31.07.2013 Views

 t - VTU e-Learning Centre

 t - VTU e-Learning Centre

 t - VTU e-Learning Centre

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Define the capacity of noisy DMC<br />

Defined as –<br />

CAPACITY OF A DMC<br />

Session – 10<br />

The maximum possible rate of information transmission over the channel.<br />

In equation form –<br />

P(<br />

x )<br />

D <br />

C Max -----(1)<br />

t<br />

i.e., maximised over a set of input probabilities P(x) for the discrete r . v. X<br />

What is Dt?<br />

Dt: Ave. rate of information transmission over the channel defined as<br />

H( x)<br />

H(<br />

x / y)<br />

r<br />

bits / sec. -----(2)<br />

Dt s<br />

Eqn. (1) becomes<br />

P(<br />

x)<br />

H ( x)<br />

H(<br />

x / y)<br />

r<br />

<br />

C Max <br />

-----(3)<br />

Illustrative Examples<br />

1. For the channel shown determine C,<br />

Input<br />

X<br />

Solution:<br />

0<br />

1<br />

2<br />

3<br />

Step – 1: Calculate H(x) = Pi<br />

log Pi<br />

i 0<br />

Substituting we get,<br />

1<br />

p<br />

p<br />

1<br />

3<br />

s<br />

0<br />

1<br />

1 – p = q<br />

(1 – p) = q<br />

2<br />

3<br />

Output<br />

Y<br />

P (x = 0) = P<br />

P (x = 1) = Q<br />

P (x = 2) = Q<br />

P (x = 3) = P<br />

2P + 2Q = 1


H(<br />

x)<br />

<br />

[ P(<br />

x<br />

<br />

<br />

P(<br />

x<br />

0)<br />

log P(<br />

x<br />

<br />

<br />

2)<br />

log P(<br />

x<br />

0)<br />

<br />

<br />

2)<br />

P(<br />

x<br />

<br />

<br />

P(<br />

x<br />

1)<br />

log P(<br />

x<br />

<br />

1)<br />

3)<br />

log P(<br />

x<br />

= - [P log Q + Q log Q + Q log Q + P log P]<br />

2P log P 2Q<br />

log Q <br />

H( x)<br />

<br />

2<br />

2<br />

bits/sym. ----(4)<br />

Step – 2: Calculate H(x/y) = P ( xy)<br />

log P ( x / y)<br />

Note, i & j can take values<br />

<br />

i 1 1 2 2<br />

j 1 2 1 2<br />

H(<br />

x / y)<br />

<br />

[ P(<br />

x<br />

P(<br />

x <br />

P(<br />

x <br />

2,<br />

2,<br />

y <br />

i<br />

1,<br />

y 1)<br />

log p(<br />

x 1 / y 1)<br />

P(<br />

x 1,<br />

y 2)<br />

log p(<br />

x 1 / y 2)<br />

Step – 3: Calculate P(x/y) using,<br />

(i) P(x = 1 / y = 1) =<br />

Where,<br />

Input<br />

X<br />

0<br />

1<br />

2<br />

3<br />

2)<br />

log ( x<br />

j<br />

y 1)<br />

log p(<br />

x 2 / y 1)<br />

P(<br />

x<br />

P(y=1) = P(x=1, y=1) + P(x=2, y=1)<br />

2 / y 2)]<br />

P ( x / y)<br />

<br />

1)<br />

. P(<br />

y 1/<br />

x 1)<br />

P(<br />

y 1)<br />

<br />

3)]<br />

P(<br />

x)<br />

. P(<br />

y / x)<br />

P(<br />

y)<br />

= P(x=1) . P(y=1 / x=1) + P(x=2,) . P(y=1 / x=2)<br />

= Q . p + Q . q<br />

= QP + Q (1 – p)<br />

P(<br />

y 1)<br />

Q<br />

1<br />

p<br />

p<br />

1<br />

0<br />

1<br />

1 – p = q<br />

(1 – p) = q<br />

2<br />

3<br />

Output<br />

Y<br />

. ----(5)


Q . p<br />

P(<br />

x 1 / y 1)<br />

p<br />

Q<br />

Similarly calculate other p(x/y)’s<br />

They are<br />

(ii) P(x=1 / y=2) = q<br />

(iii) P(x=2 / y=1) = q<br />

(iv) P(x=2 / y=2) = p<br />

Equation (5) becomes:<br />

H(x/y) = [Q . p log p + Q . q log q + Q . q log q + Q . p log p]<br />

= [Q . p log p + Q (1 - p) log q + Q (1 - p) . log q + Q . p log p]<br />

= + [2Q . p log p + 2Q . q log q]<br />

= + 2Q [p log p + q log q]<br />

H(x/y) = 2Q . ----- (6)<br />

Step – 4: By definition we have,<br />

Dt = H(x) – H(x/y)<br />

Substituting for H(x) & H(x/y) we get,<br />

Dt = - 2P log2 P – 2Q . log2 Q – 2Q . ----- (7)<br />

Recall, 2P + 2Q = 1, from which,<br />

Q = ½ –P<br />

1 1 1 <br />

D t - 2P log 2 P - 2<br />

P<br />

log<br />

P<br />

2<br />

P<br />

2 2 2 <br />

1 <br />

i.e., Dt - 2P log2<br />

P (1-<br />

2P) log P<br />

2P<br />

----- (8)<br />

2 <br />

Step – 5: By definition of channel capacity we have,<br />

C <br />

Max<br />

P(<br />

x)<br />

Q(<br />

X)<br />

D <br />

t


d<br />

(i) Find D t <br />

dP<br />

d d <br />

1 <br />

i.e., D t <br />

2P<br />

log 2 P (<br />

1<br />

2P)<br />

log<br />

P<br />

2P<br />

dP dP<br />

<br />

<br />

2 <br />

<br />

1 <br />

<br />

<br />

2<br />

P<br />

log2<br />

e<br />

2 . P log<br />

<br />

2 e<br />

<br />

2 <br />

1 <br />

<br />

( 2)<br />

log <br />

2 log P<br />

2<br />

<br />

2 P<br />

P<br />

1 <br />

2 <br />

<br />

P<br />

<br />

2 <br />

<br />

<br />

Simplifying we get,<br />

d<br />

dP<br />

D log P log Q <br />

t<br />

Setting this to zero, you get<br />

log2 P = log2 Q + <br />

OR<br />

P = Q . 2 = Q . ,<br />

Where, = 2 <br />

How to get the optimum values of P & Q?<br />

2<br />

Substitute, P = Q in 2P + 2Q = 1<br />

i.e., 2Q + 2Q = 1<br />

OR<br />

1<br />

Q =<br />

2(<br />

1 )<br />

1<br />

Hence, P = Q . = . =<br />

2(<br />

1 )<br />

Step – 6: Channel capacity is,<br />

2<br />

<br />

2( 1 )<br />

2P<br />

log P 2Q<br />

log Q 2 <br />

C Max<br />

Q<br />

P(<br />

x)<br />

Q(<br />

X)<br />

Substituting for P & Q we get,<br />

-----(9)<br />

-----(10)<br />

-----(11)<br />

-----(12)


C 2 . log<br />

2(<br />

1<br />

)<br />

<br />

2(<br />

1<br />

)<br />

<br />

Simplifying you get,<br />

1 1 <br />

. log<br />

2(<br />

1<br />

)<br />

<br />

2(<br />

1<br />

)<br />

<br />

<br />

1<br />

log 2<br />

2(<br />

1<br />

)<br />

<br />

<br />

<br />

C = log [2 (1+)] – log <br />

or<br />

2(<br />

1<br />

)<br />

<br />

C = log2 <br />

<br />

Remember, = 2 and<br />

= - (p log p + q log q)<br />

What are the extreme values of p?<br />

Case – I: Say p = 1<br />

What does this case correspond to?<br />

What is C for this case/<br />

Note: = 0, = 2 0 = 1<br />

2( 1<br />

1)<br />

<br />

C log2 <br />

log<br />

1 <br />

<br />

2<br />

[ 4]<br />

If rs = 1/sec, C = 2 bits/sec.<br />

Can this case be thought of in practice?<br />

1<br />

Case – II: p =<br />

2<br />

bits/sec. -----(13)<br />

<br />

2 bits / sym.<br />

1 1 1 <br />

Now, = – log log 1<br />

2 2 2 <br />

= 2 = 2<br />

2( 2 1)<br />

<br />

log<br />

<br />

log 2 [ 3]<br />

1.<br />

585 bits / sec.<br />

2


Which are the symbols often used for the channel under discussion and why it is<br />

so?<br />

Input<br />

X<br />

OVER A NOISY CHANNEL ONE CAN NEVER SEND<br />

INFORMATION WITHOUT ERRORS<br />

2. For the discrete binary channel shown find H(x), H(y), H(x/y) & H(y/x) when<br />

P(x=0) = 1/4, P(x=1) = 3/4 , = 0.75, & = 0.9.<br />

Solution:<br />

What type of channel in this?<br />

H(x) = – i<br />

p<br />

t<br />

i<br />

log p<br />

t<br />

i<br />

= – [P(x=0) log P(x=0) + P(x=1) log P(x=1)]<br />

= – [p log p+ (1–p) log (1–p)]<br />

Where, p = P(x=0) & (1-p) = p(x=1)<br />

Substituting the values, H(x) = 0.8113 bits/sym.<br />

H(y) = – i<br />

0<br />

1<br />

2<br />

3<br />

0<br />

X<br />

(1 –)<br />

(1 –)<br />

Y<br />

1<br />

p<br />

r<br />

i<br />

log p<br />

r<br />

i<br />

<br />

= – [P(y=0) log P(y=0) + P(y=1) log P(y=1)]<br />

r t<br />

t<br />

Recall, p 0 p 0 . p 00 p1<br />

p10<br />

1<br />

p<br />

p<br />

1<br />

<br />

0<br />

1<br />

1 – p = q<br />

(1 – p) = q<br />

2<br />

3<br />

0<br />

1<br />

Output<br />

Y


P(y=0) = P(x=0) . P00 + P(x=1) P10<br />

= p + (1 – p) (1 – )<br />

Similarly, P(Y=1) = p (1 – ) + (1 – p) <br />

H(Y) p ( 1<br />

p)<br />

( 1<br />

)<br />

log p ( 1<br />

p)<br />

( 1<br />

)<br />

<br />

p ( 1<br />

)<br />

( 1<br />

)<br />

log p ( 1<br />

)<br />

( 1<br />

)<br />

<br />

H(Y) = - Q1(p) . log Q1(p) – Q2(p) log Q2(p)<br />

Substituting the values, H(y) = 0.82<br />

H(y/x) = P ( x<br />

Simplifying, you get,<br />

i<br />

j<br />

i,<br />

y j)<br />

log P ( y j / x i)<br />

H(y/x) = – [p . . log + (1 – p) (1 – ) log (1 – ) + p(1 – ) log (1 – )]<br />

+ (1 – p) log ]<br />

= – p [ . log – (1 – ) log (1 – ) – log – (1 – ) log (1 – )]<br />

H(y/x) = PK + C<br />

Compute ‘K’<br />

+ terms not dependent on p<br />

Rateat<br />

whichinformnissupplied<br />

Rateat<br />

whichinformn<br />

<br />

<br />

<br />

<br />

by<br />

thechannel<br />

to theReceiver<br />

is<br />

receivedby<br />

theReceiver<br />

i.e., H(x) – H(x/y) = H(y) – H(y/x)<br />

Home Work:<br />

Calculate Dt = H(y) – H(y/x)<br />

d<br />

Find Dt<br />

dp<br />

d<br />

Set Dt to zero and obtain the condition on probability distbn.<br />

dp<br />

Finally compute ‘C’, the capacity of the channel.<br />

Answer is: 344.25 b/second.


2. A channel model is shown<br />

INPUT<br />

X<br />

1<br />

0 0<br />

p<br />

What type of channel is this?<br />

Write the channel matrix<br />

P(Y/X)<br />

Do you notice something special in this channel?<br />

What is H(x) for this channel?<br />

Say P(x=0) = P & P(x=1) = Q = (1 – P)<br />

H(x) = – P log P – Q log Q = – P log P – (1 – P) log (1 – P)<br />

What is H(y/x)?<br />

H(y/x) = – [p log p + q log q]<br />

What is H(y) for the channel?<br />

H(y) = P(<br />

y)<br />

log P(<br />

y)<br />

= – [Pp log (Pp) + q log q + Q . p log (Q . p)]<br />

What is H(x/y) for the channel?<br />

H(y/x) = P(<br />

xy)<br />

log P(<br />

x / y)<br />

X<br />

p<br />

q<br />

q<br />

?<br />

1<br />

OUTPUT<br />

Y<br />

Y<br />

0 ? 1<br />

0 p q p<br />

1 o q p


X<br />

P(XY)<br />

Y<br />

y1 Y2 Y3<br />

X1 Pp Pq O<br />

X2 O Qq Qp<br />

P(X/Y)<br />

1 1<br />

H(x/y) = + Pp log 1 + Pq log + Q . q log + Qp log 1<br />

P<br />

Q<br />

X<br />

Y<br />

y1 Y2 Y3<br />

X1 1 P O<br />

X2 O Q 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!