27.12.2013 Views

Syllabus Vector Differentiation - Velocity and Acceleration - Gradient ...

Syllabus Vector Differentiation - Velocity and Acceleration - Gradient ...

Syllabus Vector Differentiation - Velocity and Acceleration - Gradient ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<strong>Syllabus</strong><br />

<strong>Vector</strong> <strong>Differentiation</strong><br />

- <strong>Velocity</strong> <strong>and</strong> <strong>Acceleration</strong><br />

- <strong>Gradient</strong><br />

- Divergence<br />

- Curl<br />

- Laplacian<br />

- Solenoidal <strong>and</strong> Irrotational <strong>Vector</strong>s<br />

Recap<br />

Scalar product<br />

<br />

: a .<br />

<br />

b<br />

<br />

a1 b1<br />

a2<br />

b2<br />

a3<br />

b3<br />

<br />

|<br />

a | | b | cos<br />

,<br />

<br />

is<br />

the<br />

angle<br />

between<br />

<br />

a<br />

<strong>and</strong><br />

<br />

b<br />

Pr ojection :<br />

projection<br />

of<br />

<br />

a<br />

on<br />

<br />

b<br />

is<br />

<br />

a . b.<br />

Work done : If a force<br />

<br />

F displaces are provide from A to B then<br />

the work done is<br />

<br />

F . AB<br />

<strong>Vector</strong><br />

product :<br />

<br />

a<br />

<br />

<br />

b<br />

<br />

<br />

i<br />

a1<br />

b1<br />

<br />

j<br />

a2<br />

b2<br />

<br />

k<br />

a3<br />

b3<br />

<br />

| a | | b | sin<br />

<br />

<br />

n<br />

where<br />

<br />

n<br />

is<br />

unit<br />

vector<br />

perpendicular<br />

to<br />

both<br />

<br />

a<br />

<strong>and</strong><br />

<br />

b<br />

Moment: If the vecto r moment of a force<br />

<br />

F about a po int A<br />

through a point<br />

P<br />

is<br />

<br />

M<br />

<br />

<br />

AP<br />

<br />

<br />

F<br />

Scalar<br />

triple<br />

<br />

product : [ a ,<br />

<br />

b ,<br />

<br />

c ]<br />

<br />

<br />

a .( b<br />

<br />

<br />

c )<br />

a1<br />

b1<br />

c1<br />

a2<br />

c2<br />

c3<br />

a3<br />

b3<br />

c3<br />

Page 1 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Equation of line :<br />

Equations of a line pas sin g through (x1, y1, z1)<br />

<strong>and</strong><br />

direction<br />

ratios<br />

a, b, c are<br />

x x1 y y1<br />

z z<br />

<br />

1<br />

a b c<br />

Equation of a plane : is of the form<br />

ax + by + cz + d = 0 where a,b,c are the DR's of the normal.<br />

Introduction<br />

In this chapter the basic concepts of Differential Calculus of scalar functions are<br />

extended to vector functions.<br />

Here we study vector differentiation, gradient, divergence, curl, solenoidal <strong>and</strong><br />

irrational fields.<br />

Also we study about vector integration <strong>and</strong> verification of the integral theorems.<br />

<strong>Vector</strong> Function of a Scalar Variable<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k where f1, f2<br />

<strong>and</strong> f3<br />

are<br />

functions<br />

of<br />

a<br />

var iable<br />

t<br />

is called a vector function.<br />

If f1, f2 <strong>and</strong> f3 are differentiable then we define<br />

<br />

d f f(t t) f(t)<br />

df <br />

1 df <br />

2 df <br />

lim i j <br />

3<br />

k<br />

dt t0<br />

t dt dt dt<br />

Similarly higher order derivatives can also be defined.<br />

Note:<br />

<br />

d f <br />

0<br />

dt<br />

iff<br />

<br />

f<br />

is<br />

a<br />

cons tan t<br />

vector .<br />

Page 2 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Rules of differentiation<br />

<br />

1. If g(t) is a scalar function of t <strong>and</strong> f (t) is a vector function of<br />

<br />

d d f d <br />

scalar t then ( f) f<br />

dt dt dt<br />

2. If<br />

<br />

<strong>and</strong><br />

<br />

are<br />

scalar<br />

cons tan ts,<br />

<br />

f<br />

<strong>and</strong><br />

<br />

g<br />

are vector<br />

functions of<br />

t<br />

then<br />

d<br />

dt<br />

<br />

( f<br />

<br />

<br />

g)<br />

<br />

<br />

d f<br />

<br />

dt<br />

<br />

<br />

d g<br />

<br />

dt<br />

3.<br />

d<br />

dt<br />

Proof:<br />

4.<br />

d<br />

dt<br />

Proof:<br />

<br />

( f . g)<br />

<br />

d g<br />

f .<br />

dt<br />

<br />

d f <br />

. g<br />

dt<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

f . g<br />

<br />

g g1<br />

i g2<br />

j g3<br />

k<br />

f1 g1<br />

f2<br />

g2<br />

f3<br />

g3<br />

d dg1<br />

df1<br />

dg2<br />

df2<br />

dg3<br />

df3<br />

( f . g) f1 g1<br />

f2<br />

g2<br />

f3<br />

g3<br />

dt<br />

dt dt dt dt dt dt<br />

dg<br />

<br />

<br />

<br />

1 dg<br />

<br />

2 dg<br />

<br />

3 df<br />

<br />

1 df<br />

<br />

2 df<br />

f<br />

<br />

3<br />

1 f2<br />

f3<br />

g1<br />

g2<br />

g3<br />

<br />

dt dt dt dt dt dt <br />

<br />

d g<br />

f . <br />

dt<br />

<br />

( f <br />

df<br />

.<br />

dt<br />

<br />

g<br />

<br />

d g d f<br />

g) f <br />

dt dt<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

g g1<br />

i g2<br />

j g3<br />

k<br />

<br />

g<br />

<br />

f g<br />

<br />

<br />

i<br />

f1<br />

g1<br />

<br />

j<br />

f2<br />

g2<br />

<br />

k<br />

f3<br />

g3<br />

Page 3 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

f g i (f2<br />

g3<br />

g2<br />

f3)<br />

d<br />

dt<br />

<br />

<br />

( f g)<br />

<br />

d<br />

dt<br />

<br />

i (f2<br />

g3<br />

g2<br />

f3)<br />

<br />

<br />

<br />

d f<br />

i<br />

2<br />

<br />

dt<br />

g3<br />

f2<br />

dg3<br />

dt<br />

<br />

dg2<br />

dt<br />

f3<br />

g2<br />

df3<br />

<br />

<br />

dt <br />

<br />

<br />

d f<br />

i<br />

2<br />

<br />

dt<br />

dg<br />

g <br />

2<br />

3<br />

dt<br />

<br />

f3<br />

<br />

<br />

<br />

<br />

i<br />

<br />

f2<br />

<br />

dg3<br />

dt<br />

g2<br />

df3<br />

<br />

<br />

dt <br />

<br />

d f<br />

<br />

dt<br />

<br />

g<br />

<br />

<br />

f<br />

<br />

<br />

d g<br />

dt<br />

5.<br />

d<br />

dt<br />

<br />

<br />

<br />

<br />

f , g, h <br />

<br />

<br />

<br />

<br />

<br />

d<br />

f<br />

,<br />

dt<br />

<br />

<br />

<br />

<br />

<br />

g, h <br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

<br />

<br />

,<br />

<br />

d g <br />

d h <br />

,h f , g ,<br />

dt<br />

dt<br />

<br />

<br />

<br />

<br />

<br />

Proof:<br />

d<br />

dt<br />

<br />

f ,<br />

<br />

<br />

g,<br />

<br />

h <br />

<br />

<br />

d<br />

dt<br />

<br />

<br />

<br />

f<br />

<br />

<br />

<br />

<br />

g .<br />

<br />

<br />

<br />

<br />

<br />

h <br />

<br />

<br />

d<br />

dt<br />

<br />

f<br />

<br />

<br />

<br />

<br />

g .<br />

<br />

<br />

<br />

h<br />

<br />

<br />

f<br />

<br />

<br />

<br />

<br />

g .<br />

<br />

<br />

<br />

d h<br />

dt<br />

<br />

d f<br />

<br />

dt<br />

<br />

<br />

<br />

g <br />

<br />

<br />

.<br />

<br />

h<br />

<br />

<br />

<br />

f<br />

<br />

<br />

<br />

<br />

d g <br />

.<br />

dt <br />

<br />

<br />

h<br />

<br />

<br />

<br />

f g .<br />

<br />

<br />

<br />

d h<br />

dt<br />

<br />

d<br />

f<br />

,<br />

dt<br />

<br />

<br />

<br />

<br />

<br />

g , h <br />

<br />

<br />

<br />

<br />

<br />

d g <br />

<br />

f , , h<br />

dt<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f ,<br />

<br />

<br />

<br />

g,<br />

<br />

d h <br />

dt<br />

<br />

<br />

<br />

<br />

<br />

d f<br />

6. If | f | cons tan t then f . 0<br />

dt<br />

Proof:<br />

<br />

Let | f | <br />

C<br />

<br />

| f | a<br />

2<br />

where a is constant<br />

<br />

<br />

f .<br />

<br />

f<br />

<br />

cons tan t<br />

<br />

d<br />

dt<br />

<br />

f .<br />

<br />

<br />

<br />

f <br />

<br />

<br />

<br />

0<br />

Page 4 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

d f d f <br />

f . . f 0<br />

dt dt<br />

<br />

d f<br />

f .<br />

dt<br />

0<br />

7. If<br />

<br />

f<br />

has<br />

a<br />

fixed<br />

direction<br />

then<br />

<br />

f<br />

<br />

d f <br />

0<br />

dt<br />

Proof:<br />

Let<br />

<br />

f<br />

<br />

<br />

f e<br />

Now<br />

<br />

f <br />

<br />

d f<br />

dt<br />

<br />

f e <br />

d<br />

dt<br />

<br />

(f e)<br />

<br />

df d e <br />

f e e 0<br />

dt dt<br />

f<br />

df<br />

dt<br />

<br />

(e e)<br />

df <br />

f (0)<br />

dt<br />

<br />

0<br />

8.If<br />

<br />

f<br />

<br />

<br />

d f<br />

dt<br />

<br />

<br />

0<br />

then<br />

<br />

f<br />

has<br />

a<br />

fixed<br />

direction.<br />

Equation of a Space Curve<br />

Let P (x,y,z) be any point in space then its position vector is<br />

<br />

OP<br />

<br />

<br />

r<br />

<br />

<br />

x i<br />

<br />

y j<br />

<br />

<br />

z k<br />

If x = x(t), y = y(t) <strong>and</strong> z = z(t) are functions of a scalar variable<br />

t then<br />

<br />

r r (t)<br />

describes<br />

a<br />

curve<br />

in<br />

space<br />

called<br />

the<br />

space<br />

curve.<br />

Page 5 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Note 1:<br />

<br />

d r<br />

dt<br />

represents<br />

the<br />

velocity<br />

<br />

v<br />

(rate<br />

of<br />

change<br />

of<br />

position<br />

with<br />

which<br />

the<br />

ter min al po int<br />

of<br />

<br />

r<br />

describes the<br />

curve )<br />

Note 2:<br />

<br />

d r<br />

dt<br />

is<br />

along<br />

the<br />

direction<br />

of<br />

the<br />

tan gent<br />

to<br />

the<br />

space<br />

curve<br />

at<br />

P (x, y, z)<br />

Note 3:<br />

The<br />

unit<br />

tan gent<br />

vector<br />

to<br />

the<br />

space<br />

curve<br />

is<br />

denoted by<br />

<br />

t<br />

<strong>and</strong><br />

is given by<br />

<br />

t<br />

<br />

<br />

d r<br />

dt<br />

<br />

d r<br />

| |<br />

dt<br />

Note 4:<br />

<br />

d v<br />

dt<br />

<br />

<br />

d<br />

2<br />

r<br />

<br />

is called the acceleration a<br />

dt<br />

2<br />

of<br />

the<br />

curve<br />

at time<br />

t.<br />

Unit Normal to a Space Curve<br />

Let A be a fixed point on the curve <strong>and</strong> s be the length of the arc AP where<br />

P(x,y,z) is a point on the space curve.<br />

Page 6 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Let<br />

<br />

t<br />

be<br />

the<br />

unit<br />

tan gent<br />

vector<br />

at<br />

P.<br />

Consider<br />

d.w.r.t s<br />

<br />

t . t<br />

1<br />

<br />

t<br />

.<br />

<br />

d t<br />

ds<br />

<br />

<br />

d t <br />

. t<br />

ds<br />

<br />

0<br />

<br />

<br />

d t<br />

2 t . <br />

ds<br />

0<br />

<br />

<br />

t<br />

<br />

d t<br />

.<br />

ds<br />

<br />

0<br />

<br />

d t<br />

ds<br />

is<br />

a normal<br />

to<br />

the<br />

space<br />

curve<br />

<strong>and</strong><br />

<br />

n<br />

<br />

<br />

d t<br />

ds<br />

<br />

d t<br />

| |<br />

ds<br />

is<br />

called<br />

the<br />

unit<br />

normal to<br />

the<br />

curve.<br />

Scalar <strong>and</strong> <strong>Vector</strong> Fields<br />

Scalar Valued Function<br />

Let P(x,y,z) which is a scalar is called a scalar point function.<br />

Note: A scalar point function is also called a scalar fixed . = (x,y,z)<br />

Ex.: (x,y,z) = x 2 + y 2 + z 2<br />

<strong>Vector</strong> Valued Function<br />

Page 7 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Let P(x,y,z) be a point. A vector point function is a vector whose<br />

components are real valued functions of x,y,z. A vector point function is called a<br />

vector<br />

field<br />

<br />

F .<br />

Ex:<br />

<br />

<br />

f f (x, y, z) f1<br />

i f2<br />

j f3<br />

k<br />

<br />

F xyz i x<br />

2<br />

y j yz k<br />

Differential<br />

operator<br />

:<br />

<br />

denotes<br />

the<br />

operation<br />

<br />

i<br />

x<br />

<br />

<br />

y<br />

<br />

j<br />

<br />

<br />

k<br />

z<br />

<br />

<br />

<br />

i<br />

x<br />

<br />

does<br />

not<br />

represent<br />

a<br />

vector<br />

if<br />

only<br />

defines<br />

the<br />

differential<br />

operator<br />

<strong>Gradient</strong> of a Scalar Field<br />

<br />

Let(x, y, z) be a scalar field, then i k i<br />

x z x<br />

is called the gradient of denoted by .<br />

The<br />

following<br />

are<br />

some<br />

results<br />

obtained<br />

by<br />

the<br />

definition<br />

of<br />

<br />

.<br />

1. ( )<br />

,<br />

is a scalar cons tan t.<br />

2. ( )<br />

,<br />

<strong>and</strong> are scalar fields.<br />

3. ( )<br />

,<br />

<strong>and</strong> are scalar cons tan ts<br />

4.() <br />

<br />

5.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

<br />

6. d dx dy dz<br />

x y z<br />

<br />

i<br />

<br />

<br />

<br />

x<br />

<br />

<br />

j<br />

<br />

y<br />

<br />

<br />

k<br />

<br />

<br />

z <br />

<br />

<br />

i<br />

dx<br />

<br />

<br />

<br />

<br />

j dy<br />

<br />

<br />

k dz<br />

<br />

<br />

d<br />

<br />

<br />

<br />

. d r<br />

Page 8 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Geometrical Interpretation<br />

Q(x, y, z)<br />

c represents a surface in space <strong>and</strong><br />

to the surface at any point.<br />

<br />

represents a normal<br />

Note 1: Since = c on the surface.<br />

<br />

d . d r<br />

<br />

0<br />

which<br />

shows<br />

that<br />

<br />

is<br />

perpendicular<br />

to<br />

the<br />

tan gent<br />

plane<br />

at<br />

any<br />

po int .<br />

Note<br />

2 : Unit<br />

vector<br />

along<br />

<br />

is<br />

denoted by<br />

<br />

n<br />

<br />

<br />

is<br />

| |<br />

called<br />

the<br />

unit<br />

normal<br />

to the surface (x,y,z) = c.<br />

Directional Derivative<br />

Let<br />

<br />

a<br />

be<br />

a<br />

vector<br />

inclined at<br />

an<br />

angle<br />

<br />

with<br />

<br />

then<br />

<br />

.<br />

<br />

a is<br />

called<br />

the<br />

directional<br />

derivative<br />

along<br />

<br />

a .<br />

Note : Maximum value<br />

of directional<br />

derivative<br />

is<br />

<br />

<br />

n | |<br />

Page 9 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Divergence of a <strong>Vector</strong> Field<br />

<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k be a vector field then divergence of f<br />

denoted by<br />

div<br />

<br />

f<br />

or<br />

<br />

.<br />

f<br />

is<br />

defined<br />

as<br />

f<br />

f<br />

1 f2<br />

f <br />

3 i<br />

div. f . f <br />

x y z x<br />

Physical Interpretation<br />

If<br />

<br />

v the<br />

velocity<br />

of<br />

a moving<br />

fluid<br />

at<br />

a po int<br />

P<br />

at<br />

time<br />

t,<br />

then<br />

<br />

div v<br />

represents<br />

the rate at which the fluid moves out of a unit volume enclosing the point P.<br />

Solenoidal <strong>Vector</strong><br />

A<br />

vector<br />

field<br />

<br />

f<br />

is<br />

said<br />

to<br />

be<br />

solenoidal<br />

if<br />

<br />

div. f<br />

<br />

0.<br />

Properties<br />

<br />

1. div ( f g) div f div g , where f <strong>and</strong> g are vector fields.<br />

<br />

2. div ( f ) div f where is a scalar cons tan t.<br />

3.<br />

<br />

div ( f g)<br />

cons tan ts.<br />

<br />

<br />

div f <br />

<br />

div g<br />

where<br />

<br />

<strong>and</strong><br />

<br />

are<br />

scalar<br />

4.<br />

If<br />

<br />

<br />

is a scalar field <strong>and</strong> f is a vector field then div ( f ) div f .<br />

Proof:<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

then f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

div ( f ) ( f1 ) ( f2<br />

) ( f3)<br />

x y z<br />

<br />

f1<br />

x<br />

<br />

<br />

f1<br />

x<br />

<br />

f<br />

<br />

2<br />

y<br />

<br />

f2<br />

<br />

y<br />

<br />

f<br />

<br />

3<br />

y<br />

<br />

f3<br />

<br />

y<br />

<br />

<br />

<br />

<br />

<br />

f1<br />

<br />

<br />

x <br />

<br />

<br />

<br />

i<br />

x<br />

<br />

. f1<br />

i<br />

<br />

<br />

div f<br />

<br />

<br />

.<br />

f<br />

Page 10 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Laplacian of a scalar field <br />

Let<br />

then<br />

= (x,y,z) be a scalar field<br />

<br />

is a vector field<br />

<strong>and</strong><br />

div<br />

( )<br />

.<br />

<br />

<br />

<br />

x<br />

<br />

2<br />

<br />

<br />

x<br />

2<br />

<br />

<br />

x <br />

<br />

<br />

<br />

y<br />

<br />

<br />

<br />

<br />

2<br />

<br />

<br />

y<br />

2<br />

z<br />

2<br />

<br />

<br />

<br />

<br />

y <br />

<br />

<br />

z<br />

<br />

<br />

z <br />

denoted by<br />

<br />

2 <br />

is<br />

called<br />

the<br />

Laplacian<br />

of<br />

a<br />

scalar<br />

field.<br />

Note 1:<br />

<br />

2<br />

<br />

<br />

2<br />

x<br />

2<br />

<br />

2<br />

<br />

y<br />

2<br />

<br />

2<br />

<br />

z<br />

2<br />

Note 2:<br />

A<br />

scalar<br />

field<br />

<br />

is<br />

called<br />

a harmonic<br />

function<br />

if<br />

<br />

2<br />

<br />

<br />

0<br />

Note 3:<br />

<br />

2<br />

() <br />

2<br />

, where <br />

2<br />

<strong>and</strong> are cons tan ts,<br />

<br />

<strong>and</strong><br />

<br />

are scalar fields.<br />

Curl of a <strong>Vector</strong> field<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

then<br />

curl<br />

of<br />

<br />

f<br />

denoted by<br />

curl<br />

<br />

f<br />

or<br />

<br />

<br />

<br />

f<br />

is<br />

defined<br />

as<br />

<br />

<br />

<br />

f<br />

<br />

<br />

i j k<br />

/ x / y<br />

/ z<br />

f1 f2<br />

f3<br />

<br />

<br />

f <br />

<br />

3 f<br />

<br />

2<br />

i<br />

y z <br />

Physical Interpretation<br />

<br />

If v is the velocity of a particle in rigid body rotating about a fixed<br />

axis<br />

then<br />

the<br />

angular<br />

velocity<br />

at<br />

any<br />

po int<br />

is<br />

given by<br />

1<br />

2<br />

<br />

curl v .<br />

Page 11 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Irrational <strong>Vector</strong><br />

<br />

<br />

f is said to irrational if curl f 0<br />

Properties<br />

(i)<br />

If<br />

<br />

f<br />

<strong>and</strong><br />

<br />

g<br />

are<br />

vector<br />

fields then<br />

<br />

curl ( f<br />

<br />

<br />

g)<br />

<br />

curl<br />

<br />

f<br />

<br />

curl<br />

<br />

g<br />

<br />

<br />

(ii) Curl ( f ) Curl f , where is a scalar cons tan t.<br />

(iii)<br />

If<br />

<br />

is<br />

a<br />

scalar<br />

field<br />

<strong>and</strong><br />

<br />

f<br />

is<br />

vector<br />

field<br />

then<br />

<br />

curl ( f )<br />

<br />

<br />

curl<br />

<br />

f<br />

<br />

<br />

<br />

<br />

f<br />

Proof:<br />

<br />

<br />

Curl ( f ) ( f3)<br />

( f2<br />

) i<br />

<br />

y z <br />

<br />

<br />

<br />

f<br />

<br />

<br />

3<br />

y<br />

<br />

f <br />

2<br />

i<br />

z <br />

<br />

<br />

f3<br />

y<br />

<br />

<br />

f2<br />

i <br />

z <br />

<br />

<br />

f f <br />

<br />

<br />

Curl ( f ) <br />

3<br />

<br />

2<br />

i f3<br />

f2<br />

i ...(1)<br />

y z y z <br />

Consider<br />

<br />

<br />

<br />

f<br />

<br />

<br />

i j k<br />

/ x / y / z<br />

f1 f2<br />

f3<br />

<br />

<br />

<br />

f3<br />

y<br />

<br />

<br />

f2<br />

<br />

z <br />

<br />

i<br />

<br />

<br />

Curl ( f )<br />

<br />

<br />

curl<br />

<br />

f<br />

<br />

<br />

f<br />

(iv)<br />

<br />

Curl ( )<br />

0<br />

Proof:<br />

Curl ( )<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

y z z y <br />

<br />

0<br />

<br />

<br />

(v). If f is a vector field then div (Curl f ) 0<br />

Proof:<br />

Page 12 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 13 of 72<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

y<br />

f<br />

x<br />

f<br />

i<br />

x<br />

f<br />

z<br />

f<br />

i<br />

z<br />

f<br />

y<br />

f<br />

f<br />

Curl<br />

1<br />

2<br />

3<br />

1<br />

2<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y<br />

f<br />

x<br />

f<br />

x<br />

x<br />

f<br />

z<br />

f<br />

z<br />

z<br />

f<br />

y<br />

f<br />

x<br />

f)<br />

(curl<br />

div<br />

1<br />

2<br />

3<br />

1<br />

2<br />

3<br />

y<br />

z<br />

f<br />

x<br />

z<br />

f<br />

x<br />

y<br />

f<br />

z<br />

y<br />

f<br />

z<br />

x<br />

f<br />

y<br />

x<br />

f 1<br />

2<br />

2<br />

2<br />

3<br />

2<br />

1<br />

2<br />

2<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

= 0<br />

Some important Identities<br />

(i) Divergence of a vector product:<br />

then<br />

fields<br />

vector<br />

are<br />

g<br />

<strong>and</strong><br />

f<br />

If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

curl<br />

.<br />

f<br />

f<br />

g .curl<br />

g)<br />

( f<br />

div<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

f<br />

j<br />

f<br />

i<br />

f<br />

f<br />

Let 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

g<br />

j<br />

g<br />

i<br />

g<br />

g 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

)<br />

g<br />

f<br />

g<br />

(f<br />

j<br />

)<br />

g<br />

f<br />

g<br />

(f<br />

i<br />

)<br />

f<br />

g<br />

g<br />

(f<br />

g<br />

f 1<br />

2<br />

2<br />

1<br />

3<br />

1<br />

1<br />

3<br />

3<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

3<br />

3<br />

2 g<br />

f<br />

g<br />

f<br />

x<br />

g)<br />

div (f<br />

g)<br />

( f<br />

x<br />

.<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

g<br />

x<br />

f<br />

.<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

x<br />

g<br />

.<br />

i<br />

g<br />

x<br />

f<br />

.<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

.<br />

x<br />

g<br />

i<br />

g<br />

.<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

.<br />

g)<br />

(<br />

g<br />

.<br />

)<br />

f<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

Curl<br />

.<br />

f<br />

f<br />

Curl<br />

.<br />

g<br />

(ii)<br />

Curl of Curl of a vector:


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

Curl (Curl f ) grad (div f ) <br />

2<br />

f<br />

Proof:<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

f3 f2 f1 f2 f2 f <br />

f i j<br />

1 <br />

k<br />

y z z1<br />

x x y <br />

<br />

Curl (Curl f )<br />

<br />

<br />

<br />

i <br />

<br />

f<br />

<br />

2<br />

y x<br />

<br />

<br />

<br />

f1<br />

<br />

<br />

y <br />

<br />

<br />

z<br />

<br />

<br />

<br />

f1<br />

z<br />

f <br />

<br />

3<br />

<br />

x <br />

<br />

<br />

2<br />

f <br />

2<br />

f <br />

2<br />

<br />

2<br />

<br />

<br />

<br />

1<br />

<br />

1 f<br />

<br />

1 f<br />

<br />

3<br />

i<br />

y<br />

x<br />

<br />

y<br />

2<br />

z<br />

2 z x <br />

<br />

<br />

<br />

2<br />

f <br />

2<br />

f <br />

2<br />

f <br />

2<br />

<br />

<br />

3<br />

<br />

2<br />

<br />

2 f<br />

<br />

1<br />

j<br />

z<br />

y<br />

<br />

z<br />

2<br />

x<br />

2 x y <br />

<br />

<br />

<br />

2<br />

<br />

2<br />

f <br />

2<br />

f f <br />

2<br />

1 3 3 f2<br />

<br />

k<br />

x<br />

z<br />

<br />

x<br />

2<br />

y<br />

2 y z <br />

<br />

adding<br />

<strong>and</strong><br />

subtracting<br />

<br />

2<br />

f1<br />

,<br />

y<br />

2<br />

<br />

2<br />

f3<br />

z<br />

2<br />

to<br />

each<br />

of<br />

the<br />

terms.<br />

<br />

<br />

<br />

<br />

i <br />

<br />

<br />

<br />

x<br />

f1<br />

<br />

x<br />

f<br />

<br />

2<br />

y<br />

f<br />

<br />

<br />

2<br />

<br />

<br />

3 f<br />

<br />

1<br />

z<br />

<br />

<br />

x<br />

2<br />

<br />

2<br />

f<br />

<br />

2<br />

y<br />

2<br />

<br />

2<br />

f <br />

<br />

<br />

1<br />

<br />

<br />

z<br />

2<br />

<br />

<br />

<br />

<br />

i (div f )<br />

x<br />

<br />

<br />

<br />

2<br />

f<br />

Note 1:<br />

<br />

(div f )<br />

<br />

<br />

<br />

2<br />

f<br />

<br />

<br />

The operator f . (f i f j f k) . <br />

1 2 3 <br />

<br />

<br />

i <br />

x<br />

<br />

<br />

<br />

f1<br />

f2<br />

f3<br />

x<br />

y<br />

z<br />

<br />

j<br />

y<br />

<br />

<br />

<br />

k <br />

z <br />

<br />

is called the Linear differential operator.<br />

Note 2: If is a scalar field<br />

Note 3:<br />

<br />

<br />

<br />

<br />

f . <br />

f1<br />

f2<br />

f<br />

<br />

3<br />

<br />

x y<br />

<br />

z<br />

Page 14 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 15 of 72<br />

field<br />

a vector<br />

is<br />

g<br />

If<br />

<br />

z<br />

g<br />

f<br />

y<br />

g<br />

f<br />

x<br />

g<br />

f<br />

g<br />

.<br />

f 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(iii)<br />

<strong>Gradient</strong> of a scalar field:<br />

then<br />

fields<br />

vector<br />

are<br />

g<br />

<strong>and</strong><br />

f<br />

If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

)<br />

( g .<br />

g<br />

)<br />

.<br />

( f<br />

f<br />

Curl<br />

g<br />

g<br />

Curl<br />

f<br />

g)<br />

.<br />

( f<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

)<br />

g<br />

.<br />

( f<br />

x<br />

i<br />

g)<br />

.<br />

( f<br />

Consider<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

.<br />

f<br />

g<br />

.<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

...(1)<br />

x<br />

g<br />

.<br />

f<br />

i<br />

x<br />

f<br />

g .<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

f<br />

i<br />

g<br />

f<br />

Curl<br />

g<br />

Now<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

f<br />

i<br />

g<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

f<br />

i<br />

g .<br />

i<br />

x<br />

f<br />

g .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

g .<br />

x<br />

f<br />

g .<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

...(2)<br />

x<br />

f<br />

g .<br />

i<br />

g<br />

)<br />

( g .<br />

f<br />

Curl<br />

g<br />

Similarly<br />

...(3)<br />

x<br />

g<br />

.<br />

f<br />

i<br />

g<br />

)<br />

.<br />

( f<br />

g<br />

curl<br />

f


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 16 of 72<br />

From (1), (2) <strong>and</strong> (3)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

)<br />

( g .<br />

g<br />

)<br />

.<br />

( f<br />

f<br />

Curl<br />

g<br />

g<br />

Curl<br />

f<br />

g)<br />

.<br />

( f<br />

Note:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

)<br />

.<br />

2( f<br />

f<br />

Curl<br />

f<br />

2<br />

)<br />

f<br />

.<br />

( f<br />

then<br />

g<br />

f<br />

If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

)<br />

.<br />

( f<br />

f<br />

Curl<br />

f<br />

)<br />

f<br />

.<br />

( f<br />

grad<br />

2<br />

1<br />

or<br />

(iv) Curl of a vector product<br />

then<br />

fields<br />

vector<br />

are<br />

g<br />

<strong>and</strong><br />

f<br />

If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

)<br />

.<br />

( f<br />

f<br />

)<br />

( g .<br />

f<br />

g div<br />

g<br />

div<br />

f<br />

g)<br />

( f<br />

Curl<br />

Proof:<br />

g)<br />

( f<br />

x<br />

i<br />

g)<br />

( f<br />

Curl<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

g<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

g<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

i<br />

g<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

)<br />

f<br />

.<br />

( i<br />

f<br />

x<br />

g<br />

i<br />

g<br />

x<br />

f<br />

.<br />

i<br />

x<br />

f<br />

g)<br />

.<br />

( i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

x<br />

g<br />

.<br />

i<br />

f<br />

x<br />

f<br />

.<br />

i<br />

g<br />

x<br />

f<br />

g 1<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

)<br />

.<br />

f<br />

(<br />

g<br />

div<br />

f<br />

f<br />

g div<br />

f<br />

)<br />

( g .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

)<br />

.<br />

( f<br />

f<br />

)<br />

( g .<br />

f<br />

div<br />

g<br />

g<br />

div<br />

f<br />

Integration of <strong>Vector</strong> functions<br />

a<br />

be<br />

C<br />

<strong>and</strong><br />

space<br />

in<br />

R<br />

region<br />

a<br />

over<br />

defined<br />

field<br />

vector<br />

a<br />

be<br />

f<br />

Let


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

curve in R whose equation is<br />

<br />

r x(t) i y (t) j z(t) k<br />

Let A <strong>and</strong> B be two points on Curve C corresponding to t = a <strong>and</strong> t = b,<br />

We<br />

have<br />

<br />

t<br />

<br />

<br />

d r<br />

dt<br />

<br />

d r<br />

| |<br />

dt<br />

<br />

AB<br />

<br />

f . t ds<br />

Note 1:<br />

Note 2:<br />

Note 3:<br />

Note 4:<br />

The<br />

is<br />

<br />

Since t<br />

called the line int egral<br />

above int egral<br />

<br />

d r<br />

<br />

ds<br />

<br />

of f<br />

is also represented as<br />

<br />

C<br />

<br />

f . t ds<br />

<br />

<br />

C<br />

along curve C between<br />

<br />

f .d r<br />

<br />

<br />

f .d r <br />

<br />

f1 dx <br />

<br />

f2<br />

dy <br />

<br />

f3<br />

dz<br />

C C C C<br />

Also<br />

<br />

<br />

b<br />

dx dy dz<br />

1 dt<br />

dt dt dt<br />

a<br />

<br />

<br />

<br />

f .d r <br />

f<br />

f2<br />

f3<br />

<br />

<br />

C<br />

<br />

C<br />

<br />

f . t ds<br />

A<br />

<strong>and</strong> B.<br />

Physical Meaning:<br />

Page 17 of 72


C<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

f .d r represents the work done in moving a particle of unit<br />

along the Curve C from A to B.<br />

mass<br />

Surface Integral of a vector function<br />

The<br />

surface int egral<br />

of<br />

<br />

f<br />

over a<br />

surface<br />

S<br />

is<br />

defined<br />

as<br />

<br />

S<br />

<br />

f .n<br />

dS<br />

where<br />

<br />

n<br />

is the unit normal to the surface S <strong>and</strong> dS = dx dy<br />

Physical Meaning:<br />

The<br />

surface int egral<br />

of<br />

<br />

f<br />

gives<br />

the<br />

total normal<br />

flux<br />

through<br />

a<br />

surface.<br />

Volume integral of a vector function<br />

The<br />

volume int egral<br />

<br />

of f<br />

over<br />

a<br />

volume V<br />

is<br />

defined<br />

as<br />

<br />

V<br />

<br />

f dV<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f1d V<br />

<br />

i<br />

<br />

f2<br />

dV<br />

<br />

j<br />

<br />

d V<br />

<br />

k<br />

V V V <br />

Integral Theorems<br />

Green's Theorem (Statement only)<br />

Let M(x,y) <strong>and</strong> N(x,y) be two functions defined in a region A in the xy plane with<br />

a simple closed curve C as its boundary then<br />

<br />

C<br />

(M dx<br />

<br />

Mdy)<br />

<br />

N<br />

<br />

<br />

x<br />

A<br />

M <br />

dx dy<br />

y <br />

Strokes Theorem (Statement only)<br />

Let S be an open surface bounded by a simple closed curve C for a field<br />

Page 18 of 72


f<br />

defined<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

over a region containing S <strong>and</strong> C.<br />

<br />

C<br />

<br />

f .d r<br />

<br />

<br />

S<br />

(Curl<br />

<br />

f ) .n<br />

dS<br />

Gauss Divergence theorem (Statement only)<br />

Let S be the closed boundary surface of a region of Volume V. Then for a<br />

<br />

vector field f defined in V <strong>and</strong> on S.<br />

<br />

S<br />

<br />

f .n<br />

dS <br />

<br />

S<br />

i.e., in Cartesian form<br />

<br />

div f dV<br />

f<br />

f<br />

f<br />

1 dx dy dz<br />

x<br />

y<br />

z<br />

V<br />

<br />

f dy dz f <br />

1<br />

<br />

2<br />

<br />

3<br />

2 dz dx f3<br />

dx dy<br />

<br />

S<br />

Note:<br />

Page 19 of 72


For<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

any vector field f , <strong>and</strong> any closed surface S<br />

<br />

S<br />

<br />

Curl f . n<br />

dS<br />

<br />

0<br />

Page 20 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Summary<br />

<strong>Vector</strong> function: A vector function of a scalar variable t is of the form<br />

<br />

f1(t)<br />

i f2<br />

(t) j<br />

f3(t)<br />

k<br />

<strong>Differentiation</strong> of a <strong>Vector</strong>:<br />

<br />

d f df <br />

<br />

1 df df<br />

i <br />

2<br />

j<br />

3<br />

k<br />

dt dt dt dt<br />

Equation of a space curve: Equation of a space curve is represented by<br />

<br />

r (t)<br />

<br />

x(t) i y(t) j z (t) k<br />

<br />

d r<br />

<strong>Velocity</strong> :<br />

dt<br />

space curve.<br />

is<br />

the<br />

<br />

velocity v<br />

<strong>and</strong> is<br />

along<br />

the<br />

tan gent<br />

to<br />

the<br />

Unit<br />

tan gent vector<br />

<br />

: t<br />

<br />

<br />

d r<br />

dt<br />

<br />

d r<br />

| |<br />

dt<br />

<br />

Unit normal : n <br />

|<br />

<br />

d t<br />

ds<br />

<br />

d t<br />

|<br />

ds<br />

is called the unit normal to the curve.<br />

Scalar field: A scalar corresponding to each (x,y,z) in a region R.<br />

<strong>Vector</strong> field: A vector corresponding to each (x,y,z) in a region R<br />

<br />

<br />

<br />

<br />

r f1<br />

(x, y, z) i f2<br />

(x, y, z) j f3(x, y, z) k<br />

<strong>Gradient</strong>: If<br />

<br />

is<br />

a scalar field<br />

then<br />

<br />

<br />

<br />

i<br />

x<br />

<br />

j<br />

y<br />

<br />

k<br />

z<br />

is<br />

called<br />

the<br />

gradient of .<br />

Unit Normal to the surface : If = c is a surface then<br />

<br />

| |<br />

<br />

<br />

n<br />

is<br />

the unit<br />

normal<br />

to the surface.<br />

Page 21 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

Directional derivative: . a is called the directional derivative in<br />

<br />

the direction of a .<br />

<br />

Divergence of a vector field :If f f1<br />

i f2<br />

j f3<br />

k<br />

is<br />

a vector<br />

field<br />

then<br />

div<br />

<br />

f .<br />

f<br />

f<br />

<br />

1<br />

x<br />

f<br />

<br />

2<br />

y<br />

<br />

f3<br />

z<br />

<br />

f1<br />

x<br />

Solenoidal:<br />

<br />

f<br />

is<br />

solenoida.l of<br />

<br />

div f<br />

<br />

0<br />

Laplacian of a scalar field: Let be a scalar field then<br />

<br />

2<br />

<br />

<br />

<br />

2<br />

<br />

x<br />

2<br />

<br />

2<br />

<br />

<br />

y<br />

2<br />

<br />

2<br />

<br />

<br />

z<br />

2<br />

Curl<br />

of<br />

a<br />

vector<br />

field: Let<br />

<br />

f<br />

be<br />

a<br />

vector<br />

field<br />

then<br />

curl<br />

of<br />

<br />

f<br />

Curl<br />

<br />

f<br />

<br />

<br />

<br />

f<br />

<br />

<br />

i j k<br />

<br />

x<br />

y<br />

z<br />

f1 f2<br />

f3<br />

<br />

<br />

f <br />

<br />

3 f<br />

<br />

2<br />

i<br />

y z <br />

<br />

Irrational: f<br />

is<br />

irrational if<br />

Curl<br />

<br />

f 0<br />

Introduction<br />

In this chapter the basic concepts of Differential Calculus of scalar functions are<br />

extended to vector functions.<br />

Here we study vector differentiation, gradient, divergence, curl, solenoidal <strong>and</strong><br />

irrational fields.<br />

Also we study about vector integration <strong>and</strong> verification of the integral theorems.<br />

<strong>Vector</strong> Function of a Scalar Variable<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k where f1, f2<br />

<strong>and</strong> f3<br />

are<br />

functions<br />

of<br />

a<br />

var iable<br />

t<br />

is called a vector function.<br />

Page 22 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

If f1, f2 <strong>and</strong> f3 are differentiable then we define<br />

<br />

d f f(t t) f(t)<br />

df <br />

1 df <br />

2 df <br />

lim i j <br />

3<br />

k<br />

dt t0<br />

t dt dt dt<br />

Similarly higher order derivatives can also be defined.<br />

Note:<br />

<br />

d f <br />

0<br />

dt<br />

iff<br />

<br />

f<br />

is<br />

a<br />

cons tan t<br />

vector .<br />

Rules of differentiation<br />

1. If<br />

g(t) is<br />

a<br />

scalar<br />

function<br />

of<br />

t<br />

<strong>and</strong><br />

<br />

f (t) is a<br />

vector<br />

function<br />

of<br />

<br />

d d f d <br />

scalar t then ( f) f<br />

dt dt dt<br />

2. If<br />

<br />

<strong>and</strong><br />

<br />

are<br />

scalar<br />

cons tan ts,<br />

<br />

f<br />

<strong>and</strong><br />

<br />

g<br />

are vector<br />

functions of<br />

t<br />

then<br />

d<br />

dt<br />

<br />

( f<br />

<br />

<br />

g)<br />

<br />

<br />

d f<br />

<br />

dt<br />

<br />

<br />

d g<br />

<br />

dt<br />

3.<br />

d<br />

dt<br />

Proof:<br />

<br />

( f . g)<br />

<br />

d g<br />

f .<br />

dt<br />

<br />

d f <br />

. g<br />

dt<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

f . g<br />

<br />

g g1<br />

i g2<br />

j g3<br />

k<br />

f1 g1<br />

f2<br />

g2<br />

f3<br />

g3<br />

d dg1<br />

df1<br />

dg2<br />

df2<br />

dg3<br />

df3<br />

( f . g) f1 g1<br />

f2<br />

g2<br />

f3<br />

g3<br />

dt<br />

dt dt dt dt dt dt<br />

dg<br />

<br />

<br />

<br />

1 dg<br />

<br />

2 dg<br />

<br />

3 df<br />

<br />

1 df<br />

<br />

2 df<br />

f<br />

<br />

3<br />

1 f2<br />

f3<br />

g1<br />

g2<br />

g3<br />

<br />

dt dt dt dt dt dt <br />

<br />

d g<br />

f .<br />

dt<br />

<br />

df <br />

. g<br />

dt<br />

Page 23 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 24 of 72<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

dt<br />

f<br />

d<br />

dt<br />

d g<br />

f<br />

g)<br />

( f<br />

dt<br />

d<br />

4.<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

f<br />

j<br />

f<br />

i<br />

f<br />

f<br />

Let 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

g<br />

j<br />

g<br />

i<br />

g<br />

g 3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

g<br />

g<br />

g<br />

f<br />

f<br />

f<br />

k<br />

j<br />

i<br />

g<br />

f<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

)<br />

f<br />

g<br />

g<br />

(f<br />

i<br />

g<br />

f 3<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

)<br />

f<br />

g<br />

g<br />

(f<br />

i<br />

dt<br />

d<br />

g)<br />

( f<br />

dt<br />

d<br />

3<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

df<br />

g<br />

f<br />

dt<br />

dg<br />

dt<br />

dg<br />

f<br />

g<br />

dt<br />

d f<br />

i<br />

3<br />

2<br />

3<br />

2<br />

3<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

df<br />

g<br />

dt<br />

dg<br />

f<br />

i<br />

f<br />

dt<br />

dg<br />

g<br />

dt<br />

d f<br />

i<br />

3<br />

2<br />

3<br />

2<br />

3<br />

2<br />

3<br />

2<br />

dt<br />

d g<br />

f<br />

g<br />

dt<br />

f<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

g ,<br />

,<br />

f<br />

,h<br />

dt<br />

d g<br />

,<br />

f<br />

h<br />

g,<br />

,<br />

dt<br />

f<br />

d<br />

h<br />

g,<br />

,<br />

f<br />

dt<br />

d<br />

5.<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

h<br />

.<br />

g<br />

f<br />

dt<br />

d<br />

h<br />

g,<br />

,<br />

f<br />

dt<br />

d<br />

dt<br />

d h<br />

.<br />

g<br />

f<br />

h<br />

.<br />

g<br />

f<br />

dt<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

.<br />

g<br />

f<br />

h<br />

.<br />

dt<br />

d g<br />

f<br />

h<br />

.<br />

g<br />

dt<br />

f<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

g,<br />

,<br />

f<br />

h<br />

,<br />

dt<br />

d g<br />

,<br />

f<br />

h<br />

g ,<br />

,<br />

dt<br />

f<br />

d


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

d f<br />

6. If | f | cons tan t then f . 0<br />

dt<br />

Proof:<br />

<br />

Let | f | <br />

C<br />

<br />

| f | a<br />

2<br />

where a is constant<br />

<br />

<br />

f .<br />

<br />

f<br />

<br />

cons tan t<br />

<br />

d<br />

dt<br />

<br />

f .<br />

<br />

<br />

<br />

f <br />

<br />

<br />

<br />

0<br />

<br />

f .<br />

<br />

d f d f <br />

. f <br />

dt dt<br />

0<br />

<br />

<br />

d f<br />

f .<br />

dt<br />

<br />

0<br />

7. If<br />

<br />

f<br />

has<br />

a<br />

fixed<br />

direction<br />

then<br />

<br />

f<br />

<br />

d f <br />

0<br />

dt<br />

Proof:<br />

Let<br />

<br />

f<br />

<br />

<br />

f e<br />

Now<br />

<br />

f <br />

<br />

d f<br />

dt<br />

<br />

f e <br />

d<br />

dt<br />

<br />

(f e)<br />

<br />

df d e <br />

f e e 0<br />

dt dt<br />

f<br />

df<br />

dt<br />

<br />

(e e)<br />

df <br />

f (0)<br />

dt<br />

<br />

0<br />

8.If<br />

<br />

d f<br />

f <br />

dt<br />

<br />

<br />

0<br />

then<br />

<br />

f<br />

has<br />

a<br />

fixed<br />

direction.<br />

Page 25 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Equation of a Space Curve<br />

Let P (x,y,z) be any point in space then its position vector is<br />

<br />

OP<br />

<br />

<br />

r<br />

<br />

<br />

x i<br />

<br />

y j<br />

<br />

<br />

z k<br />

If x = x(t), y = y(t) <strong>and</strong> z = z(t) are functions of a scalar variable<br />

t then<br />

<br />

r r (t)<br />

describes<br />

a<br />

curve<br />

in<br />

space<br />

called<br />

the<br />

space<br />

curve.<br />

Note 1:<br />

<br />

d r<br />

dt<br />

represents<br />

the<br />

velocity<br />

<br />

v<br />

(rate<br />

of<br />

change<br />

of<br />

position<br />

with<br />

which<br />

the<br />

ter min al po int<br />

of<br />

<br />

r<br />

describes the<br />

curve )<br />

Note 2:<br />

<br />

d r<br />

dt<br />

is<br />

along<br />

the<br />

direction<br />

of<br />

the<br />

tan gent<br />

to<br />

the<br />

space<br />

curve<br />

at<br />

P (x, y, z)<br />

Note 3:<br />

The<br />

unit<br />

tan gent<br />

vector<br />

to<br />

the<br />

space<br />

curve<br />

is<br />

denoted by<br />

<br />

t<br />

<strong>and</strong><br />

is given by<br />

<br />

d r<br />

<br />

t <br />

dt<br />

<br />

d r<br />

| |<br />

dt<br />

Page 26 of 72


Note 4:<br />

<br />

d v<br />

dt<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

d<br />

2<br />

r<br />

<br />

is called the acceleration a of<br />

dt<br />

2<br />

the<br />

curve<br />

at time<br />

t.<br />

Unit Normal to a Space Curve<br />

Let A be a fixed point on the curve <strong>and</strong> s be the length of the arc AP where<br />

P(x,y,z) is a point on the space curve.<br />

Let<br />

<br />

t<br />

be<br />

the<br />

unit<br />

tan gent<br />

vector<br />

at<br />

P.<br />

Consider<br />

d.w.r.t s<br />

<br />

t . t<br />

1<br />

<br />

t<br />

.<br />

<br />

d t<br />

ds<br />

<br />

<br />

d t <br />

. t<br />

ds<br />

<br />

0<br />

<br />

<br />

d t<br />

2 t . <br />

ds<br />

0<br />

<br />

<br />

t<br />

<br />

d t<br />

.<br />

ds<br />

<br />

0<br />

<br />

d t<br />

ds<br />

is<br />

a normal<br />

to<br />

the<br />

space<br />

curve<br />

<strong>and</strong><br />

<br />

n<br />

<br />

<br />

d t<br />

ds<br />

<br />

d t<br />

| |<br />

ds<br />

is called<br />

the<br />

unit<br />

normal to<br />

the<br />

curve.<br />

Page 27 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Scalar <strong>and</strong> <strong>Vector</strong> Fields<br />

Scalar Valued Function<br />

Let P(x,y,z) which is a scalar is called a scalar point function.<br />

Note: A scalar point function is also called a scalar fixed . = (x,y,z)<br />

Ex.: (x,y,z) = x 2 + y 2 + z 2<br />

<strong>Vector</strong> Valued Function<br />

Let P(x,y,z) be a point. A vector point function is a vector whose<br />

components are real valued functions of x,y,z. A vector point function is called a<br />

<br />

vector field F .<br />

Ex:<br />

<br />

<br />

f f (x, y, z) f1<br />

i f2<br />

j f3<br />

k<br />

<br />

F<br />

<br />

<br />

xyz i<br />

<br />

<br />

x<br />

2<br />

y j<br />

<br />

<br />

yz k<br />

Differential<br />

operator<br />

:<br />

<br />

denotes<br />

the<br />

operation<br />

<br />

i<br />

x<br />

<br />

<br />

y<br />

<br />

j<br />

<br />

<br />

k<br />

z<br />

<br />

<br />

<br />

i<br />

x<br />

<br />

does<br />

not<br />

represent<br />

a<br />

vector<br />

if<br />

only<br />

defines<br />

the<br />

differential<br />

operator<br />

<strong>Gradient</strong> of a Scalar Field<br />

<br />

Let(x, y, z) be a scalar field, then i k i<br />

x z x<br />

is called the gradient of denoted by .<br />

The<br />

following<br />

are<br />

some<br />

results<br />

obtained<br />

by<br />

the<br />

definition<br />

of<br />

<br />

.<br />

1. ( )<br />

,<br />

is a scalar cons tan t.<br />

2. ( )<br />

,<br />

<strong>and</strong> are scalar fields.<br />

3. ( )<br />

,<br />

<strong>and</strong> are scalar cons tan ts<br />

4.() <br />

<br />

<br />

5. <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

Page 28 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

6. d dx dy dz<br />

x y z<br />

<br />

i<br />

<br />

<br />

<br />

x<br />

<br />

<br />

j<br />

<br />

y<br />

<br />

<br />

k<br />

<br />

<br />

z <br />

<br />

<br />

i<br />

dx<br />

<br />

<br />

<br />

<br />

j dy<br />

<br />

<br />

k dz<br />

<br />

<br />

d<br />

<br />

<br />

<br />

. d r<br />

Geometrical Interpretation<br />

Q (x, y, z)<br />

<br />

c<br />

represents<br />

a<br />

surface<br />

in space<br />

<strong>and</strong><br />

<br />

represents<br />

a normal<br />

to the surface at any point.<br />

Note 1: Since = c on the surface.<br />

<br />

d . d r<br />

<br />

0<br />

which<br />

shows<br />

that<br />

<br />

is<br />

perpendicular<br />

to<br />

the<br />

tan gent<br />

plane<br />

at<br />

any<br />

po int .<br />

Note<br />

2 : Unit<br />

vector<br />

along<br />

<br />

is<br />

denoted by<br />

<br />

n<br />

<br />

<br />

is<br />

| |<br />

called<br />

the<br />

unit<br />

normal<br />

to the surface (x,y,z) = c.<br />

Directional Derivative<br />

Let<br />

<br />

a<br />

be<br />

a<br />

vector<br />

inclined at<br />

an<br />

angle<br />

<br />

with<br />

<br />

then<br />

<br />

.<br />

<br />

a is<br />

called<br />

the<br />

directional<br />

derivative<br />

along<br />

<br />

a .<br />

Page 29 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Note : Maximum value<br />

of directional<br />

derivative<br />

is<br />

<br />

<br />

<br />

n<br />

| |<br />

Divergence of a <strong>Vector</strong> Field<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

be<br />

a<br />

vector<br />

field<br />

then<br />

divergence<br />

of<br />

<br />

f<br />

denoted by<br />

div<br />

<br />

f<br />

or<br />

<br />

.<br />

f<br />

is<br />

defined<br />

as<br />

f<br />

f<br />

1 f2<br />

f <br />

3 i<br />

div. f . f <br />

x y z x<br />

Physical Interpretation<br />

If<br />

<br />

v the<br />

velocity<br />

of<br />

a moving<br />

fluid<br />

at<br />

a po int<br />

P<br />

at<br />

time<br />

t,<br />

then<br />

<br />

div v<br />

represents<br />

the rate at which the fluid moves out of a unit volume enclosing the point P.<br />

Solenoidal <strong>Vector</strong><br />

A<br />

vector<br />

field<br />

<br />

f<br />

is<br />

said<br />

to<br />

be<br />

solenoidal<br />

if<br />

<br />

div. f<br />

<br />

0.<br />

Properties<br />

<br />

1. div ( f g) div f div g , where f <strong>and</strong> g are vector fields.<br />

<br />

2. div ( f ) div f where is a scalar cons tan t.<br />

3.<br />

<br />

div ( f g)<br />

cons tan ts.<br />

<br />

<br />

div f <br />

<br />

div g<br />

where<br />

<br />

<strong>and</strong><br />

<br />

are<br />

scalar<br />

4.<br />

If<br />

<br />

<br />

is a scalar field <strong>and</strong> f is a vector field then div ( f ) div f .<br />

Proof:<br />

Page 30 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

then f f1<br />

i f2<br />

j f3<br />

k<br />

<br />

div ( f ) ( f1 ) ( f2<br />

) ( f3)<br />

x y z<br />

<br />

f1<br />

x<br />

<br />

<br />

f1<br />

x<br />

<br />

f<br />

<br />

2<br />

y<br />

<br />

f2<br />

<br />

y<br />

<br />

f<br />

<br />

3<br />

y<br />

<br />

f3<br />

<br />

y<br />

<br />

<br />

<br />

<br />

<br />

f1<br />

<br />

<br />

x <br />

<br />

<br />

<br />

i<br />

x<br />

<br />

. f1<br />

i<br />

<br />

div<br />

<br />

f<br />

<br />

<br />

.<br />

f<br />

Laplacian of a scalar field <br />

Let<br />

then<br />

= (x,y,z) be a scalar field<br />

<br />

is a vector field<br />

<strong>and</strong><br />

div<br />

( )<br />

.<br />

<br />

<br />

<br />

x<br />

<br />

<br />

x <br />

<br />

<br />

<br />

y<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y <br />

<br />

<br />

z<br />

<br />

<br />

z <br />

<br />

2<br />

<br />

<br />

x<br />

2<br />

<br />

<br />

2<br />

<br />

y<br />

2<br />

<br />

<br />

z<br />

2<br />

denoted by<br />

<br />

2 <br />

is<br />

called<br />

the<br />

Laplacian<br />

of<br />

a<br />

scalar<br />

field.<br />

Note 1:<br />

<br />

2<br />

<br />

<br />

2<br />

x<br />

2<br />

<br />

2<br />

<br />

y<br />

2<br />

<br />

2<br />

<br />

z<br />

2<br />

Note 2:<br />

A<br />

scalar<br />

field<br />

<br />

is<br />

called<br />

a harmonic<br />

function if<br />

<br />

2<br />

<br />

<br />

0<br />

Note 3:<br />

<br />

2<br />

() <br />

2<br />

, where <br />

2<br />

<strong>and</strong> are cons tan ts,<br />

<br />

<strong>and</strong><br />

<br />

are scalar fields.<br />

Curl of a <strong>Vector</strong> field<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

then<br />

curl<br />

of<br />

<br />

f<br />

denoted by<br />

curl<br />

<br />

f<br />

or<br />

Page 31 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

<br />

i j k<br />

f is defined as f / x / y<br />

/ z<br />

f1 f2<br />

f3<br />

<br />

<br />

f <br />

<br />

3 f<br />

<br />

2<br />

i<br />

y z <br />

Physical Interpretation<br />

<br />

If v is the velocity of a particle in rigid body rotating about a fixed<br />

axis<br />

then<br />

the<br />

angular<br />

velocity<br />

at<br />

any<br />

po int<br />

is<br />

given by<br />

1<br />

2<br />

curl<br />

<br />

v .<br />

Irrational <strong>Vector</strong><br />

<br />

f<br />

is<br />

said<br />

to<br />

irrational if<br />

curl<br />

<br />

f<br />

<br />

0<br />

Properties<br />

(i)<br />

If<br />

<br />

f<br />

<strong>and</strong><br />

<br />

g<br />

are<br />

vector<br />

fields then<br />

<br />

curl ( f<br />

<br />

<br />

g)<br />

<br />

curl<br />

<br />

f<br />

<br />

curl<br />

<br />

g<br />

<br />

<br />

(ii) Curl ( f ) Curl f , where is a scalar cons tan t.<br />

(iii)<br />

If<br />

<br />

is<br />

a<br />

scalar<br />

field<br />

<strong>and</strong><br />

<br />

f<br />

is<br />

vector<br />

field<br />

then<br />

<br />

curl ( f )<br />

<br />

<br />

curl<br />

<br />

f<br />

<br />

<br />

<br />

<br />

f<br />

Proof:<br />

<br />

<br />

Curl ( f ) ( f3)<br />

( f2<br />

) i<br />

<br />

y z <br />

<br />

<br />

<br />

f<br />

<br />

<br />

3<br />

y<br />

<br />

f <br />

2<br />

i<br />

z <br />

<br />

<br />

f3<br />

y<br />

<br />

<br />

f2<br />

i <br />

z <br />

<br />

<br />

f f <br />

<br />

<br />

Curl ( f ) <br />

3<br />

<br />

2<br />

i f3<br />

f2<br />

i ...(1)<br />

y z y z <br />

Consider<br />

<br />

<br />

f <br />

<br />

i j k<br />

/ x / y / z<br />

f1 f2<br />

f3<br />

Page 32 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 33 of 72<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

f<br />

z<br />

f<br />

y<br />

2<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f<br />

f<br />

curl<br />

)<br />

f<br />

(<br />

Curl<br />

(iv)<br />

<br />

<br />

<br />

0<br />

)<br />

(<br />

Curl<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

y<br />

z<br />

z<br />

y<br />

)<br />

(<br />

Curl<br />

<br />

0<br />

(v). 0<br />

)<br />

f<br />

(Curl<br />

div<br />

then<br />

field<br />

vector<br />

a<br />

is<br />

f<br />

If<br />

<br />

<br />

<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

y<br />

f<br />

x<br />

f<br />

i<br />

x<br />

f<br />

z<br />

f<br />

i<br />

z<br />

f<br />

y<br />

f<br />

f<br />

Curl<br />

1<br />

2<br />

3<br />

1<br />

2<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y<br />

f<br />

x<br />

f<br />

x<br />

x<br />

f<br />

z<br />

f<br />

z<br />

z<br />

f<br />

y<br />

f<br />

x<br />

f )<br />

(curl<br />

div<br />

1<br />

2<br />

3<br />

1<br />

2<br />

3<br />

y<br />

z<br />

f<br />

x<br />

z<br />

f<br />

x<br />

y<br />

f<br />

z<br />

y<br />

f<br />

z<br />

x<br />

f<br />

y<br />

x<br />

f 1<br />

2<br />

2<br />

2<br />

3<br />

2<br />

1<br />

2<br />

2<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

= 0<br />

Some important Identities<br />

(i) Divergence of a vector product:<br />

then<br />

fields<br />

vector<br />

are<br />

g<br />

<strong>and</strong><br />

f<br />

If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

curl<br />

.<br />

f<br />

f<br />

g .curl<br />

g)<br />

( f<br />

div<br />

Proof:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

f<br />

j<br />

f<br />

i<br />

f<br />

f<br />

Let 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

g<br />

j<br />

g<br />

i<br />

g<br />

g 3<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

)<br />

g<br />

f<br />

g<br />

(f<br />

j<br />

)<br />

g<br />

f<br />

g<br />

(f<br />

i<br />

)<br />

f<br />

g<br />

g<br />

(f<br />

g<br />

f 1<br />

2<br />

2<br />

1<br />

3<br />

1<br />

1<br />

3<br />

3<br />

2<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

3<br />

3<br />

2 g<br />

f<br />

g<br />

f<br />

x<br />

g)<br />

div (f


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

i . ( f g)<br />

x<br />

<br />

<br />

<br />

i<br />

.<br />

<br />

<br />

f<br />

<br />

x<br />

<br />

<br />

<br />

g<br />

<br />

<br />

f<br />

<br />

<br />

g <br />

<br />

x <br />

<br />

<br />

<br />

<br />

f<br />

i . <br />

x<br />

<br />

<br />

<br />

<br />

g <br />

<br />

<br />

<br />

<br />

<br />

g<br />

i . <br />

x<br />

<br />

<br />

<br />

<br />

f <br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

<br />

<br />

<br />

<br />

f <br />

.<br />

x <br />

<br />

<br />

g<br />

<br />

<br />

<br />

<br />

i<br />

<br />

<br />

<br />

<br />

g <br />

.<br />

x <br />

<br />

<br />

f<br />

<br />

( f ) .<br />

<br />

g<br />

<br />

( <br />

<br />

g) .<br />

<br />

f<br />

<br />

g . Curl<br />

<br />

f<br />

<br />

<br />

f . Curl<br />

<br />

g<br />

(ii)<br />

Curl of Curl of a vector:<br />

<br />

Curl (Curl f )<br />

<br />

grad (div<br />

<br />

f )<br />

<br />

<br />

<br />

2<br />

f<br />

Proof:<br />

<br />

Let f f1<br />

i f2<br />

j f3<br />

k<br />

f3 f2 f1 f2 f2 f <br />

f i j<br />

1 <br />

k<br />

y z z1<br />

x x y <br />

<br />

Curl (Curl f )<br />

<br />

<br />

<br />

i <br />

<br />

f<br />

<br />

2<br />

y x<br />

<br />

<br />

<br />

f1<br />

<br />

<br />

y <br />

<br />

<br />

z<br />

<br />

<br />

<br />

f1<br />

z<br />

f <br />

<br />

3<br />

<br />

x <br />

<br />

<br />

2<br />

f <br />

2<br />

f <br />

2<br />

<br />

2<br />

<br />

<br />

<br />

1<br />

<br />

1 f<br />

<br />

1 f<br />

<br />

3<br />

i<br />

y<br />

x<br />

<br />

y<br />

2<br />

z<br />

2 z x <br />

<br />

<br />

<br />

2<br />

f <br />

2<br />

f <br />

2<br />

f <br />

2<br />

<br />

<br />

3<br />

<br />

2<br />

<br />

2 f<br />

<br />

1<br />

j<br />

z<br />

y<br />

<br />

z<br />

2<br />

x<br />

2 x y <br />

<br />

<br />

<br />

2<br />

<br />

2<br />

f <br />

2<br />

f f <br />

2<br />

1 3 3 f2<br />

<br />

k<br />

x<br />

z<br />

<br />

x<br />

2<br />

y<br />

2 y z <br />

<br />

adding<br />

<strong>and</strong><br />

subtracting<br />

<br />

2<br />

f1<br />

,<br />

y<br />

2<br />

<br />

2<br />

f3<br />

z<br />

2<br />

to<br />

each<br />

of<br />

the<br />

terms.<br />

<br />

<br />

<br />

<br />

i <br />

<br />

<br />

<br />

x<br />

f1<br />

<br />

x<br />

f<br />

<br />

2<br />

y<br />

f<br />

<br />

<br />

2<br />

<br />

<br />

3 f<br />

<br />

1<br />

z<br />

<br />

<br />

x<br />

2<br />

<br />

2<br />

f<br />

<br />

2<br />

y<br />

2<br />

<br />

2<br />

f <br />

<br />

<br />

1<br />

<br />

<br />

z<br />

2<br />

<br />

Page 34 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

i (div f ) <br />

2<br />

f<br />

x<br />

Note 1:<br />

<br />

(div f )<br />

<br />

<br />

<br />

2<br />

f<br />

<br />

<br />

The operator f . (f i f j f k) . <br />

1 2 3 <br />

<br />

<br />

i <br />

x<br />

<br />

<br />

<br />

f1<br />

f2<br />

f3<br />

x<br />

y<br />

z<br />

<br />

j<br />

y<br />

<br />

<br />

<br />

k <br />

z <br />

<br />

is called the Linear differential operator.<br />

Note 2: If is a scalar field<br />

Note 3:<br />

If<br />

<br />

<br />

<br />

<br />

f . <br />

f1<br />

f2<br />

f<br />

<br />

3<br />

<br />

x y<br />

<br />

g is a vector field<br />

<br />

z<br />

<br />

g g<br />

f . g f1<br />

f2<br />

f3<br />

x<br />

y<br />

<br />

g<br />

z<br />

(iii)<br />

<strong>Gradient</strong> of a scalar field:<br />

<br />

If f<br />

<br />

<strong>and</strong> g are vector fields<br />

then<br />

<br />

<br />

( f . g)<br />

<br />

<br />

f<br />

<br />

Curl<br />

<br />

g<br />

<br />

<br />

g<br />

<br />

Curl<br />

<br />

f<br />

<br />

<br />

( f . )<br />

g<br />

<br />

<br />

( g . )<br />

f<br />

Proof:<br />

Consider<br />

<br />

( f . g) i ( f . g)<br />

x<br />

<br />

<br />

<br />

<br />

<br />

f g <br />

i . g f . <br />

x x <br />

<br />

<br />

<br />

<br />

<br />

<br />

f <br />

i g . <br />

x <br />

<br />

<br />

<br />

<br />

g <br />

i f . <br />

x <br />

<br />

...(1)<br />

<br />

Now g Curl<br />

<br />

f<br />

<br />

<br />

g <br />

<br />

<br />

i<br />

<br />

<br />

f<br />

x<br />

Page 35 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

f <br />

g i <br />

x <br />

<br />

<br />

<br />

<br />

<br />

<br />

f <br />

<br />

g . i<br />

<br />

x<br />

<br />

<br />

<br />

<br />

<br />

g . i <br />

<br />

<br />

<br />

f <br />

<br />

x<br />

<br />

<br />

<br />

i<br />

<br />

<br />

f <br />

g . <br />

x<br />

<br />

<br />

<br />

<br />

g . <br />

f<br />

<br />

<br />

<br />

<br />

g<br />

<br />

Curl<br />

<br />

f<br />

<br />

<br />

( g . )<br />

g<br />

<br />

<br />

<br />

i<br />

<br />

<br />

f<br />

g .<br />

x<br />

<br />

<br />

<br />

<br />

<br />

<br />

...(2)<br />

Similarly<br />

<br />

f <br />

<br />

curl g<br />

From (1), (2) <strong>and</strong> (3)<br />

Note:<br />

<br />

( f . g)<br />

<br />

( f . )<br />

g <br />

<br />

f Curl<br />

<br />

g<br />

<br />

<br />

<br />

g <br />

i f . <br />

x <br />

<br />

<br />

g Curl<br />

<br />

f<br />

...(3)<br />

<br />

( f . )<br />

g ( g . )<br />

f<br />

If<br />

<br />

f<br />

<br />

<br />

g<br />

then<br />

<br />

<br />

( f . f )<br />

<br />

<br />

2 f<br />

<br />

Curl<br />

<br />

f 2( f . )<br />

f<br />

or<br />

1 <br />

grad ( f . f )<br />

2<br />

<br />

<br />

f <br />

Curl<br />

<br />

f <br />

<br />

( f . )<br />

f<br />

(iv) Curl of a vector product<br />

<br />

If f<br />

<strong>and</strong><br />

<br />

g<br />

are<br />

vector<br />

fields<br />

then<br />

<br />

Curl ( f <br />

<br />

g)<br />

<br />

<br />

f div<br />

<br />

g g div f ( g . )<br />

f ( f . )<br />

g<br />

Proof:<br />

<br />

Curl ( f g)<br />

<br />

<br />

<br />

i<br />

<br />

<br />

x<br />

<br />

( f g)<br />

<br />

<br />

<br />

i<br />

<br />

<br />

<br />

f<br />

<br />

x<br />

<br />

<br />

g<br />

<br />

<br />

f <br />

<br />

g <br />

<br />

x<br />

<br />

<br />

Page 36 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 37 of 72<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

g<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

i<br />

g<br />

x<br />

f<br />

i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

)<br />

f<br />

.<br />

( i<br />

f<br />

x<br />

g<br />

i<br />

g<br />

x<br />

f<br />

.<br />

i<br />

x<br />

f<br />

g)<br />

.<br />

( i<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

g<br />

f<br />

x<br />

g<br />

.<br />

i<br />

f<br />

x<br />

f<br />

.<br />

i<br />

g<br />

x<br />

f<br />

g 1<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

)<br />

.<br />

( f<br />

g<br />

div<br />

f<br />

f<br />

g div<br />

f<br />

)<br />

( g .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

g<br />

)<br />

.<br />

f<br />

(<br />

f<br />

)<br />

( g .<br />

f<br />

div<br />

g<br />

g<br />

div<br />

f<br />

Question <strong>and</strong> answers<br />

01. If<br />

<br />

<br />

<br />

h<br />

g,<br />

,<br />

f<br />

are vectors functions of a scalar variable t. Prove that<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

x<br />

g<br />

x<br />

f<br />

h<br />

x<br />

dt<br />

d g<br />

x<br />

f<br />

h<br />

x<br />

g<br />

x<br />

dt<br />

f<br />

d<br />

h<br />

x<br />

g<br />

x<br />

f<br />

dt<br />

d<br />

Suggested answer:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

h<br />

x<br />

g<br />

dt<br />

d<br />

x<br />

f<br />

h<br />

x<br />

g<br />

x<br />

dt<br />

f<br />

d<br />

h<br />

x<br />

g<br />

x<br />

f<br />

dt<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

x<br />

g<br />

h<br />

x<br />

dt<br />

d g<br />

x<br />

f<br />

h<br />

x<br />

g<br />

x<br />

dt<br />

f<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d h<br />

x<br />

g<br />

fx<br />

h<br />

x<br />

dt<br />

d g<br />

x<br />

f<br />

h<br />

x<br />

g<br />

x<br />

dt<br />

f<br />

d<br />

02. If<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

k<br />

t<br />

j<br />

sin t<br />

i<br />

cos t<br />

g<br />

2t k,<br />

j<br />

e<br />

i<br />

e<br />

f<br />

,<br />

e<br />

t<br />

t<br />

2t


d<br />

find i)<br />

dt<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

d <br />

d <br />

f , ii) f g iii) f x g <br />

<br />

<br />

dt<br />

<br />

dt<br />

<br />

Suggested answer:<br />

<br />

i) f e<br />

t<br />

i e<br />

3t<br />

j<br />

<br />

2te<br />

2t<br />

k<br />

d<br />

dt<br />

<br />

f e<br />

t<br />

<br />

<br />

<br />

i 3e<br />

3t<br />

j <br />

2<br />

<br />

<br />

2te<br />

2t<br />

<br />

<br />

e<br />

2t<br />

<br />

k<br />

<br />

ii)<br />

d<br />

dt<br />

<br />

<br />

f g (e<br />

t<br />

<br />

<br />

<br />

sin t) i ( e<br />

t<br />

<br />

cos t) j<br />

(<br />

<br />

2 1) k<br />

iii)<br />

<br />

f x g <br />

<br />

i j<br />

e<br />

t<br />

e<br />

t<br />

cos t sin t<br />

<br />

k<br />

2t<br />

t<br />

<br />

i( te<br />

t<br />

<br />

2t sin t)<br />

<br />

j(te<br />

t<br />

<br />

e<br />

t<br />

cos t) k(e<br />

t<br />

sin t e<br />

t<br />

)<br />

<br />

d <br />

( f x g) i te<br />

t<br />

e<br />

t<br />

2t cos t 2 sin t<br />

dt<br />

<br />

<br />

j e<br />

t<br />

te<br />

t<br />

e<br />

t cos t e<br />

t<br />

sin t<br />

<br />

<br />

k e<br />

t<br />

cos t e<br />

t<br />

sin t e<br />

t cos t e<br />

t<br />

sin t .<br />

<br />

<br />

<br />

03. A particle moves along the curve whose parametric coordinates are x = e -t ,<br />

y = 2 cos 3t, z = 2 sin 3t. Here t is time i) Determine its velocity <strong>and</strong><br />

acceleration at time t ii) find the magnitude of velocity <strong>and</strong> acceleration at t =<br />

0.<br />

Suggested answer:<br />

Page 38 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

i) Equation to the curve is<br />

<br />

r e<br />

t<br />

<br />

<br />

i<br />

2 cos 3t j<br />

2 sin3t k<br />

<br />

v <br />

<br />

d r<br />

dt<br />

<br />

<br />

e<br />

t<br />

i 6 sin3t j<br />

6 cos 3t k<br />

<br />

a <br />

<br />

d<br />

2<br />

r<br />

dt<br />

2<br />

<br />

<br />

<br />

e<br />

t<br />

i 18 cos 3t j<br />

18 sin3t k<br />

ii) At t = 0,<br />

<br />

v i 6 k,<br />

<br />

a i 18 j<br />

<strong>and</strong><br />

<br />

<br />

| v | 37, | a | 325<br />

04. Find the unit tangent vectors at any point on the curve x = t 2 +1, y = 4t - 3,<br />

z = 2t 2 - 6t. Determine the unit tangent at the point t = 2.<br />

Suggested answer:<br />

Equation to the space curve is<br />

<br />

<br />

<br />

r (t<br />

2<br />

1) i<br />

(4t 3) j<br />

(2t<br />

2<br />

6t) k<br />

<br />

d r<br />

dt<br />

<br />

<br />

2t i 4 j<br />

(4t 6) k<br />

<br />

d r <br />

<br />

dt <br />

t2<br />

<br />

4 i 4 j<br />

2 k<br />

unit tangent<br />

<br />

t <br />

<br />

d r<br />

dt<br />

<br />

d r<br />

dt<br />

Page 39 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

4 i 4 j<br />

2k<br />

<br />

36<br />

<br />

2<br />

3<br />

<br />

i <br />

2<br />

3<br />

1 <br />

j<br />

k<br />

3<br />

05. A particle moves so that its position vector is given by<br />

<br />

r cos t<br />

i<br />

sin t<br />

j,<br />

is<br />

a<br />

cons tan t<br />

show<br />

that<br />

<br />

i) velocity v<br />

is perpendicular to<br />

<br />

r<br />

ii) acceleration<br />

to the distance from the origin.<br />

<br />

a is directed towards the origin <strong>and</strong> has magnitude proportional<br />

<br />

iii) r x v is a cons tan t vector.<br />

Suggested answer:<br />

i)<br />

<br />

r cos t<br />

i sin t<br />

j<br />

<br />

d r<br />

dt<br />

<br />

<br />

sin t<br />

i cos t<br />

j v<br />

Now<br />

<br />

v . r 0<br />

<br />

v r<br />

ii)<br />

<br />

a <br />

<br />

d<br />

2<br />

r<br />

dt<br />

2<br />

<br />

<br />

<br />

2<br />

cos t<br />

i sin t<br />

j<br />

<br />

a <br />

2<br />

r<br />

<br />

| a | 2 <br />

| r |<br />

iii)<br />

<br />

r x v<br />

Page 40 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

<br />

(cos t<br />

i sin t<br />

j)x( sin t<br />

i cos t<br />

j)<br />

2 cos t( i x j) sin<br />

2<br />

<br />

t( j x i)<br />

<br />

<br />

cos<br />

2<br />

t k<br />

sin<br />

2<br />

t<br />

k<br />

<br />

k<br />

= constant vector.<br />

<br />

<br />

d f <br />

06. Two vector f <strong>and</strong> g such that x f ,<br />

dt<br />

<br />

d <br />

for some , prove that ( f x g) x( f x g)<br />

.<br />

dt<br />

<br />

d g<br />

dt<br />

<br />

x g<br />

Suggested answer:<br />

d<br />

dt<br />

<br />

d g d f <br />

( f x g) f x x g<br />

dt dt<br />

<br />

f x( x g) ( x f )x g<br />

<br />

( f . g) ( f . )<br />

g ( g . )<br />

f ( g . f ) <br />

<br />

( g . )<br />

f ( f . )<br />

g<br />

<br />

<br />

x( f x g)<br />

07. If x = t 2 +1, y = 4t - 3, z = 2t 2 - 6t represents the parametric equations of a<br />

space curve. Find the angle between the unit tangents at t = 1 <strong>and</strong> t = 2.<br />

Page 41 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Suggested answer:<br />

<br />

<br />

<br />

<br />

r (t<br />

2<br />

1) i (4t 3) j<br />

(2t<br />

2<br />

6t) k<br />

<br />

d r<br />

dt<br />

<br />

<br />

2t i 4 j<br />

(4t 6) k<br />

<br />

t <br />

<br />

<br />

2t i 4 j<br />

(4t 6)k<br />

4t<br />

2<br />

16 16t<br />

2<br />

36 48t<br />

<br />

<br />

<br />

2t i 4 j<br />

(4t 6)k<br />

20t<br />

2<br />

48t 52<br />

<br />

t t1<br />

<br />

<br />

2 i 4 j<br />

2 k<br />

24<br />

<br />

a<br />

(say)<br />

<br />

t t2<br />

<br />

<br />

4 i 4 j<br />

2 k<br />

36<br />

<br />

2 2 2 <br />

i j<br />

k b (say)<br />

3 3 3<br />

Let be the angle between<br />

<br />

a<br />

<br />

<strong>and</strong> b<br />

<br />

<br />

<br />

a . b<br />

cos 1 <br />

<br />

<br />

|<br />

a || b | <br />

<br />

<br />

5<br />

cos 1 <br />

3<br />

6 <br />

08. If<br />

<br />

f cosnt <br />

sinnt<br />

<br />

<br />

where n is a constant scalar <strong>and</strong><br />

<br />

<strong>and</strong> <br />

are<br />

constant vectors prove that<br />

Page 42 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

d f <br />

i) f x n( a x b)<br />

dt<br />

ii)<br />

<br />

d<br />

2<br />

f<br />

dt<br />

2<br />

<br />

n<br />

2<br />

f<br />

iii)<br />

<br />

<br />

<br />

f ,<br />

<br />

<br />

<br />

d f d<br />

2<br />

f <br />

, 0<br />

dt dt<br />

2 <br />

<br />

<br />

Suggested answer:<br />

Given<br />

<br />

f cos nt a sinnt b<br />

<br />

d f<br />

i) f x<br />

dt<br />

<br />

d f<br />

<br />

<br />

n sinnt a n cos nt b<br />

dt<br />

<br />

<br />

<br />

(cos nt a sinnt b )x( n sinnt a n cos nt b )<br />

<br />

<br />

n cos<br />

2<br />

nt( a x b ) n sin<br />

2<br />

t(b x a)<br />

<br />

n( a x b )<br />

<br />

d<br />

2<br />

f<br />

ii)<br />

dt<br />

2<br />

<br />

<br />

n<br />

2<br />

cos nt a n<br />

2<br />

sinnt b<br />

<br />

<br />

f<br />

<br />

<br />

<br />

iii) f ,<br />

<br />

<br />

<br />

d f<br />

,<br />

dt<br />

n 2 0<br />

<br />

<br />

d<br />

2<br />

f <br />

d f <br />

f , , n<br />

2 <br />

f<br />

dt<br />

2 <br />

dt<br />

<br />

<br />

<br />

<br />

<br />

<br />

09. A particle moves along the curve x = t 3 + 1, y = t 2 , z = t + 5 where t is the<br />

time. Find the components of velocity <strong>and</strong> acceleration along the vector<br />

Page 43 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

c i 3 j<br />

2 k at t = 1.<br />

Suggested answer:<br />

<br />

r (t<br />

3<br />

<br />

1) i t<br />

2<br />

j<br />

(t 5) k<br />

<br />

d r <br />

3t<br />

2<br />

i 2t j<br />

k<br />

dt<br />

<br />

d<br />

2<br />

r<br />

dt<br />

2<br />

<br />

6t i 2 j<br />

<br />

d r <br />

<br />

dt <br />

t1<br />

<br />

v 3 i 2 j<br />

k<br />

Now velocity along<br />

<br />

c is<br />

<br />

v c <br />

11<br />

14<br />

12<br />

<strong>Acceleration</strong> along c is a . c .<br />

14<br />

<br />

<br />

d d A d<br />

2<br />

A d A d<br />

3<br />

<br />

<br />

<br />

A <br />

10. Show that A, , A . x .<br />

dt<br />

<br />

dt dt<br />

2 <br />

dt dt<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

Suggested answer:<br />

d<br />

dt<br />

<br />

<br />

<br />

A,<br />

<br />

<br />

<br />

d A<br />

,<br />

dt<br />

<br />

d<br />

2<br />

A <br />

2 <br />

dt <br />

<br />

<br />

d A<br />

,<br />

dt<br />

<br />

<br />

<br />

d A<br />

,<br />

dt<br />

<br />

<br />

d<br />

2<br />

A <br />

<br />

A,<br />

dt<br />

2<br />

<br />

<br />

<br />

d<br />

2<br />

A<br />

,<br />

dt<br />

2<br />

<br />

<br />

d<br />

2<br />

A <br />

<br />

A,<br />

dt<br />

2<br />

<br />

<br />

<br />

d A<br />

,<br />

dt<br />

<br />

d<br />

3<br />

A <br />

3 <br />

dt <br />

<br />

Page 44 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

d A d<br />

3<br />

A <br />

0 0 A,<br />

,<br />

dt 3 <br />

dt <br />

<br />

<br />

<br />

<br />

11. If R A e<br />

nt<br />

B e<br />

nt<br />

, where A <strong>and</strong> B are cons tan t vectors<br />

<br />

d<br />

2<br />

R <br />

then show that n<br />

2<br />

R .<br />

dt<br />

2<br />

Suggested answer:<br />

<br />

d R<br />

dt<br />

<br />

ne<br />

nt<br />

A ne<br />

nt<br />

B<br />

<br />

d<br />

2<br />

R<br />

dt<br />

2<br />

<br />

n<br />

2<br />

e<br />

nt<br />

A n<br />

2<br />

e<br />

nt<br />

B<br />

<br />

n 2 R<br />

<br />

12. Find unit vector normal to the curve 4 sin t i 4 cos t j<br />

3t k .<br />

Suggested answer:<br />

We have<br />

<br />

r 4 sin t i 4 cos t j<br />

3t k<br />

<br />

d r<br />

dt<br />

<br />

4 cos t i 4 sin t j<br />

3k<br />

<br />

d r<br />

dt<br />

5<br />

Page 45 of 72


t <br />

<br />

d r<br />

dt<br />

<br />

d r<br />

dt<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

4 cos t i 4 sin t j<br />

3k<br />

5<br />

<br />

d t<br />

ds<br />

<br />

<br />

d t dt <br />

<br />

dt ds <br />

<br />

d t/ dt<br />

ds / dt<br />

<br />

also<br />

ds d r<br />

<br />

dt dt<br />

5<br />

<br />

d t<br />

<br />

ds<br />

<br />

1<br />

25<br />

<br />

( 4 sin t i 4 cos t j)<br />

<strong>and</strong><br />

<br />

N <br />

<br />

4<br />

(sin t<br />

25<br />

<br />

i cos t j)<br />

16 /(25)<br />

2 <br />

<br />

<br />

(sin t i cos j)<br />

13. Find the unit normal vector to the curve x = 3 cost, y = 3sint, x = 4t.<br />

Suggested answer:<br />

We have<br />

<br />

r 3 cos t i 3 sin t j<br />

4t k<br />

<br />

d r<br />

v <br />

dt<br />

<br />

| v | 5<br />

<br />

3 sin t i 3 cos t j<br />

4 k<br />

(tan gent vector)<br />

Page 46 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

t <br />

<br />

d r / dt<br />

ds / dt<br />

<br />

d t/ dt<br />

<br />

<br />

| d r / dt |<br />

<br />

1 <br />

( 3 cos t i 3 sin t j)<br />

25<br />

unit normal vector<br />

<br />

d t/ ds<br />

N <br />

<br />

| d t/ ds |<br />

<br />

3 <br />

(cos t i sin t j)<br />

25<br />

3 / 25<br />

<br />

(cos t i sin t j)<br />

<br />

14. The position vectors of a moving particle at time t is r t<br />

2<br />

i t<br />

3<br />

j<br />

t<br />

4<br />

k .<br />

Find the tangential <strong>and</strong> normal components of its acceleration at t = 1.<br />

Suggested answer:<br />

<br />

r t<br />

2<br />

<br />

i<br />

t<br />

3<br />

j<br />

t<br />

4<br />

k<br />

<br />

v <br />

<br />

d r<br />

dt<br />

<br />

2t i 3t<br />

2<br />

j<br />

4t<br />

4<br />

k<br />

<br />

v t1<br />

<br />

2 i 3 j<br />

4 k<br />

<br />

v <br />

1 <br />

(2 i 3 j<br />

4 k)<br />

29<br />

<br />

a t1<br />

<br />

2 i 6 j<br />

12 k<br />

Page 47 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

tangential component acceleration is<br />

<br />

a .v <br />

70<br />

29<br />

<br />

Normal component of acceleration |<br />

a ( a .v) v |<br />

<br />

<br />

82 i 36 j<br />

68 k<br />

29<br />

<br />

1<br />

29<br />

82<br />

2<br />

36<br />

2<br />

68<br />

2<br />

= 3.8774<br />

15. If is a function of r only, then prove that<br />

1 d<br />

d<br />

<br />

r r .<br />

r dr dr<br />

Suggested answer:<br />

We have<br />

r<br />

2<br />

<br />

r . r x<br />

2<br />

y<br />

2<br />

z<br />

2<br />

r<br />

x<br />

<br />

x<br />

r<br />

,<br />

r<br />

y<br />

<br />

y<br />

r<br />

,<br />

r<br />

z<br />

<br />

z<br />

r<br />

<br />

<br />

i<br />

x<br />

<br />

j<br />

y<br />

<br />

k<br />

z<br />

d<br />

i<br />

dr<br />

x<br />

r<br />

d<br />

j<br />

dr<br />

y<br />

r<br />

d<br />

k<br />

dr<br />

z<br />

r<br />

1 d<br />

<br />

(x i y j<br />

z k)<br />

r dr<br />

Page 48 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

1 d<br />

d<br />

r r d<br />

<br />

r r<br />

r dr dr r dr<br />

16. Find <br />

in the following<br />

i)<br />

ii)<br />

x<br />

2<br />

y<br />

3<br />

z<br />

4<br />

at (1, 0, -2)<br />

<br />

1<br />

r<br />

2<br />

Suggested answer:<br />

<br />

<br />

<br />

i) <br />

2xy<br />

3<br />

z<br />

4<br />

i 3x<br />

2<br />

y<br />

2<br />

z<br />

4<br />

j<br />

4x<br />

2<br />

y<br />

3<br />

z<br />

3<br />

k<br />

( )<br />

(1,0, 2)<br />

<br />

2 i 3 j<br />

4 k<br />

ii)<br />

<br />

1<br />

r<br />

2<br />

we have<br />

<br />

<br />

1 d<br />

<br />

r<br />

r dr<br />

<br />

1 2 <br />

<br />

r<br />

r r<br />

3<br />

<br />

<br />

<br />

2 r<br />

r<br />

4<br />

17. Find the equation of the tangent plane to the surface xyz = 6 at the point (1,<br />

2, 3).<br />

Suggested answer:<br />

xyz<br />

<br />

<br />

yz i xz j<br />

xy k<br />

<br />

(1,2,3)<br />

6 i 3 j<br />

2 k<br />

<br />

Page 49 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

unit normal to the surface<br />

<br />

n <br />

|<br />

<br />

<br />

<br />

|<br />

<br />

6 i 3 j<br />

2 k<br />

7<br />

<br />

Equation of the tangent plane in vector form is ( r a).n 0<br />

Where<br />

<br />

r x i y j<br />

z k,<br />

<br />

a i 2 j<br />

3k<br />

ie<br />

6(x 1) 3(y 2) 2(z 3) 0<br />

i.e., 6x + 3y + 2z = 18<br />

18. Find the angle between the surfaces xlogz = y 2 - 1 <strong>and</strong> x 2 y = 2 - z at the<br />

point (1, 1, 1).<br />

Suggested answer:<br />

Let <br />

2<br />

1 x log z y<br />

2 x 2 y z<br />

1<br />

<br />

log z i 2y j<br />

x<br />

z<br />

<br />

k<br />

2<br />

<br />

2xy i x<br />

2<br />

j<br />

k<br />

( 1)<br />

(1,1,1 )<br />

<br />

2<br />

j<br />

k<br />

( 2)<br />

(1, 1, 1)<br />

<br />

2 i j<br />

k<br />

The angle between the surfaces is the angle between 1<br />

<strong>and</strong> 2.<br />

Page 50 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Let be the angle between 1 <strong>and</strong> <br />

2<br />

.<br />

cos<br />

1 1<br />

<br />

<br />

<br />

2<br />

| 1<br />

|| 2<br />

|<br />

cos 1 1<br />

<br />

<br />

30<br />

<br />

cos 1<br />

1<br />

30<br />

19. Find the constants a <strong>and</strong> b such that the surfaces ax 2 - byz = (a + 2)x <strong>and</strong><br />

4x 2 y+z 3 are orthogonal at (1, -1, 2).<br />

Suggested answer:<br />

Let ax<br />

2<br />

1 byz (a 2)x<br />

...(1)<br />

4x<br />

2<br />

y z<br />

3<br />

2 4<br />

...(2)<br />

1<br />

<br />

[2ax (a 2)] i bz j<br />

by k<br />

2<br />

<br />

8xy i 4x<br />

2<br />

j<br />

3z<br />

2<br />

k<br />

<br />

( 1)<br />

(1, 1,2)<br />

(a 2) i 2b j<br />

b k, ( 2)<br />

(1, 1,2)<br />

<br />

8<br />

i 4 j<br />

12 k<br />

given 1 <strong>and</strong> 2<br />

are orthogonal<br />

1. 2<br />

0<br />

i.e., -8(a - 2) + 4(-2b) + 12b = 0<br />

2a<br />

b 4<br />

...(3)<br />

Page 51 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Also 1 2<br />

at (1, -1, 2)<br />

a 2b (a 2) 4<br />

8 4<br />

i.e., 2b - 2 = 0<br />

b 1<br />

substituting in (3), we get<br />

a = 5/2.<br />

20. Find the directional derivative of xyz<br />

along the direction<br />

of the normal to the surface x<br />

2<br />

z y<br />

2<br />

x yz<br />

2<br />

3, at( 1,1,1).<br />

Suggested answer:<br />

Let<br />

<br />

xyz,<br />

x<br />

2<br />

z y<br />

2<br />

x yz<br />

2<br />

<br />

<br />

yz i<br />

xz j<br />

xy k<br />

<br />

at<br />

<br />

(1, 1, 1) i j<br />

k<br />

<br />

<br />

<br />

(2xz y<br />

2<br />

) i (2yx z<br />

2<br />

) j<br />

(x<br />

2<br />

<br />

2zy) k<br />

<br />

at<br />

<br />

(1, 1, 1) 3 i 3 j<br />

3k<br />

<br />

n <br />

|<br />

<br />

<br />

<br />

|<br />

<br />

i j<br />

k<br />

3<br />

Directional directive of along<br />

<br />

n is<br />

Page 52 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

1(1) 1(1) (1)<br />

. n <br />

3<br />

3<br />

<br />

<br />

<br />

21. If F (x<br />

3<br />

y<br />

3<br />

z<br />

3<br />

3xyz) find div F <strong>and</strong> curl F .<br />

Suggested answer:<br />

<br />

F (3x<br />

2<br />

<br />

3yz) i<br />

(3y<br />

2<br />

<br />

3xz) j<br />

(3z<br />

2<br />

<br />

3xy) k<br />

<br />

div F 6x 6y 6z<br />

<br />

i j k<br />

<br />

Curl F <br />

x y z<br />

3x<br />

2<br />

3yz 3y<br />

2<br />

3xz 3z<br />

2<br />

3xy<br />

<br />

<br />

<br />

i(<br />

3x<br />

3x) j( 3y<br />

3y) k( 3z<br />

3z)<br />

<br />

0<br />

22. If<br />

<br />

is a constant vector <strong>and</strong><br />

<br />

v x r<br />

then show that<br />

<br />

div v 0.<br />

Suggested answer:<br />

Let<br />

<br />

r x i y j<br />

z k<br />

<br />

v x r<br />

Page 53 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

i j k<br />

1 2<br />

3<br />

x y z<br />

<br />

<br />

<br />

v i[ 2z<br />

3y]<br />

j[ 1z<br />

2x]<br />

k[ 1y<br />

2x]<br />

<br />

<br />

<br />

div v ( 2z<br />

3y)<br />

( 1y<br />

g3x)<br />

( 1y<br />

2x)<br />

x<br />

y<br />

z<br />

= 0<br />

<br />

<br />

<br />

<br />

23. If f (x 2y z) i (x y z) j<br />

( x<br />

y 2z)k find div f .<br />

Suggested answer:<br />

<br />

div f <br />

<br />

<br />

<br />

(x 2y z) (x y z) ( x<br />

y 2z)<br />

x<br />

y<br />

z<br />

1 1 <br />

2<br />

2<br />

24. If<br />

<br />

f x<br />

2<br />

<br />

i<br />

y<br />

2<br />

j<br />

z k <strong>and</strong> g yz i zx j<br />

xy k<br />

show that<br />

<br />

f x g<br />

is a solenoidal vector.<br />

Suggested answer:<br />

<br />

f x g <br />

<br />

i<br />

x<br />

2<br />

yz<br />

<br />

j<br />

y<br />

2<br />

zx<br />

<br />

k<br />

z<br />

2<br />

xy<br />

<br />

f x g i{xy<br />

3<br />

<br />

<br />

xz<br />

3<br />

} j{x<br />

3<br />

y yz<br />

3<br />

} k{zx<br />

3<br />

zy<br />

3<br />

}<br />

Page 54 of 72


div<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

( f x g) (y<br />

3<br />

z<br />

3<br />

) (z<br />

3<br />

x<br />

3<br />

) (x<br />

3<br />

y<br />

3<br />

)<br />

0<br />

<br />

f x g is solenoidal.<br />

25. Prove that<br />

<br />

div (r<br />

n<br />

r ) (n 3)r<br />

n<br />

.<br />

Suggested answer:<br />

<br />

div (r<br />

n<br />

r ) r<br />

n<br />

. r r<br />

n<br />

div r<br />

<br />

nr<br />

n1<br />

<br />

x<br />

r<br />

<br />

i nr<br />

n1<br />

y<br />

r<br />

<br />

<br />

<br />

<br />

z<br />

nr<br />

n 1<br />

k.<br />

r r<br />

n<br />

<br />

r <br />

<br />

<br />

x <br />

x<br />

<br />

<br />

y <br />

y<br />

<br />

<br />

z<br />

<br />

nr<br />

n1<br />

<br />

{x i y j<br />

z k}. r r<br />

n<br />

.(3)<br />

r<br />

nr<br />

n2<br />

.r<br />

2<br />

r<br />

n<br />

(3)<br />

( n 3)r<br />

n<br />

26. If<br />

<br />

a is a constant vector then prove that<br />

<br />

i) div( a x r ) 0<br />

<br />

ii) div ( r x( r x a)) 2( r . a)<br />

<br />

iii) div{r<br />

n<br />

( a x r )} 0, n being<br />

a<br />

cons tan t.<br />

Suggested answer:<br />

<br />

Let a a1<br />

i a2<br />

j<br />

a3<br />

k<br />

Page 55 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

r x i y j<br />

z k<br />

<br />

<br />

i j k<br />

i)<br />

a x r a1<br />

a2<br />

a3<br />

x y z<br />

<br />

<br />

<br />

( a2z<br />

a3y)<br />

i (a3x<br />

a1z)<br />

j<br />

(a1y<br />

a2x)<br />

k<br />

<br />

<br />

<br />

div( a x r ) (a2z<br />

a3y)<br />

(a3x<br />

a1z)<br />

(a1y<br />

a2x)<br />

0<br />

x<br />

y<br />

z<br />

<br />

ii) r x( r x a) ( r . a) r ( r . r ) a<br />

<br />

div( r x( r x a)) ( r . a). r ( r . a)div r div(r<br />

2 <br />

<br />

a)<br />

<br />

a . r ( r . a)3 a . r<br />

2<br />

<br />

r<br />

2<br />

div a<br />

<br />

a . r 3( a . r ) a{2r<br />

x<br />

r<br />

<br />

i <br />

y z <br />

2r j<br />

2r k}<br />

r r<br />

<br />

a . r 3( a . r ) 2( a . r )<br />

<br />

2( a . r )<br />

<br />

<br />

iii) div{r<br />

n<br />

( a x r )} r<br />

n<br />

.( a x r ) r<br />

n<br />

div( a x r )<br />

<br />

r <br />

nr<br />

n1<br />

.( a x r ) r<br />

n<br />

div( a x r )<br />

r<br />

Page 56 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

0 r<br />

n<br />

div( a x r )<br />

<br />

<br />

i j k<br />

a x r a1<br />

a2<br />

a3<br />

x y z<br />

<br />

i(a2z a3y) j(a1z a3x) k(a1y a2x)<br />

<br />

<br />

<br />

div( a x r ) (a2z<br />

a3y)<br />

(a3x<br />

a1z)<br />

(a1y<br />

a2x)<br />

x<br />

y<br />

z<br />

= 0 + 0 + 0<br />

= 0<br />

div(r<br />

n <br />

( a x r )) 0<br />

27. If<br />

<br />

a <strong>and</strong><br />

<br />

b<br />

are constant vectors, prove that<br />

<br />

i) div{( a x r ) b} a . b<br />

<br />

ii) div { a x( r x b )} 2( a . b )<br />

<br />

iii) div {( a x r )x(b x r )} [a,<br />

b , r ]<br />

Suggested answer:<br />

<br />

Let a a1<br />

i a2<br />

j<br />

a3<br />

k<br />

<br />

b b1<br />

i b2<br />

j<br />

b3<br />

k<br />

Page 57 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

c x i y j<br />

z k<br />

i)<br />

<br />

div[( a . r ) b ] ( a . r ). b a . r div b<br />

<br />

a . b ( a . r )(0)<br />

<br />

a . b<br />

<br />

ii) we have a x( r x b ) ( a . b ) r ( a . r ) b<br />

<br />

<br />

div{ a x( r x b )} div{( a . b ) r } div{( a . r ) b}<br />

<br />

( a . b )div r ( a x r ). b ( a . r )div b<br />

<br />

( a . b )3 a . b ( a r )0<br />

<br />

2( a . b )<br />

iii)Let<br />

<br />

a x r p<br />

<br />

( a x r )x(b x r ) p x(b x r )<br />

<br />

(p . r ) b (p . b ) r<br />

<br />

{( a x r ). r } b {( a x r ). b} r<br />

<br />

2( a . b )<br />

Page 58 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

iii)Let a x r p<br />

<br />

( a x r )x(b x r ) p x(b x r )<br />

<br />

(p . r ) b (p . b ) r<br />

<br />

{( a x r ). r } b {( a x r ). b} r<br />

<br />

0 [ a, r , b ] r<br />

<br />

( a x r )x(b x r ) [a,<br />

<br />

b ,<br />

<br />

r ] r<br />

<br />

div{( a x r )x(b x r )} [a,<br />

b , r ]. r [a, b , r ]div r<br />

<br />

r . [a,<br />

b ,<br />

<br />

r ] [a, b , r ](3)<br />

...(1)<br />

<br />

a1<br />

a2<br />

a3<br />

[ a, b , r ] b1<br />

b2<br />

b3<br />

x y z<br />

a1(b<br />

2z<br />

b3y)<br />

a2(b1<br />

z b3x)<br />

a3(b1<br />

y b2x)<br />

<br />

<br />

<br />

<br />

[ a, b , r ] (a2b3<br />

a3b2<br />

) i ( a1b<br />

3 a3b1<br />

) j<br />

(a1b<br />

2 a2b1<br />

) k<br />

<br />

a x b<br />

<br />

Now r . [a,<br />

b , r ] r .( a x b )<br />

( a2b3<br />

a3b2<br />

)x (a3b1<br />

a1b<br />

3)y<br />

(a1b<br />

2 a2b1)z<br />

Page 59 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

[a, b , r ]<br />

In (1)<br />

<br />

div{( a x r )x(b x r )} [a, b , r ] 3[a, b , r ]<br />

<br />

[a, b , r ]<br />

28.<br />

<br />

If a<br />

<strong>and</strong><br />

<br />

b<br />

are vectors, prove that<br />

<br />

1<br />

1 <br />

a . {b . } {3( a, r )(b . r ) r<br />

2<br />

<br />

( a . b )}.<br />

r r<br />

5<br />

Suggested answer:<br />

<br />

<br />

1<br />

1<br />

r<br />

b . <br />

b . <br />

r <br />

r<br />

2<br />

r<br />

<br />

1 <br />

(b . r )<br />

r<br />

3<br />

<br />

<br />

1<br />

b . <br />

<br />

<br />

<br />

r <br />

1 1<br />

(b . r ) (b . r ) <br />

<br />

3<br />

3<br />

r<br />

r <br />

<br />

<br />

1 3 r<br />

[b ] (b . r ). <br />

r<br />

3<br />

r<br />

4<br />

r<br />

<br />

<br />

1<br />

b . <br />

<br />

<br />

<br />

r <br />

<br />

b 3(b . r ) <br />

r<br />

r<br />

3<br />

r<br />

5<br />

<br />

<br />

<br />

<br />

1<br />

b 3(b . r )<br />

a . b . <br />

a . . a . r<br />

<br />

r <br />

r<br />

3 r<br />

5<br />

<br />

Page 60 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

1<br />

<br />

r<br />

5<br />

<br />

<br />

<br />

3( a . r )(b . r ) ( a . b )r<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

29. If F (x y 1) i j<br />

(x y)k show that F .Curl F 0.<br />

Suggested answer:<br />

<br />

Curl F <br />

<br />

i<br />

<br />

x<br />

x y 1<br />

<br />

j<br />

<br />

y<br />

1<br />

<br />

k<br />

<br />

z<br />

(x y)<br />

<br />

i(<br />

1)<br />

j( 1)<br />

k( 1)<br />

<br />

Curl F i j<br />

k<br />

<br />

F .Curl F (x y 1)( 1)<br />

1(1) (x y)( 1)<br />

= -x - y - 1 + 1 + x + y<br />

= 0<br />

<br />

<br />

30. If F x<br />

2<br />

y i 2xz j<br />

2yz k find x(<br />

x<br />

F ).<br />

Suggested answer:<br />

<br />

x<br />

F <br />

<br />

i<br />

<br />

x<br />

x<br />

2<br />

y<br />

<br />

j<br />

<br />

y<br />

2xz<br />

<br />

k<br />

<br />

z<br />

2yz<br />

<br />

<br />

i(2z 2x) j(0) k( 2z<br />

x<br />

2<br />

)<br />

Page 61 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

i j k<br />

<br />

x(<br />

x<br />

F ) <br />

x<br />

y<br />

z<br />

2z 2x 0 2z x<br />

2<br />

<br />

(2x 2) j<br />

31. Find the directional derivative of<br />

x<br />

2<br />

yz 4xz<br />

2<br />

at (1, -2, -1)<br />

<br />

in the direction 2 i j<br />

2 k .<br />

Suggested answer:<br />

<br />

<br />

<br />

(2xyz 4z<br />

2<br />

) i x<br />

2<br />

z j<br />

(x<br />

2<br />

y 8xz) k<br />

<br />

at<br />

(1,<br />

2,<br />

<br />

1)is 8 i j<br />

10 k<br />

Let<br />

<br />

c 2 i j<br />

2 k<br />

Directional derivative in the direction of<br />

<br />

c<br />

is<br />

<br />

(2 i j<br />

2 k)<br />

. c (8 i j<br />

10 k).<br />

3<br />

<br />

1<br />

(16<br />

3<br />

1 20)<br />

37<br />

<br />

3<br />

32. Find the directional derivative of 4xz<br />

3 3x<br />

2<br />

y<br />

2<br />

z at (2, -1, 2)<br />

<br />

in the direction of 2 i 3 j<br />

6 k .<br />

Page 62 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Suggested answer:<br />

<br />

<br />

<br />

<br />

(4x<br />

3<br />

6xy<br />

2<br />

z) i ( 6x<br />

2<br />

yz) j<br />

(12xz<br />

2<br />

3x<br />

2<br />

y<br />

2<br />

) k<br />

<br />

at<br />

(2, 1,2)<br />

<br />

8 i 48 j<br />

84 k<br />

<br />

c 2 i 3 j<br />

6 k<br />

1<br />

. c [8(2) 48( 3)<br />

(84)(6)]<br />

7<br />

376<br />

<br />

7<br />

33. Find the directional derivative of<br />

x<br />

2<br />

y<br />

2<br />

z<br />

2<br />

at (1, 1, -1)<br />

in the direction of the tangent to the curve x = e t , y = 1 + 2sint,<br />

z = t - cost, 1 t 1.<br />

Suggested answer:<br />

x<br />

2<br />

y<br />

2<br />

z<br />

2<br />

<br />

<br />

<br />

<br />

2xy<br />

2<br />

z<br />

2<br />

i 2x<br />

2<br />

yz<br />

2<br />

j<br />

2x<br />

2<br />

y<br />

2<br />

z k<br />

<br />

at<br />

(1, 1,<br />

<br />

1) 2 i 2 j<br />

2 k<br />

<br />

<br />

<br />

r e<br />

t<br />

i (1 2 sin t) j<br />

(t cos t) k<br />

<br />

d r<br />

dt<br />

at t<br />

0<br />

is<br />

<br />

i 2 j<br />

k<br />

Page 63 of 72


t <br />

<br />

d r<br />

dt<br />

<br />

d r<br />

dt<br />

<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

i 2 j<br />

k<br />

6<br />

directional derivative of in the direction of<br />

<br />

c<br />

is<br />

<br />

( i 2 j<br />

k)<br />

(2 i 2 j<br />

2 k).<br />

6<br />

<br />

1<br />

[2 4 2]<br />

6<br />

<br />

4<br />

6<br />

34. Find the equation of the tangent plane <strong>and</strong> the normal line to the surface z =<br />

x 2 + y 2 at (2, -1, 5).<br />

Suggested answer:<br />

x<br />

2<br />

y<br />

2<br />

z<br />

<br />

<br />

2x i 2y j<br />

k<br />

Equation to the normal line at (2, -1, 5) is<br />

x 2<br />

4<br />

<br />

y 1<br />

<br />

2<br />

z 5<br />

1<br />

Equation the tangent plane is 4(x - 2) + (-1)(y + 2)(-1)(z - 5) = 0<br />

i.e., 4x - 2y - z - 5 = 0<br />

Page 64 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

35. Find the angle between the surface x 2 + y 2 + z 2 = 9 <strong>and</strong> z = x 2 + y 2 -3 at<br />

the point (2, -1, 2).<br />

Suggested answer:<br />

Let<br />

x<br />

2<br />

y<br />

2<br />

z<br />

2<br />

1 9<br />

x<br />

2<br />

y<br />

2<br />

2 z 3<br />

1<br />

<br />

2x i 2y j<br />

2z k<br />

1<br />

at<br />

(2, 1,2)<br />

<br />

4 i 2 j<br />

4 k<br />

2<br />

<br />

2x i 2y j<br />

k<br />

2<br />

<br />

at (2, 1,2) 4 i 2 j<br />

k<br />

Angle between the surfaces is the angle between 1 <strong>and</strong> 2.<br />

<br />

<br />

.<br />

cos<br />

1 1 2<br />

<br />

<br />

|<br />

1<br />

|| 2<br />

| <br />

<br />

<br />

4(4) ( 2)( 2) 4( 1)<br />

cos 1 <br />

<br />

36 21 <br />

<br />

<br />

8<br />

cos 1 <br />

3<br />

21 <br />

36. Find the values of a <strong>and</strong> b such that the surfaces ax 2 - byz = (a + 2)x <strong>and</strong><br />

4x 2 y + z 3 = 4 are orthogonal at (1, -1, 2).<br />

Suggested answer:<br />

Let : ax<br />

2<br />

1 byz (a 2)x 0<br />

...(1)<br />

Page 65 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

: 4x<br />

2<br />

y z<br />

3<br />

2 4 0<br />

...(2)<br />

Given (1, -1, 2) is a point on (1) <strong>and</strong> (2)<br />

1 2<br />

at (1, 1,2)<br />

i.e., a + 2b - (a + 2) -4 + 8 - 4<br />

2b - 2 = 0<br />

b 1<br />

1<br />

<br />

(2ax (a 2)) i<br />

bz j<br />

by k<br />

<br />

1 at (1, 1,2) (a 2) i 2 j<br />

by k<br />

2<br />

<br />

8xy i 4x<br />

2<br />

j<br />

3z<br />

2<br />

k<br />

<br />

2<br />

at (1, 1,2) 8<br />

i 4 j<br />

12 k<br />

since 1 <strong>and</strong> 2<br />

are orthogonal<br />

1. 2<br />

0<br />

-8(a - 2) - 8 + 12 = 0<br />

i.e., a = 5/2<br />

a 5 / 2<br />

<strong>and</strong> b 1<br />

37. Find the constant a, b, c so that the vector<br />

<br />

<br />

<br />

<br />

f (x 2y az) i (bx 3y z) j<br />

(4x cy 2z)k<br />

is irrotational.<br />

Page 66 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Suggested answer:<br />

<br />

F is irrotational if<br />

<br />

Curl F 0<br />

i j k<br />

<br />

CurlF <br />

0<br />

x y z<br />

x 2y az bx 3y z 4x cy 2z<br />

c 1 0, 4 a 0, b 2 0<br />

a 4,b 2, c 1<br />

38. If <strong>and</strong> <br />

are scalar fields prove that<br />

i) div{ }<br />

<br />

2<br />

.<br />

<br />

ii) <br />

2<br />

( )<br />

<br />

2<br />

<br />

2<br />

2.<br />

<br />

Suggested answer:<br />

i) div( )<br />

.<br />

div( )<br />

. <br />

2 <br />

...(1)<br />

ii) similarly<br />

div( ) . <br />

2 <br />

...(2)<br />

adding (1) <strong>and</strong> (2)<br />

div( )<br />

div( )<br />

<br />

2<br />

<br />

2<br />

2.<br />

<br />

...(3)<br />

Also div( <br />

) div( ) div( ( )) <br />

2<br />

( )<br />

<br />

2<br />

( )<br />

<br />

2<br />

<br />

2<br />

2.<br />

<br />

39. Evaluate<br />

i)<br />

2 r<br />

2 <br />

Page 67 of 72


ii)<br />

Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

<br />

<br />

2 r<br />

div<br />

<br />

r<br />

2 <br />

<br />

Suggested answer:<br />

i) <br />

2<br />

r<br />

2<br />

<br />

<br />

2<br />

2<br />

2<br />

(r<br />

2 <br />

) (r<br />

2 <br />

) (r<br />

2<br />

)<br />

x<br />

2<br />

y<br />

2<br />

z<br />

2<br />

<br />

x y <br />

2r<br />

2r<br />

<br />

x<br />

r y<br />

r <br />

<br />

<br />

<br />

2r<br />

z <br />

z <br />

<br />

r <br />

= 2 + 2 + 2<br />

= 6<br />

ii)<br />

<br />

r 1 1<br />

div<br />

<br />

<br />

. r <br />

r<br />

2<br />

r<br />

2<br />

r<br />

2<br />

<br />

<br />

div r<br />

<br />

<br />

2 r 1<br />

.<br />

r (3)<br />

r<br />

3 r r<br />

2<br />

<br />

<br />

2 3 <br />

r<br />

2<br />

r<br />

2<br />

1<br />

<br />

r<br />

2<br />

40.<br />

3 Find the value of a if f(axy x) i(a 2)x j(1<br />

2 a )xz<br />

2<br />

<br />

k<br />

is irrotational.<br />

Suggested answer:<br />

Since<br />

<br />

f is irrotational<br />

Page 68 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

Curl f 0<br />

<br />

i<br />

<br />

i.e.,<br />

x<br />

axy z<br />

3<br />

<br />

j<br />

<br />

y<br />

(a 2)x<br />

2<br />

<br />

k<br />

<br />

z<br />

(1 a)xz<br />

2<br />

0<br />

<br />

(1<br />

a)z<br />

2<br />

3z<br />

2<br />

k (a<br />

2)2x ax<br />

<br />

<br />

i{0 0} j<br />

0<br />

z 2<br />

1<br />

a 3 0 <strong>and</strong> x (a<br />

2)2 a 0<br />

a 4<br />

41. Show that<br />

<br />

r<br />

r<br />

3<br />

is both solenoidal <strong>and</strong> irrotational.<br />

Suggested answer:<br />

<br />

r 1<br />

div<br />

<br />

r<br />

3<br />

r<br />

3<br />

<br />

1 <br />

div r <br />

<br />

. r<br />

r<br />

3<br />

<br />

1<br />

(3) <br />

r<br />

3<br />

<br />

3 r <br />

.<br />

r<br />

r<br />

4 r <br />

<br />

3 3 <br />

r<br />

3<br />

r<br />

3<br />

= 0<br />

<br />

r 1 1 <br />

Curl<br />

Curl r <br />

<br />

x r<br />

r<br />

3 r<br />

3<br />

r<br />

3<br />

<br />

<br />

Page 69 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

1 3 r <br />

(0) x<br />

r<br />

r<br />

3 r<br />

4 r <br />

<br />

<br />

0 0<br />

<br />

0<br />

42. If<br />

<br />

a is a constant vector prove the following<br />

i)<br />

<br />

<br />

<br />

<br />

Curl( a . r ) a 0<br />

<br />

<br />

ii)Curl{ r x( a x r )} 3( r x a)<br />

<br />

<br />

iii)Curl{r<br />

n<br />

( a x r )} (n 2)r<br />

n<br />

a nr<br />

n2<br />

( r . a) r<br />

Suggested answer:<br />

<br />

i)Curl{( a . r ) a} ( a . r )Curl a ( a . r )x a<br />

<br />

( a . r ) 0 a x a ( a . r ) a<br />

<br />

0 0<br />

<br />

0<br />

<br />

<br />

ii) Curl{ r x( a x r )} Curl{( r . r ) a ( r . a) r }<br />

<br />

<br />

Curl{( r . r ) a} Curl{( r . a) r }<br />

<br />

( r . r )Curl a ( r . r )x a ( r . a)x r<br />

Page 70 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

<br />

r <br />

0 2r x a ( r . a) 0 a x r<br />

r<br />

<br />

2( r x a) r x a<br />

<br />

3( r x a)<br />

<br />

<br />

iii) Curl{r<br />

n<br />

( a x r )} r<br />

n<br />

Curl( a x r ) r<br />

n<br />

x( a x r )<br />

<br />

r <br />

r<br />

n<br />

Curl( a x r ) nr<br />

n1<br />

x( a x r )<br />

r<br />

<br />

<br />

r<br />

n<br />

Curl( a x r ) nr<br />

n2<br />

{( r . r ) a ( r . a) r }<br />

<br />

r<br />

n<br />

Curl( a x r ) nr<br />

n<br />

a nr<br />

n2<br />

( r . a) r<br />

...(1)<br />

<br />

<br />

i j k<br />

<br />

<br />

<br />

Consider ( a x r ) a1 a2<br />

a3<br />

i(a2z<br />

a3y)<br />

j(a3x<br />

a1z)<br />

k(a1y<br />

a2x)<br />

x y z<br />

<br />

Curl( a x r ) <br />

<br />

i<br />

<br />

x<br />

a2z<br />

a3y<br />

<br />

j<br />

<br />

y<br />

a3x<br />

a1z<br />

<br />

k<br />

<br />

z<br />

a1y<br />

a2x<br />

<br />

2 a<br />

<br />

in (1)<br />

<br />

Curl{r<br />

n<br />

( a x r )} 2r<br />

n<br />

a nr<br />

n<br />

a nr<br />

n2<br />

( r . a) r<br />

<br />

(n 2)r<br />

n<br />

a nr<br />

n2<br />

( r . a) r<br />

Page 71 of 72


Engineering Mathematics - II - <strong>Vector</strong> Calculus - 2007<br />

Page 72 of 72

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!