30.07.2013 Views

Intraocular Photodisruption With Picosecond and Nanosecond Laser

Intraocular Photodisruption With Picosecond and Nanosecond Laser

Intraocular Photodisruption With Picosecond and Nanosecond Laser

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Tissue Effects of <strong>Picosecond</strong> <strong>and</strong> <strong>Nanosecond</strong> <strong>Photodisruption</strong> 3043<br />

however, the same for ns pulses so that the use of ps<br />

pulses remains as advantageous in the periphery as it<br />

does close to the optical axis.<br />

Although an automatic scanning <strong>and</strong> aiming system<br />

operating at high repetition rates would be useful<br />

for phacofragmentation or corneal refractive surgery,<br />

manual aiming seems to be most appropriate for vitreoretinal<br />

laser applications. <strong>With</strong> manual aiming<br />

controlled by the direct feedback from observing the<br />

action of the laser pulses, the highest possible surgical<br />

precision can be realized, together with a minimization<br />

of the light energy deposited. To keep the total<br />

amount of light energy applied as low as possible, only<br />

moderate repetition rates of 10 to 100 Hz should be<br />

used. Light absorption in the retinal pigment epithelium<br />

might otherwise lead to heating <strong>and</strong> coagulation<br />

of the retina, in addition to possible mechanical damage<br />

associated with misaimed laser pulses.<br />

CONCLUSIONS<br />

The use of ps pulses with a moderate repetition rate<br />

(10 Hz to 1 kHz) <strong>and</strong> energies in the microjoule range<br />

is a new concept compared to the well-established<br />

Nd:YAG laser surgery with single ns pulses. It increases<br />

the surgical precision <strong>and</strong> reduces the disruptive<br />

side effects in "classical" Nd:YAG laser applications<br />

like posterior capsulotomy <strong>and</strong> iridotomy <strong>and</strong> in<br />

the whole range of other applications for which treatment<br />

with ns pulses is already well established. Besides<br />

that, it also renders new applications possible. Our<br />

preliminary investigations suggest that cataract emulsification,<br />

vitreoretinal surgery close to the retina, <strong>and</strong><br />

intrastromal corneal refractive surgery deserve further<br />

in vivo experiments <strong>and</strong> clinical studies. An instrument<br />

with a repetition rate variable between 10 Hz<br />

<strong>and</strong> about 1 kHz, offering the possibility of manual<br />

aiming <strong>and</strong> automatic scanning, would be most versatile.<br />

Pulse energies below 1 mj will be sufficient in<br />

most cases, but for cataract fragmentation the range<br />

of pulse energies available should reach up to about 2<br />

to 3 mj to allow fragmentation of dense cataracts.<br />

Key Words<br />

Nd:YAG laser, picosecond pulses, refractive surgery, cataract<br />

fragmentation, vitreoretinal surgery<br />

Acknowledgments<br />

The authors thank M. Volkholz, C. Grosse, <strong>and</strong> U. Weinhardt<br />

for their support during the histologic investigations,<br />

<strong>and</strong> L. Merz, H. Krohn, R. Kube, <strong>and</strong> R. Carbe for their help<br />

in preparing the manuscript.<br />

References<br />

1. Fankhauser F, Roussel P, Steffen J, Van der Zypen E,<br />

Chrenkova A. Clinical studies on the efficiency of<br />

high-power laser radiation upon some structures of<br />

the anterior segment of the eye. Int Ophthahnol.<br />

1982;5:15-32.<br />

2. Aron-Rosa D, Aron J, Griesemann J, Thyzel R. Use of<br />

the neodym YAG laser to open the posterior capsule<br />

after lens implant surgery: A preliminary report./ Am<br />

Intraocul Implant Soc. 1980;6:352-354.<br />

3. Steinert RF, Puliafito CA. The Nd:YAG <strong>Laser</strong> in Ophthalmology.<br />

Philadelphia: WB Saunders; 1985.<br />

4. Fankhauser F, Kwasniewska S. Neodymium:yttriumaluminium-garnet<br />

laser. In: L'Esperance FA, ed. Ophthalmic<br />

<strong>Laser</strong>s.' 3rd ed. St. Louis: CV Mosby;<br />

1989:781-886.<br />

5. Barnes PA, Rieckhoff KE. <strong>Laser</strong> induced underwater<br />

sparks. Appl Phys Lett. 1968;13:282-284.<br />

6. Vogel A, Busch S, Jungnickel K, Birngruber R. Mechanisms<br />

of intraocular photodisruption with picosecond<br />

<strong>and</strong> nanosecond laser pulses. <strong>Laser</strong>s Surg Med.<br />

1994;14:(in press).<br />

7. Vogel A, Schweiger P, Frieser A, Asiyo MN, Birngruber<br />

R. <strong>Intraocular</strong> Nd:YAG laser surgery: Lighttissue<br />

interaction, damage range, <strong>and</strong> reduction of collateral<br />

effects. IEEE J Quant Electr. 1990;26:2240-<br />

2260.<br />

8. Zysset B, Fujimoto JG, Puliafito CA, Birngruber R,<br />

Deutsch TF. <strong>Picosecond</strong> optical breakdown: Tissue effects<br />

<strong>and</strong> reduction of collateral damage. <strong>Laser</strong>s Surg<br />

Med. 1989;9:193-204.<br />

9. Docchio F, Sacchi CA, Marshall J. Experimental investigation<br />

of optical breakdown thresholds in ocular media<br />

under single pulse irradiation with different pulse<br />

durations. <strong>Laser</strong>s Ophthahnol. 1986;l:83-93.<br />

10. Zysset B, Fujimoto G, Deutsch TF. Time resolved measurements<br />

of picosecond optical breakdown. Appl<br />

PhysB. 1989;48:139-147.<br />

11. Niemz MH, Hoppeler TP, Juhasz T, Bille JF. Intrastromal<br />

ablations for refractive corneal surgery using<br />

picosecond infrared laser pulses. <strong>Laser</strong>s Light Ophthalmol.<br />

1993;5:149-155.<br />

12. Vogel A, Hentschel W, Holzfuss J, Lauterborn W. Cavitation<br />

bubble dynamics <strong>and</strong> acoustic transient generation<br />

in ocular surgery with pulsed neodymium: YAG<br />

lasers. Ophthalmology. 1986;93:1259-1269.<br />

13. Mellerio J, Capon M, Docchio F. Nd:YAG lasers: A<br />

potential hazard from cavitation bubble behaviour in<br />

anterior chamber procedures? <strong>Laser</strong>s Ophthahnol.<br />

1987;l:185-190.<br />

14. Vogel A, Lauterborn W, Timm R. Optical <strong>and</strong> acoustic<br />

investigations of the dynamics of laser-produced<br />

cavitation bubbles near a solid boundary. J Fluid Mech.<br />

1989;206:299-338.<br />

15. Hoh H, Becker KW. Intrastromal keratohexis with<br />

the Nd:YAG laser:. A possible way of refractive<br />

surgery? Klin Mbl Augenheilk. 1990;197:480-487. In<br />

German.<br />

16. Bille JF, Klancnik EG, Niemz MH. Principles of operation<br />

<strong>and</strong> first clinical results using the picosecond IR<br />

laser. In: Parel JM, ed. Ophthalmic Technologies II.<br />

SPIEProc. 1992;1644:88-95.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!