31.07.2013 Views

 t - VTU e-Learning Centre

 t - VTU e-Learning Centre

 t - VTU e-Learning Centre

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Define the capacity of noisy DMC<br />

Defined as –<br />

CAPACITY OF A DMC<br />

Session – 10<br />

The maximum possible rate of information transmission over the channel.<br />

In equation form –<br />

P(<br />

x )<br />

D <br />

C Max -----(1)<br />

t<br />

i.e., maximised over a set of input probabilities P(x) for the discrete r . v. X<br />

What is Dt?<br />

Dt: Ave. rate of information transmission over the channel defined as<br />

H( x)<br />

H(<br />

x / y)<br />

r<br />

bits / sec. -----(2)<br />

Dt s<br />

Eqn. (1) becomes<br />

P(<br />

x)<br />

H ( x)<br />

H(<br />

x / y)<br />

r<br />

<br />

C Max <br />

-----(3)<br />

Illustrative Examples<br />

1. For the channel shown determine C,<br />

Input<br />

X<br />

Solution:<br />

0<br />

1<br />

2<br />

3<br />

Step – 1: Calculate H(x) = Pi<br />

log Pi<br />

i 0<br />

Substituting we get,<br />

1<br />

p<br />

p<br />

1<br />

3<br />

s<br />

0<br />

1<br />

1 – p = q<br />

(1 – p) = q<br />

2<br />

3<br />

Output<br />

Y<br />

P (x = 0) = P<br />

P (x = 1) = Q<br />

P (x = 2) = Q<br />

P (x = 3) = P<br />

2P + 2Q = 1


H(<br />

x)<br />

<br />

[ P(<br />

x<br />

<br />

<br />

P(<br />

x<br />

0)<br />

log P(<br />

x<br />

<br />

<br />

2)<br />

log P(<br />

x<br />

0)<br />

<br />

<br />

2)<br />

P(<br />

x<br />

<br />

<br />

P(<br />

x<br />

1)<br />

log P(<br />

x<br />

<br />

1)<br />

3)<br />

log P(<br />

x<br />

= - [P log Q + Q log Q + Q log Q + P log P]<br />

2P log P 2Q<br />

log Q <br />

H( x)<br />

<br />

2<br />

2<br />

bits/sym. ----(4)<br />

Step – 2: Calculate H(x/y) = P ( xy)<br />

log P ( x / y)<br />

Note, i & j can take values<br />

<br />

i 1 1 2 2<br />

j 1 2 1 2<br />

H(<br />

x / y)<br />

<br />

[ P(<br />

x<br />

P(<br />

x <br />

P(<br />

x <br />

2,<br />

2,<br />

y <br />

i<br />

1,<br />

y 1)<br />

log p(<br />

x 1 / y 1)<br />

P(<br />

x 1,<br />

y 2)<br />

log p(<br />

x 1 / y 2)<br />

Step – 3: Calculate P(x/y) using,<br />

(i) P(x = 1 / y = 1) =<br />

Where,<br />

Input<br />

X<br />

0<br />

1<br />

2<br />

3<br />

2)<br />

log ( x<br />

j<br />

y 1)<br />

log p(<br />

x 2 / y 1)<br />

P(<br />

x<br />

P(y=1) = P(x=1, y=1) + P(x=2, y=1)<br />

2 / y 2)]<br />

P ( x / y)<br />

<br />

1)<br />

. P(<br />

y 1/<br />

x 1)<br />

P(<br />

y 1)<br />

<br />

3)]<br />

P(<br />

x)<br />

. P(<br />

y / x)<br />

P(<br />

y)<br />

= P(x=1) . P(y=1 / x=1) + P(x=2,) . P(y=1 / x=2)<br />

= Q . p + Q . q<br />

= QP + Q (1 – p)<br />

P(<br />

y 1)<br />

Q<br />

1<br />

p<br />

p<br />

1<br />

0<br />

1<br />

1 – p = q<br />

(1 – p) = q<br />

2<br />

3<br />

Output<br />

Y<br />

. ----(5)


Q . p<br />

P(<br />

x 1 / y 1)<br />

p<br />

Q<br />

Similarly calculate other p(x/y)’s<br />

They are<br />

(ii) P(x=1 / y=2) = q<br />

(iii) P(x=2 / y=1) = q<br />

(iv) P(x=2 / y=2) = p<br />

Equation (5) becomes:<br />

H(x/y) = [Q . p log p + Q . q log q + Q . q log q + Q . p log p]<br />

= [Q . p log p + Q (1 - p) log q + Q (1 - p) . log q + Q . p log p]<br />

= + [2Q . p log p + 2Q . q log q]<br />

= + 2Q [p log p + q log q]<br />

H(x/y) = 2Q . ----- (6)<br />

Step – 4: By definition we have,<br />

Dt = H(x) – H(x/y)<br />

Substituting for H(x) & H(x/y) we get,<br />

Dt = - 2P log2 P – 2Q . log2 Q – 2Q . ----- (7)<br />

Recall, 2P + 2Q = 1, from which,<br />

Q = ½ –P<br />

1 1 1 <br />

D t - 2P log 2 P - 2<br />

P<br />

log<br />

P<br />

2<br />

P<br />

2 2 2 <br />

1 <br />

i.e., Dt - 2P log2<br />

P (1-<br />

2P) log P<br />

2P<br />

----- (8)<br />

2 <br />

Step – 5: By definition of channel capacity we have,<br />

C <br />

Max<br />

P(<br />

x)<br />

Q(<br />

X)<br />

D <br />

t


d<br />

(i) Find D t <br />

dP<br />

d d <br />

1 <br />

i.e., D t <br />

2P<br />

log 2 P (<br />

1<br />

2P)<br />

log<br />

P<br />

2P<br />

dP dP<br />

<br />

<br />

2 <br />

<br />

1 <br />

<br />

<br />

2<br />

P<br />

log2<br />

e<br />

2 . P log<br />

<br />

2 e<br />

<br />

2 <br />

1 <br />

<br />

( 2)<br />

log <br />

2 log P<br />

2<br />

<br />

2 P<br />

P<br />

1 <br />

2 <br />

<br />

P<br />

<br />

2 <br />

<br />

<br />

Simplifying we get,<br />

d<br />

dP<br />

D log P log Q <br />

t<br />

Setting this to zero, you get<br />

log2 P = log2 Q + <br />

OR<br />

P = Q . 2 = Q . ,<br />

Where, = 2 <br />

How to get the optimum values of P & Q?<br />

2<br />

Substitute, P = Q in 2P + 2Q = 1<br />

i.e., 2Q + 2Q = 1<br />

OR<br />

1<br />

Q =<br />

2(<br />

1 )<br />

1<br />

Hence, P = Q . = . =<br />

2(<br />

1 )<br />

Step – 6: Channel capacity is,<br />

2<br />

<br />

2( 1 )<br />

2P<br />

log P 2Q<br />

log Q 2 <br />

C Max<br />

Q<br />

P(<br />

x)<br />

Q(<br />

X)<br />

Substituting for P & Q we get,<br />

-----(9)<br />

-----(10)<br />

-----(11)<br />

-----(12)


C 2 . log<br />

2(<br />

1<br />

)<br />

<br />

2(<br />

1<br />

)<br />

<br />

Simplifying you get,<br />

1 1 <br />

. log<br />

2(<br />

1<br />

)<br />

<br />

2(<br />

1<br />

)<br />

<br />

<br />

1<br />

log 2<br />

2(<br />

1<br />

)<br />

<br />

<br />

<br />

C = log [2 (1+)] – log <br />

or<br />

2(<br />

1<br />

)<br />

<br />

C = log2 <br />

<br />

Remember, = 2 and<br />

= - (p log p + q log q)<br />

What are the extreme values of p?<br />

Case – I: Say p = 1<br />

What does this case correspond to?<br />

What is C for this case/<br />

Note: = 0, = 2 0 = 1<br />

2( 1<br />

1)<br />

<br />

C log2 <br />

log<br />

1 <br />

<br />

2<br />

[ 4]<br />

If rs = 1/sec, C = 2 bits/sec.<br />

Can this case be thought of in practice?<br />

1<br />

Case – II: p =<br />

2<br />

bits/sec. -----(13)<br />

<br />

2 bits / sym.<br />

1 1 1 <br />

Now, = – log log 1<br />

2 2 2 <br />

= 2 = 2<br />

2( 2 1)<br />

<br />

log<br />

<br />

log 2 [ 3]<br />

1.<br />

585 bits / sec.<br />

2


Which are the symbols often used for the channel under discussion and why it is<br />

so?<br />

Input<br />

X<br />

OVER A NOISY CHANNEL ONE CAN NEVER SEND<br />

INFORMATION WITHOUT ERRORS<br />

2. For the discrete binary channel shown find H(x), H(y), H(x/y) & H(y/x) when<br />

P(x=0) = 1/4, P(x=1) = 3/4 , = 0.75, & = 0.9.<br />

Solution:<br />

What type of channel in this?<br />

H(x) = – i<br />

p<br />

t<br />

i<br />

log p<br />

t<br />

i<br />

= – [P(x=0) log P(x=0) + P(x=1) log P(x=1)]<br />

= – [p log p+ (1–p) log (1–p)]<br />

Where, p = P(x=0) & (1-p) = p(x=1)<br />

Substituting the values, H(x) = 0.8113 bits/sym.<br />

H(y) = – i<br />

0<br />

1<br />

2<br />

3<br />

0<br />

X<br />

(1 –)<br />

(1 –)<br />

Y<br />

1<br />

p<br />

r<br />

i<br />

log p<br />

r<br />

i<br />

<br />

= – [P(y=0) log P(y=0) + P(y=1) log P(y=1)]<br />

r t<br />

t<br />

Recall, p 0 p 0 . p 00 p1<br />

p10<br />

1<br />

p<br />

p<br />

1<br />

<br />

0<br />

1<br />

1 – p = q<br />

(1 – p) = q<br />

2<br />

3<br />

0<br />

1<br />

Output<br />

Y


P(y=0) = P(x=0) . P00 + P(x=1) P10<br />

= p + (1 – p) (1 – )<br />

Similarly, P(Y=1) = p (1 – ) + (1 – p) <br />

H(Y) p ( 1<br />

p)<br />

( 1<br />

)<br />

log p ( 1<br />

p)<br />

( 1<br />

)<br />

<br />

p ( 1<br />

)<br />

( 1<br />

)<br />

log p ( 1<br />

)<br />

( 1<br />

)<br />

<br />

H(Y) = - Q1(p) . log Q1(p) – Q2(p) log Q2(p)<br />

Substituting the values, H(y) = 0.82<br />

H(y/x) = P ( x<br />

Simplifying, you get,<br />

i<br />

j<br />

i,<br />

y j)<br />

log P ( y j / x i)<br />

H(y/x) = – [p . . log + (1 – p) (1 – ) log (1 – ) + p(1 – ) log (1 – )]<br />

+ (1 – p) log ]<br />

= – p [ . log – (1 – ) log (1 – ) – log – (1 – ) log (1 – )]<br />

H(y/x) = PK + C<br />

Compute ‘K’<br />

+ terms not dependent on p<br />

Rateat<br />

whichinformnissupplied<br />

Rateat<br />

whichinformn<br />

<br />

<br />

<br />

<br />

by<br />

thechannel<br />

to theReceiver<br />

is<br />

receivedby<br />

theReceiver<br />

i.e., H(x) – H(x/y) = H(y) – H(y/x)<br />

Home Work:<br />

Calculate Dt = H(y) – H(y/x)<br />

d<br />

Find Dt<br />

dp<br />

d<br />

Set Dt to zero and obtain the condition on probability distbn.<br />

dp<br />

Finally compute ‘C’, the capacity of the channel.<br />

Answer is: 344.25 b/second.


2. A channel model is shown<br />

INPUT<br />

X<br />

1<br />

0 0<br />

p<br />

What type of channel is this?<br />

Write the channel matrix<br />

P(Y/X)<br />

Do you notice something special in this channel?<br />

What is H(x) for this channel?<br />

Say P(x=0) = P & P(x=1) = Q = (1 – P)<br />

H(x) = – P log P – Q log Q = – P log P – (1 – P) log (1 – P)<br />

What is H(y/x)?<br />

H(y/x) = – [p log p + q log q]<br />

What is H(y) for the channel?<br />

H(y) = P(<br />

y)<br />

log P(<br />

y)<br />

= – [Pp log (Pp) + q log q + Q . p log (Q . p)]<br />

What is H(x/y) for the channel?<br />

H(y/x) = P(<br />

xy)<br />

log P(<br />

x / y)<br />

X<br />

p<br />

q<br />

q<br />

?<br />

1<br />

OUTPUT<br />

Y<br />

Y<br />

0 ? 1<br />

0 p q p<br />

1 o q p


X<br />

P(XY)<br />

Y<br />

y1 Y2 Y3<br />

X1 Pp Pq O<br />

X2 O Qq Qp<br />

P(X/Y)<br />

1 1<br />

H(x/y) = + Pp log 1 + Pq log + Q . q log + Qp log 1<br />

P<br />

Q<br />

X<br />

Y<br />

y1 Y2 Y3<br />

X1 1 P O<br />

X2 O Q 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!