11.08.2013 Views

solutions to problems in chapter three

solutions to problems in chapter three

solutions to problems in chapter three

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 3<br />

LINEAR SYSTEMS AND MATRICES<br />

SECTION 3.1<br />

INTRODUCTION TO LINEAR SYSTEMS<br />

This <strong>in</strong>itial section takes account of the fact that some students remember only hazily the method of<br />

elim<strong>in</strong>ation for 2× 2and<br />

3× 3 systems. Moreover, high school algebra courses generally<br />

emphasize only the case <strong>in</strong> which a unique solution exists. Here we treat on an equal foot<strong>in</strong>g the<br />

other two cases — <strong>in</strong> which either no solution exists or <strong>in</strong>f<strong>in</strong>itely many <strong>solutions</strong> exist.<br />

1. Subtraction of twice the first equation from the second equation gives − 5y=− 10, so<br />

y = 2, and it follows that x = 3.<br />

2. Subtraction of <strong>three</strong> times the second equation from the first equation gives 5y =− 15, so<br />

y = –3, and it follows that x = 5.<br />

3. Subtraction of 3/2 times the first equation from the second equation gives 1 3 y = , so<br />

2 2<br />

y = 3, and it follows that x = –4.<br />

4. Subtraction of 6/5 times the first equation from the second equation gives 11 44 y = ,<br />

5 5<br />

so y = 4, and it follows that x = 5.<br />

5. Subtraction of twice the first equation from the second equation gives 0= 1, so no<br />

solution exists.<br />

6. Subtraction of 3/2 times the first equation from the second equation gives 0= 1, so no<br />

solution exists.<br />

7. The second equation is –2 times the first equation, so we can choose y = t arbitrarily.<br />

The first equation then gives x =− 10 + 4 t.<br />

8. The second equation is 2/3 times the first equation, so we can choose y = t arbitrarily.<br />

The first equation then gives x = 4+ 2 t.<br />

9. Subtraction of twice the first equation from the second equation gives −9y− 4z =− 3.<br />

Subtraction of the first equation from the third equation gives 2y+ z = 1. Solution of<br />

Section 3.1<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

133


134<br />

these latter two equations gives y =− 1, z = 3. F<strong>in</strong>ally substitution <strong>in</strong> the first equation<br />

gives x = 4.<br />

10. Subtraction of twice the first equation from the second equation gives y+ 3z =− 5.<br />

Subtraction of twice the first equation from the third equation gives −y− 2z = 3.<br />

Solution of these latter two equations gives y = 1, z =− 2. F<strong>in</strong>ally substitution <strong>in</strong> the<br />

first equation gives x = 3.<br />

11. First we <strong>in</strong>terchange the first and second equations. Then subtraction of twice the new<br />

first equation from the new second equation gives y− z = 7, and subtraction of <strong>three</strong><br />

times the new first equation from the third equation gives − 2y+ 3z =− 18. Solution of<br />

these latter two equations gives y = 3, z =− 4. F<strong>in</strong>ally substitution <strong>in</strong> the (new) first<br />

equation gives x = 1.<br />

12. First we <strong>in</strong>terchange the first and third equations. Then subtraction of twice the new first<br />

equation from the second equation gives −7y− 3z =− 36, and subtraction of twice the<br />

new first equation from the new third equation gives −16y− 7z =− 83. Solution of these<br />

latter two equations gives y = 3, z = 5. F<strong>in</strong>ally substitution <strong>in</strong> the (new) first equation<br />

gives x = 1.<br />

13. First we subtract the second equation from the first equation <strong>to</strong> get the new first equation<br />

x+ 2y+ 3z = 0. Then subtraction of twice the new first equation from the second<br />

equation gives 3y− 2z = 0, and subtraction of twice the new first equation from the<br />

third equation gives 2y− z = 0. Solution of these latter two equations gives<br />

y = 0, z = 0. F<strong>in</strong>ally substitution <strong>in</strong> the (new) first equation gives x = 0 also.<br />

14. First we subtract the second equation from the first equation <strong>to</strong> get the new first equation<br />

x+ 8y− 4z = 45. Then subtraction of twice the new first equation from the second<br />

equation gives − 23y+ 28z =− 181, and subtraction of twice the new first equation from<br />

the third equation gives − 9y+ 11z =− 71. Solution of these latter two equations gives<br />

y = 3, z =− 4. F<strong>in</strong>ally substitution <strong>in</strong> the (new) first equation gives x = 5.<br />

15. Subtraction of the first equation from the second equation gives − 4y+ z =− 2.<br />

Subtraction of <strong>three</strong> times the first equation from the third equation gives (after division<br />

by 2) − 4y+ z =− 5/2. These latter two equations obviously are <strong>in</strong>consistent, so the<br />

orig<strong>in</strong>al system has no solution.<br />

16. Subtraction of the first equation from the second equation gives 7y− 3z =− 2.<br />

Subtraction of <strong>three</strong> times the first equation from the third equation gives (after division<br />

by 3) 7y− 3z =− 10/3. These latter two equations obviously are <strong>in</strong>consistent, so the<br />

orig<strong>in</strong>al system has no solution.<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


17. First we subtract the first equation from the second equation <strong>to</strong> get the new first equation<br />

x+ 3y− 6z =− 4. Then subtraction of <strong>three</strong> times the new first equation from the second<br />

equation gives − 7y+ 16z = 15, and subtraction of five times the new first equation from<br />

the third equation gives (after division by 2) − 7y+ 16z = 35/2. These latter two<br />

equations obviously are <strong>in</strong>consistent, so the orig<strong>in</strong>al system has no solution.<br />

18. Subtraction of the five times the first equation from the second equation gives<br />

−23y− 40z =− 14. Subtraction of eight times the first equation from the third equation<br />

gives −23y− 40z =− 19. These latter two equations obviously are <strong>in</strong>consistent, so the<br />

orig<strong>in</strong>al system has no solution.<br />

19. Subtraction of twice the first equation from the second equation gives 3y− 6z = 9.<br />

Subtraction of the first equation from the third equation gives y− 2z = 3. Obviously<br />

these latter two equations are scalar multiples of each other, so we can choose z = t<br />

arbitrarily. It follows first that y = 3+ 2t<br />

and then that x = 8+ 3 t.<br />

20. First we subtract the second equation from the first equation <strong>to</strong> get the new first equation<br />

x− y+ 6z =− 5. Then subtraction of the new first equation from the second equation<br />

gives 5y− 5z = 25, and subtraction of the new first equation from the third equation<br />

gives 3y− 3z = 15. Obviously these latter two equations are both scalar multiples of the<br />

equation y− z = 5, so we can choose z = t arbitrarily. It follows first that y = 5 + t and<br />

then that x =− 5. t<br />

21. Subtraction of <strong>three</strong> times the first equation from the second equation gives 3y− 6z = 9.<br />

Subtraction of four times the first equation from the third equation gives − 3y+ 9z =− 6.<br />

Obviously these latter two equations are both scalar multiples of the equation y− 3z = 2,<br />

so we can choose z = t arbitrarily. It follows first that y = 2+ 3t<br />

and then that<br />

x = 3− 2 t.<br />

22. Subtraction of four times the second equation from the first equation gives 2y+ 10z = 0.<br />

Subtraction of twice the second equation from the third equation gives y+ 5z = 0.<br />

Obviously the first of these latter two equations is twice the second one, so we can<br />

choose z = t arbitrarily. It follows first that y =− 5t<br />

and then that x =− 4. t<br />

23. The <strong>in</strong>itial conditions y(0) = 3 and y′ (0) = 8 yield the equations A= 3and2B = 8, so<br />

A= 3 and B=<br />

4. It follows that yx ( ) = 3cos2x+ 4s<strong>in</strong>2 x.<br />

24. The <strong>in</strong>itial conditions y(0) = 5 and y′ (0) = 12 yield the equations A= 5and3B = 12,<br />

so A= 5 and B = 4. It follows that yx ( ) = 5cosh3x+ 4s<strong>in</strong>h3 x.<br />

25. The <strong>in</strong>itial conditions y(0) = 10 and y′ (0) = 20 yield the equations A+ B = 10 and<br />

5A− 5B = 20 with solution A= 7, B = 3. Thus<br />

Section 3.1<br />

yx e e −<br />

5x 5x<br />

( ) = 7 + 3 .<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

135


26. The <strong>in</strong>itial conditions y(0) = 44 and y′ (0) = 22 yield the equations A+ B=<br />

44 and<br />

136<br />

11A− 11B = 22 with solution A= 23, B=<br />

21. Thus<br />

Chapter 3<br />

yx e e −<br />

11x 11x<br />

( ) = 23 + 21 .<br />

27. The <strong>in</strong>itial conditions y(0) = 40 and y′ (0) =− 16 yield the equations A+ B=<br />

40 and<br />

3A− 5B =− 16 with solution A= 23, B = 17. Thus<br />

yx e e −<br />

3x 5x<br />

( ) = 23 + 17 .<br />

28. The <strong>in</strong>itial conditions y(0) = 15 and y′ (0) = 13 yield the equations A+ B = 15 and<br />

3A+ 7B =− 13 with solution A= 23, B=−<br />

8. Thus<br />

yx e e<br />

3x 7x<br />

( ) = 23 − 8 .<br />

29. The <strong>in</strong>itial conditions y(0) = 7 and y′ (0) = 11 yield the equations A+ B=<br />

7 and<br />

1 1<br />

2 A 3B 11<br />

+ = with solution A= 52, B=−<br />

45. Thus<br />

yx e e<br />

x/2 x/3<br />

( ) = 52 − 45 .<br />

30. The <strong>in</strong>itial conditions y(0) = 41 and y′ (0) = 164 yield the equations A+ B = 41 and<br />

4 7<br />

A− B = 164 with solution A= 81,<br />

3 5<br />

B =− 40. Thus yx ( )<br />

4 x/3 7 x/5<br />

81e 40 e .<br />

−<br />

= −<br />

31. The graph of each of these l<strong>in</strong>ear equations <strong>in</strong> x and y is a straight l<strong>in</strong>e through the<br />

orig<strong>in</strong> (0, 0) <strong>in</strong> the xy-plane. If these two l<strong>in</strong>es are dist<strong>in</strong>ct then they <strong>in</strong>tersect only at the<br />

orig<strong>in</strong>, so the two equations have the unique solution x= y = 0. If the two l<strong>in</strong>es<br />

co<strong>in</strong>cide, then each of the <strong>in</strong>f<strong>in</strong>itely many different po<strong>in</strong>ts ( x, y ) on this common l<strong>in</strong>e<br />

provides a solution of the system.<br />

32. The graph of each of these l<strong>in</strong>ear equations <strong>in</strong> x, y, and z is a plane <strong>in</strong> xyz-space. If these<br />

two planes are parallel — that is, do not <strong>in</strong>tersect — then the equations have no solution.<br />

Otherwise, they <strong>in</strong>tersect <strong>in</strong> a straight l<strong>in</strong>e, and each of the <strong>in</strong>f<strong>in</strong>itely many different<br />

po<strong>in</strong>ts ( x, yz , ) on this l<strong>in</strong>e provides a solution of the system.<br />

33. (a) The <strong>three</strong> l<strong>in</strong>es have no common po<strong>in</strong>t of <strong>in</strong>tersection, so the system has no<br />

solution.<br />

(b) The <strong>three</strong> l<strong>in</strong>es have a s<strong>in</strong>gle po<strong>in</strong>t of <strong>in</strong>tersection, so the system has a unique<br />

solution.<br />

(c) The <strong>three</strong> l<strong>in</strong>es — two of them parallel — have no common po<strong>in</strong>t of <strong>in</strong>tersection,<br />

so the system has no solution.<br />

(d) The <strong>three</strong> dist<strong>in</strong>ct parallel l<strong>in</strong>es have no common po<strong>in</strong>t of <strong>in</strong>tersection, so the<br />

system has no solution.<br />

(e) Two of the l<strong>in</strong>es co<strong>in</strong>cide and <strong>in</strong>tersect the third l<strong>in</strong>e <strong>in</strong> a s<strong>in</strong>gle po<strong>in</strong>t, so the<br />

system has a unique solution.<br />

(f) The <strong>three</strong> l<strong>in</strong>es co<strong>in</strong>cide, and each of the <strong>in</strong>f<strong>in</strong>itely many different po<strong>in</strong>ts ( x, yz , )<br />

on this common l<strong>in</strong>e provides a solution of the system.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


34. (a) If the <strong>three</strong> planes are parallel and dist<strong>in</strong>ct, then they have no common po<strong>in</strong>t of<br />

<strong>in</strong>tersection, so the system has no solution.<br />

(b) If the <strong>three</strong> planes co<strong>in</strong>cide, then each of the <strong>in</strong>f<strong>in</strong>itely many different po<strong>in</strong>ts<br />

( , , )<br />

x yz of this common plane provides a solution of the system.<br />

(c) If two of the planes co<strong>in</strong>cide and are parallel <strong>to</strong> the third plane, then the <strong>three</strong><br />

planes have no common po<strong>in</strong>t of <strong>in</strong>tersection, so the system has no solution.<br />

(d) If two of the planes <strong>in</strong>tersect <strong>in</strong> a l<strong>in</strong>e that is parallel <strong>to</strong> the third plane, then the<br />

<strong>three</strong> planes have no common po<strong>in</strong>t of <strong>in</strong>tersection, so the system has no solution.<br />

(e) If two of the planes <strong>in</strong>tersect <strong>in</strong> a l<strong>in</strong>e that lies <strong>in</strong> the third plane, then each of the<br />

<strong>in</strong>f<strong>in</strong>itely many different po<strong>in</strong>ts ( x, yz , ) of this l<strong>in</strong>e provides a solution of the system.<br />

(f) If two of the planes <strong>in</strong>tersect <strong>in</strong> a l<strong>in</strong>e that <strong>in</strong>tersects the third plane <strong>in</strong> a s<strong>in</strong>gle<br />

po<strong>in</strong>t, then this po<strong>in</strong>t ( x, yz , ) provides the unique solution of the system.<br />

SECTION 3.2<br />

MATRICES AND GAUSSIAN ELIMINATION<br />

Because the l<strong>in</strong>ear systems <strong>in</strong> Problems 1–10 are already <strong>in</strong> echelon form, we need only start at the<br />

end of the list of unknowns and work backwards.<br />

1. Start<strong>in</strong>g with x 3 = 2 from the third equation, the second equation gives x 2 = 0, and then<br />

the first equation gives x 1 = 1.<br />

x =− from the third equation, the second equation gives x 2 = 1, and<br />

then the first equation gives x 1 = 5.<br />

2. Start<strong>in</strong>g with 3 3<br />

3. If we set x3 t<br />

gives 1 = +<br />

4. If we set x3 t<br />

= then the second equation gives x2 = 2+ 5 t,<br />

and next the first equation<br />

x 13 11 t.<br />

= then the second equation gives x2 = 5+ 7 t,<br />

and next the first equation<br />

gives x1 = 35 + 33 t.<br />

5. If we set x4 t<br />

= then the third equation gives x3 = 5+ 3 t,<br />

next the second equation gives<br />

x2 = 6 + t,<br />

and f<strong>in</strong>ally the first equation gives x1 = 13+ 4 t.<br />

6. If we set x3 t<br />

= and x 4 =− 4 from the third equation, then the second equation gives<br />

x2 = 11+ 3 t,<br />

and next the first equation gives x1 = 17 + t.<br />

Section 3.2 137<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


7. If we set x3 s<br />

138<br />

= and x4 = t,<br />

then the second equation gives x2 = 7+ 2s− 7 t,<br />

and next<br />

the first equation gives x1 = 3− 8s+ 19 t.<br />

8. If we set x2 s<br />

= and x4 = t,<br />

then the second equation gives x3 = 10 − 3 t,<br />

and next the<br />

first equation gives x1 =− 25 + 10s+ 22 t.<br />

9. Start<strong>in</strong>g with x 4 = 6 from the fourth equation, the third equation gives x 3 =− 5, next the<br />

second equation gives x 2 = 3, and f<strong>in</strong>ally the first equation gives x 1 = 1.<br />

10. If we set x3 s<br />

= and x5 = t,<br />

then the third equation gives x4 = 5, t next the second<br />

equation gives x2 = 13s− 8 t,<br />

and f<strong>in</strong>ally the first equation gives x1 = 63s− 16 t.<br />

In each of Problems 11–22, we give just the first two or <strong>three</strong> steps <strong>in</strong> the reduction. Then we<br />

display a result<strong>in</strong>g echelon form E of the augmented coefficient matrix A of the given l<strong>in</strong>ear<br />

system, and f<strong>in</strong>ally list the result<strong>in</strong>g solution (if any). The student should understand that the<br />

echelon matrix E is not unique, so a different sequence of elementary row operations may<br />

produce a different echelon matrix.<br />

11. Beg<strong>in</strong> by <strong>in</strong>terchang<strong>in</strong>g rows 1 and 2 of A. Then subtract twice row 1 both from row 2<br />

and from row 3.<br />

⎡1 3 2 5 ⎤<br />

E =<br />

⎢<br />

0 1 0 2<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

; x1 = 3, x2 =− 2, x3<br />

= 4<br />

⎢⎣0 0 1 4 ⎥⎦<br />

12. Beg<strong>in</strong> by subtract<strong>in</strong>g row 2 of A from row 1. Then subtract twice row 1 both from row<br />

2 and from row 3.<br />

⎡1 −6 −4<br />

15⎤<br />

E =<br />

⎢<br />

0 1 0 3<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

; x1 = 5, x2 =− 3, x3<br />

= 2<br />

⎢⎣0 0 1 2 ⎥⎦<br />

13. Beg<strong>in</strong> by subtract<strong>in</strong>g twice row 1 of A both from row 2 and from row 3. Then add row<br />

2 <strong>to</strong> row 3.<br />

⎡1 3 3 13⎤<br />

E =<br />

⎢<br />

0 1 2 3<br />

⎥<br />

⎢ ⎥<br />

; x1 = 4+ 3 t, x2 = 3− 2 t, x3 = t<br />

⎢⎣0 0 0 0⎥⎦<br />

14. Beg<strong>in</strong> by <strong>in</strong>terchang<strong>in</strong>g rows 1 and 3 of A. Then subtract twice row 1 from row 2, and<br />

<strong>three</strong> times row 1 from row 3.<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


⎡1 −2 −2 −9⎤<br />

E =<br />

⎢<br />

0 0 1 7<br />

⎥<br />

⎢ ⎥<br />

; x1 = 5+ 2 t, x2 = t, x3<br />

= 7<br />

⎢⎣0 0 0 0 ⎥⎦<br />

15. Beg<strong>in</strong> by <strong>in</strong>terchang<strong>in</strong>g rows 1 and 2 of A. Then subtract <strong>three</strong> times row 1 from row 2,<br />

and five times row 1 from row 3.<br />

⎡1 1 1 1⎤<br />

E =<br />

⎢<br />

0 1 3 3<br />

⎥<br />

⎢ ⎥<br />

. The system has no solution.<br />

⎢⎣0 0 0 1⎥⎦<br />

16. Beg<strong>in</strong> by subtract<strong>in</strong>g row 1 from row 2 of A. Then <strong>in</strong>terchange rows 1 and 2. Next<br />

subtract twice row 1 from row 2, and five times row 1 from row 3.<br />

⎡1 −4 −7<br />

6⎤<br />

E =<br />

⎢<br />

0 1 2 0<br />

⎥<br />

⎢ ⎥<br />

. The system has no solution.<br />

⎢⎣0 0 0 1⎥⎦<br />

x −4x −3x − 3x = 4<br />

2x1−6x2 −5x3− 5x4 = 5<br />

3x − x −4x − 5x = − 7<br />

17. 1 2 3 4<br />

1 2 3 4<br />

Beg<strong>in</strong> by subtract<strong>in</strong>g twice row 1 from row 2 of A, and <strong>three</strong> times row 1 from row 3.<br />

⎡1 −4 −3 −3<br />

4 ⎤<br />

E =<br />

⎢<br />

0 1 0 1 4<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

; x1 = 3− 2 t, x2 =− 4 + t, x3 = 5− 3 t, x4 = t<br />

⎢⎣0 0 1 3 5 ⎥⎦<br />

18. Beg<strong>in</strong> by subtract<strong>in</strong>g row 3 from row 1 of A. Then subtract 3 times row 1 from row 2,<br />

and twice row 1 from row 3.<br />

⎡1 −2 −4 −13 −8⎤<br />

E =<br />

⎢<br />

0 0 1 4 3<br />

⎥<br />

⎢ ⎥<br />

; x1 = 4+ 2s− 3 t, x2 = s, x3 = 3− 4 t, x4 = t<br />

⎢⎣0 0 0 0 0 ⎥⎦<br />

19. Beg<strong>in</strong> by <strong>in</strong>terchang<strong>in</strong>g rows 1 and 2 of A. Then subtract <strong>three</strong> times row 1 from row 2,<br />

and four times row 1 from row 3.<br />

Section 3.2 139<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


140<br />

⎡1 −2 5 −5 −7⎤<br />

E =<br />

⎢<br />

0 1 2 3 5<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

; x1 = 3 −s− t, x2 = 5+ 2s− 3 t, x3 = s, x4 = t<br />

⎢⎣0 0 0 0 0 ⎥⎦<br />

20. Beg<strong>in</strong> by <strong>in</strong>terchang<strong>in</strong>g rows 1 and 2 of A. Then subtract twice row 1 from row 2, and<br />

five times row 1 from row 3.<br />

⎡1 3 2 −7<br />

3 9⎤<br />

E =<br />

⎢<br />

0 1 3 7 2 7<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

; x1 = 2+ 3 t, x2 = 1+ s− 2 t, x3 = 2+ 2 s, x4 = s, x5 = t<br />

⎢⎣0 0 1 −2<br />

0 2⎥⎦<br />

21. Beg<strong>in</strong> by subtract<strong>in</strong>g twice row 1 from row 2, <strong>three</strong> times row 1 from row 3, and four<br />

times row 1 from row 4.<br />

⎡1 1 1 0 6 ⎤<br />

⎢<br />

0 1 5 1 20<br />

⎥<br />

E = ⎢ ⎥;<br />

x1 = 2, x2 = 1, x3 = 3, x4<br />

= 4<br />

⎢0 0 1 0 3 ⎥<br />

⎢ ⎥<br />

⎣0 0 0 1 4 ⎦<br />

22. Beg<strong>in</strong> by subtract<strong>in</strong>g row 4 from row 1. Then subtract<strong>in</strong>g twice row 1 from row 2, four<br />

times row 1 from row 3, and <strong>three</strong> times row 1 from row 4.<br />

⎡1 −2 −4 0 −9⎤<br />

⎢<br />

0 1 6 1 21<br />

⎥<br />

E = ⎢ ⎥;<br />

x1 = 3, x2 =− 2, x3 = 4, x4<br />

=−1<br />

⎢0 0 1 0 4 ⎥<br />

⎢ ⎥<br />

⎣0 0 0 1 −1⎦<br />

23. If we subtract twice the first row from the second row, we obta<strong>in</strong> the echelon form<br />

⎡3 2 1 ⎤<br />

E = ⎢<br />

0 0 k − 2<br />

⎥<br />

⎣ ⎦<br />

of the augmented coefficient matrix. It follows that the given system has no <strong>solutions</strong> unless<br />

k = 2, <strong>in</strong> which case it has <strong>in</strong>f<strong>in</strong>itely many <strong>solutions</strong> given by x 1 = (1− 2 t), x = t.<br />

Chapter 3<br />

1 3 2<br />

24. If we subtract twice the first row from the second row, we obta<strong>in</strong> the echelon form<br />

⎡3 2 0⎤<br />

E = ⎢<br />

0 k − 4 0<br />

⎥<br />

⎣ ⎦<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


of the augmented coefficient matrix. It follows that the given system has only the trivial<br />

solution x1 = x2<br />

= 0 unless k = 4, <strong>in</strong> which case it has <strong>in</strong>f<strong>in</strong>itely many <strong>solutions</strong> given by<br />

2 x =− t, x = t.<br />

1 3 2<br />

25. If we subtract twice the first row from the second row, we obta<strong>in</strong> the echelon form<br />

⎡3 2 11⎤<br />

E = ⎢<br />

0 k −4 −1<br />

⎥<br />

⎣ ⎦<br />

of the augmented coefficient matrix. It follows that the given system has a unique solution<br />

if k ≠ 4, but no solution if k = 4.<br />

26. If we first subtract twice the first row from the second row, then <strong>in</strong>terchange the two rows,<br />

and f<strong>in</strong>ally subtract 3 times the first row from the second row, then we obta<strong>in</strong> the echelon<br />

form<br />

E<br />

⎡1 = ⎢<br />

⎣0 1<br />

1<br />

k − 2 ⎤<br />

3k−7 ⎥<br />

⎦<br />

of the augmented coefficient matrix. It follows that the given system has a unique solution<br />

whatever the value of k.<br />

27. If we first subtract twice the first row from the second row, then subtract 4 times the first<br />

row from the third row, and f<strong>in</strong>ally subtract the second row from the third row , we obta<strong>in</strong><br />

the echelon form<br />

E<br />

⎡1 =<br />

⎢<br />

⎢<br />

0<br />

⎢⎣ 0<br />

2<br />

5<br />

0<br />

1<br />

5<br />

0<br />

3 ⎤<br />

1<br />

⎥<br />

⎥<br />

k −11⎥⎦<br />

of the augmented coefficient matrix. It follows that the given system has no solution unless<br />

k = 11, <strong>in</strong> which case it has <strong>in</strong>f<strong>in</strong>itely many <strong>solutions</strong> with x 3 arbitrary.<br />

28. If we first <strong>in</strong>terchange rows 1 and 2, then subtract twice the first row from the second row,<br />

next subtract 7 times the first row from the third row, and f<strong>in</strong>ally subtract twice the second<br />

row from the third row , we obta<strong>in</strong> the echelon form<br />

⎡1 2 1 b ⎤<br />

E =<br />

⎢<br />

0 5 1 a 2b<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣ 0 0 0 c−2a−3b⎥⎦ of the augmented coefficient matrix. It follows that the given system has no solution unless<br />

c= 2a+ 3 b,<br />

<strong>in</strong> which case it has <strong>in</strong>f<strong>in</strong>itely many <strong>solutions</strong> with x 3 arbitrary.<br />

Section 3.2 141<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


29. In each of parts (a)-(c), we start with a typical 2× 2 matrix A and carry out two row<br />

successive operations as <strong>in</strong>dicated, observ<strong>in</strong>g that we w<strong>in</strong>d up with the orig<strong>in</strong>al matrix A.<br />

142<br />

(a)<br />

(b)<br />

(c)<br />

s t cR2<br />

s t (1/ c) R2<br />

s t<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

A = ⎢<br />

u v<br />

⎥ → ⎢ → =<br />

cu cv<br />

⎥ ⎢<br />

u v<br />

⎥ A<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

s t SWAP( R1, R2) u v SWAP( R1, R2)<br />

s t<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

A = ⎢<br />

u v<br />

⎥ → ⎢ → =<br />

s t<br />

⎥ ⎢<br />

u v<br />

⎥ A<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

s t cR1+ R2<br />

u v ( −c)<br />

R1+ R2<br />

s t<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

A = ⎢<br />

u v<br />

⎥ → ⎢ → =<br />

cu+ s cv+ t<br />

⎥ ⎢<br />

u v<br />

⎥ A<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

S<strong>in</strong>ce we therefore can "reverse" any s<strong>in</strong>gle elementary row operation, it follows that we can<br />

reverse any f<strong>in</strong>ite sequence of such operations — on at a time — so part (d) follows.<br />

30. (a) This part is essentially obvious, because a multiple of an equation that is satisfied is<br />

also satisfied, and the sum of two equations that are satisfied is one that is also satisfied.<br />

(b) Let us write A1 = B1, B2, ⋯ , Bn, Bn+ 1 = A2<br />

where each matrix B k+ 1 is obta<strong>in</strong>ed<br />

from B k by a s<strong>in</strong>gle elementary row operation (for k = 1, 2, ⋯ , n).<br />

Then it follows by n<br />

applications of part (a) that every solution of the system LS1 associated with the matrix A1<br />

is also a solution of the system LS2 associated with the matrix A2. But part (d) of Problem<br />

29 implies that A1 also can be obta<strong>in</strong>ed by A2 by elementary row operations, so by the<br />

same <strong>to</strong>ken every solution of LS2 is also a solution of LS1.<br />

SECTION 3.3<br />

REDUCED ROW-ECHELON MATRICES<br />

Each of the matrices <strong>in</strong> Problems 1-20 can be transformed <strong>to</strong> reduced echelon form without the<br />

appearance of any fractions. The ma<strong>in</strong> th<strong>in</strong>g is <strong>to</strong> get started right. Generally our first goal is <strong>to</strong> get<br />

a 1 <strong>in</strong> the upper left corner of A, then clear out the rest of the first column. In each problem we<br />

first give at least the <strong>in</strong>itial steps, and then the f<strong>in</strong>al result E. The particular sequence of elementary<br />

row operations used is not unique; you might f<strong>in</strong>d E <strong>in</strong> a quite different way.<br />

1.<br />

1 2 R2−3R11 2 R1−2R21 0<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

⎢<br />

3 7<br />

⎥ → ⎢<br />

0 1<br />

⎥ → ⎢<br />

0 1<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

3 7 R1−R2 1 2 R2−2R1 1 2 R1−2R2 1 0<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

⎢<br />

2 5<br />

⎥ → ⎢<br />

2 5<br />

⎥ → ⎢<br />

0 1<br />

⎥ → ⎢<br />

0 1<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

3 7 15 R1−R2 1 2 4 R2−2R1 1 2 4 R1−2R2 1 0 −2<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

⎢<br />

2 5 11<br />

⎥ → ⎢<br />

2 5 11<br />

⎥ → ⎢<br />

0 1 3<br />

⎥ → ⎢<br />

0 1 3<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

3 7 −1 R2−R1 3 7 −1 R1−R2 1 12 −10<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

⎢<br />

5 2 8<br />

⎥ → ⎢<br />

2 5 9<br />

⎥ →<br />

−<br />

⎢<br />

2 −5<br />

9<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

R2−2R1112 −10( −1/29) R2 1 12 −10<br />

R112 − R21<br />

0 2<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

→ ⎢<br />

0 29 29<br />

⎥ → ⎢<br />

0 1 1<br />

⎥ →<br />

− −<br />

⎢<br />

0 1 −1<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

1 2 −11 R2−2R112−11 ( −1)<br />

R2<br />

1 2 −11 R1−2R210−5 ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

⎢<br />

2 3 19<br />

⎥ → ⎢<br />

0 1 3<br />

⎥ → ⎢<br />

0 1 3<br />

⎥ →<br />

− − −<br />

⎢<br />

0 1 −3<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

1 −2 19 R2− 4R11 −2<br />

19 R1+ 2R21 0 7<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

⎢<br />

4 7 70<br />

⎥ → ⎢<br />

0 1 6<br />

⎥ →<br />

− −<br />

⎢<br />

0 1 −6<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

⎡1 2 3⎤ ⎡1 2 3 ⎤ ⎡1 2 3 ⎤<br />

R2−R1 R3−2R1 ⎢<br />

1 4 1<br />

⎥ ⎢<br />

0 2 2<br />

⎥ ⎢<br />

0 2 2<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣2 1 9⎥⎦ ⎢⎣2 1 9 ⎥⎦ ⎢⎣0 −3<br />

3 ⎥⎦<br />

⎡1 2 3 ⎤ ⎡1 2 3 ⎤ ⎡1 0 5 ⎤<br />

→<br />

⎢<br />

0 1 1<br />

⎥ ⎢<br />

0 1 1<br />

⎥ ⎢<br />

0 1 1<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 −3<br />

3 ⎥⎦ ⎢⎣0 0 0 ⎥⎦ ⎢⎣0 0 0 ⎥⎦<br />

(1/ 2) R2 R3+ 3R2 R1−2R2 ⎡1 −4 −5⎤ ⎡1 −4 −5⎤ ⎡1 −4 −5⎤<br />

R2−3R1 R3−R1 ⎢<br />

3 9 3<br />

⎥ ⎢<br />

0 3 18<br />

⎥ ⎢<br />

0 3 18<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣1 −2 3 ⎥⎦ ⎢⎣1 −2<br />

3 ⎥⎦ ⎢⎣0 2 8 ⎥⎦<br />

⎡1 −4 −5⎤ ⎡1 −4 −5<br />

⎤ ⎡1 0 0⎤<br />

→<br />

⎢<br />

0 1 10<br />

⎥ ⎢<br />

0 1 10<br />

⎥ ⎢<br />

0 1 0<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

→ →<br />

⎢ ⎥<br />

⎢⎣0 2 8 ⎥⎦ ⎢⎣0 0 −12⎥⎦<br />

⎢⎣0 0 1⎥⎦<br />

R2−R3 R3−2R2 ( −1/12)<br />

R3<br />

Section 3.3 143<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

144<br />

⎡5 2 18⎤ ⎡1 1 6⎤ ⎡1 1 6 ⎤<br />

R1−R3 R3−4R1 ⎢<br />

0 1 4<br />

⎥ ⎢<br />

0 1 4<br />

⎥ ⎢<br />

0 1 4<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣4112⎥⎦ ⎢⎣4112⎥⎦ ⎢⎣0−3−12⎥⎦ ⎡1 1 6⎤ ⎡1 0 2⎤<br />

→<br />

⎢<br />

0 1 4<br />

⎥ ⎢<br />

0 1 4<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣0 0 0⎥⎦ ⎢⎣0 0 0⎥⎦<br />

R3+ 3R2 R1−R2 ⎡5 2 −5⎤<br />

⎡1 1 2 ⎤ ⎡1 1 2 ⎤<br />

R1−R3 R2−9R1 ⎢<br />

9 4 7<br />

⎥ ⎢<br />

9 4 7<br />

⎥ ⎢<br />

0 5 25<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣4 1 −7⎥⎦ ⎢⎣4 1 −7⎥⎦ ⎢⎣4 1 −7<br />

⎥⎦<br />

⎡1 1 2 ⎤ ⎡1 1 2 ⎤ ⎡1 0 −3⎤<br />

→<br />

⎢<br />

0 5 25<br />

⎥ ⎢<br />

0 1 5<br />

⎥ ⎢<br />

0 1 5<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢ ⎥<br />

→ →<br />

⎢ ⎥<br />

⎢⎣0 −3 −15⎥⎦ ⎢⎣0 −3 −15⎥⎦<br />

⎢⎣0 0 0 ⎥⎦<br />

R3− 4R1 ( −1/5)<br />

R2<br />

R3+ 3R2 ⎡3 9 1 ⎤ ⎡1 3 −6⎤ ⎡1 3 −6⎤<br />

SWAP( R1, R3) R2−2R1 ⎢<br />

2 6 7<br />

⎥ ⎢<br />

2 6 7<br />

⎥ ⎢<br />

0 0 19<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣1 3 −6⎥⎦<br />

⎢⎣3 9 1 ⎥⎦ ⎢⎣3 9 1 ⎥⎦<br />

⎡1 3 −6⎤ ⎡1 3 −6⎤<br />

⎡1 3 0⎤<br />

→<br />

⎢<br />

0 0 19<br />

⎥ ⎢<br />

0 0 1<br />

⎥ ⎢<br />

0 0 1<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

→ <br />

⎢ ⎥<br />

⎢⎣0 0 19⎥⎦ ⎢⎣0 0 19⎥⎦ ⎢⎣0 0 0⎥⎦<br />

R3−3R1 (1/19) R2<br />

R3−19R2 ⎡1 −4 −2⎤ ⎡1 −4 −2⎤ ⎡1 −4 −2⎤<br />

R2−3R1 R3−2R1 ⎢<br />

3 12 1<br />

⎥ ⎢<br />

0 0 7<br />

⎥ ⎢<br />

0 0 7<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣2 −8 5 ⎥⎦ ⎢⎣2 −8<br />

5 ⎥⎦ ⎢⎣0 0 9 ⎥⎦<br />

(1/ 7) R2<br />

→ <br />

⎡1 −4<br />

0⎤<br />

→<br />

⎢<br />

0 0 1<br />

⎥<br />

⎢ ⎥<br />

⎢⎣0 0 0⎥⎦<br />

⎡2 7 4 0⎤ ⎡1 3 2 1⎤ ⎡1 3 2 1 ⎤<br />

SWAP( R1, R2) R2−2R1 ⎢<br />

1 3 2 1<br />

⎥ ⎢<br />

2 7 4 0<br />

⎥ ⎢<br />

0 1 0 2<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣2 6 5 4⎥⎦ ⎢⎣2 6 5 4⎥⎦ ⎢⎣2 6 5 4 ⎥⎦<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


14.<br />

15.<br />

16.<br />

17.<br />

⎡1 3 2 1 ⎤ ⎡1 0 0 3 ⎤<br />

→<br />

⎢<br />

0 1 0 2<br />

⎥ ⎢<br />

0 1 0 2<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→ →<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 0 1 2 ⎥⎦ ⎢⎣0 0 1 2 ⎥⎦<br />

R2−2R1 R1−3R2 ⎡1 3 2 5 ⎤ ⎡1 3 2 5 ⎤ ⎡1 3 2 5 ⎤<br />

R2−2R1 R3−2R1 ⎢<br />

2 5 2 3<br />

⎥ ⎢<br />

0 1 2 7<br />

⎥ ⎢<br />

0 1 2 7<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢<br />

− − −<br />

⎥<br />

→<br />

⎢<br />

− − −<br />

⎥<br />

⎢⎣2 7 7 22⎥⎦ ⎢⎣2 7 7 22⎥⎦ ⎢⎣0 1 3 12⎥⎦<br />

⎡1 3 2 5 ⎤ ⎡1 0 0 4 ⎤<br />

→<br />

⎢<br />

0 1 2 7<br />

⎥ ⎢<br />

0 1 0 3<br />

⎥<br />

⎢<br />

− − −<br />

⎥<br />

→ →<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 0 1 5 ⎥⎦ ⎢⎣0 0 1 5 ⎥⎦<br />

R3+ R2 ( −1)<br />

R2<br />

⎡2 2 4 2 ⎤ ⎡1 −1 −4 3 ⎤ ⎡1 −1 −4<br />

3 ⎤<br />

SWAP( R1, R2) R2−2R1 ⎢<br />

1 1 4 3<br />

⎥ ⎢<br />

2 2 4 2<br />

⎥ ⎢<br />

0 4 12 4<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢ ⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣2 7 19 −3⎥⎦ ⎢⎣2 7 19 −3⎥⎦ ⎢⎣2 7 19 −3⎥⎦<br />

⎡1 −1 −4 3 ⎤ ⎡1 −1 −4<br />

3 ⎤<br />

(1/ 4) R2<br />

→<br />

⎢<br />

0 4 12 4<br />

⎥ ⎢<br />

0 1 3 1<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 9 27 −9⎥⎦ ⎢⎣0 9 27 −9⎥⎦<br />

R3−2R1 ⎡1 −1 −4 3 ⎤ ⎡1 0 −1<br />

2 ⎤<br />

→<br />

⎢<br />

0 1 3 1<br />

⎥ ⎢<br />

0 1 3 1<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 0 0 0 ⎥⎦ ⎢⎣0 0 0 0 ⎥⎦<br />

R3− 9R2 R1+ R2<br />

⎡1 3 15 7⎤ ⎡1 3 15 7 ⎤ ⎡1 3 15 7 ⎤<br />

R2−2R1 R3−2R1 ⎢<br />

2 4 22 8<br />

⎥ ⎢<br />

0 2 8 6<br />

⎥ ⎢<br />

0 2 8 6<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢<br />

− − −<br />

⎥<br />

→<br />

⎢<br />

− − −<br />

⎥<br />

⎢⎣273417⎥⎦ ⎢⎣2734 17⎥⎦ ⎢⎣0143⎥⎦ ⎡1 3 15 7⎤ ⎡1 0 3 −2⎤<br />

→<br />

⎢<br />

0 1 4 3<br />

⎥ ⎢<br />

0 1 4 3<br />

⎥<br />

⎢ ⎥<br />

→ →<br />

⎢ ⎥<br />

⎢⎣0 1 4 3⎥⎦ ⎢⎣0 0 0 0 ⎥⎦<br />

( −1/2) R2 R3−R2 ⎡1 1 1 −1 −4⎤ ⎡1 1 1 −1 −4⎤ ⎡1 1 1 −1 −4⎤<br />

R2−R1 R3−2R1 ⎢<br />

1 2 2 8 1<br />

⎥ ⎢<br />

0 3 3 9 3<br />

⎥ ⎢<br />

0 3 3 9 3<br />

⎥<br />

⎢<br />

− − −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣23−1311⎥⎦ ⎢⎣23−1311⎥⎦ ⎢⎣01−3519⎥⎦ Section 3.3 145<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


18.<br />

19.<br />

20.<br />

146<br />

⎡1 1 1 −1 −4⎤ ⎡1 1 1 −1 −4⎤<br />

→<br />

⎢<br />

0 1 1 3 1<br />

⎥ ⎢<br />

0 1 1 3 1<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣01−3519⎥⎦ ⎢⎣00−4820⎥⎦ ( −1/3) R2 R3−R2 ⎡1 1 1 −1 −4⎤ ⎡1 0 0 2 −3⎤<br />

→<br />

⎢<br />

0 1 1 3 1<br />

⎥ ⎢<br />

0 1 0 1 4<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→ →<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 0 1 −2 −5⎥⎦ ⎢⎣0 0 1 −2 −5⎥⎦<br />

( −1/4) R3 R1−R2 ⎡1 −2 −5 −12 1⎤ ⎡1 −2 −5 −12 1⎤ ⎡1 −2 −5 −12<br />

1⎤<br />

R2−2R1 R3−2R1 ⎢<br />

2 3 18 11 9<br />

⎥ ⎢<br />

0 7 28 35 7<br />

⎥ ⎢<br />

0 7 28 35 7<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣2526 21 11⎥⎦ ⎢⎣2526 21 11⎥⎦ ⎢⎣0936 45 9⎥⎦<br />

⎡1 −2 −5 −12 1⎤ ⎡1 −2 −5 −12<br />

1⎤<br />

→<br />

⎢<br />

0 1 4 5 1<br />

⎥ ⎢<br />

0 1 4 5 1<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣0936 45 9⎥⎦ ⎢⎣0936 45 9⎥⎦<br />

(1/7) R2 (1/7) R2<br />

⎡1 −2 −5 −12 1⎤ ⎡1 0 3 −2<br />

3⎤<br />

→<br />

⎢<br />

0 1 4 5 1<br />

⎥ ⎢<br />

0 1 4 5 1<br />

⎥<br />

⎢ ⎥<br />

→ →<br />

⎢ ⎥<br />

⎢⎣0 1 4 5 1⎥⎦ ⎢⎣0 0 0 0 0⎥⎦<br />

(1/9) R3 R3−R2 ⎡27−10 −19<br />

13⎤ ⎡10213⎤ SWAP( R1, R3)<br />

⎢<br />

1 3 4 8 6<br />

⎥ ⎢<br />

1 3 4 8 6<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣1 0 2 1 3⎥⎦ ⎢⎣2 7 −10 −19<br />

13⎥⎦<br />

⎡1 0 2 1 3⎤ ⎡1 0 2 1 3⎤<br />

→<br />

⎢<br />

0 3 6 9 3<br />

⎥ ⎢<br />

0 3 6 9 3<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣27−10 −19 13⎥⎦ ⎢⎣07−14 −21<br />

7⎥⎦<br />

R2−R1 R3−2R1 ⎡1 0 2 1 3⎤ ⎡1 0 2 1 3⎤<br />

→<br />

⎢<br />

0 1 2 3 1<br />

⎥ ⎢<br />

0 1 2 3 1<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣07−14 −21<br />

7⎥⎦ ⎢⎣00000⎥⎦ (1/3) R2 R3−7R2 ⎡3 6 1 7 13⎤ ⎡1 2 −4 −2 −13⎤<br />

R1−R3 ⎢<br />

5 10 8 18 47<br />

⎥ ⎢<br />

5 10 8 18 47<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣2 4 5 9 26⎥⎦ ⎢⎣2 4 5 9 26 ⎥⎦<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


⎡1 2 −4 −2 −13⎤ ⎡1 2 −4 −2 −13⎤<br />

→<br />

⎢<br />

0 0 28 28 112<br />

⎥ ⎢<br />

0 0 28 28 112<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣2 4 5 9 26 ⎥⎦ ⎢⎣0 0 13 13 52 ⎥⎦<br />

R2−5R1 R3−2R1 ⎡1 2 −4 −2 −13⎤<br />

⎡1 2 0 2 3⎤<br />

→<br />

⎢<br />

0 0 1 1 4<br />

⎥ ⎢<br />

0 0 1 1 4<br />

⎥<br />

⎢ ⎥<br />

→ →<br />

⎢ ⎥<br />

⎢⎣0 0 13 13 52 ⎥⎦ ⎢⎣0 0 0 0 0⎥⎦<br />

(1/28) R2 R313 − R2<br />

In each of Problems 21–30, we give just the first two or <strong>three</strong> steps <strong>in</strong> the reduction. Then we<br />

display the result<strong>in</strong>g reduced echelon form E of the augmented coefficient matrix A of the<br />

given l<strong>in</strong>ear system, and f<strong>in</strong>ally list the result<strong>in</strong>g solution (if any).<br />

21. Beg<strong>in</strong> by <strong>in</strong>terchang<strong>in</strong>g rows 1 and 2 of A. Then subtract twice row 1 both from row 2<br />

and from row 3.<br />

⎡1 0 0 3 ⎤<br />

E =<br />

⎢<br />

0 1 0 2<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

; x1 = 3, x2 =− 2, x3<br />

= 4<br />

⎢⎣0 0 1 4 ⎥⎦<br />

22. Beg<strong>in</strong> by subtract<strong>in</strong>g row 2 of A from row 1. Then subtract twice row 1 both from row<br />

2 and from row 3.<br />

⎡1 0 0 5 ⎤<br />

E =<br />

⎢<br />

0 1 0 3<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

; x1 = 5, x2 =− 3, x3<br />

= 2<br />

⎢⎣0 0 1 2 ⎥⎦<br />

23. Beg<strong>in</strong> by subtract<strong>in</strong>g twice row 1 of A both from row 2 and from row 3. Then add row<br />

2 <strong>to</strong> row 3.<br />

⎡1 0 −3<br />

14⎤<br />

E =<br />

⎢<br />

0 1 2 3<br />

⎥<br />

⎢ ⎥<br />

; x1 = 4+ 3 t, x2 = 3− 2 t, x3 = t<br />

⎢⎣0 0 0 0⎥⎦<br />

24. Beg<strong>in</strong> by <strong>in</strong>terchang<strong>in</strong>g rows 1 and 3 of A. Then subtract twice row 1 from row 2, and<br />

<strong>three</strong> times row 1 from row 3.<br />

⎡1 −2<br />

0 5⎤<br />

E =<br />

⎢<br />

0 0 1 7<br />

⎥<br />

⎢ ⎥<br />

; x1 = 5+ 2 t, x2 = t, x3<br />

= 7<br />

⎢⎣0 0 0 0⎥⎦<br />

Section 3.3 147<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


25. Beg<strong>in</strong> by <strong>in</strong>terchang<strong>in</strong>g rows 1 and 2 of A. Then subtract <strong>three</strong> times row 1 from row 2,<br />

and five times row 1 from row 3.<br />

148<br />

⎡1 0 −2<br />

0⎤<br />

E =<br />

⎢<br />

0 1 3 0<br />

⎥<br />

⎢ ⎥<br />

. The system has no solution.<br />

⎢⎣0 0 0 1⎥⎦<br />

26. Beg<strong>in</strong> by subtract<strong>in</strong>g row 1 from row 2 of A. Then <strong>in</strong>terchange rows 1 and 2. Next<br />

subtract twice row 1 from row 2, and five times row 1 from row 3.<br />

⎡1 0 1 0⎤<br />

E =<br />

⎢<br />

0 1 2 0<br />

⎥<br />

⎢ ⎥<br />

. The system has no solution.<br />

⎢⎣0 0 0 1⎥⎦<br />

x −4x −3x − 3x = 4<br />

2x1−6x2 −5x3− 5x4 = 5<br />

3x − x −4x − 5x = − 7<br />

27. 1 2 3 4<br />

1 2 3 4<br />

Beg<strong>in</strong> by subtract<strong>in</strong>g twice row 1 from row 2 of A, and <strong>three</strong> times row 1 from row 3.<br />

⎡1 0 0 2 3 ⎤<br />

E =<br />

⎢<br />

0 1 0 1 4<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

; x1 = 3− 2 t, x2 =− 4 + t, x3 = 5− 3 t, x4 = t<br />

⎢⎣0 0 1 3 5 ⎥⎦<br />

28. Beg<strong>in</strong> by subtract<strong>in</strong>g row 3 from row 1 of A. Then subtract 3 times row 1 from row 2,<br />

and twice row 1 from row 3.<br />

⎡1 −2<br />

0 3 4⎤<br />

E =<br />

⎢<br />

0 0 1 4 3<br />

⎥<br />

⎢ ⎥<br />

; x1 = 4+ 2s− 3 t, x2 = s, x3 = 3− 4 t, x4 = t<br />

⎢⎣0 0 0 0 0⎥⎦<br />

29. Beg<strong>in</strong> by <strong>in</strong>terchang<strong>in</strong>g rows 1 and 2 of A. Then subtract <strong>three</strong> times row 1 from row 2,<br />

and four times row 1 from row 3.<br />

⎡1 0 1 1 3⎤<br />

E =<br />

⎢<br />

0 1 2 3 5<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

; x1 = 3 −s− t, x2 = 5+ 2s− 3 t, x3 = s, x4 = t<br />

⎢⎣0 0 0 0 0⎥⎦<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


30. Beg<strong>in</strong> by <strong>in</strong>terchang<strong>in</strong>g rows 1 and 2 of A. Then subtract twice row 1 from row 2, and<br />

five times row 1 from row 3.<br />

31.<br />

⎡1 0 0 0 −3<br />

2⎤<br />

E =<br />

⎢<br />

0 1 0 1 2 1<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

; x1 = 2+ 3 t, x2 = 1+ s− 2 t, x3 = 2+ 2 s, x4 = s, x5 = t<br />

⎢⎣0 0 1 −2<br />

0 2⎥⎦<br />

⎡1 2 3⎤ ⎡1 2 3⎤ ⎡1 2 3⎤ ⎡1 2 3⎤<br />

(1/6) R3 R2−5R3 (1/ 4) R2<br />

⎢<br />

0 4 5<br />

⎥ ⎢<br />

0 4 5<br />

⎥ ⎢<br />

0 4 0<br />

⎥ ⎢<br />

0 1 0<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣0 0 6⎥⎦ ⎢⎣0 0 1⎥⎦ ⎢⎣0 0 1⎥⎦ ⎢⎣0 0 1⎥⎦<br />

⎡1 0 3⎤ ⎡1 0 0⎤<br />

→<br />

⎢<br />

0 1 0<br />

⎥ ⎢<br />

0 1 0<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣0 0 1⎥⎦ ⎢⎣0 0 1⎥⎦<br />

R1−2R2 R1−3R3 32. If ad −bc ≠ 0, then not both a and b can be zero. If, for <strong>in</strong>stance, a ≠ 0, then<br />

a b (1/ aR ) 1 1 b/ a R2−cR1 1 b/ a aR2<br />

1 b/ a<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

⎢<br />

c d<br />

⎥ → ⎢<br />

c d<br />

⎥ → ⎢<br />

0 d bc/ a<br />

⎥ →<br />

−<br />

⎢<br />

0 ad −bc<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

⎡1 b/ a⎤<br />

⎡1 0⎤<br />

→ ⎢<br />

0 1<br />

⎥ → ⎢<br />

0 1<br />

⎥.<br />

⎣ ⎦ ⎣ ⎦<br />

(1/( ad −bc)) R2 R1 −(<br />

b/ a) R2<br />

33. If the upper left element of a 2× 2 reduced echelon matrix is 1, then the possibilities are<br />

⎡1 ⎢<br />

⎣0 0⎤ 1<br />

⎥<br />

⎦<br />

and<br />

⎡1 ⎢<br />

⎣0 * ⎤<br />

,<br />

0<br />

⎥ depend<strong>in</strong>g on whether there is a nonzero element <strong>in</strong> the second<br />

⎦<br />

row. If the upper left element is zero — so both elements of the second row are also 0,<br />

⎡0 then the possibilities are ⎢<br />

⎣0 1⎤ 0<br />

⎥<br />

⎦<br />

and<br />

⎡0 ⎢<br />

⎣0 0⎤<br />

.<br />

0<br />

⎥<br />

⎦<br />

34. If the upper left element of a 3× 3 reduced echelon matrix is 1, then the possibilities are<br />

⎡1 0 0⎤ ⎡1 0 * ⎤ ⎡1 * 0⎤ ⎡1 * * ⎤<br />

⎢<br />

0 1 0<br />

⎥<br />

,<br />

⎢<br />

0 1 *<br />

⎥<br />

,<br />

⎢<br />

0 0 1<br />

⎥<br />

, and<br />

⎢<br />

0 0 0<br />

⎥<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥<br />

,<br />

⎢⎣0 0 1⎥⎦ ⎢⎣0 0 0⎥⎦ ⎢⎣0 0 0⎥⎦ ⎢⎣0 0 0⎥⎦<br />

depend<strong>in</strong>g on whether the second and third row conta<strong>in</strong> any nonzero elements. If the<br />

upper left element is zero — so the first column and third row conta<strong>in</strong> no nonzero<br />

elements — then use of the four 2× 2 reduced echelon matrices of Problem 33 (for the<br />

upper right 2× 2 submatrix of our reduced 3× 3 matrix) gives the additional possibilities<br />

Section 3.3 149<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


150<br />

⎡0 1 0⎤ ⎡0 1 * ⎤ ⎡0 0 1⎤ ⎡0 0 0⎤<br />

⎢<br />

0 0 1<br />

⎥<br />

,<br />

⎢<br />

0 0 0<br />

⎥<br />

,<br />

⎢<br />

0 0 0<br />

⎥<br />

, and<br />

⎢<br />

0 0 0<br />

⎥<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥<br />

.<br />

⎢⎣0 0 0⎥⎦ ⎢⎣0 0 0⎥⎦ ⎢⎣0 0 0⎥⎦ ⎢⎣0 0 0⎥⎦<br />

35. (a) If ( x0, y 0)<br />

is a solution, then it follows that<br />

akx ( 0) + bky ( 0) = kax ( 0 + by0) = k⋅<br />

0 = 0,<br />

ckx ( ) + dky ( ) = kcx ( + dy) = k⋅<br />

0 = 0<br />

0 0 0 0<br />

so ( kx0, ky 0)<br />

is also a solution.<br />

(b) If ( 1, 1)<br />

so x1 x2 y1 y2<br />

x y and ( x2, y 2)<br />

are <strong>solutions</strong>, then it follows that<br />

a( x1+ x2) + b( y1+ y2) = ( ax1+ by1) + ( ax2 + by2)<br />

= 0+ 0 = 0,<br />

c( x + x ) + d( y + y ) = ( cx + dy ) + ( cx + dy ) = 0+ 0 = 0<br />

1 2 1 2 1 1 2 2<br />

( + , + ) is also a solution.<br />

36. By Problem 32, the coefficient matrix of the given homogeneous 2× 2 system is rowequivalent<br />

<strong>to</strong> the 2× 2 identity matrix. Therefore, Theorem 4 implies that the given<br />

system has only the trivial solution.<br />

37. If ad − bc = 0 then, much as <strong>in</strong> Problem 32, we see that the second row of the reduced<br />

echelon form of the coefficient matrix is allzero. Hence there is a free variable, and thus<br />

the given homogeneous system has a nontrivial solution <strong>in</strong>volv<strong>in</strong>g a parameter t.<br />

38. By Problem 37, there is a nontrivial solution if and only if<br />

2<br />

( c+ 2)( c−3) − (2)(3) = c −c− 12 = ( c− 4)( c+<br />

3) = 0,<br />

that is, either c = 4 or c = –3.<br />

39. It is given that the augmented coefficient matrix of the homogeneous 3× 3 system has the<br />

form<br />

⎡ a1 ⎢<br />

⎢<br />

a2 ⎢⎣pa1+ qa2 b1 b2 pb1+ qb2 c1<br />

c2<br />

pc1+ qc2<br />

0⎤<br />

0<br />

⎥<br />

⎥<br />

.<br />

0⎥⎦<br />

Upon subtract<strong>in</strong>g both p times row 1 and q times row 2 from row 3, we get the matrix<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


⎡a b c 0⎤<br />

1 1 1<br />

⎢<br />

a2 b2 c2<br />

0<br />

⎥<br />

⎢ ⎥<br />

⎢⎣0 0 0 0⎥⎦<br />

correspond<strong>in</strong>g <strong>to</strong> two homogeneous l<strong>in</strong>ear equations <strong>in</strong> <strong>three</strong> unknowns. Hence there is at<br />

least one free variable, and thus the system has a nontrivial family of <strong>solutions</strong>.<br />

40. In reduc<strong>in</strong>g further from the echelon matrix E <strong>to</strong> the matrix E*, the lead<strong>in</strong>g entries of<br />

E become the lead<strong>in</strong>g ones <strong>in</strong> the reduced echelon matrix E*. Thus the nonzero rows of<br />

E* come precisely from the nonzero rows of E. We therefore are talk<strong>in</strong>g about the same<br />

rows — and <strong>in</strong> particular about the same number of rows — <strong>in</strong> either case.<br />

SECTION 3.4<br />

MATRIX OPERATIONS<br />

The objective of this section is simple <strong>to</strong> state. It is not merely knowledge of, but complete mastery<br />

of matrix addition and multiplication (particularly the latter). Matrix multiplication must be<br />

practiced until it is carried out not only accurately but quickly and with confidence — until you can<br />

hardly look at two matrices A and B without th<strong>in</strong>k<strong>in</strong>g of "pour<strong>in</strong>g" the ith row of A down the jth<br />

column of B.<br />

1.<br />

2.<br />

3.<br />

4.<br />

⎡3 −5⎤ ⎡−1 0 ⎤ ⎡9 −15⎤ ⎡−4 0 ⎤ ⎡5 −15⎤<br />

3⎢ 4<br />

2 7<br />

⎥+ ⎢ = + =<br />

3 −4 ⎥ ⎢<br />

6 21<br />

⎥ ⎢<br />

12 −16<br />

⎥ ⎢<br />

18 5<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

⎡ 2 0 −3⎤ ⎡−2 3 1⎤ ⎡10 0 −15⎤ ⎡ 6 −9 −3 ⎤ ⎡ 16 −9 −18⎤<br />

5⎢ − 3<br />

= + =<br />

−156 ⎥ ⎢<br />

7 1 5<br />

⎥ ⎢<br />

−52530 ⎥ ⎢<br />

−21−3−15 ⎥ ⎢<br />

−26<br />

22 15<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

⎡5 0 ⎤ ⎡−4 5⎤ ⎡−10 0 ⎤ ⎡−16 20⎤ ⎡−26 20⎤<br />

− 2<br />

⎢<br />

0 7<br />

⎥<br />

4<br />

⎢<br />

3 2<br />

⎥ ⎢<br />

0 14<br />

⎥ ⎢<br />

12 8<br />

⎥ ⎢<br />

12 6<br />

⎥<br />

⎢ ⎥<br />

+<br />

⎢ ⎥<br />

=<br />

⎢<br />

−<br />

⎥<br />

+<br />

⎢ ⎥<br />

=<br />

⎢<br />

−<br />

⎥<br />

⎢⎣3−1⎥⎦ ⎢⎣ 7 4⎥⎦ ⎢⎣ −62⎥⎦<br />

⎢⎣ 28 16⎥⎦ ⎢⎣ 22 18⎥⎦<br />

⎡2 7<br />

⎢<br />

⎢<br />

4<br />

⎢⎣5 −1 0<br />

−2<br />

0 ⎤ ⎡6 − 3<br />

⎥<br />

5<br />

⎢<br />

⎥<br />

+<br />

⎢<br />

5<br />

7 ⎥⎦ ⎢⎣0 −3 2<br />

7<br />

−4⎤<br />

−1<br />

⎥<br />

⎥<br />

9 ⎥⎦<br />

=<br />

⎡14 ⎢<br />

⎢<br />

28<br />

⎢⎣35 −7 0<br />

−14<br />

0 ⎤ ⎡30 − 21<br />

⎥ ⎢<br />

⎥<br />

+<br />

⎢<br />

25<br />

49 ⎥⎦ ⎢⎣ 0<br />

−15 10<br />

35<br />

−20⎤ − 5<br />

⎥<br />

⎥<br />

45 ⎥⎦ =<br />

⎡44 ⎢<br />

⎢<br />

53<br />

⎢⎣35 −22 10<br />

21<br />

−20⎤<br />

−26<br />

⎥<br />

⎥<br />

94 ⎥⎦<br />

Section 3.4 151<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


5.<br />

6.<br />

152<br />

⎡2 −1⎤⎡−4 2⎤ ⎡ −9 1 ⎤ ⎡−4 2⎤⎡2 −1⎤ ⎡−2 8⎤<br />

⎢ ;<br />

3 2<br />

⎥⎢<br />

1 3<br />

⎥ = ⎢ =<br />

−10<br />

12<br />

⎥ ⎢<br />

1 3<br />

⎥⎢<br />

3 2<br />

⎥ ⎢<br />

11 5<br />

⎥<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

⎡1 0 −3⎤⎡7 −4 3 ⎤ ⎡ 7 −13 −24⎤<br />

⎢<br />

3 2 4<br />

⎥⎢<br />

1 5 2<br />

⎥ ⎢<br />

23 10 41<br />

⎥<br />

⎢ ⎥⎢<br />

−<br />

⎥<br />

=<br />

⎢ ⎥<br />

⎢⎣2 −3 5 ⎥⎢ ⎦⎣0 3 9 ⎥⎦ ⎢⎣11 −8<br />

57 ⎥⎦<br />

⎡7 −4 3 ⎤⎡1 0 −3⎤ ⎡ 1 −17 −22⎤<br />

⎢<br />

1 5 2<br />

⎥⎢<br />

3 2 4<br />

⎥ ⎢<br />

12 16 7<br />

⎥<br />

⎢<br />

−<br />

⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⎢⎣039⎥⎢ ⎦⎣2−35⎥⎦ ⎢⎣27 −21<br />

57 ⎥⎦<br />

⎡3⎤ ⎡3⎤ ⎡3 6 9⎤<br />

1 2 3<br />

⎢<br />

4<br />

⎥<br />

26 ;<br />

⎢<br />

4<br />

⎥<br />

1 2 3<br />

⎢<br />

4 8 12<br />

⎥<br />

⎢ ⎥<br />

=<br />

⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⎢⎣6⎥⎦ ⎢⎣6⎥⎦ ⎢⎣5 10 15⎥⎦<br />

7. [ ] [ ] [ ]<br />

8.<br />

9.<br />

10.<br />

⎡ 3 0⎤ ⎡ 3 0⎤ ⎡3 0 9 ⎤<br />

⎡1 0 3⎤⎢ 21 15 1 0 3<br />

1 4<br />

⎥ ⎡ ⎤<br />

;<br />

⎢<br />

1 4<br />

⎥⎡ ⎤ ⎢<br />

7 20 13<br />

⎥<br />

⎢<br />

2 5 4<br />

⎥⎢ −<br />

⎥<br />

= ⎢<br />

35 0<br />

⎥ ⎢<br />

−<br />

⎥⎢ = −<br />

2 5 4<br />

⎥ ⎢ ⎥<br />

⎣ − ⎦ −<br />

⎢ 6 5<br />

⎣ ⎦<br />

6 5<br />

⎣ ⎦<br />

⎣ ⎥⎦ ⎢⎣ ⎥⎦ ⎢⎣16 −25<br />

38⎥⎦<br />

⎡ 0 −2⎤<br />

⎡ 4 ⎤<br />

⎢ 3<br />

3 1<br />

⎥⎡ ⎤ ⎢<br />

7<br />

⎥<br />

⎢ ⎥⎢ =<br />

−2<br />

⎥ ⎢ ⎥<br />

⎢ 4 5<br />

⎣ ⎦<br />

⎣− ⎥⎦ ⎢⎣−22⎥⎦ but the product<br />

Chapter 3<br />

⎡ 0 −2⎤<br />

⎡ 3 ⎤⎢<br />

3 1<br />

⎥<br />

⎢<br />

2<br />

⎥⎢ ⎥<br />

⎣−⎦ ⎢⎣ −4<br />

5 ⎥⎦<br />

is not def<strong>in</strong>ed.<br />

⎡2 1⎤⎡−1 0 4⎤ ⎡1 −2<br />

13⎤<br />

AB = ⎢<br />

4 3<br />

⎥⎢ =<br />

3 −2 5<br />

⎥ ⎢<br />

5 −6<br />

31<br />

⎥ but the product BA is not def<strong>in</strong>ed.<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

⎡ 2 7 5 6⎤<br />

AB ⎢<br />

−1<br />

4 2 3<br />

⎥<br />

but the product BA is not def<strong>in</strong>ed.<br />

⎣ ⎦<br />

11. = [ 3 − 5] = [ 11 1 5 3]<br />

12. Neither product matrix AB or BA is def<strong>in</strong>ed.<br />

13.<br />

⎡ 3 1⎤⎛⎡ 2 5⎤⎡01⎤⎞ ⎡ 3 1⎤⎡10 17⎤ ⎡32 51 ⎤<br />

ABC ( ) = ⎢ ⎜ ⎟ = =<br />

−1 4<br />

⎥ ⎢<br />

−3 1<br />

⎥⎢<br />

2 3<br />

⎥ ⎢<br />

−1 4<br />

⎥⎢<br />

2 0<br />

⎥ ⎢<br />

−2 −17<br />

⎥<br />

⎣ ⎦⎝⎣ ⎦⎣ ⎦⎠ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

⎛⎡ 3 1⎤⎡ 2 5⎤⎞⎡0 1⎤ ⎡ 3 16⎤⎡0 1⎤ ⎡32 51 ⎤<br />

( AB) C = ⎜⎢ ⎟ = =<br />

−14 ⎥⎢<br />

−31 ⎥ ⎢<br />

2 3<br />

⎥ ⎢<br />

−14 −1 ⎥⎢<br />

2 3<br />

⎥ ⎢<br />

−2−17 ⎥<br />

⎝⎣ ⎦⎣ ⎦⎠⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


⎛⎡ 2 5⎤⎡ 6 ⎤⎞ ⎡−13⎤ ⎜⎢ ⎟<br />

−3 1<br />

⎥⎢<br />

−5 ⎥ ⎢<br />

−23<br />

⎥<br />

⎝⎣ ⎦⎣ ⎦⎠ ⎣ ⎦<br />

14. A( BC ) = [ 2 − 1] = [ 2 − 1] = [ −3]<br />

⎛ ⎡ 2 5⎤⎞⎡ 6 ⎤ ⎡ 6 ⎤<br />

⎜ ⎢ ⎟<br />

−3 1<br />

⎥ ⎢<br />

−5 ⎥ ⎢<br />

−5<br />

⎥<br />

⎝ ⎣ ⎦⎠⎣ ⎦ ⎣ ⎦<br />

( AB) C = [ 2 − 1] = [ 7 9] = [ −3]<br />

⎛ ⎡2 0⎤⎞<br />

⎡3⎤⎜ ⎟ ⎡3⎤ ⎡12 15⎤<br />

=<br />

⎢ ⎥<br />

⎢<br />

2<br />

⎥⎜ −<br />

⎢ ⎥⎟<br />

= ⎢ =<br />

2<br />

⎥ ⎢<br />

8 10<br />

⎥<br />

⎣ ⎦⎜ ⎢1 4⎥⎟<br />

⎣ ⎦ ⎣ ⎦<br />

⎝ ⎣ ⎦⎠<br />

15. A( BC ) [ 1 1 2] 0 3 [ 4 5]<br />

⎡2 0⎤ ⎡2 0⎤<br />

⎛⎡3⎤ ⎞ ⎡3 −3<br />

6⎤ ⎡12 15⎤<br />

= 1 1 2<br />

⎢<br />

0 3<br />

⎥ ⎢<br />

0 3<br />

⎥<br />

⎜⎢ 2<br />

⎥ − ⎟⎢<br />

⎥<br />

= ⎢ =<br />

2 2 4<br />

⎥⎢ ⎥ ⎢<br />

8 10<br />

⎥<br />

⎝⎣ ⎦ ⎠ −<br />

⎢1 4⎥ ⎣ ⎦<br />

⎢1 4⎥<br />

⎣ ⎦<br />

⎣ ⎦ ⎣ ⎦<br />

( AB) C [ ]<br />

16. A( BC )<br />

( )<br />

=<br />

⎡2 ⎢<br />

⎢<br />

0<br />

⎢⎣1 0⎤<br />

1<br />

3<br />

⎥⎛⎡<br />

⎥⎜⎢ 3<br />

4⎥⎝⎣<br />

⎦<br />

−1⎤⎡1 −2<br />

⎥⎢<br />

⎦⎣3 0<br />

2<br />

−1<br />

0<br />

2⎤⎞<br />

⎟<br />

1<br />

⎥<br />

⎦⎠<br />

=<br />

⎡2 ⎢<br />

⎢<br />

0<br />

⎣⎢1 0⎤ 2<br />

3<br />

⎥⎡− ⎥⎢ 3<br />

4<br />

⎣− ⎦⎥ −2 −4 −1<br />

−3<br />

1⎤<br />

4<br />

⎥<br />

⎦<br />

=<br />

⎡ −4 ⎢<br />

⎢<br />

−9 ⎣⎢−14 −4 −12 −18 −2<br />

−9<br />

−13<br />

2⎤<br />

12<br />

⎥<br />

⎥<br />

17⎦⎥<br />

⎛⎡2 ⎜<br />

AB C =<br />

⎢<br />

⎜⎢ 0<br />

⎜<br />

⎝<br />

⎢⎣1 0⎤ 1<br />

3<br />

⎥⎡<br />

⎥⎢ 3<br />

4⎥<br />

⎣<br />

⎦<br />

⎞<br />

−1⎤⎟⎡1 −2<br />

⎥⎟⎢ ⎦⎟⎣3 ⎠<br />

0<br />

2<br />

−1<br />

0<br />

2⎤<br />

1<br />

⎥<br />

⎦<br />

=<br />

⎡2 ⎢<br />

⎢<br />

9<br />

⎢⎣13 −2⎤ ⎡1 − 6<br />

⎥<br />

⎥⎢ 3<br />

−9⎥ ⎣<br />

⎦<br />

0<br />

2<br />

−1<br />

0<br />

2⎤<br />

1<br />

⎥<br />

⎦<br />

=<br />

⎡ −4 ⎢<br />

⎢<br />

−9 ⎢⎣−14 −4 −12 −18 −2<br />

−9<br />

−13<br />

2⎤<br />

12<br />

⎥<br />

⎥<br />

17⎥⎦<br />

Each of the homogeneous l<strong>in</strong>ear systems <strong>in</strong> Problems 17–22 is already <strong>in</strong> echelon form, so it<br />

rema<strong>in</strong>s only <strong>to</strong> write (by back substitution) the solution, first <strong>in</strong> parametric form and then <strong>in</strong><br />

vec<strong>to</strong>r form.<br />

x = s, x = t, x = 5s− 4 t, x = − 2s+ 7t<br />

17. 3 4 1 2<br />

( 5, 2,1,0) ( 4,7,0,1)<br />

x = s − + t −<br />

x = s, x = t, x = 3s− 6 t, x = − 9t<br />

18. 2 4 1 3<br />

( 3,1,0, 0) ( 6, 0, 9,1)<br />

x = s + t − −<br />

Section 3.4 153<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


19. 4 5 1 2 3<br />

154<br />

x = s, x = t, x = − 3 s+ t, x = 2s− 6 t, x = − s+ 8t<br />

( 3, 2, 1,1, 0) ( 1, 6,8, 0,1 )<br />

x = s − − + t −<br />

x = s, x = t, x = 3s− 7 t, x = 2 t, x = 10t<br />

20. 2 5 1 3 4<br />

( 3,1,0,0,0 ) ( 7,0,2,10,0)<br />

x = s + t −<br />

x = r, x = s, x = t, x = r−2s− 7 t, x = − 2r+ 3s− 4t<br />

21. 3 4 5 1 2<br />

( 1, 2,1,0,0) ( 2,3,0,1,0 ) ( 7, 4,0,0,1)<br />

x = r − + s − + t − −<br />

x = r, x = s, x = t, x = r−7s− 3 t, x = s+ 2t<br />

22. 2 4 5 1 3<br />

( 1,1,0,0,0 ) ( 7,0,1,1,0 ) ( 3,0, 2,0,1)<br />

x = r + s − + t −<br />

23. The matrix equation<br />

⎡2 1⎤⎡a b⎤<br />

⎡1 0⎤<br />

⎢<br />

3 2<br />

⎥⎢ =<br />

c d<br />

⎥ ⎢<br />

0 1<br />

⎥<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

2a+ c = 1 2b+ d = 0<br />

3a+ 2c = 0 3b+ 2d = 1<br />

Chapter 3<br />

entails the four scalar equations<br />

that we readily solve for a = 2, b=− 1, c=− 3, d = 2. Hence the apparent <strong>in</strong>verse<br />

matrix of A, such that AB = I, is B<br />

as well.<br />

⎡ 2<br />

= ⎢<br />

⎣−3 −1<br />

⎤<br />

.<br />

2<br />

⎥ Indeed, we f<strong>in</strong>d that BA = I<br />

⎦<br />

24. The matrix equation<br />

⎡3 4⎤⎡a b⎤<br />

⎡1 0⎤<br />

⎢<br />

5 7<br />

⎥⎢ =<br />

c d<br />

⎥ ⎢<br />

0 1<br />

⎥<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

3a+ 4c = 1 3b+ 4d = 0<br />

5a+ 7c = 0 5b+ 7d = 1<br />

entails the four scalar equations<br />

that we readily solve for a = 7, b=− 4, c=− 5, d = 3. Hence the apparent <strong>in</strong>verse<br />

matrix of A, such that AB = I, is B<br />

as well.<br />

⎡ 7<br />

= ⎢<br />

⎣−5 −4<br />

⎤<br />

.<br />

3<br />

⎥ Indeed, we f<strong>in</strong>d that BA = I<br />

⎦<br />

25. The matrix equation<br />

⎡5 7⎤⎡a b⎤<br />

⎡1 0⎤<br />

⎢<br />

2 3<br />

⎥⎢ =<br />

c d<br />

⎥ ⎢<br />

0 1<br />

⎥<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

entails the four scalar equations<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


5a+ 7c = 1 5b+ 7d = 0<br />

2a+ 3c = 0 2b+ 3d = 1<br />

that we readily solve for a = 3, b=− 7, c=− 2, d = 5. Hence the apparent <strong>in</strong>verse<br />

matrix of A, such that AB = I, is B<br />

as well.<br />

⎡ 3<br />

= ⎢<br />

⎣−2 −7<br />

⎤<br />

.<br />

5<br />

⎥ Indeed, we f<strong>in</strong>d that BA = I<br />

⎦<br />

26. The matrix equation<br />

27.<br />

⎡ 1 −2⎤⎡a<br />

b⎤<br />

⎡1 0⎤<br />

⎢ =<br />

−2<br />

4<br />

⎥⎢<br />

c d<br />

⎥ ⎢<br />

0 1<br />

⎥<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

a− 2c = 1 b− 2d = 0<br />

− 2a+ 4c = 0 − 2b+ 4d = 1.<br />

entails the four scalar equations<br />

But the two equations <strong>in</strong> a and c obviously are <strong>in</strong>consistent, because ( −1)(1) ≠ 0, and<br />

the two equations <strong>in</strong> b and d are similarly <strong>in</strong>consistent. Therefore the given matrix A<br />

has no <strong>in</strong>verse matrix.<br />

⎡a 0 0 0⎤ ⎡b 0 0 0⎤ ⎡ab 0 0 0 ⎤<br />

1 1 1 1<br />

⎢<br />

0 a2 0 0<br />

⎥ ⎢<br />

0 b2 0 0<br />

⎥ ⎢<br />

0 a2b2 0 0<br />

⎥<br />

⎢<br />

<br />

⎥ ⎢<br />

<br />

⎥ ⎢<br />

<br />

⎥<br />

⎢0 0 a3 0⎥ ⎢0 0 b3 0⎥ = ⎢ 0 0 a3b3 0 ⎥<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢ℝ ℝ ℝ ℂ ℝ ⎥ ⎢ℝ ℝ ℝ ℂ ℝ ⎥ ⎢ ℝ ℝ ℝ ℂ ℝ ⎥<br />

⎢<br />

⎣0 0 0 a ⎥ ⎢<br />

n⎦ ⎣0 0 0 b ⎥ ⎢<br />

n⎦ ⎣ 0 0 0 anb ⎥<br />

n⎦<br />

Thus the product of two diagonal matrices of the same size is obta<strong>in</strong>ed simply by<br />

multiply<strong>in</strong>g correspond<strong>in</strong>g diagonal elements. Then the commutativity of scalar<br />

multiplication immediately implies that AB = BA for diagonal matrices.<br />

n<br />

28. The matrix power A is simply the product AAA⋯ A of n copies of A. It follows<br />

(by associativity) that parentheses don't matter:<br />

29.<br />

r s r+ s<br />

A A = ( AAA⋯A)( AAA⋯A) = ( AAA⋯ A) = A ,<br />

rcopies scopies r+ scopies<br />

the product of r + s copies of A <strong>in</strong> either case.<br />

( a + d) A−( ad − bc) I<br />

⎡a = ( a + d) ⎢<br />

⎣c b⎤<br />

⎡1 −( ad −bc)<br />

d<br />

⎥ ⎢<br />

⎦ ⎣0 0⎤<br />

1<br />

⎥<br />

⎦<br />

=<br />

2 ⎡( a + ad) −( ad − bc) ⎢<br />

⎣ ac + cd<br />

ab + bd ⎤<br />

2 ⎥ =<br />

( ad + d ) −( ad − bc) ⎦<br />

2 ⎡a+ bc<br />

⎢<br />

⎣ac+ cd<br />

ab + bd ⎤<br />

2⎥<br />

bc + d ⎦<br />

Section 3.4 155<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


156<br />

⎡a b⎤⎡a b⎤<br />

= ⎢<br />

c d<br />

⎥⎢ =<br />

c d<br />

⎥ A<br />

⎣ ⎦⎣ ⎦<br />

30. If A<br />

⎡2 = ⎢<br />

⎣1 1⎤<br />

2<br />

⎥ then a + d<br />

⎦<br />

= 4 and ad − bc = 3. Hence<br />

2<br />

A = 4A− 3I =<br />

⎡2 4⎢ ⎣1 1⎤ ⎡1 3<br />

2<br />

⎥− ⎢<br />

⎦ ⎣0 0⎤ 1<br />

⎥<br />

⎦<br />

=<br />

⎡5 ⎢<br />

⎣4 4⎤<br />

;<br />

5<br />

⎥<br />

⎦<br />

3 2 ⎡54⎤ ⎡21⎤ ⎡14 13⎤<br />

A = 4A − 3A = 4⎢ − 3 = ;<br />

4 5<br />

⎥ ⎢<br />

1 2<br />

⎥ ⎢<br />

13 14<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

4 3 2 ⎡14 13⎤ ⎡54⎤ ⎡41 40⎤<br />

A = 4A − 3A = 4⎢ − 3 = ;<br />

13 14<br />

⎥ ⎢<br />

4 5<br />

⎥ ⎢<br />

40 41<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

2<br />

5 5 3 ⎡41 40⎤ ⎡14 13⎤ ⎡122 121⎤<br />

A = 4A − 3A = 4⎢ − 3 =<br />

.<br />

40 41<br />

⎥ ⎢<br />

13 14<br />

⎥ ⎢<br />

121 122<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

31. (a) If<br />

⎡ 2 −1⎤<br />

⎡1 5⎤<br />

A = ⎢ and =<br />

4 3<br />

⎥ B<br />

−<br />

⎢<br />

3 7<br />

⎥ then<br />

⎣ ⎦ ⎣ ⎦<br />

( A+ B)( A− B ) =<br />

⎡ 3 4⎤⎡ 1<br />

⎢<br />

1 10<br />

⎥⎢<br />

⎣− ⎦⎣−7 −6⎤ −4 ⎥<br />

⎦<br />

=<br />

⎡−25 ⎢<br />

⎣−71 −34⎤<br />

−34<br />

⎥<br />

⎦<br />

but<br />

2 2<br />

A − B =<br />

⎡ 8<br />

⎢<br />

⎣−20 −5⎤ ⎡16 13<br />

⎥− ⎢<br />

⎦ ⎣24 40⎤ 64<br />

⎥<br />

⎦<br />

=<br />

⎡ −8 ⎢<br />

⎣−44 −45<br />

⎤<br />

.<br />

−51<br />

⎥<br />

⎦<br />

(b) If AB = BA then<br />

( A+ B)( A− B) = A( A− B) + B( A−B) =<br />

2 2<br />

A − AB+ BA− B =<br />

2 2<br />

A −B<br />

.<br />

32. (a) If<br />

but<br />

⎡ 2 −1⎤<br />

⎡1 5⎤<br />

A = ⎢ and =<br />

4 3<br />

⎥ B<br />

−<br />

⎢<br />

3 7<br />

⎥ then<br />

⎣ ⎦ ⎣ ⎦<br />

2 ⎡ 3 4⎤⎡ 3 4⎤ ⎡ 5 52⎤<br />

( A+ B ) = ⎢ =<br />

−110 ⎥⎢<br />

−110 ⎥ ⎢<br />

−13<br />

96<br />

⎥<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

2 2<br />

A + 2AB+ B =<br />

⎡ 8<br />

⎢<br />

⎣−20 −5⎤ ⎡ 2<br />

2<br />

13<br />

⎥+ ⎢<br />

⎦ ⎣−4 −1⎤⎡1<br />

3<br />

⎥⎢<br />

⎦⎣3 5⎤ ⎡16 7<br />

⎥+ ⎢<br />

⎦ ⎣24 40⎤<br />

64<br />

⎥<br />

⎦<br />

=<br />

⎡ 8<br />

⎢<br />

⎣−20 −5⎤ ⎡−1 2<br />

13<br />

⎥+ ⎢<br />

⎦ ⎣ 5<br />

3⎤ ⎡16 1<br />

⎥+ ⎢<br />

⎦ ⎣24 40⎤ =<br />

64<br />

⎥<br />

⎦<br />

⎡22 ⎢<br />

⎣14 41⎤<br />

.<br />

79<br />

⎥<br />

⎦<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


(b) If AB = BA then<br />

( A+ B)( A− B) = A( A− B) + B( A−B) =<br />

2 2<br />

A − AB+ BA− B =<br />

2 2<br />

A −B<br />

.<br />

33. Four different 2× 2 matrices A with A 2 = I are<br />

34. If<br />

35. If<br />

36. If<br />

37. If<br />

⎡1 0⎤ ⎡−1 0⎤ ⎡1 0 ⎤ ⎡−1 0 ⎤<br />

⎢ , , , and .<br />

0 1<br />

⎥ ⎢<br />

0 1<br />

⎥ ⎢<br />

0 −1 ⎥ ⎢<br />

0 −1<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

⎡1 −1⎤<br />

A = ⎢ ≠ = − =<br />

1 −1<br />

⎥ 0 A A I 0<br />

⎣ ⎦<br />

2<br />

then (0) (0) .<br />

⎡2 −1⎤<br />

A = ⎢ ≠ = − =<br />

2 −1<br />

⎥ 0 A A I A<br />

⎣ ⎦<br />

2<br />

then (1) (0) .<br />

⎡0 1⎤<br />

A = ⎢ ≠ = − − =<br />

1 0<br />

⎥ 0 A A I I<br />

⎣ ⎦<br />

2<br />

then (0) ( 1) .<br />

⎡ 0 1⎤<br />

A = ⎢ ≠ = − = −<br />

−1<br />

0<br />

⎥ 0 A A I I<br />

⎣ ⎦<br />

2<br />

then (0) (1) .<br />

38. If A =<br />

⎡0 ⎢<br />

⎣1 1⎤<br />

0<br />

⎥<br />

⎦<br />

≠ 0 is the matrix of Problem 36 and<br />

2 2<br />

of Problem 37, then A + B = () I + ( − I) = 0 .<br />

39. If Ax1 = Ax2 = 0, then<br />

( c c ) c ( ) c ( ) c ( ) c ( )<br />

A x x Ax Ax 0 0 0<br />

1 1+ 2 2 = 1 1 + 2 2 = 1 + 2 = .<br />

⎡ 0 1⎤<br />

B = ⎢ ≠<br />

−1<br />

0<br />

⎥ 0 is the matrix<br />

⎣ ⎦<br />

40. (a) If Ax0 = 0 and Ax1 = b, then A( x0 + x1) = Ax0 + Ax1 = 0+ b = b .<br />

(b) If Ax1 = b and Ax2 = b, then A( x − x ) = Ax − Ax = b− b = 0<br />

41. If AB = BA then<br />

1 2 1 2 .<br />

3<br />

( A+ B) 2<br />

= ( A+ B)( A+ B) 2 2<br />

= ( A+ B)( A + 2AB+<br />

B )<br />

=<br />

2 2 2 2<br />

A( A + 2AB+ B ) + B( A + 2AB+<br />

B )<br />

3 2 2 2 2 3<br />

= ( A + 2A B+ AB ) + ( A B+ 2AB<br />

+ B )<br />

Section 3.4 157<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


158<br />

To compute ( ) 4<br />

+<br />

3 2 2 3<br />

= A + 3A B+ 3 AB + B .<br />

A B<br />

4<br />

, write ( A+ B) 3<br />

= ( A+ B)( A+ B ) and proceed similarly,<br />

substitut<strong>in</strong>g the expansion of ( ) 3<br />

A+ B just obta<strong>in</strong>ed.<br />

42. (a) Matrix multiplication gives<br />

(b)<br />

⎡0 0 4⎤ ⎡0 0 0⎤<br />

2 3<br />

N =<br />

⎢<br />

0 0 0<br />

⎥<br />

and<br />

⎢<br />

0 0 0<br />

⎥<br />

⎢ ⎥<br />

N =<br />

⎢ ⎥<br />

.<br />

⎢⎣ 0 0 0⎥⎦ ⎢⎣0 0 0⎥⎦<br />

⎡1 0 0⎤ ⎡0 2 0⎤ ⎡0 0 4⎤ ⎡1 4 4⎤<br />

2 2<br />

A = I+ 2N+ N =<br />

⎢<br />

0 1 0<br />

⎥<br />

2<br />

⎢<br />

0 0 2<br />

⎥ ⎢<br />

0 0 0<br />

⎥ ⎢<br />

0 1 4<br />

⎥<br />

⎢ ⎥<br />

+<br />

⎢ ⎥<br />

+<br />

⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⎢⎣ 0 0 1⎥⎦ ⎢⎣0 0 0⎥⎦ ⎢⎣0 0 0⎥⎦ ⎢⎣0 0 1⎥⎦<br />

⎡1 0 0⎤ ⎡0 2 0⎤ ⎡0 0 4⎤ ⎡1 6 12⎤<br />

3 2<br />

A = I+ 3N+ 3N =<br />

⎢<br />

0 1 0<br />

⎥<br />

3<br />

⎢<br />

0 0 2<br />

⎥<br />

3<br />

⎢<br />

0 0 0<br />

⎥ ⎢<br />

0 1 6<br />

⎥<br />

⎢ ⎥<br />

+<br />

⎢ ⎥<br />

+<br />

⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⎢⎣ 0 0 1⎥⎦ ⎢⎣0 0 0⎥⎦ ⎢⎣0 0 0⎥⎦ ⎢⎣0 0 1⎥⎦<br />

⎡1 0 0⎤ ⎡0 2 0⎤ ⎡0 0 4⎤ ⎡1 8 24⎤<br />

4 2<br />

A = I+ 4N+ 6N =<br />

⎢<br />

0 1 0<br />

⎥<br />

4<br />

⎢<br />

0 0 2<br />

⎥<br />

6<br />

⎢<br />

0 0 0<br />

⎥ ⎢<br />

0 1 8<br />

⎥<br />

⎢ ⎥<br />

+<br />

⎢ ⎥<br />

+<br />

⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⎢⎣ 0 0 1⎥⎦ ⎢⎣0 0 0⎥⎦ ⎢⎣0 0 0⎥⎦ ⎢⎣0 0 1 ⎥⎦<br />

43. First, matrix multiplication gives<br />

and so forth.<br />

SECTION 3.5<br />

3<br />

A =<br />

2<br />

A ⋅ A = A⋅ A =<br />

2<br />

A = ⋅ A = A<br />

4 3 2<br />

3 3 3 3 9 ,<br />

A = A ⋅ A = 9A⋅ A = 9A = 9⋅ 3A = 27 A ,<br />

INVERSES OF MATRICES<br />

2<br />

A = − − = − − = A Then<br />

Chapter 3<br />

⎡ 2 −1 −1⎤ ⎡ 6 −3 −3⎤<br />

⎢<br />

1 2 1<br />

⎥ ⎢<br />

3 6 3<br />

⎥<br />

⎢ ⎥ ⎢ ⎥<br />

3 .<br />

⎢⎣−1 −1 2 ⎥⎦ ⎢⎣−3 −3<br />

6 ⎥⎦<br />

The computational objective of this section is clearcut — <strong>to</strong> f<strong>in</strong>d the <strong>in</strong>verse of a given <strong>in</strong>vertible<br />

matrix. From a more general viewpo<strong>in</strong>t, Theorem 7 on the properties of nons<strong>in</strong>gular matrices<br />

summarizes most of the basic theory of this <strong>chapter</strong>.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


In Problems 1–8 we first give the <strong>in</strong>verse matrix<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

−1 ⎡ 3 −2⎤ ⎡ 3 −2⎤⎡5⎤<br />

⎡ 3 ⎤<br />

A = ⎢ ;<br />

4 3<br />

⎥ x = =<br />

−<br />

⎢<br />

−4 3<br />

⎥⎢<br />

6<br />

⎥ ⎢<br />

−2<br />

⎥<br />

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

−1 ⎡ 5 −7⎤ ⎡ 5 −7⎤⎡−1⎤ ⎡−26⎤ A = ⎢ ;<br />

2 3<br />

⎥ x = =<br />

−<br />

⎢<br />

−2<br />

3<br />

⎥⎢<br />

3<br />

⎥ ⎢<br />

11<br />

⎥<br />

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

−1 ⎡ 6 −7⎤ ⎡ 6 −7⎤⎡<br />

2 ⎤ ⎡ 33 ⎤<br />

A = ⎢ ;<br />

5 6<br />

⎥ x = =<br />

−<br />

⎢<br />

−5 6<br />

⎥⎢<br />

−3 ⎥ ⎢<br />

−28<br />

⎥<br />

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

−1 ⎡17 −12⎤ ⎡17 −12⎤⎡5⎤<br />

⎡ 25 ⎤<br />

A = ⎢ ;<br />

7 5<br />

⎥ x = =<br />

−<br />

⎢<br />

−7 5<br />

⎥⎢<br />

5<br />

⎥ ⎢<br />

−10<br />

⎥<br />

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

−1 1 ⎡ 4 −2⎤ 1 ⎡ 4 −2⎤⎡5⎤<br />

1 ⎡ 8 ⎤<br />

A = ;<br />

2<br />

⎢<br />

5 3<br />

⎥ x = =<br />

− 2<br />

⎢<br />

−5 3<br />

⎥⎢<br />

6<br />

⎥<br />

2<br />

⎢<br />

−7<br />

⎥<br />

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

−1 1 ⎡ 6 −7⎤ 1 ⎡ 6 −7⎤⎡10⎤<br />

1 ⎡ 25 ⎤<br />

A = ;<br />

3<br />

⎢<br />

3 4<br />

⎥ x = =<br />

− 3<br />

⎢<br />

−3 4<br />

⎥⎢<br />

5<br />

⎥<br />

3<br />

⎢<br />

−10<br />

⎥<br />

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

−1 1 ⎡ 7 −9⎤ 1 ⎡ 7 −9⎤⎡3⎤<br />

1 ⎡ 3 ⎤<br />

A = ;<br />

4<br />

⎢<br />

5 7<br />

⎥ x = =<br />

− 4<br />

⎢<br />

−5 7<br />

⎥⎢<br />

2<br />

⎥<br />

4<br />

⎢<br />

−1<br />

⎥<br />

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

−1 1 ⎡10 −15⎤ 1 ⎡10 −15⎤⎡7⎤<br />

1 ⎡ 25 ⎤<br />

A = ;<br />

5<br />

⎢<br />

5 8<br />

⎥ x = =<br />

− 5<br />

⎢<br />

−5 8<br />

⎥⎢<br />

3<br />

⎥<br />

5<br />

⎢<br />

−11<br />

⎥<br />

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

−1<br />

A and then calculate the solution vec<strong>to</strong>r x.<br />

In Problems 9–22 we give at least the first few steps <strong>in</strong> the reduction of the augmented matrix<br />

whose right half is the identity matrix of appropriate size. We w<strong>in</strong>d up with its echelon form, whose<br />

left half is an identity matrix and whose right half is the desired <strong>in</strong>verse matrix.<br />

9.<br />

10.<br />

5 6 1 0 R1−R2 1 1 1 −1 R2−4R11 1 1 −1<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

⎢<br />

4 5 0 1<br />

⎥ → ⎢<br />

4 5 0 1<br />

⎥ → ⎢<br />

0 1 −4<br />

5<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

1−2 ⎡1 0 5 −6⎤ −1<br />

⎡ 5 −6⎤<br />

→ ⎢ ; thus =<br />

0 1 4 5<br />

⎥ A<br />

−<br />

⎢<br />

−4<br />

5<br />

⎥<br />

⎣ ⎦ ⎣ ⎦<br />

R R<br />

5 7 1 0 R1−R2 1 1 1 −1 R2−4R11 1 1 −1<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

⎢<br />

4 6 0 1<br />

⎥ → ⎢<br />

4 6 0 1<br />

⎥ → ⎢<br />

0 2 −4<br />

5<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

Section 3.5 159<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


11.<br />

12.<br />

13.<br />

160<br />

7<br />

⎡1 1 1 −1⎤ ⎡1 0 3 − 2 ⎤<br />

−1<br />

1 ⎡ 6 −7⎤<br />

→ ⎢ ; thus<br />

5 5<br />

0 1 2<br />

⎥ → ⎢ =<br />

2 0 1 2<br />

⎥ A<br />

− − 2<br />

2<br />

⎢<br />

−4<br />

5<br />

⎥<br />

⎣ ⎦ ⎣ ⎦<br />

⎣ ⎦<br />

(1/ 2) R2 R1−R2 ⎡1 5 1 1 0 0⎤ ⎡1 5 1 1 0 0⎤<br />

R2−2R1 ⎢<br />

2 5 0 0 1 0<br />

⎥ ⎢<br />

0 5 2 2 1 0<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢<br />

− − −<br />

⎥<br />

⎢⎣2 7 1 0 0 1⎥⎦ ⎢⎣2 7 1 0 0 1⎥⎦<br />

⎡1 5 1 1 0 0⎤ ⎡1 2 0 −1<br />

0 1⎤<br />

→<br />

⎢<br />

0 5 2 2 1 0<br />

⎥ ⎢<br />

0 5 2 2 1 0<br />

⎥<br />

⎢<br />

− − −<br />

⎥<br />

→<br />

⎢<br />

− − −<br />

⎥<br />

⎢⎣0 −3 −1 −2 0 1⎥⎦ ⎢⎣0 −3 −1 −2<br />

0 1⎥⎦<br />

R3− 2R1 R1+ R3<br />

⎡1 2 0 −1 0 1 ⎤ ⎡1 2 0 −1<br />

0 1 ⎤<br />

→<br />

⎢<br />

0 1 0 2 1 2<br />

⎥ ⎢<br />

0 1 0 2 1 2<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 −3 −1 −2 0 1 ⎥⎦ ⎢⎣0 0 −1 4 3 −5⎥⎦<br />

R2− 2R3 R3+ 3R2 ⎡1 0 0 −5 −2 5 ⎤ ⎡−5 −2<br />

5 ⎤<br />

−1<br />

→ →<br />

⎢<br />

0 1 0 2 1 2<br />

⎥<br />

; thus<br />

⎢<br />

2 1 2<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

A =<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 0 1 −4 −3 5 ⎥⎦ ⎢⎣−4 −3<br />

5 ⎥⎦<br />

( −1) R3 R1−2R2 ⎡1 3 2 1 0 0⎤ ⎡1 3 2 1 0 0⎤<br />

R2−2R1 ⎢<br />

2 8 3 0 1 0<br />

⎥ ⎢<br />

0 2 1 2 1 0<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣3 10 6 0 0 1⎥⎦ ⎢⎣3 10 6 0 0 1⎥⎦<br />

⎡1 3 2 1 0 0⎤ ⎡1 3 2 1 0 0 ⎤<br />

→<br />

⎢<br />

0 2 1 2 1 0<br />

⎥ ⎢<br />

0 1 1 1 1 1<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣0 1 0 −3 0 1⎥⎦ ⎢⎣0 1 0 −3<br />

0 1 ⎥⎦<br />

R3−2R1 R2−R3 ⎡1 3 2 1 0 0 ⎤ ⎡1 0 0 18 2 −7⎤<br />

→<br />

⎢<br />

0 1 1 1 1 1<br />

⎥ ⎢<br />

0 1 0 3 0 1<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→ →<br />

⎢<br />

−<br />

⎥<br />

;<br />

⎢⎣0 0 1 −4 −1 2 ⎥⎦ ⎢⎣0 0 1 −4 −2<br />

2 ⎥⎦<br />

R3−R2 R13 − R2<br />

⎡18 2 −7⎤<br />

=<br />

⎢ ⎥<br />

⎢<br />

−<br />

⎥<br />

⎢⎣−4 −1<br />

2 ⎥⎦<br />

−1<br />

thus 3 0 1<br />

A<br />

⎡2 7 3 1 0 0⎤ ⎡1 3 2 0 1 0⎤<br />

SWAP( R1, R2)<br />

⎢<br />

1 3 2 0 1 0<br />

⎥ ⎢<br />

2 7 3 1 0 0<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣3 7 9 0 0 1⎥⎦ ⎢⎣3 7 9 0 0 1⎥⎦<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


14.<br />

15.<br />

16.<br />

⎡1 3 2 0 1 0⎤ ⎡1 3 2 0 1 0⎤<br />

→<br />

⎢<br />

0 1 1 1 2 0<br />

⎥ ⎢<br />

0 1 1 1 2 0<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣3 7 9 0 0 1⎥⎦ ⎢⎣0 −2 3 0 −3<br />

1⎥⎦<br />

R2−2R1 R3−3R1 ⎡100−13 42 −5⎤ ⎡−13 42 −5⎤<br />

−1<br />

→ →<br />

⎢<br />

0 1 0 3 9 1<br />

⎥<br />

; thus<br />

⎢<br />

3 9 1<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

A =<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 0 1 2 −7 1 ⎥⎦ ⎢⎣ 2 −7<br />

1 ⎥⎦<br />

R3+ 2R2 ⎡3 5 6 1 0 0⎤ ⎡1 1 3 1 −1<br />

0⎤<br />

R1−R2 ⎢<br />

2 4 3 0 1 0<br />

⎥ ⎢<br />

2 4 3 0 1 0<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣2 3 5 0 0 1⎥⎦ ⎢⎣2 3 5 0 0 1⎥⎦<br />

⎡1 1 3 1 −1 0 ⎤ ⎡1 1 3 1 −1<br />

0 ⎤<br />

→<br />

⎢<br />

0 1 2 0 1 1<br />

⎥ ⎢<br />

0 1 2 0 1 1<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣2 3 5 0 0 1 ⎥⎦ ⎢⎣0 1 −1 −2<br />

2 1 ⎥⎦<br />

R2−R3 R3−2R1 ⎡10011 −7−9⎤ ⎡11 −7−9⎤ −1<br />

→ →<br />

⎢<br />

0 1 0 4 3 3<br />

⎥<br />

; thus<br />

⎢<br />

4 3 3<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

A =<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 0 1 −2 1 2 ⎥⎦ ⎢⎣−2 1 2 ⎥⎦<br />

R3−R2 ⎡1 1 5 1 0 0⎤ ⎡1 1 5 1 0 0⎤<br />

R2−R1 ⎢<br />

1 4 13 0 1 0<br />

⎥ ⎢<br />

0 3 8 1 1 0<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣3 2 12 0 0 1⎥⎦ ⎢⎣3 2 12 0 0 1⎥⎦<br />

⎡1 1 5 1 0 0⎤ ⎡1 1 5 1 0 0⎤<br />

→<br />

⎢<br />

0 3 8 1 1 0<br />

⎥ ⎢<br />

0 1 2 7 1 2<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 −1 −3 −3 0 1⎥⎦ ⎢⎣0 −1 −3 −3<br />

0 1⎥⎦<br />

R3− 3R1 R2+ 2R3 ⎡1 0 0 −22 2 7 ⎤ ⎡−22 2 7 ⎤<br />

−1<br />

→ →<br />

⎢<br />

0 1 0 27 3 8<br />

⎥<br />

; thus<br />

⎢<br />

27 3 8<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

A =<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 0 1 10 −1 −3⎥⎦ ⎢⎣ 10 −1 −3⎥⎦<br />

R3+ R2<br />

⎡ 1 −3 −3 1 0 0⎤ ⎡1 −3 −3<br />

1 0 0⎤<br />

R2+ R1<br />

⎢<br />

1 1 2 0 1 0<br />

⎥ ⎢<br />

0 2 1 1 1 0<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣ 2 −3 −3 0 0 1⎥⎦ ⎢⎣2 −3 −3<br />

0 0 1⎥⎦<br />

Section 3.5 161<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


17.<br />

18.<br />

162<br />

⎡1 −3 −3 1 0 0⎤ ⎡1 −3 −3<br />

1 0 0⎤<br />

→<br />

⎢<br />

0 2 1 1 1 0<br />

⎥ ⎢<br />

0 1 2 1 1 1<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 3 3 −2 0 1⎥⎦ ⎢⎣0 3 3 −2<br />

0 1⎥⎦<br />

R3− 2R1 R2+ R3<br />

⎡1 −3 −3 1 0 0 ⎤ ⎡1 −3 −3<br />

1 0 0⎤<br />

→<br />

⎢<br />

0 1 2 1 1 1<br />

⎥ ⎢<br />

0 1 2 1 1 1<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢ 1 2<br />

⎣0 0 −3 1 −3 −2⎥⎦ ⎢⎣ 0 0 1 − 3 1 ⎥ 3⎦<br />

R3−3R2 ( −1/3(<br />

R3)<br />

⎡1 0 0 −1 0 1 ⎤ ⎡−3 0 3 ⎤<br />

1 1<br />

−1<br />

1<br />

→ ⋯ →<br />

⎢<br />

0 1 0 3 1<br />

⎥<br />

3 ; thus<br />

⎢<br />

1 3 1<br />

⎥<br />

⎢<br />

− − −<br />

⎥<br />

A =<br />

3 ⎢<br />

− − −<br />

⎥<br />

⎢ 1 2<br />

⎣0 0 1 − 3 1 ⎥ ⎢ 3 ⎦<br />

⎣−1 3 2 ⎥⎦<br />

R1+ 3R2 ⎡ 1 −3 0 1 0 0⎤ ⎡1 −3<br />

0 1 0 0⎤<br />

R2+ R1<br />

⎢<br />

1 2 1 0 1 0<br />

⎥ ⎢<br />

0 1 1 1 1 0<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣ 0 −2 2 0 0 1⎥⎦ ⎢⎣0 −2<br />

2 0 0 1⎥⎦<br />

⎡1 −3 0 1 0 0⎤ ⎡1 −3<br />

0 1 0 0⎤<br />

→<br />

⎢<br />

0 1 1 1 1 0<br />

⎥ ⎢<br />

0 1 1 1 1 0<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣0 −2 2 0 0 1⎥⎦ ⎢⎣0 0 4 −2 −2<br />

1⎥⎦<br />

( − 1) R2 R3+ 2R2 1 3 3<br />

⎡1 0 0 − 2 − 2 − 4⎤<br />

⎡−2 −6 −3⎤<br />

1 1 1<br />

−1<br />

1<br />

→ →<br />

⎢<br />

0 1 0<br />

⎥<br />

2 2 4 ; thus<br />

⎢<br />

2 2 1<br />

⎥<br />

⎢<br />

− − −<br />

⎥<br />

A =<br />

4 ⎢<br />

− − −<br />

⎥<br />

⎢ 1 1 1<br />

⎣0 0 1 − ⎥ ⎢ 2 − 2 4 ⎦<br />

⎣−2 −2<br />

1 ⎥⎦<br />

(1/ 4) R3<br />

⎡1 −2 2 1 0 0⎤ ⎡1 −2<br />

2 1 0 0⎤<br />

R2−3R1 ⎢<br />

3 0 1 0 1 0<br />

⎥ ⎢<br />

0 6 5 3 1 0<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣1 −1 2 0 0 1⎥⎦ ⎢⎣1 −1<br />

2 0 0 1⎥⎦<br />

⎡1 −2 2 1 0 0⎤ ⎡1 −2<br />

2 1 0 0 ⎤<br />

→<br />

⎢<br />

0 6 5 3 1 0<br />

⎥ ⎢<br />

0 1 5 2 1 5<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣0 1 0 −1 0 1⎥⎦ ⎢⎣0 1 0 −1<br />

0 1 ⎥⎦<br />

R3−R1 R2−5R3 1 2 2<br />

⎡1 −2 2 1 0 0 ⎤<br />

⎡1 0 0<br />

(1/5) 3<br />

5 5 − 5⎤<br />

R<br />

→<br />

⎢<br />

0 1 5 2 1 5<br />

⎥<br />

⎢<br />

0 1 0 1 0 1<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

→ ⋯ →<br />

⎢<br />

−<br />

⎥<br />

;<br />

3 1 6<br />

⎣⎢0 0 5 −3 −1 6 ⎦⎥ ⎢⎣ 0 0 1 − ⎥<br />

5 − 5 5 ⎦<br />

R3−R2 ⎡ 1 2 −2⎤<br />

1<br />

A =<br />

⎢ ⎥<br />

5 ⎢<br />

−<br />

⎥<br />

.<br />

⎢⎣−3 −1<br />

6 ⎥⎦<br />

−1<br />

thus 5 0 5<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


19.<br />

20.<br />

21.<br />

⎡1 4 3 1 0 0⎤ ⎡1 4 3 1 0 0⎤<br />

R2−R1 ⎢<br />

1 4 5 0 1 0<br />

⎥ ⎢<br />

0 0 2 1 1 0<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣2 5 1 0 0 1⎥⎦ ⎢⎣2 5 1 0 0 1⎥⎦<br />

⎡1 4 3 1 0 0⎤ ⎡1 4 3 1 0 0⎤<br />

→<br />

⎢<br />

2 5 1 0 0 1<br />

⎥ ⎢<br />

0 3 5 2 0 1<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢<br />

− − −<br />

⎥<br />

⎢⎣0 0 2 −1 1 0⎥⎦ ⎢⎣0 0 2 −1<br />

1 0⎥⎦<br />

SWAP( R2, R3) R2−2R1 7 11 4<br />

⎡1 4 3 1 0 0 ⎤<br />

⎡1 0 0 − 2 6 3 ⎤<br />

5 2 1 3 5 1<br />

→<br />

⎢<br />

0 1 3 3 0<br />

⎥<br />

⎢<br />

3 0 1 0<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→ ⋯ →<br />

⎢ 2 − 6 − 3⎥<br />

;<br />

⎢ 1 1<br />

⎣0 0 2 −1 1 0 ⎥⎦<br />

⎢⎣ 0 0 1 − 2 2 0 ⎥⎦<br />

( −1/3)<br />

R2 (1/2) R3<br />

A<br />

⎡−21 11 8 ⎤<br />

1<br />

=<br />

⎢ ⎥<br />

6 ⎢<br />

− −<br />

⎥<br />

⎢⎣ −3<br />

3 0 ⎥⎦<br />

−1<br />

thus 9 5 2<br />

⎡2 0 −1 1 0 0⎤ ⎡1 0 −4 1 −1<br />

0⎤<br />

R1−R2 ⎢<br />

1 0 3 0 1 0<br />

⎥ ⎢<br />

1 0 3 0 1 0<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢ ⎥<br />

⎢⎣1 1 1 0 0 1⎥⎦ ⎢⎣1 1 1 0 0 1⎥⎦<br />

⎡1 0 −4 1 −1 0⎤ ⎡1 0 −4 1 −1<br />

0⎤<br />

SWAP( R2, R3)<br />

→<br />

⎢<br />

1 0 3 0 1 0<br />

⎥ ⎢<br />

0 1 5 1 1 1<br />

⎥<br />

⎢ ⎥<br />

→<br />

⎢<br />

−<br />

⎥<br />

⎢⎣0 1 5 −1<br />

1 0⎥⎦ ⎢⎣1 0 3 0 1 0⎥⎦<br />

R3−R1 3 1<br />

⎡1 0 −4 1 −1 0⎤ ⎡1 0 0<br />

(1/ 7) 3<br />

7 7 0⎤<br />

R<br />

2 3<br />

→<br />

⎢<br />

0 1 5 1 1 1<br />

⎥<br />

⎢<br />

0 1 0 7 7 1<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

→ ⋯ →<br />

⎢<br />

− −<br />

⎥<br />

;<br />

⎢ 1 2<br />

⎣0 0 7 −1 2 0⎥⎦ ⎢⎣ 0 0 1 − 7 7 0⎥⎦<br />

R3−R1 A<br />

⎡ 3 1 0⎤<br />

1<br />

=<br />

⎢ ⎥<br />

7 ⎢<br />

− −<br />

⎥<br />

⎢⎣−1 2 0⎥⎦<br />

−1<br />

thus 2 3 7<br />

⎡0 0 1 0 1 0 0 0⎤ ⎡1 0 0 0 0 1 0 0⎤<br />

⎢<br />

1 0 0 0 0 1 0 0<br />

⎥ SWAP( R1, R2)<br />

⎢<br />

0 0 1 0 1 0 0 0<br />

⎥<br />

⎢ ⎥ → ⎢ ⎥<br />

⎢0 1 2 0 0 0 1 0⎥ ⎢0 1 2 0 0 0 1 0⎥<br />

⎢ ⎥ ⎢ ⎥<br />

⎣3 0 0 1 0 0 0 1⎦ ⎣3 0 0 1 0 0 0 1⎦<br />

Section 3.5 163<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


22.<br />

164<br />

⎡1 0 0 0 0 1 0 0⎤ ⎡1 0 0 0 0 1 0 0⎤<br />

⎢<br />

0 1 2 0 0 0 1 0<br />

⎥ ⎢<br />

0 1 2 0 0 0 1 0<br />

⎥<br />

→ ⎢ ⎥ → ⎢ ⎥<br />

⎢0 0 1 0 1 0 0 0⎥ ⎢0 0 1 0 1 0 0 0⎥<br />

⎢ ⎥ ⎢ ⎥<br />

⎣3 0 0 1 0 0 0 1⎦ ⎣0 0 0 1 0 −3<br />

0 1⎦<br />

SWAP( R2, R3) R4−3R1 R2−2R3 →<br />

⎡1 0 0 0 0 1 0 0⎤<br />

⎢<br />

0 1 0 0 2 0 1 0<br />

⎥<br />

⎢<br />

−<br />

⎥;<br />

⎢0 0 1 0 1 0 0 0⎥<br />

⎢ ⎥<br />

⎣0 0 0 1 0 −3<br />

0 1⎦<br />

Chapter 3<br />

thus<br />

A<br />

−1<br />

⎡ 0 1 0 0⎤<br />

⎢<br />

−2<br />

0 1 0<br />

⎥<br />

= ⎢ ⎥<br />

⎢ 1 0 0 0⎥<br />

⎢ ⎥<br />

⎣ 0 −3<br />

0 1⎦<br />

⎡4 0 1 1 1 0 0 0⎤ ⎡1 −1 −2 0 1 −1<br />

0 0⎤<br />

⎢<br />

3 1 3 1 0 1 0 0<br />

⎥ R1−R2 ⎢<br />

3 1 3 1 0 1 0 0<br />

⎥<br />

⎢ ⎥ → ⎢ ⎥<br />

⎢0 1 2 0 0 0 1 0⎥ ⎢0 1 2 0 0 0 1 0⎥<br />

⎢ ⎥ ⎢ ⎥<br />

⎣3 2 4 1 0 0 0 1⎦ ⎣3 2 4 1 0 0 0 1⎦<br />

⎡1 −1 −2 0 1 −1 0 0⎤ ⎡1 −1 −2 0 1 −1<br />

0 0⎤<br />

⎢<br />

0 4 9 1 −3 4 0 0<br />

⎥ ⎢<br />

0 4 9 1 −3<br />

4 0 0<br />

⎥<br />

→ ⎢ ⎥ → ⎢ ⎥<br />

⎢0 1 2 0 0 0 1 0⎥ ⎢0 1 2 0 0 0 1 0⎥<br />

⎢ ⎥ ⎢ ⎥<br />

⎣3 2 4 1 0 0 0 1⎦ ⎣0 5 10 1 −3<br />

3 0 1⎦<br />

R2−3R1 R4−3R1 ⎡1 −1 −2 0 1 −1 0 0⎤ ⎡1 −1 −2 0 1 −1<br />

0 0⎤<br />

⎢<br />

0 1 3 1 −3 4 −3 0<br />

⎥ ⎢<br />

0 1 3 1 −3 4 −3<br />

0<br />

⎥<br />

→ ⎢ ⎥ → ⎢ ⎥<br />

⎢0 1 2 0 0 0 1 0⎥ ⎢0 0 −1 −1 3 −4<br />

4 0⎥<br />

⎢ ⎥ ⎢ ⎥<br />

⎣0 5 10 1 −3 3 0 1⎦ ⎣0 5 10 1 −3<br />

3 0 1⎦<br />

R2−3R3 R3−R2 ⎡1 0 0 0 1 −1<br />

1 0 ⎤<br />

⎢<br />

0 1 0 0 0 −2 −1<br />

2<br />

⎥<br />

→ → ⎢ ⎥;<br />

thus A<br />

⎢0 0 1 0 0 1 1 −1⎥<br />

⎢ ⎥<br />

⎣0 0 0 1 −3 3 −5<br />

1 ⎦<br />

R4−5R2 In Problems 23–28 we first give the <strong>in</strong>verse matrix<br />

23.<br />

24.<br />

−1<br />

⎡ 1 −1<br />

1 0 ⎤<br />

⎢<br />

0 −2 −1<br />

2<br />

⎥<br />

= ⎢ ⎥<br />

⎢ 0 1 1 −1⎥<br />

⎢ ⎥<br />

⎣−3 3 −5<br />

1 ⎦<br />

−1<br />

A and then calculate the solution matrix X.<br />

−1 ⎡ 4 −3⎤ ⎡ 4 −3⎤⎡ 1 3 −5⎤ ⎡ 7 18 −35⎤<br />

A = ⎢ ;<br />

5 4<br />

⎥ X = =<br />

−<br />

⎢<br />

−54 ⎥⎢<br />

−1−25 ⎥ ⎢<br />

−9−23 45<br />

⎥<br />

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

−1 ⎡ 7 −6⎤ ⎡ 7 −6⎤⎡2 0 4 ⎤ ⎡ 14 −30<br />

46 ⎤<br />

A = ⎢ ;<br />

8 7<br />

⎥ X = =<br />

−<br />

⎢<br />

−8 7<br />

⎥⎢<br />

0 5 −3 ⎥ ⎢<br />

−16 35 −53<br />

⎥<br />

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


25.<br />

26.<br />

27.<br />

28.<br />

⎡11 −94⎤ ⎡11 −94⎤⎡ 1 0 3⎤ ⎡ 7 −14<br />

15⎤<br />

=<br />

⎢<br />

2 2 1<br />

⎥<br />

;<br />

⎢<br />

2 2 1<br />

⎥⎢<br />

0 2 2<br />

⎥ ⎢<br />

1 3 2<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

=<br />

⎢<br />

− −<br />

⎥⎢ ⎥<br />

=<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣−2 1 0 ⎥⎦ ⎢⎣−2 1 0 ⎥⎢ ⎦⎣−1 1 0⎥⎦ ⎢⎣−2 2 −4⎥⎦<br />

−1<br />

A X<br />

⎡−16 3 11⎤ ⎡−16 3 11⎤⎡201⎤ ⎡−21 9 6 ⎤<br />

=<br />

⎢<br />

6 1 4<br />

⎥<br />

;<br />

⎢<br />

6 1 4<br />

⎥⎢<br />

0 3 0<br />

⎥ ⎢<br />

8 3 2<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

=<br />

⎢<br />

− −<br />

⎥⎢ ⎥<br />

=<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣−13 2 9 ⎥⎦ ⎢⎣−13 2 9 ⎥⎢ ⎦⎣102⎥⎦ ⎢⎣−17 6 5 ⎥⎦<br />

−1<br />

A X<br />

⎡ 7 −20 17⎤ ⎡ 7 −20 17⎤⎡0011⎤ ⎡17 −20 24 −13⎤<br />

=<br />

⎢<br />

0 1 1<br />

⎥<br />

;<br />

⎢<br />

0 1 1<br />

⎥⎢<br />

0 1 0 1<br />

⎥ ⎢<br />

1 1 1 1<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

=<br />

⎢<br />

−<br />

⎥⎢ ⎥<br />

=<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣−2 6 −5⎥⎦ ⎢⎣−2 6 −5⎥⎢ ⎦⎣1 0 1 0⎥⎦ ⎢⎣−5 6 −7<br />

4 ⎥⎦<br />

−1<br />

A X<br />

⎡−5510 ⎤ ⎡−5510 ⎤⎡ 2 1 0 2⎤ ⎡−5510 1 ⎤<br />

=<br />

⎢<br />

8 8 15<br />

⎥<br />

;<br />

⎢<br />

8 8 15<br />

⎥⎢<br />

1 3 5 0<br />

⎥ ⎢<br />

8 8 15 7<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

=<br />

⎢<br />

−<br />

⎥⎢<br />

−<br />

⎥<br />

=<br />

⎢<br />

−<br />

⎥<br />

⎢⎣24 −23 −45⎥⎦ ⎢⎣24 −23 −45⎥⎢ ⎦⎣ 1 1 0 5⎥⎦ ⎢⎣24 −23 −45 −13⎥⎦<br />

−1<br />

A X<br />

29. (a) The fact that A –1 −1 −1<br />

is the <strong>in</strong>verse of A means that AA = A A = I . That is, that<br />

when A –1 is multiplied either on the right or on the left by A, the result is the identity<br />

matrix I. By the same <strong>to</strong>ken, this means that A is the <strong>in</strong>verse of A –1 .<br />

30.<br />

(b)<br />

31. Let<br />

−1<br />

n n<br />

( ) = ,<br />

n −1 n n−1 −1 −1 n−1 n−1 −1 n−1<br />

A ( A ) = A ⋅AA ⋅ ( A ) = A ⋅I⋅ ( A ) = ⋯ = I.<br />

Similarly,<br />

A A I so it follows that<br />

n<br />

A is the <strong>in</strong>verse of A .<br />

1<br />

( ) n −<br />

−1 −1 −1 −1 −1 −1<br />

ABC⋅ C B A = AB⋅I⋅ B A = A ⋅I⋅ A = I , and we see is a similar way that<br />

1 1 1<br />

− − −<br />

C B A ⋅ ABC= I .<br />

−1<br />

p =− r > 0, q =− s > 0, and B= A . Then<br />

r s<br />

AA =<br />

−p −q A A =<br />

−1 p −1<br />

q<br />

( A ) ( A )<br />

=<br />

p q<br />

BB<br />

p+ q<br />

= B (because pq , > 0)<br />

=<br />

− 1 p+ q<br />

( A )<br />

−p− q<br />

= A =<br />

r+ s<br />

A<br />

r s −p −q p −q −pq<br />

pq rs<br />

as desired, and ( A ) = ( A ) = ( B ) = B = A = A similarly.<br />

32. Multiplication of AB = AC on the left by A –1 yields B = C.<br />

33. In particular, Ae j = e j where e j denotes the jth column vec<strong>to</strong>r of the identity matrix I.<br />

Hence it follows from Fact 2 that AI = I, and therefore A = I –1 = I.<br />

Section 3.5 165<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


34. The <strong>in</strong>vertibility of a diagonal matrix with nonzero diagonal elements follows immediately<br />

from the rule for multiply<strong>in</strong>g diagonal matrices (Problem 27 <strong>in</strong> Section 3.4). The <strong>in</strong>verse of<br />

such a diagonal matrix is gotten simply by <strong>in</strong>vert<strong>in</strong>g each diagonal element.<br />

35. If the jth column of A is all zeros and B is any n× n matrix, then the jth column of BA is<br />

all zeros, so BA ≠ I . Hence A has no <strong>in</strong>verse matrix. Similarly, if the ith row of A is all<br />

zeros, then so is the ith row of AB.<br />

36. If ad – bc = 0, then it follows easily that one row of A is a multiple of the other. Hence the<br />

⎡* reduced echelon form of A is of the form ⎢<br />

⎣0 Therefore A is not <strong>in</strong>vertible.<br />

* ⎤<br />

0<br />

⎥ rather than the 2× 2 identity matrix.<br />

⎦<br />

37. Direct multiplication shows that<br />

38.<br />

39.<br />

40.<br />

166<br />

⎡3 0⎤⎡a b⎤ ⎡3a 3b⎤<br />

EA = ⎢<br />

0 1<br />

⎥⎢ =<br />

c d<br />

⎥ ⎢<br />

c d<br />

⎥<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

= =<br />

−1 −1<br />

AA A A I<br />

⎡1 0 0⎤⎡a<br />

a a ⎤ ⎡ a a a ⎤<br />

EA = =<br />

11 12 13 11 12 13<br />

⎢<br />

0 1 0<br />

⎥⎢<br />

a21 a22 a<br />

⎥ ⎢<br />

23 a21 a22 a<br />

⎥<br />

⎢ ⎥⎢ ⎥ ⎢ 23 ⎥<br />

⎢2 0 1⎥⎢a31 a32 a ⎥ ⎢ 33 a31 + 2a11<br />

a32+ a12 a33+ a ⎥ 13<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

⎡0 1 0⎤⎡a<br />

a a ⎤ ⎡a a a ⎤<br />

EA = =<br />

11 12 13 21 22 23<br />

⎢<br />

1 0 0<br />

⎥⎢<br />

a21a22 a<br />

⎥ ⎢<br />

23 a11 a12a ⎥<br />

⎢ ⎥⎢ ⎥ ⎢ 13 ⎥<br />

⎢0 0 1⎥⎢a31a32<br />

a ⎥ ⎢ 33 a31 a32 a ⎥ 33<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

41. This follows immediately from the fact that the ijth element of AB is the product of the ith<br />

row of A and the jth column of B.<br />

42. Let e i denote the ith row of I. Then eB i = B i,<br />

the ith row of B. Hence the result <strong>in</strong><br />

Problem 41 yields<br />

⎡e ⎤ ⎡eB⎤ ⎡B ⎤<br />

1 1 1<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢<br />

e2⎥ ⎢<br />

e2B ⎥ ⎢<br />

B2⎥<br />

IB = B = = = B.<br />

⎢ ℝ ⎥ ⎢ ℝ ⎥ ⎢ ℝ ⎥<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢⎣em⎥⎦ ⎢⎣emB⎥⎦ ⎢⎣Bm⎥⎦ 43. Let E1, E2, , Ek<br />

be the elementary matrices correspond<strong>in</strong>g <strong>to</strong> the elementary row<br />

operations that reduce A <strong>to</strong> B. Then Theorem 5 gives B= EkEk−1 E2E1A= GA where<br />

G = E E ⋯E<br />

E<br />

k k−1<br />

2 1.<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

.


44. This follows immediately from the result <strong>in</strong> Problem 43, because an <strong>in</strong>vertible matrix is<br />

row-equivalent <strong>to</strong> the identity matrix.<br />

45. One can simply pho<strong>to</strong>copy the portion of the proof of Theorem 7 that follows Equation (20).<br />

Start<strong>in</strong>g only with the assumption that A and B are square matrices with AB = I, it is<br />

proved there that A and B are then <strong>in</strong>vertible.<br />

46. If C = AB is <strong>in</strong>vertible, so C –1 −1 exists, then ABC ( ) = I<br />

−1<br />

and ( C AB ) = I . Hence the<br />

fact that A and B are <strong>in</strong>vertible follows immediately from Problem 45.<br />

SECTION 3.6<br />

DETERMINANTS<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

0 0 3<br />

4 0<br />

4 0 0 = + (3) = 3⋅4⋅ 5 = 60<br />

0 5<br />

0 5 0<br />

2 1 0<br />

2 1 1 1<br />

1 2 1 = + (2) − (1) = 2(4 −1) −(2 − 0) = 4<br />

1 2 0 2<br />

0 1 2<br />

1 0 0 0<br />

0 5 0<br />

2 0 5 0 6 8<br />

= + (1) 6 9 8 = − (5) = −5(42− 0) = − 210<br />

3 6 9 8 0 7<br />

0 10 7<br />

4 0 10 7<br />

5 11 8 7<br />

5 11 8<br />

3 −2<br />

6 23 5 8<br />

= −( −3) 3 − 2 6 = 3( − 4) = −12(30 − 24) = −72<br />

0 0 0 −3<br />

3 6<br />

0 4 0<br />

0 4 0 17<br />

0 0 1 0 0<br />

2 0 0 0 0<br />

0 0 0 3 0<br />

0 0 0 0 4<br />

0 5 0 0 0<br />

2 0 0 0<br />

0 3 0<br />

0 0 3 0 3 0<br />

= + 1 = + 2 0 0 4 = 2( + 5) = 2⋅5⋅3⋅ 4 = 120<br />

0 0 0 4 0 4<br />

5 0 0<br />

0 5 0 0<br />

Section 3.6 167<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

168<br />

3 0 11 −5<br />

0<br />

−2<br />

4 13 6 5<br />

0 0 5 0 0<br />

7 6 −9<br />

17 7<br />

0 0 8 2 0<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

R2−2R1 =<br />

1<br />

0<br />

1<br />

0<br />

1<br />

0 = 0<br />

3 3 3 3 3 3<br />

3 0 −5<br />

0<br />

3 0 0<br />

−2<br />

4 6 5 4 5<br />

= + 5 = 5( −2) − 2 4 5 = − 10( + 3) = 60<br />

7 6 17 7 6 7<br />

7 6 7<br />

0 0 2 0<br />

2 3 4 2 3 4<br />

R2+ R1<br />

2 3<br />

−2− 3 1 = 0 0 5 = − 5 = −5(4− 9) = 25<br />

3 2<br />

3 2 7 3 2 7<br />

3 −2 5 3 −2<br />

5<br />

R3−2R1 3 5<br />

0 5 17 = 0 5 17 = + 2 = 5(6 − 0) = 30<br />

0 2<br />

6 −4<br />

12 0 0 2<br />

−3 6 5 0 0 −7<br />

R1+ 3R2 1 −2<br />

1 −2 − 4 = 1 −2 − 4 = + ( − 7) = −7( − 5+ 4) = 7<br />

2 −5<br />

2 −512 2 −512<br />

1 2 3 4 1 2 3 4<br />

0 5 6 7 R4−2R10 5 6 7 8 9<br />

Chapter 3<br />

5 6 7<br />

= = + 10 8 9 = + 5 = 5⋅ 8 = 40<br />

0 0 8 9 0 0 8 9 0 1<br />

0 0 1<br />

2 4 6 9 0 0 0 1<br />

2 0 0 −3 2 0 0 −3<br />

1 11 12<br />

0 1 11 12 R4+ 2R101 11 12 5 13<br />

= = + 20 5 13 = + 2 = 2⋅ 5 = 10<br />

0 0 5 13 0 0 5 13 0 1<br />

0 0 1<br />

−4<br />

0 0 7 0 0 0 1<br />

−4 4 −1 −4 4 −1<br />

0 20 11<br />

R2+ R3 R1+ 4R3 20 11<br />

−1− 2 2 = 0 2 5 = 0 2 5 = + 1 = 100 − 22 = 78<br />

2 5<br />

1 4 3 1 4 3 1 4 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


14.<br />

15.<br />

16.<br />

17.<br />

18.<br />

19.<br />

20.<br />

21.<br />

22.<br />

4 2 −2<br />

1 1 3 R2−3R11 1 3<br />

R1−R2 R3+ 5R1 −2 −14<br />

3 1 − 5 = 3 1 − 5 = 0 −2 − 14 = + 1 = −22<br />

1 18<br />

−5 −4 3 −5 −4<br />

3 0 1 18<br />

−2<br />

5 4 0 13 14 0 13 14<br />

R1+ 2R3 R2−5R313 14<br />

5 3 1 = 5 3 1 = 0 −17 − 24 = + 1 = −74<br />

−17 −24<br />

1 4 5 1 4 5 1 4 5<br />

2 4 −2 10 0 −4 10 0 −4<br />

R1− 2R3 R2+ 2R3 10 −4<br />

−5 −4 − 1 = −5 −4 − 1 = − 13 0 1 = − 2 = 84<br />

−13<br />

1<br />

−4 2 1 −4 2 1 −4<br />

2 1<br />

2 3 3 1 2 3 3 1<br />

4 3 −3 R2+ R1<br />

4 3 −3<br />

0 4 3 −3 R3−R1 0 4 3 −3<br />

R3+ R1<br />

= = 2 −4 −4 − 4 = 2 0 −1 − 7 = 8<br />

2 −1 −1 −3 0 −4 −4 −4<br />

−4 −3 2 0 0 −1<br />

0 −4 −3 2 0 −4 −3<br />

2<br />

1 4 4 1 1 4 4 1<br />

1 2 2 R2 9R11 2 2<br />

0 1 2 2 R3 3R10 1 2 2<br />

R3 R1<br />

1 9 11 1 0 29 19 135<br />

3 3 1 4 0 9 11 1<br />

1 3 2 0 1 4<br />

0 1 3 2 0 1 3 2<br />

+ − −<br />

− − −<br />

−<br />

= = − − = − =<br />

− −<br />

− − − −<br />

− − − −<br />

1 0 0 3 1 0 0 3<br />

1 −2<br />

0 1 0 0<br />

0 1 −2 0 R3+ 2R 1 0 1 −2<br />

0<br />

C2+ 2C1 = = 13 − 2 9 = 3 4 9 = 39<br />

−2 3 −2 3 0 3 −2<br />

9<br />

−3 3 3 −3 −3<br />

3<br />

0 −3 3 3 0 −3<br />

3 3<br />

1 2 1 −1 1 2 1 −1<br />

R2− 2R1 −3 1 5 R2+ 2R1−3 1 5<br />

2 1 3 3 R4+ R1 0 −3<br />

1 5<br />

R3+ R1<br />

= = 1 1 − 2 3 = − 5 0 13 = 79<br />

0 1 −2 3 0 1 −2<br />

3<br />

6 −1<br />

3 3 0 8<br />

−1 4 −2 4 0 6 −1<br />

3<br />

3 4 1 2 4 1 3 2<br />

∆ = = 1; x = = 10, y = = −7<br />

5 7 ∆ 1 7 ∆ 5 1<br />

5 8 1 3 8 1 5 3<br />

∆ = = 1; x = = − 1, y = = 1<br />

8 13 ∆ 5 13 ∆ 8 5<br />

Section 3.6 169<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


23.<br />

24.<br />

25.<br />

26.<br />

170<br />

17 7 1 6 7 1 17 6<br />

∆ = = 1; x = = 2, y = = −4<br />

12 5 ∆ 4 5 ∆ 12 4<br />

11 15 1 10 15 1 11 10<br />

∆ = = 1; x = = 5, y = = −3<br />

8 11 ∆ 7 11 ∆ 8 7<br />

5 6 1 12 6 1 5 12<br />

∆ = = 2; x = = 6, y = = −3<br />

3 4 ∆ 6 4 ∆ 3 6<br />

6 7 1 3 7 1 1 6 3<br />

∆ = = − 2; x = = , y = = 0<br />

8 9 ∆ 4 9 2 ∆ 8 4<br />

5 2 −2 1 2 −2<br />

1 1<br />

∆ = 1 5 − 3 = 96; x = −2 5 − 3 = ,<br />

∆<br />

3<br />

5 −3 5 2 −3<br />

5<br />

27. 1<br />

5 1 −2<br />

5 2 1<br />

1 2 1 1<br />

x2 = 1 −2 − 3 = − , x3<br />

= 1 5 − 2 = −<br />

∆ 3 ∆<br />

3<br />

5 2 5 5 −3<br />

2<br />

5 4 −2 4 4 −2<br />

1 4<br />

∆ = 2 0 3 = 35; x = 2 0 3 = ,<br />

∆<br />

7<br />

2 −1 1 1 −1<br />

1<br />

28. 1<br />

5 4 −2<br />

5 4 4<br />

1 3 1 2<br />

x2 = 2 2 3 = , x3<br />

= 2 0 2 =<br />

∆ 7 ∆<br />

7<br />

2 1 1 2 −1<br />

1<br />

3 −1 −5 3 −1 −5<br />

1<br />

∆ = 4 −4 − 3 = 23; x = −4 −4 − 3 = 2,<br />

∆<br />

1 0 −5 2 0 −5<br />

29. 1<br />

3 3 −5 3 −1<br />

3<br />

1 1<br />

x2 = 4 −4 − 3 = 3, x3<br />

= 4 −4 − 4 = 0<br />

∆ ∆<br />

1 2 −5<br />

1 0 2<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


1 4 2 3 4 2<br />

1 1<br />

∆ = 4 2 1 = 56; x = 1 2 1 = − ,<br />

∆<br />

7<br />

2 −2 −5 −3 −2 −5<br />

30. 1<br />

1 3 2 1 4 3<br />

1 9 1 2<br />

x2 = 4 1 1 = , x3<br />

= 4 2 1 =<br />

∆ 14 ∆<br />

7<br />

2 −3 −5 2 −2 −3<br />

2 0 −5 −3 0 −5<br />

1 8<br />

∆ = 4 − 5 3 = 14; x = 3 − 5 3 = − ,<br />

∆<br />

7<br />

−2<br />

1 1 1 1 1<br />

31. 1<br />

2 −3 −5 2 0 −3<br />

1 10 1 1<br />

x2 = 4 3 3 = − , x3<br />

= 4 − 5 3 =<br />

∆ 7 ∆<br />

7<br />

−2 1 1 −2<br />

1 1<br />

3 4 −3 5 4 −3<br />

1 7<br />

∆ = 3 − 2 4 = 6; x = 7 − 2 4 = − ,<br />

∆<br />

3<br />

3 2 −1 3 2 −1<br />

32. 1<br />

33.<br />

34.<br />

35.<br />

3 5 −3<br />

3 4 5<br />

1 1<br />

x2 = 3 7 4 = 9, x3<br />

= 3 − 2 7 = 8<br />

∆ ∆<br />

3 3 −1<br />

3 2 3<br />

A = − A =<br />

⎡ 4 4 4 ⎤<br />

1 ⎢ ⎥<br />

4 ⎢ ⎥<br />

⎢⎣ 28 25 23⎥⎦<br />

−1<br />

det 4, 16 15 13<br />

⎡−2 −3<br />

12 ⎤<br />

1<br />

A = A =<br />

⎢ ⎥<br />

35 ⎢<br />

− −<br />

⎥<br />

⎢⎣ 13 2 −8<br />

⎥⎦<br />

−1<br />

det 35, 9 4 19<br />

⎡−15 25 −26⎤<br />

1<br />

A = A =<br />

⎢ ⎥<br />

35 ⎢<br />

−<br />

⎥<br />

⎢⎣ 15 −25<br />

19 ⎥⎦<br />

−1<br />

det 35, 10 5 8<br />

Section 3.6 171<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


36.<br />

37.<br />

38.<br />

39.<br />

40.<br />

172<br />

⎡ 5 20 −17⎤<br />

1<br />

A = A =<br />

⎢ ⎥<br />

23 ⎢<br />

−<br />

⎥<br />

⎢⎣ 1 4 −8<br />

⎥⎦<br />

−1<br />

det 23, 10 17 11<br />

⎡ 11 −14 −15⎤<br />

1<br />

A = A =<br />

⎢ ⎥<br />

29 ⎢<br />

−<br />

⎥<br />

⎢⎣ 18 −15 −14⎥⎦<br />

−1<br />

det 29, 17 19 10<br />

⎡−6 10 2 ⎤<br />

1<br />

A = A =<br />

⎢ ⎥<br />

6 ⎢<br />

− −<br />

⎥<br />

⎢⎣12 −18 −6⎥⎦<br />

−1<br />

det 6, 15 21 6<br />

A = A =<br />

⎡−21 −1−13⎤ 1 ⎢ ⎥<br />

37 ⎢ ⎥<br />

⎢⎣ −6 5 −9<br />

⎥⎦<br />

−1<br />

det 37, 4 9 6<br />

⎡ 9 12 −13⎤<br />

1<br />

A = A =<br />

⎢ ⎥<br />

107 ⎢<br />

− −<br />

⎥<br />

⎢⎣ −15 −20 −14⎥⎦<br />

−1<br />

det 107, 11 21 4<br />

⎡a1⎤ 41. If A= ⎢ ⎥ and B= [ b1 b2]<br />

⎣a2⎦ vec<strong>to</strong>rs of B, then<br />

( )<br />

AB<br />

1 1 1 2<br />

= ⎢<br />

ab 2 1 ab<br />

⎥<br />

2 2<br />

<strong>in</strong> terms of the two row vec<strong>to</strong>rs of A and the two column<br />

⎡ab ab ⎤<br />

, so<br />

⎣ ⎦<br />

AB<br />

⎡ab ab ⎤ ⎡b⎤ a a B A<br />

⎣ ⎦ ⎣ ⎦<br />

T<br />

T<br />

=<br />

1 1<br />

⎢<br />

ab 1 2<br />

2 1<br />

ab<br />

⎥<br />

2 2<br />

=<br />

1<br />

⎢ ⎡<br />

T ⎥<br />

b<br />

⎣<br />

2<br />

T<br />

1<br />

T⎤ 1 ⎦ =<br />

T T<br />

because the rows of A are the columns of A T and the columns of B are the rows of B T .<br />

⎛⎡a b⎤⎡x⎤⎞ ax+ by ax by<br />

42. det AB = det ⎜⎢ ⎟ = = +<br />

c d<br />

⎥⎢ ⎥<br />

⎝⎣ ⎦⎣y⎦⎠ cx+ dy cx+ dy cx+ dy<br />

x x y y x y<br />

= ac + ad + bc + bd = ad + bc<br />

x y x y y x<br />

x x x<br />

= ad − bc = ( ad − bc)<br />

= (det A)(det B)<br />

y y y<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

,


43. We expand the left-hand determ<strong>in</strong>ant along its first column:<br />

ka11 a12 a13<br />

ka21 a22 a23<br />

ka31 a32 a33<br />

= ka11 ( a12a23−a22a13 ) −ka21( a12a33 − a32a13 ) + ka31 ( a12a23−a22a13 )<br />

= k⎡⎣a11 ( a12a23 −a22a13 ) −a21 ( a12a33 − a32a13 ) + a31 ( a12a23 −a22a13<br />

) ⎤⎦<br />

a11 a12 a13<br />

= ka21 a22 a23<br />

a a a<br />

31 32 33<br />

44. We expand the left-hand determ<strong>in</strong>ant along its third row:<br />

a21 a22 a23<br />

a11 a12 a13<br />

a31 a32 a33<br />

= a31 ( a22a13−a23a12 ) −a32 ( a21a13 − a23a11) + a33 ( a21a13 −a22a11)<br />

= −⎡⎣a31 ( a23a12 −a22a13 ) −a32( a23a11 − a21a13 ) + a33 ( a22a11 −a21a13<br />

) ⎤⎦<br />

a11 a12 a13<br />

= ka21 a22 a23<br />

a a a<br />

31 32 33<br />

45. We expand the left-hand determ<strong>in</strong>ant along its third column:<br />

a1 b1 c1+ d1<br />

a2 b2 c2 + d2<br />

a3 b3 c3+ d3<br />

= + − − + − + + −<br />

= − − − + −<br />

( c1 d1)( ab 2 3 ab 3 2) ( c2 d2)( ab 1 3 ab 3 1) ( c3 d3)( ab 1 2 ab 2 1)<br />

c1( a2b3 a3b2) c2( ab 1 3 a3b1) c3( ab 1 2 a2b1) + d ( a b −a b ) −d ( ab − a b ) + d ( ab −a<br />

b )<br />

1 2 3 3 2 2 1 3 3 1 3 1 2 2 1<br />

a b c a b d<br />

= a b c + a b d<br />

a b c a b d<br />

1 1 1 1 1 1<br />

2 2 2 2 2 2<br />

3 3 3 3 3 3<br />

Section 3.6 173<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


46. We expand the left-hand determ<strong>in</strong>ant along its first column:<br />

174<br />

a1+ kb1 b1 c1<br />

a2 + kb2 b2 c2<br />

a3+ kb3 b3 c3<br />

= + − − + − + + −<br />

( a1 kb1)( b2c3 bc 3 2) ( a2 kb2)( bc 1 3 c3b3) ( a3 kb3)( bc 1 2 b2c1) ⎡⎣a1( b2c3 bc 3 2) a2( bc 1 3 c3b3) a3( bc 1 2 b2c1) ⎤⎦<br />

+ k⎡b( bc −bc) −b( bc − cb) + b ( bc −bc)<br />

⎤<br />

= − − − + −<br />

⎣ 1 2 3 3 2 2 1 3 3 3 3 1 2 2 1 ⎦<br />

a1 b1 c1 b1 b1 d1 a b c<br />

= a2 b2 c2 + k b2 b2 d2<br />

= a b c<br />

a b c b b d a b c<br />

3 3 3 3 3 3<br />

Chapter 3<br />

1 1 1<br />

2 2 2<br />

3 3 3<br />

47. We illustrate these properties with 2× 2 matrices A= ⎡<br />

⎣aij ⎤<br />

⎦ and B = ⎡<br />

⎣bij⎤ ⎦.<br />

T<br />

T<br />

T a11 a21 a11 a12<br />

(a) ( ) a12 a22 a22a22 (b) ( )<br />

(c) ( A B )<br />

⎡ ⎤ ⎡ ⎤<br />

A = ⎢ ⎥ = ⎢ ⎥ = A<br />

⎣ ⎦ ⎣ ⎦<br />

T<br />

T ⎡ca11 ca12 ⎤ ⎡ca11 ca21 ⎤ ⎡a11 a21<br />

⎤ T<br />

= ⎢<br />

ca21 ca<br />

⎥ = ⎢<br />

22 ca12 ca<br />

⎥ = ⎢ =<br />

22 a12 a<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ 22 ⎦<br />

cA c cA<br />

T<br />

⎡ 11 + 11 12 + 12 ⎤ ⎡ 11 + 11 21 + 21 ⎤<br />

⎢<br />

a21 b21 a22 b<br />

⎥ ⎢<br />

22 a12b12 a22 b<br />

⎥<br />

⎣ + + ⎦ ⎣ + + 22 ⎦<br />

T a b a b a b a b<br />

+ = =<br />

⎡a a ⎤ ⎡b b ⎤<br />

11 21 11 21 T T<br />

= ⎢<br />

a12 a<br />

⎥ + ⎢ = +<br />

22 b12 b<br />

⎥ A B<br />

22<br />

⎣ ⎦ ⎣ ⎦<br />

48. The ijth element of ( ) T<br />

AB is the jith element of AB, and hence is the product of the jth<br />

T T<br />

row of A and the ith column of B. The ijth element of BA is the product of the ith row<br />

T<br />

T<br />

of B and the jth column of A . Because transposition of a matrix changes the ith row <strong>to</strong><br />

T T<br />

the ith column and vice versa, it follows that the ijth element of BA is the product of the<br />

jth row of A and the ith column of B. Thus the matrices ( ) T<br />

T T<br />

AB and BA have the<br />

same ijth elements, and hence are equal matrices.<br />

49. If we write<br />

first row and of<br />

a1 b1 c1 a1 a2 a3<br />

A = a2 b2 c2 and<br />

T<br />

A = b1 b2 b3<br />

, then expansion of A along its<br />

a b c c c c<br />

3 3 3 1 2 3<br />

T<br />

A along its first column both give the result<br />

( − ) + ( − ) + ( − )<br />

a b c bc b a c a c c a b a b<br />

1 2 3 3 2 1 2 3 3 2 1 2 3 3 2.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


50. If<br />

2<br />

A = A then<br />

2<br />

2<br />

A = A , so ( )<br />

immediately that either A = 0orA = 1.<br />

n<br />

A − A = A A − 1 = 0, and hence it follows<br />

n<br />

51. If A = 0 then A = 0 , so it follows immediately that A = 0 .<br />

52. If<br />

53. If<br />

T −1<br />

A = A then<br />

−1<br />

A= P BP then<br />

T −1<br />

−1<br />

A = A = A = A . Hence<br />

−1 −1<br />

−1<br />

= = = =<br />

A P BP P B P P B P B .<br />

2<br />

A = 1, so it follows that A =± 1.<br />

54. If A and B are <strong>in</strong>vertible, then A ≠0and B ≠0.<br />

Hence AB = A B ≠0,<br />

so it<br />

follows that AB is <strong>in</strong>vertible. Conversely, AB <strong>in</strong>vertible implies that AB = A B ≠0,<br />

so it follows that both A ≠0and <strong>in</strong>vertible.<br />

B ≠0,<br />

and therefore that both A and B are<br />

55. If either AB = I or BA = I is given, then it follows from Problem 54 that A and B are<br />

both <strong>in</strong>vertible because their product (one way or the other) is <strong>in</strong>vertible. Hence A –1 exists.<br />

So if (for <strong>in</strong>stance) it is AB = I that is given, then multiplication by A –1 on the right<br />

−1<br />

yields B= A .<br />

56. The matrix A –1 <strong>in</strong> part (a) and the solution vec<strong>to</strong>r x <strong>in</strong> part (b) have only <strong>in</strong>teger entries<br />

because the only division <strong>in</strong>volved <strong>in</strong> their calculation — us<strong>in</strong>g the adjo<strong>in</strong>t formula for the<br />

<strong>in</strong>verse matrix or Cramer's rule for the solution vec<strong>to</strong>r — is by the determ<strong>in</strong>ant A = 1.<br />

57. If<br />

⎡a d f ⎤ ⎡bc −cd de−bf ⎤<br />

1<br />

A =<br />

⎢<br />

b e<br />

⎥ ⎢<br />

ac ae<br />

⎥<br />

⎢ ⎥<br />

A =<br />

abc ⎢<br />

−<br />

⎥<br />

⎢⎣0 0 b⎥⎦ ⎢⎣0 0 ab ⎥⎦<br />

−1<br />

0 then 0 .<br />

58. The coefficient determ<strong>in</strong>ant of the l<strong>in</strong>ear system<br />

ccos B+ bcosC = a<br />

ccos A + acosC = b<br />

bcos A+ acosB = c<br />

<strong>in</strong> the unknowns { cos A, cos B, cosC<br />

} is<br />

0 c b<br />

c 0 a = 2 abc.<br />

b a 0<br />

Section 3.6 175<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


176<br />

Hence Cramer's rule gives<br />

whence<br />

a c b<br />

2 3 2 2 2 2<br />

1<br />

ab − a + ac b − a + c<br />

cos A = b 0 a = =<br />

,<br />

2abc 2abc 2bc<br />

c a 0<br />

2 2 2<br />

a = b + c − 2bccos A.<br />

59. These are almost immediate computations.<br />

60. (a) In the 4× 4 case, expansion along the first row gives<br />

2 1 0 0<br />

2 1 0 1 1 0 2 1 0<br />

1 2 1 0 2 1<br />

= 21 2 1 − 0 2 1 = 21 2 1 − ,<br />

0 1 2 1 1 2<br />

0 1 2 0 1 2 0 1 2<br />

0 0 1 2<br />

so B4 = 2B3 − B2<br />

= 2(4) − (3) = 5. The general recursion formula Bn = 2Bn−1−<br />

Bn−2<br />

results <strong>in</strong> the same way upon expansion along the first row.<br />

(b) If we assume <strong>in</strong>ductively that<br />

B = ( n− 1) + 1= n and B = ( n− 2) + 1= n−<br />

1,<br />

n−1 n−2<br />

then the recursion formula of part (a) yields<br />

B = 2B − B = 2( n) −( n− 1) = n+<br />

1.<br />

n n−1 n−2<br />

61. Subtraction of the first row from both the second and the third row gives<br />

1 a<br />

2<br />

a 1 a<br />

2<br />

a<br />

b b = b−a b − a = b−a c −a − c−a b −a<br />

1 c c 0 c−a c −a<br />

1<br />

2<br />

0<br />

2 2<br />

( )(<br />

2 2<br />

) ( )(<br />

2 2<br />

)<br />

2 2 2<br />

= ( b−a)( c− a)( c+ a) −( c−a)( b− a)( b+ a)<br />

= ( b−a)( c− a) ( c+ a) − ( b+ a) = ( b−a)( c−a)( c−b). [ ]<br />

62. Expansion of the 4× 4 determ<strong>in</strong>ant def<strong>in</strong><strong>in</strong>g P( y ) along its 4th row yields<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


1 x x<br />

Py ( ) = y1 x x + ⋯ = yVx ( , x, x)<br />

+ lower-degree terms <strong>in</strong> y.<br />

1<br />

2<br />

1<br />

3 2 3<br />

2 2 1 2 3<br />

1 x3 2<br />

x3<br />

Because it is clear from the determ<strong>in</strong>ant def<strong>in</strong>ition of P( y ) that<br />

Px ( 1) = Px ( 2) = Px ( 3)<br />

= 0, the <strong>three</strong> roots of the cubic polynomial P( y ) are x1, x2, x 3.<br />

The fac<strong>to</strong>r theorem therefore says that P( y) k, and the calculation above implies that<br />

= k( y−x1)( y−x2)( y− x3)<br />

for some constant<br />

F<strong>in</strong>ally we see that<br />

k = V( x , x , x ) = ( x −x )( x −x )( x − x ).<br />

1 2 3 3 1 3 2 2 1<br />

V( x1, x2, x3, x4) = P( x4) = V( x1, x2, x3) ⋅( x4 −x1)( x4 −x2)( x4 −x1)<br />

= ( x −x )( x −x )( x −x )( x −x )( x −x )( x −x<br />

),<br />

which is the desired formula for V( x1, x2, x3, x 4)<br />

.<br />

63. The same argument as <strong>in</strong> Problem 62 yields<br />

4 1 4 2 4 1 3 1 3 2 2 1<br />

P( y) = V( x , x , , x ) ⋅( y−x )( y−x ) ⋅ ⋅( y−x ).<br />

1 2 n−1 1 2 n−1<br />

Therefore<br />

V( x , x , , x ) = ( x −x )( x −x ) ⋅⋅( x −x<br />

) V( x , x , ,<br />

x )<br />

1 2 n n 1 n 2 n n−1 1 2 n−1<br />

n−1<br />

= ( x −x )( x −x ) ⋅ ⋅( x −x ) ( x −x<br />

)<br />

n 1 n 2 n n−1 i j<br />

i> j<br />

n<br />

∏<br />

= ( x −x<br />

).<br />

i> j<br />

i j<br />

64. (a) V(1, 2, 3, 4) = (4 – 1)(4 – 2)(4 – 3)(3 – 1)(3 – 2)(2 – 1) = 12<br />

(b) V(–1, 2,–2, 3) =<br />

∏<br />

( ) [ ] ( ) ( ) ( ) ( ) ( )<br />

⎡⎣3− −1 ⎤⎦ 3−2 ⎡⎣3− −2 ⎤⎡ ⎦⎣ −2 − −1 ⎤⎡ ⎦⎣ −2 −2⎤⎡ ⎦⎣2− − 1 ⎤⎦<br />

= 240<br />

Section 3.6 177<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


SECTION 3.7<br />

LINEAR EQUATIONS AND CURVE FITTING<br />

In Problems 1–10 we first set up the l<strong>in</strong>ear system <strong>in</strong> the coefficients ab… , , that we get by<br />

substitut<strong>in</strong>g each given po<strong>in</strong>t ( xi, y i)<br />

<strong>in</strong><strong>to</strong> the desired <strong>in</strong>terpolat<strong>in</strong>g polynomial equation<br />

y = a+ bx+⋯<br />

. Then we give the polynomial that results from solution of this l<strong>in</strong>ear system.<br />

1. yx ( ) = a+ bx<br />

178<br />

⎡1 1⎤⎡a⎤ ⎡1⎤ ⎢ a 2, b 3 so y( x) 2 3x<br />

1 3<br />

⎥⎢ = ⇒ =− = = − +<br />

b<br />

⎥ ⎢<br />

7<br />

⎥<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

2. yx ( ) = a+ bx<br />

3.<br />

4.<br />

5.<br />

6.<br />

⎡1 −1⎤⎡a⎤<br />

⎡ 11 ⎤<br />

⎢ a 4, b 7 so y( x) 4 7x<br />

1 2<br />

⎥⎢ = ⇒ = =− = −<br />

b<br />

⎥ ⎢<br />

−10<br />

⎥<br />

⎣ ⎦⎣ ⎦ ⎣ ⎦<br />

yx ( ) = a+ bx+ cx<br />

2<br />

⎡1 0 0⎤⎡a⎤ ⎡ 3 ⎤<br />

⎢<br />

1 1 1<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

1<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⇒ a= 3, b= 0, c=− 2 so y( x) = 3−2x ⎢⎣1 2 4⎥⎢ ⎦⎣c⎥⎦ ⎢⎣−5⎥⎦ yx ( ) = a+ bx+ cx<br />

2<br />

⎡1 −1<br />

1⎤⎡a⎤ ⎡1⎤ ⎢<br />

1 1 1<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

5<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⇒ a= 0, b= 2, c= 3 so y( x) = 2x+ 3x<br />

⎢⎣1 2 4⎥⎢ ⎦⎣c⎥⎦ ⎢⎣16⎥⎦ yx ( ) = a+ bx+ cx<br />

2<br />

⎡1 1 1⎤⎡a⎤ ⎡3⎤ ⎢<br />

1 2 4<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

3<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⇒ a= 5, b=− 3, c= 1 so y( x) = 5− 3x+<br />

x<br />

⎢⎣1 3 9⎥⎢ ⎦⎣c⎥⎦ ⎢⎣5⎥⎦ yx ( ) = a+ bx+ cx<br />

⎡1 −1 1 ⎤⎡a⎤ ⎡ −1⎤<br />

⎢<br />

1 3 9<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

13<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢<br />

−<br />

⎥<br />

⎢⎣1 5 25⎥⎢ ⎦⎣c⎥⎦ ⎢⎣ 5 ⎥⎦<br />

2<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

2<br />

2<br />

2


7.<br />

8.<br />

9.<br />

10.<br />

⇒ a=− 10, b=− 7, c= 2 so y( x) = −10 − 7x+ 2x<br />

yx ( ) = a+ bx+ cx+ dx<br />

2 3<br />

⎡1 ⎢<br />

⎢<br />

1<br />

⎢1 ⎢<br />

⎣1 −1 0<br />

1<br />

2<br />

1<br />

0<br />

1<br />

4<br />

−1⎤⎡a⎤<br />

0<br />

⎥⎢<br />

b<br />

⎥<br />

⎥⎢ ⎥<br />

1 ⎥⎢c⎥ ⎥⎢ ⎥<br />

8 ⎦⎣d⎦ =<br />

⎡ 1 ⎤<br />

⎢<br />

0<br />

⎥<br />

⎢ ⎥<br />

⎢ 1 ⎥<br />

⎢ ⎥<br />

⎣−4⎦ ⇒<br />

4 4<br />

a = 0, b= , c= 1, d =−<br />

3 3<br />

so y( x) =<br />

1<br />

3<br />

4x+ 3x − 4x<br />

yx ( ) = a+ bx+ cx+ dx<br />

2 3<br />

⎡1 −1 1 −1⎤⎡a⎤<br />

⎡3⎤ ⎢<br />

1 0 0 0<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

5<br />

⎥<br />

⎢ ⎥⎢ ⎥ = ⎢ ⎥<br />

⎢1 1 1 1 ⎥⎢c⎥ ⎢7⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎣1 2 4 8 ⎦⎣d⎦ ⎣3⎦ ⇒ a= 5, b= 3, c= 0, d =− 1 so y( x) = 5 + 3x−<br />

x<br />

yx ( ) = a+ bx+ cx+ dx<br />

2 3<br />

⎡1 −2 4 −8⎤⎡a⎤ ⎡−2⎤ ⎢<br />

1 1 1 1<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

2<br />

⎥<br />

⎢<br />

− −<br />

⎥⎢ ⎥ = ⎢ ⎥<br />

⎢1 1 1 1 ⎥⎢c⎥ ⎢10⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎣1 2 4 8 ⎦⎣d⎦ ⎣26⎦ Section 3.7 179<br />

2<br />

2 3<br />

( )<br />

⇒ a= 4, b= 3, c= 2, d = 1 so y( x) = 4 + 3x+ 2x<br />

+ x<br />

yx ( ) = a+ bx+ cx+ dx<br />

2 3<br />

⎡1 −1 1 −1⎤⎡a⎤<br />

⎡17⎤ ⎢<br />

1 1 1 1<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

5<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

−<br />

= ⎢ ⎥<br />

⎢1 2 4 8 ⎥⎢c⎥ ⎢ 3 ⎥<br />

⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎣1 3 9 27⎦⎣d⎦ ⎣−2⎦ 3<br />

2 3<br />

⇒ a= 17, b=− 5, c= 3, d =− 2 so y( x) = 17 − 5x+ 3x − 2x<br />

2 3<br />

In Problems 11–14 we first set up the l<strong>in</strong>ear system <strong>in</strong> the coefficients ABC , , that we get by<br />

2 2<br />

substitut<strong>in</strong>g each given po<strong>in</strong>t ( xi, y i)<br />

<strong>in</strong><strong>to</strong> the circle equation Ax + By + C =−x− y (see<br />

Eq. (9) <strong>in</strong> the text). Then we give the circle that results from solution of this l<strong>in</strong>ear system.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


11.<br />

12.<br />

13.<br />

14.<br />

180<br />

2 2<br />

Ax + By + C =−x− y<br />

⎡−1 −1 1⎤⎡A⎤ ⎡ −2<br />

⎤<br />

⎢<br />

6 6 1<br />

⎥⎢<br />

B<br />

⎥ ⎢<br />

72<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢<br />

−<br />

⎥<br />

⇒ A=− 6, B=− 4, C =−12<br />

⎢⎣ 7 5 1⎥⎢ ⎦⎣C⎥⎦ ⎢⎣−74⎥⎦ 2 2<br />

x + y −6x−4y− 12 = 0<br />

x− + y−<br />

= center (3, 2) and radius 5<br />

2 2<br />

( 3) ( 2) 25<br />

2 2<br />

Ax + By + C =−x− y<br />

⎡ 3 −4 1⎤⎡A⎤ ⎡ −25<br />

⎤<br />

⎢<br />

5 10 1<br />

⎥⎢<br />

B<br />

⎥ ⎢<br />

125<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢<br />

−<br />

⎥<br />

⇒ A= 6, B=− 8, C =−75<br />

⎢⎣−912 1⎥⎢ ⎦⎣C⎥⎦ ⎢⎣−225⎥⎦ 2 2<br />

x + y + 6x−8y− 75 = 0<br />

x+ + y−<br />

= center (–3, 4) and radius 10<br />

2 2<br />

( 3) ( 4) 100<br />

2 2<br />

Ax + By + C =−x− y<br />

⎡ 1 0 1⎤⎡A⎤ ⎡ −1⎤<br />

⎢<br />

0 5 1<br />

⎥⎢<br />

B<br />

⎥ ⎢<br />

25<br />

⎥<br />

⎢<br />

−<br />

⎥⎢ ⎥<br />

=<br />

⎢<br />

−<br />

⎥<br />

⇒ A= 4, B= 4, C =−5<br />

⎢⎣−5 −4 1⎥⎢ ⎦⎣C⎥⎦ ⎢⎣−41⎥⎦ 2 2<br />

x + y + 4x+ 4y− 5 = 0<br />

x+ + y+<br />

= center (–2, –2) and radius 13<br />

2 2<br />

( 2) ( 2) 13<br />

2 2<br />

Ax + By + C =−x− y<br />

⎡ 0 0 1⎤⎡A⎤ ⎡ 0 ⎤<br />

⎢<br />

10 0 1<br />

⎥⎢<br />

B<br />

⎥ ⎢<br />

100<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢<br />

−<br />

⎥<br />

⇒ A=− 10, B=− 24, C = 0<br />

⎢⎣−7 7 1⎥⎢ ⎦⎣C⎥⎦ ⎢⎣ −98<br />

⎥⎦<br />

2 2<br />

x + y −10x− 24y = 0<br />

x− + y−<br />

= center (5, 12) and radius 13<br />

2 2<br />

( 5) ( 12) 169<br />

In Problems 15–18 we first set up the l<strong>in</strong>ear system <strong>in</strong> the coefficients ABC , , that we get by<br />

2 2<br />

substitut<strong>in</strong>g each given po<strong>in</strong>t ( xi, y i)<br />

<strong>in</strong><strong>to</strong> the central conic equation Ax + Bxy + Cy = 1 (see<br />

Eq. (10) <strong>in</strong> the text). Then we give the equation that results from solution of this l<strong>in</strong>ear system.<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


15.<br />

16.<br />

17.<br />

18.<br />

2 2<br />

Ax + Bxy + Cy = 1<br />

⎡ 0 0 25⎤⎡A⎤ ⎡1⎤ ⎢ 1 1 1<br />

25 0 0<br />

⎥⎢<br />

B<br />

⎥ ⎢<br />

1<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⇒ A= , B=− , C =<br />

25 25 25<br />

⎢⎣25 25 25⎥⎢ ⎦⎣C⎥⎦ ⎢⎣1⎥⎦ 2 2<br />

x − xy+ y =<br />

25<br />

2 2<br />

Ax + Bxy + Cy = 1<br />

⎡ 0 0 25⎤⎡A⎤ ⎡1⎤ ⎢ 1 7 1<br />

25 0 0<br />

⎥⎢<br />

B<br />

⎥ ⎢<br />

1<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⇒ A= , B=− , C =<br />

25 100 25<br />

⎢⎣100 100 100⎥⎢ ⎦⎣C⎥⎦ ⎢⎣1⎥⎦ x xy y<br />

2 2<br />

4 − 7 + 4 = 100<br />

2 2<br />

Ax + Bxy + Cy = 1<br />

⎡ 0 0 1 ⎤⎡A⎤ ⎡1⎤ ⎢ 199<br />

1 0 0<br />

⎥⎢<br />

B<br />

⎥ ⎢<br />

1<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⇒ A= 1, B=− , C = 1<br />

100<br />

⎢⎣100 100 100⎥⎢ ⎦⎣C⎥⎦ ⎢⎣1⎥⎦ x xy y<br />

2 2<br />

100 − 199 + 100 = 100<br />

2 2<br />

Ax + Bxy + Cy = 1<br />

⎡ 0 0 16⎤⎡A⎤ ⎡1⎤ ⎢ 1 481 1<br />

9 0 0<br />

⎥⎢<br />

B<br />

⎥ ⎢<br />

1<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⇒ A= , B=− , C =<br />

9 3600 16<br />

⎢⎣25 25 25⎥⎢ ⎦⎣C⎥⎦ ⎢⎣1⎥⎦ x xy y<br />

2 2<br />

400 − 481 + 225 = 3600<br />

19. We substitute each of the two given po<strong>in</strong>ts <strong>in</strong><strong>to</strong> the equation<br />

⎡1 1⎤<br />

⎢<br />

5 2<br />

1<br />

⎥ ⎡A⎤ ⎡ ⎤<br />

= ⇒ A= 3, B = 2 so y = 3 +<br />

⎢1⎥⎢ B<br />

⎥ ⎢<br />

4<br />

⎥<br />

x<br />

⎢<br />

⎣ ⎦ ⎣ ⎦<br />

⎣ 2⎥⎦<br />

B<br />

y = A+ .<br />

x<br />

B C<br />

20. We substitute each of the <strong>three</strong> given po<strong>in</strong>ts <strong>in</strong><strong>to</strong> the equation y = Ax+<br />

+ : 2<br />

x x<br />

Section 3.7 181<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


182<br />

⎡ ⎤<br />

⎢1 1 1 ⎥<br />

⎢ ⎥⎡A⎤ ⎡ 2 ⎤<br />

⎢ 1 1 8 16<br />

2 ⎥ ⎢<br />

B<br />

⎥<br />

=<br />

⎢<br />

20<br />

⎥<br />

⇒ A= 10, B= 8, C =− 16 so y = 10x+<br />

− 2<br />

⎢ 2 4 ⎥⎢ ⎥ ⎢ ⎥<br />

x x<br />

⎢ C 41<br />

1 1 ⎥⎣⎢ ⎥⎦ ⎢⎣ ⎥⎦<br />

⎢4⎥ ⎢⎣ 4 16⎥⎦<br />

2 2 2 2<br />

In Problems 21 and 22 we fit the sphere equation ( x − h) + ( y− k) + ( z− l) = r <strong>in</strong> the expanded<br />

2 2 2<br />

form Ax + By + Cz + D =−x− y − z that is analogous <strong>to</strong> Eq. (9) <strong>in</strong> the text (for a circle).<br />

21.<br />

22.<br />

2 2 2<br />

Ax + By + Cz + D =−x− y − z<br />

⎡4615 1⎤⎡A⎤ ⎡−277⎤ ⎢<br />

13 5 7 1<br />

⎥⎢<br />

B<br />

⎥ ⎢<br />

243<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

−<br />

= ⎢ ⎥ ⇒ A=− 2, B=− 4, C =− 6, D=−155<br />

⎢514 6 1⎥⎢C⎥ ⎢−257⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎣55−91⎦⎣D⎦ ⎣−131⎦ 2 2 2<br />

x + y + z −2x−4y−6z− 155 = 0<br />

x− + y− + z−<br />

= center (1, 2, 3) and radius 13<br />

2 2 2<br />

( 1) ( 2) ( 3) 169<br />

2 2 2<br />

Ax + By + Cz + D =−x− y − z<br />

⎡ 11 17 17 1⎤⎡A⎤ ⎡ −699<br />

⎤<br />

⎢<br />

29 1 15 1<br />

⎥⎢<br />

B<br />

⎥ ⎢<br />

1067<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

−<br />

= ⎢ ⎥ ⇒ A=− 10, B= 14, C =− 18, D=−521<br />

⎢ 13 −133 1⎥⎢C⎥ ⎢−1259⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎣−19 −13 1 1⎦⎣D⎦ ⎣ −531<br />

⎦<br />

2 2 2<br />

x + y + z − 10x+ 14y−18z− 521 = 0<br />

x− + y+ + z−<br />

= center (5, –7, 9) and radius 26<br />

2 2 2<br />

( 5) ( 7) ( 9) 676<br />

In Problems 23–26 we first take t = 0 <strong>in</strong> 1970 <strong>to</strong> fit a quadratic polynomial P() t =<br />

2<br />

a+ bt+ ct .<br />

Then we write the quadratic polynomial QT ( ) = PT ( − 1970) that expresses the predicted<br />

population <strong>in</strong> terms of the actual calendar year T.<br />

23.<br />

P() t = a+ bt+ ct<br />

⎡100⎤⎡a⎤ ⎡49.061⎤ ⎢<br />

1 10 100<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

49.137<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⎢⎣120400⎥⎢ ⎦⎣c⎥⎦ ⎢⎣50.809⎥⎦ 2<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


24.<br />

25.<br />

26.<br />

P( t) =<br />

2<br />

49.061− 0.0722t+ 0.00798t<br />

QT ( ) = 31160.9 − 31.5134T + 0.00798T<br />

P() t = a+ bt+ ct<br />

⎡100⎤⎡a⎤ ⎡56.590⎤ ⎢<br />

1 10 100<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

58.867<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⎢⎣120400⎥⎢ ⎦⎣c⎥⎦ ⎢⎣59.669⎥⎦ 2<br />

P( t) 2<br />

= 56.590 + 0.30145t− 0.007375t<br />

QT ( ) = − 29158.9 + 29.3589T − 0.007375T<br />

P() t = a+ bt+ ct<br />

⎡100⎤⎡a⎤ ⎡62.813⎤ ⎢<br />

1 10 100<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

75.367<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⎢⎣120400⎥⎢ ⎦⎣c⎥⎦ ⎢⎣85.446⎥⎦ 2<br />

P( t) 2<br />

= 62.813 + 1.37915t− 0.012375t<br />

QT ( ) = − 50680.3+ 50.1367T − 0.012375T<br />

P() t = a+ bt+ ct<br />

⎡100⎤⎡a⎤ ⎡34.838⎤ ⎢<br />

1 10 100<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

43.171<br />

⎥<br />

⎢ ⎥⎢ ⎥<br />

=<br />

⎢ ⎥<br />

⎢⎣120400⎥⎢ ⎦⎣c⎥⎦ ⎢⎣52.786⎥⎦ 2<br />

P( t) 2<br />

= 34.838 + 0.7692t+ 0.00641t<br />

QT ( ) = 23396.1− 24.4862T + 0.00641T<br />

In Problems 27–30 we first take t = 0 <strong>in</strong> 1960 <strong>to</strong> fit a cubic polynomial P() t =<br />

2 3<br />

a + bt + ct + dt .<br />

Then we write the cubic polynomial QT ( )<br />

<strong>in</strong> terms of the actual calendar year T.<br />

= PT ( − 1960) that expresses the predicted population<br />

2<br />

2<br />

2<br />

2<br />

Section 3.7 183<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


27.<br />

28.<br />

29.<br />

30.<br />

184<br />

P() t = a + bt + ct + dt<br />

2 3<br />

⎡1000⎤⎡a⎤ ⎡44.678⎤ ⎢<br />

1 10 100 1000<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

49.061<br />

⎥<br />

⎢ ⎥⎢ ⎥ = ⎢ ⎥<br />

⎢120 400 8000 ⎥⎢c⎥ ⎢49.137⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎣130 900 27000⎦⎣d⎦ ⎣50.809⎦ P( t) =<br />

2 3<br />

44.678 + 0.850417t− 0.05105t + 0.000983833t<br />

QT ( ) = − 7.60554× 10 + 11539.4T − 5.83599T + 0.000983833T<br />

P() t = a + bt + ct + dt<br />

2 3<br />

⎡1000⎤⎡a⎤ ⎡51.619⎤ ⎢<br />

1 10 100 1000<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

56.590<br />

⎥<br />

⎢ ⎥⎢ ⎥ = ⎢ ⎥<br />

⎢120 400 8000 ⎥⎢c⎥ ⎢58.867⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎣130 900 27000⎦⎣d⎦ ⎣59.669⎦ 6 2 3<br />

P( t) 2 3<br />

= 51.619 + 0.672433t− 0.019565t + 0.000203167t<br />

QT ( ) = − 1.60618× 10 + 2418.82T − 1.21419T + 0.000203167T<br />

P() t = a + bt + ct + dt<br />

2 3<br />

⎡1000⎤⎡a⎤ ⎡54.973⎤ ⎢<br />

1 10 100 1000<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

62.813<br />

⎥<br />

⎢ ⎥⎢ ⎥ = ⎢ ⎥<br />

⎢120 400 8000 ⎥⎢c⎥ ⎢75.367⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎣130 900 27000⎦⎣d⎦ ⎣85.446⎦ 6 2 3<br />

P( t) 2 3<br />

= 54.973 + 0.308667t+ 0.059515t − 0.00119817t<br />

QT ( ) = 9.24972× 10 − 14041.6T + 7.10474T − 0.00119817T<br />

P() t = a + bt + ct + dt<br />

2 3<br />

⎡1000⎤⎡a⎤ ⎡28.053⎤ ⎢<br />

1 10 100 1000<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

34.838<br />

⎥<br />

⎢ ⎥⎢ ⎥ = ⎢ ⎥<br />

⎢120 400 8000 ⎥⎢c⎥ ⎢43.171⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎣130 900 27000⎦⎣d⎦ ⎣52.786⎦ 6 2 3<br />

P( t) =<br />

2 3<br />

28.053+ 0.592233t+ 0.00907t − 0.0000443333t<br />

QT ( ) = 367520 − 545.895T + 0.26975T − 0.0000443333T<br />

Chapter 3<br />

2 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


In Problems 31–34 we take t = 0 <strong>in</strong> 1950 <strong>to</strong> fit a quartic polynomial P() t =<br />

2 3 4<br />

a + bt + ct + dt + et .<br />

Then we write the quartic polynomial QT ( ) = PT ( − 1950) that expresses the predicted<br />

population <strong>in</strong> terms of the actual calendar year T.<br />

31.<br />

32.<br />

33.<br />

P t a bt ct dt et<br />

2 3 4<br />

() = + + + + .<br />

⎡10000⎤⎡a⎤ ⎡39.478⎤ ⎢<br />

1 10 100 1000 10000<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

44.678<br />

⎥<br />

⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎢120 400 8000 160000 ⎥⎢c⎥ = ⎢49.061⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎢130 900 27000 810000 ⎥⎢d⎥ ⎢49.137⎥ ⎢<br />

⎣140 1600 64000 2560000⎥⎢ ⎦⎣e⎥ ⎦<br />

⎢<br />

⎣50.809⎥ ⎦<br />

P( t) 2 3 4<br />

= 39.478 + 0.209692t+ 0.0564163t − 0.00292992t + 0.0000391375t<br />

QT ( ) = 5.87828× 10 − 1.19444× 10 T+ 910.118T − 0.308202T + 0.0000391375T<br />

P t a bt ct dt et<br />

2 3 4<br />

() = + + + + .<br />

8 6 2 3 4<br />

⎡10000⎤⎡a⎤ ⎡44.461⎤ ⎢<br />

1 10 100 1000 10000<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

51.619<br />

⎥<br />

⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎢120 400 8000 160000 ⎥⎢c⎥ = ⎢56.590⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎢130 900 27000 810000 ⎥⎢d⎥ ⎢58.867⎥ ⎢<br />

⎣140 1600 64000 2560000⎥⎢ ⎦⎣e⎥ ⎦<br />

⎢<br />

⎣59.669⎥ ⎦<br />

P( t) =<br />

2 3 −6<br />

4<br />

44.461+ 0.7651t−0.000489167t − 0.000516t + 7.19167× 10 t<br />

QT ( ) = 1.07807× 10 − 219185T + 167.096T − 0.056611T −<br />

+ 7.19167× 10 T<br />

P t a bt ct dt et<br />

2 3 4<br />

() = + + + + .<br />

8 2 3 6 4<br />

⎡10000⎤⎡a⎤ ⎡47.197⎤ ⎢<br />

1 10 100 1000 10000<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

54.973<br />

⎥<br />

⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎢120 400 8000 160000 ⎥⎢c⎥ = ⎢62.813⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎢130 900 27000 810000 ⎥⎢d⎥ ⎢75.367⎥ ⎢<br />

⎣140 1600 64000 2560000⎥⎢ ⎦⎣e⎥ ⎦<br />

⎢<br />

⎣85.446⎥ ⎦<br />

P( t) =<br />

2 3 4<br />

47.197 + 1.22537t− 0.0771921t + 0.00373475t − 0.0000493292t<br />

QT ( ) = − 7.41239× 10 + 1.50598× 10 T− 1147.37T + 0.388502T − 0.0000493292T<br />

8 6 2 3 4<br />

Section 3.7 185<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


34.<br />

186<br />

P t a bt ct dt et<br />

2 3 4<br />

() = + + + + .<br />

⎡10000⎤⎡a⎤ ⎡20.190⎤ ⎢<br />

1 10 100 1000 10000<br />

⎥⎢<br />

b<br />

⎥ ⎢<br />

28.053<br />

⎥<br />

⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎢120 400 8000 160000 ⎥⎢c⎥ = ⎢34.838⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥<br />

⎢130 900 27000 810000 ⎥⎢d⎥ ⎢43.171⎥ ⎢<br />

⎣140 1600 64000 2560000⎥⎢ ⎦⎣e⎥ ⎦<br />

⎢<br />

⎣52.786⎥ ⎦<br />

P( t) =<br />

2 3 4<br />

20.190 + 1.00003t− 0.031775t + 0.00116067t − 0.00001205t<br />

QT ( ) = − 1.8296× 10 + 370762T − 281.742T + 0.0951507T − 0.00001205T<br />

8 2 3 4<br />

35. Expansion of the determ<strong>in</strong>ant along the first row gives an equation of the form<br />

2<br />

2<br />

ay + bx + cx + d = 0 that can be solved for y = Ax + Bx+ C.<br />

If the coord<strong>in</strong>ates of any<br />

one of the <strong>three</strong> given po<strong>in</strong>ts ( x1, y1), ( x2, y2), ( x3, y3) are substituted <strong>in</strong> the first row, then<br />

the determ<strong>in</strong>ant has two identical rows and therefore vanishes.<br />

36. Expansion of the determ<strong>in</strong>ant along the first row gives<br />

Hence<br />

2<br />

y x x<br />

1<br />

3 1 1 1<br />

3 4 2 1<br />

7 9 3 1<br />

1 1 1 3 1 1 3 1 1 3 1 1<br />

= y − x + x − =<br />

2<br />

4 2 1 3 2 1 3 4 1 3 4 2<br />

9 3 1 7 3 1 7 9 1 7 9 3<br />

2<br />

− 2y+ 4x − 12x+ 14 = 0 .<br />

2<br />

= 2 − 6 + 7 is the parabola that <strong>in</strong>terpolates the <strong>three</strong> given po<strong>in</strong>ts.<br />

y x x<br />

37. Expansion of the determ<strong>in</strong>ant along the first row gives an equation of the form<br />

2 2<br />

ax ( + y) + bx+ cy+ d=<br />

0, and we get the desired form of the equation of a circle upon<br />

division by a. If the coord<strong>in</strong>ates of any one of the <strong>three</strong> given po<strong>in</strong>ts ( x1, y1), ( x2, y 2),<br />

and<br />

( x3, y 3)<br />

are substituted <strong>in</strong> the first row, then the determ<strong>in</strong>ant has two identical rows and<br />

therefore vanishes.<br />

38. Expansion of the determ<strong>in</strong>ant along the first row gives<br />

2 2<br />

x + y x y<br />

25 3 −4<br />

1<br />

1<br />

125 5 10 1<br />

225 −9<br />

12 1<br />

=<br />

Chapter 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


3 −4 1 25 −4 1 25 3 1 25 3 −4<br />

2 2<br />

= ( x + y ) 5 10 1 − x 125 10 1 + y 125 5 1 − 125 5 10<br />

−912 1 225 12 1 225 −91225 −912<br />

2 2<br />

200( x y ) 1200x 1600y 15000 0.<br />

= + + − − =<br />

Division by 200 and completion of squares gives<br />

center (–3, 4) and radius 10.<br />

2 2<br />

( x 3) ( y 4) 100,<br />

+ + − = so the circle has<br />

39. Expansion of the determ<strong>in</strong>ant along the first row gives an equation of the form<br />

2 2<br />

ax + bxy + cy + d = 0, which can be written <strong>in</strong> the central conic form<br />

2 2<br />

Ax + Bxy + Cy = 1 upon division by –d. If the coord<strong>in</strong>ates of any one of the <strong>three</strong> given<br />

po<strong>in</strong>ts ( x1, y1), ( x2, y 2),<br />

and ( x3, y 3)<br />

are substituted <strong>in</strong> the first row, then the determ<strong>in</strong>ant<br />

has two identical rows and therefore vanishes.<br />

40. Expansion of the determ<strong>in</strong>ant along the first row gives<br />

2<br />

x xy<br />

2<br />

y 1<br />

0 0 16 1<br />

9 0 0 1<br />

25 25 25 1<br />

=<br />

0 16 1 0 16 1 0 0 1 0 0 16<br />

=<br />

2<br />

x 0 0 1− xy 9 0 1+ y 9 0 1− 9 0 0<br />

25 25 1 25 25 1 25 25 1 25 25 25<br />

2 2<br />

400x 481xy 225y 3600 0.<br />

= − + − =<br />

Section 3.7 187<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!