. Distribution of number of eelpout per sample.<br />

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25<br />

To illustrate how data from a survey programme can be analysed with a distance based<br />

ordination analysis, there have been made calculations of similarities (Bray-Curtis<br />

index) between all the samples from the five months of the survey in 2001. All fish<br />

species have been included regardless of a biological evaluation if they were suitable.<br />

The similarities have been calculated based on square root transformed number of<br />

individuals, which result in a reasonable strong emphasis on abundance <strong>and</strong> less on rare<br />

species.<br />

The calculated similarities have since been illustrated in a map using a non-metric<br />

MDS, which is a MDS based on the rank of the distances instead of the calculation of<br />

the exact distances.<br />

Using the permutation technique, the differences between catch periods in the different<br />

areas <strong>and</strong> the difference between areas at the different sampling occasions. Furthermore<br />

the difference between areas seen isolated in each period were tested because the<br />

difference between areas in a BACI analysis is crucial for the later choice of analytical<br />

technique to test the effect of interaction between time <strong>and</strong> place.<br />

Wind farm Reference


Bio/consult as Page 12<br />

All the catch periods gives different results, which was confirmed by the test results,<br />

unless in month 10 <strong>and</strong> 11 which were coinciding (fig. 4). The contribution from each<br />

species to these differences is not described in the present note.<br />

Abundance, MDS square root transformed , signature=months<br />

Stress: 0.24<br />

Figure 4. MDS-map of Bray-Curtis distances between all stations calculated as square root<br />

transformed data.<br />

Figure 5 shows the result of the same ordination with signatures marking the two areas.<br />

To facilitate the interpretation of the graph the samples have been separated into each of<br />

the five sampling occasions. If the graphs are placed on top of each other they will<br />

represent figure 4. A global permutation test shows significant areas if not considering<br />

the times. If each sampling occasion is tested isolated in each period only month 5 <strong>and</strong> 9<br />

gives a significant difference between the areas.<br />

5<br />

6<br />

9<br />

10<br />

11


Bio/consult as Page 13<br />

Month: 11<br />

Month: 9 Month: 10<br />

Month: 5 Month: 6<br />

Reference<br />

Windfarm<br />

Figure 5. MDS-map of Bray-Curtis distances between all stations calculated as square root<br />

transformed data. The differences between the areas have been illustrated with different<br />

colours. Data from each month have been placed in each their sub plot but they<br />

originate from the same graph. The areas have been tested significant different in month<br />

5 <strong>and</strong> 9 using permutation test.<br />

To illustrate a significance test of the interaction effect of the BACI-model two sets of<br />

artificial data, which could have come from a baseline survey, were constructed. The<br />

sampling periods May <strong>and</strong> June were chosen <strong>and</strong> the number of individuals for<br />

stationary fish species in the wind farm area were increased with a factor 2 <strong>and</strong> 4<br />

respectively but only in the month of June. This could have been two data sets from a<br />

before <strong>and</strong> after situation where a change have occurred in the impact area <strong>and</strong> not in<br />

the reference area.<br />

The analysis was made using Bray-Curtis distances between all samples calculated on<br />

square root transformed data to reduce the effect of abundant species <strong>and</strong> to secure a<br />

uniform distribution of distances between the replicates from each sampling occasion. A<br />

NPMANOVA-test of significance was made using the same data set.<br />

Figure 6 show the three nMDS plots from each their data set. Note that the points in the<br />

dense swarm moves away with an increase in number of individuals of the stationary<br />

species.


Bio/consult as Page 14<br />

nMDS on abundance in wind farm area in June.<br />

Stress: 0.24<br />

Windfarm<br />

5<br />

Windfarm<br />

6<br />

Reference<br />

5<br />

Reference<br />

6<br />

nMDS on abundance in wind farm area in June. Abundance increased by a factor 2<br />

Stress: 0.25<br />

This effect can also be found using the NPMANOVA analysis illustrated in the Table 1.<br />

The results have been based on 5000 permutations per analysis.<br />

The results shows, that there are no interaction between area <strong>and</strong> time in the original<br />

data. There is an obvious difference between the areas <strong>and</strong> between the two sampling<br />

periods, but the change from May to June is parallel.<br />

W6<br />

W6<br />

Windfarm<br />

5<br />

Windfarm<br />

6<br />

Reference<br />

5<br />

Reference<br />

6<br />

nMDS on abundance in wind farm area in June. Abundance increased by a factor 4<br />

Stress: 0.24<br />

W6<br />

Windfarm<br />

5<br />

Windfarm<br />

6<br />

Reference<br />

5<br />

Reference<br />

6<br />

Figure 6. nMDS plots with increasing number of individuals of stationary species in the wind<br />

farm area in June (W6).


Bio/consult as Page 15<br />

After a twofold increase of the abundance of stationary species the analysis gives a test<br />

probability of 5.9 %, which is close to a significant interaction.<br />

The interaction is highly significant (0.04 %) after a fourfold increase of the abundance<br />

of the stationary species.<br />

Original data<br />

The abundance of<br />

stationary species<br />

doubled in June.<br />

The abundance of<br />

stationary species<br />

increased fourfold<br />

in June.<br />

Non-parametric Multivariate Analysis of Variance<br />

Possible Denom.<br />

Source df SS MS F P No.perm. MS<br />

-----------------------------------------------------------------------------<br />

Omraa 1 7075.6513 7075.6513 4.6886 0.0004 >1.0E+10 Res<br />

maane 1 14002.8873 14002.8873 9.2789 0.0002<br />

Res<br />

Omxma 1 1636.8030 1636.8030 1.0846 0.3842 >1.0E+10 Res<br />

Resid 44 66400.9367 1509.1122<br />

Total 47 89116.2784<br />

-----------------------------------------------------------------------------<br />

Non-parametric Multivariate Analysis of Variance<br />

Possible Denom.<br />

Source df SS MS F P No.perm. MS<br />

-----------------------------------------------------------------------------<br />

omraa 1 8109.9132 8109.9132 5.3740 0.0002 >1.0E+10 Res<br />

maane 1 12625.0607 12625.0607 8.3659 0.0002<br />

Res<br />

omxma 1 2889.3945 2889.3945 1.9146 0.0586 >1.0E+10 Res<br />

Resid 44 66400.9367 1509.1122<br />

Total 47 90025.3051<br />

-----------------------------------------------------------------------------<br />

Non-parametric Multivariate Analysis of Variance<br />

Possible Denom.<br />

Source df SS MS F P No.perm. MS<br />

-----------------------------------------------------------------------------<br />

omraa 1 10159.6715 10159.6715 6.7322 0.0002 >1.0E+10 Res<br />

maane 1 12271.9657 12271.9657 8.1319 0.0002<br />

Res<br />

omxma 1 5587.7770 5587.7770 3.7027 0.0004 >1.0E+10 Res<br />

Resid 44 66400.9367 1509.1122<br />

Total 47 94420.3510<br />

-----------------------------------------------------------------------------<br />

Table 1. Results from a NPMANOVA test on the spring sampling of two artificial data sets with<br />

a built-in effect in the samples from June at the windmill park.


Bio/consult as Page 16<br />

5. Recommendations<br />

5.1. Sampling<br />

• Adjust the sampling programme with a focus to concentrate the effort at as many<br />

stations as possible. Multiple replicates are not necessary on each station<br />

because they will be considered as one sample in the final analysis because<br />

station is the basic unit in the comparison of areas. Adjust the effort pr. station to<br />

allow for a (biological) reasonable CPUE.<br />

• Use eventually the liberated effort from avoiding replicates to include an<br />

additional reference area. Concentrate the effort on the species which will be<br />

used in the test. Is there any reason to record the number of crabs <strong>and</strong> scrimps?<br />

On the other h<strong>and</strong>, to use de multivariate ordination techniques it is essential,<br />

that any species of biological relevance is accounted for.<br />

• As a starting point for the size of the sampling program, use the result from the<br />

power analysis conducted in univariate BACI-models. The example from this<br />

note of a multivariate analysis carried out on the data at h<strong>and</strong> shows, that<br />

plausible effects can be traced using these methods. Exact power calculations for<br />

the multivariate ordination techniques dem<strong>and</strong>s a very extensive simulation<br />

<strong>study</strong>, which is outside the scope for this note.<br />

• Consider the time of sampling thorough. A significant difference was found<br />

between most of the sampling occasions <strong>and</strong> the wind farm area <strong>and</strong> reference<br />

area at certain times It may be more biological relevant to time the sampling<br />

occasion according to a yearly recurrent occasion which can established by<br />

supervision instead of using fixed dates.<br />

5.2. Data analysis<br />

• Use the distance based multivariate ordination technique to analyse the data <strong>and</strong><br />

the effects in the BACI –model. Refer the results to the explanations, which are<br />

based on the specific contribution of each individual species. Consider from a<br />

biological view which species should be included in the test. Is the equipment<br />

useful for all species? Are there any coincident appearing species which<br />

presence does not relate to the sectioning of the <strong>study</strong> area?<br />

If other methods are to be used, consider the following:<br />

• Univariate analysis can be used on the chosen species but the problem is that<br />

these species should be chosen a priori <strong>and</strong> not based on the results of the<br />

investigation. The conditions to use a traditional ANOVA test are not fulfilled<br />

for most of the species. Pay attention to the level of significance, if the overall<br />

significance is based on the results from several single species. Check the results<br />

using non-parametric methods as Bootstrap.


Bio/consult as Page 17<br />

• Univariate <strong>and</strong> multivariate tests in the normal linear model can also be made<br />

using groupings of the species. The grouping will reduce the occurrence of<br />

empty samples <strong>and</strong> improve the possibility to fulfill the conditions of the<br />

analysis. The grouping should be chosen a priori <strong>and</strong> not based on the results of<br />

the investigation. It is only possible to create functional groups if it is considered<br />

biological relevant.


Bio/consult as Page 18<br />

6. References<br />

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of<br />

variance. Austral Ecology 26: 32-46.<br />

Bio/consult as 2003. <strong>Baseline</strong> <strong>study</strong>. <strong>Fish</strong>, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong> – <strong>Nysted</strong><br />

<strong>Offshore</strong> Wind Farm at Røds<strong>and</strong>. Technical report prepared by Bioconsult<br />

as. SEAS Distribution A.m.b.a., March 2003.<br />

Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community<br />

structure. Australian Journal of Ecology 18: 117-143.<br />

Clarke, K.R.; Green, R.H. 1988 Statistical design <strong>and</strong> analysis for a ’biological effects’<br />

<strong>study</strong>. Marine Ecology Progress Series 46: 213-226.<br />

Green, R. H. 1979. Sampling design <strong>and</strong> statistical methods for environmental<br />

biologists. New York: Wiley.<br />

Legendre, P.; Anderson, M.J. 1999: Distance-based Redundancy Analysis: Testing<br />

multispecies responces in multifactorial ecological experiments. Ecol. Mon.<br />

69(1): 1-24.<br />

Manly, Bryan F. J: 1997 R<strong>and</strong>omization, Bootstrap <strong>and</strong> Monte Carlo Methods in<br />

Biology, Second Edition. CRC Press;<br />

Podlich, H.M.; Faddy, M.J.; Smyth, G.K. (in press): A general approach to modelling<br />

<strong>and</strong> analysis of species abundance data with extra zeros.


Filename: 2148-03-001-rev3 2P.doc<br />

Directory: P:\PROJEKT\P2148<br />

Template: P:\PROJEKT\P2148\2148-03-001-KES-rev1.dot<br />

Title: <strong>Baseline</strong> <strong>study</strong> - fish, <strong>fry</strong> <strong>and</strong> <strong>commercial</strong> <strong>fishery</strong><br />

Subject: <strong>Nysted</strong> <strong>Offshore</strong> Wind Farm at Røds<strong>and</strong><br />

Author: Christian B. Hvidt, Kirsten Engell-Sørensen, Maks<br />

Klaustrup<br />

Keywords:<br />

Comments:<br />

Creation Date: 02-04-2003 00:31<br />

Change Number: 11<br />

Last Saved On: 02-04-2003 11:54<br />

Last Saved By: Christian B. Hvidt<br />

Total Editing Time: 127 Minutes<br />

Last Printed On: 02-04-2003 12:04<br />

As of Last Complete Printing<br />

Number of Pages: 260<br />

Number of Words: 47.911 (approx.)<br />

Number of Characters: 273.095 (approx.)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!