11.08.2013 Views

solutions to problems in chapter one - Mathematics

solutions to problems in chapter one - Mathematics

solutions to problems in chapter one - Mathematics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 1<br />

FIRST-ORDER DIFFERENTIAL EQUATIONS<br />

SECTION 1.1<br />

DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS<br />

The ma<strong>in</strong> purpose of Section 1.1 is simply <strong>to</strong> <strong>in</strong>troduce the basic notation and term<strong>in</strong>ology of<br />

differential equations, and <strong>to</strong> show the student what is meant by a solution of a differential<br />

equation. Also, the use of differential equations <strong>in</strong> the mathematical model<strong>in</strong>g of real-world<br />

phenomena is outl<strong>in</strong>ed.<br />

Problems 1–12 are rout<strong>in</strong>e verifications by direct substitution of the suggested <strong>solutions</strong> <strong>in</strong><strong>to</strong> the<br />

given differential equations. We <strong>in</strong>clude here just some typical examples of such verifications.<br />

3. If y1 = cos2 x and y2 = s<strong>in</strong> 2x,<br />

then y′ 1 =− 2s<strong>in</strong> 2x and y′ 2 = 2cos 2x<br />

so<br />

4. If<br />

Thus y1 y1<br />

y′′ 1 = − 4cos2x = − 4 y1<br />

and y′′ 2 = − 4s<strong>in</strong>2x = − 4 y2.<br />

′′ + 4 = 0 and y′′ 2 + 4y2 = 0.<br />

y e and y e −<br />

= = , then<br />

3x 3x<br />

1 2<br />

y′′ = 9e = 9y<br />

and<br />

3x<br />

1 1<br />

5.<br />

x x<br />

If y e e −<br />

= − , then<br />

y<br />

x<br />

y 2 e .<br />

−<br />

′ = +<br />

x x<br />

y e e −<br />

6.<br />

−2x If y1 = e and<br />

−2x<br />

y2 = xe , then<br />

−2x −2x<br />

y′′ 2 =− 4e + 4 xe . Hence<br />

and<br />

1 1 1<br />

y 3e and y 3e<br />

−<br />

= = − so<br />

3x 3x<br />

1 2<br />

y′′ = 9e = 9 y .<br />

−3x<br />

2 2<br />

x −x x −x −x<br />

′ = + so y y ( e e ) ( e e ) 2 e .<br />

′ − = + − − = Thus<br />

y′ =− 2 e , y′′ = 4 e , y′ = e − 2 xe , and<br />

−2x −2x −2x −2x<br />

1 1 2<br />

−2x −2x −2x<br />

( ) ( ) ( )<br />

y′′ + 4y′ + 4y = 4e + 4 − 2e + 4 e = 0<br />

2 2 2<br />

−2x −2x −2x −2x −2x<br />

( ) ( ) ( )<br />

y′′ + 4y′ + 4y = − 4e + 4xe + 4 e − 2xe + 4 xe = 0.<br />

Section 1.1 1<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


8. If y1 = cos x− cos 2x and y2 = s<strong>in</strong> x− cos2 x,<br />

then y′ 1 =− s<strong>in</strong> x+ 2s<strong>in</strong> 2 x,<br />

y′′ 1 =− cos x+ 4cos2 x,<br />

and y′ 2 = cos x+ 2s<strong>in</strong> 2 x, y′′ 2 = − s<strong>in</strong> x+ 4cos2 x.<br />

Hence<br />

11. If<br />

and<br />

If<br />

( ) ( )<br />

y′′ 1+ y1 = − cos x+ 4cos2 x + cos x− cos2 x = 3cos2x<br />

( ) ( )<br />

y′′ 2 + y2 = − s<strong>in</strong> x+ 4cos2 x + s<strong>in</strong> x− cos2 x = 3cos2 x.<br />

y y x −<br />

2<br />

= 1 = then<br />

−3 −4<br />

y′ =− 2x and y′′ = 6 x , so<br />

2 Chapter 1<br />

− − −<br />

( ) ( ) ( )<br />

2 2 4 3 2<br />

xy′′ + 5xy′ + 4y= x 6x+ 5x− 2x+ 4 x = 0.<br />

−2<br />

y y2 x ln x<br />

= = then<br />

′ = − 2 ln and ′′ =− 5 + 6 ln , so<br />

−3 −3 −4 −4<br />

y x x x y x x x<br />

( − − ) ( − − ) ( − )<br />

( −2 5x −2 5x ) −2 ( 6x −2 10x −2<br />

4x ) lnx 0.<br />

′′ + ′ + = − + + − +<br />

2 2 4 4 3 3 2<br />

x y 5x y 4y x 5x 6x lnx 5x x 2x lnx 4 x lnx<br />

= − + + − + =<br />

13.<br />

rx<br />

rx<br />

Substitution of y = e <strong>in</strong><strong>to</strong> 3y′ = 2y<br />

gives the equation 3re <strong>to</strong> 3r = 2. Thus r = 2/3.<br />

=<br />

rx<br />

2e<br />

that simplifies<br />

14. Substitution of<br />

2<br />

4r = 1. Thus r =± 1/2.<br />

rx<br />

y = e <strong>in</strong><strong>to</strong> 4 y′′ = y gives the equation<br />

4<br />

2 rx rx<br />

r e e<br />

= that simplifies <strong>to</strong><br />

15.<br />

rx<br />

Substitution of y = e <strong>in</strong><strong>to</strong> y′′ + y′ − 2y =<br />

2 rx rx rx<br />

0 gives the equation re + re − 2e= 0<br />

2<br />

that simplifies <strong>to</strong> r + r− 2 = ( r+ 2)( r−<br />

1) = 0. Thus r = –2 or r = 1.<br />

16. Substitution of<br />

2 rx rx rx<br />

3re 3re4e0 rx<br />

y = e <strong>in</strong><strong>to</strong> 3y′′ + 3y′ − 4y = 0 gives the equation<br />

+ − = that simplifies <strong>to</strong><br />

gives the <strong>solutions</strong> r = ( − 3± 57 ) /6.<br />

2<br />

3r 3r 4 0.<br />

+ − = The quadratic formula then<br />

The verifications of the suggested <strong>solutions</strong> <strong>in</strong> Problems 17–26 are similar <strong>to</strong> those <strong>in</strong> Problems<br />

1–12. We illustrate the determ<strong>in</strong>ation of the value of C only <strong>in</strong> some typical cases. However,<br />

we illustrate typical solution curves for each of these <strong>problems</strong>.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


17. C = 2 18. C = 3<br />

y<br />

y<br />

5<br />

0<br />

−5<br />

−5 0<br />

x<br />

5<br />

19. If yx ( )<br />

x<br />

= Ce−<br />

1 then y(0) = 5 gives C – 1 = 5, so C = 6. The figure is on the<br />

left below.<br />

y<br />

5<br />

0<br />

−5<br />

−5 0<br />

x<br />

5<br />

10<br />

5<br />

0<br />

−5<br />

(0,2)<br />

(0,5)<br />

−10<br />

−5 0<br />

x<br />

5<br />

y<br />

20<br />

0<br />

Section 1.1 3<br />

(0,3)<br />

(0,10)<br />

−20<br />

−10 −5 0<br />

x<br />

5 10<br />

20. If yx ( )<br />

− x<br />

= Ce + x−<br />

1 then y(0) = 10 gives C – 1 = 10, so C = 11. The figure is<br />

on the right above.<br />

21. C = 7. The figure is on the left at the <strong>to</strong>p of the next page.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


y<br />

4 Chapter 1<br />

y<br />

5<br />

0<br />

(0,0)<br />

−5<br />

−20 −10 0<br />

x<br />

10 20<br />

22. If yx ( ) = ln( x+ C)<br />

then y(0) = 0 gives ln C = 0, so C = 1. The figure is on the<br />

right above.<br />

23. If yx ( ) 1 5 2<br />

4 x Cx −<br />

= + then y(2) = 1 gives the equation<br />

solution C = –56. The figure is on the left below.<br />

y<br />

10<br />

−5<br />

−10<br />

−2 −1 0<br />

x<br />

1 2<br />

30<br />

20<br />

10<br />

0<br />

−10<br />

−20<br />

5<br />

0<br />

(0,7)<br />

(2,1)<br />

−30<br />

0 1 2 3<br />

x<br />

24. C = 17. The figure is on the right above.<br />

y<br />

30<br />

20<br />

10<br />

0<br />

−10<br />

−20<br />

(1,1)<br />

⋅ 32 + C ⋅ = 1 with<br />

1 1<br />

4 8<br />

−30<br />

0 0.5 1 1.5 2 2.5<br />

x<br />

3 3.5 4 4.5 5<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


25. If yx ( ) =<br />

2<br />

tan( x + C)<br />

then y(0) = 1 gives the equation tan C = 1. Hence <strong>one</strong> value<br />

of C is C = π /4 (as is this value plus any <strong>in</strong>tegral multiple of π).<br />

y<br />

4<br />

2<br />

0<br />

−2<br />

(0,1)<br />

−4<br />

−2 −1 0<br />

x<br />

1 2<br />

26. Substitution of x = π and y = 0 <strong>in</strong><strong>to</strong> y = ( x+ C)cosx yields the equation<br />

0 = ( π + C)(<br />

− 1), so C = − π.<br />

27. y′ = x+ y<br />

y<br />

10<br />

5<br />

0<br />

−5<br />

(π,0)<br />

−10<br />

0 5<br />

x<br />

10<br />

Section 1.1 5<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


28. The slope of the l<strong>in</strong>e through ( xy , ) and ( x / 2,0) is y′ = ( y−0)/( x− x/2) = 2 y/ x,<br />

so the differential equation is x y′ = 2 y.<br />

29. If m = y′ is the slope of the tangent l<strong>in</strong>e and m′ is the slope of the normal l<strong>in</strong>e at<br />

( x, y ), then the relation mm′ =− 1 yields m′ = 1/ y′ = ( y−1)/( x−<br />

0). Solution for<br />

y′ then gives the differential equation (1 − y) y′ = x.<br />

30. Here m = y′ and<br />

2<br />

m′ = Dx( x + k) = 2 x,<br />

so the orthogonality relation mm′ =− 1 gives<br />

the differential equation 2xy′ = − 1.<br />

31. The slope of the l<strong>in</strong>e through ( x, y) and ( − y, x)<br />

is y′ = ( x− y)/( −y− x),<br />

so the<br />

differential equation is ( x + y) y′ = y− x.<br />

In Problems 32–36 we get the desired differential equation when we replace the "time rate of<br />

change" of the dependent variable with its derivative, the word "is" with the = sign, the phrase<br />

"proportional <strong>to</strong>" with k, and f<strong>in</strong>ally translate the rema<strong>in</strong>der of the given sentence <strong>in</strong><strong>to</strong> symbols.<br />

32. dP / dt = k P<br />

33.<br />

dv / dt = k v<br />

34. dv / dt = k(250 − v)<br />

35. dN / dt = k( P − N )<br />

36. dN / dt = k N( P − N )<br />

2<br />

37. The second derivative of any l<strong>in</strong>ear function is zero, so we spot the two <strong>solutions</strong><br />

yx ( ) ≡ 1 or yx ( ) = xof<br />

the differential equation y′′ = 0.<br />

38. A function whose derivative equals itself, and hence a solution of the differential<br />

equation y′ = y is yx ( ) =<br />

x<br />

e.<br />

39. We reason that if<br />

6 Chapter 1<br />

2<br />

y = kx , then each term <strong>in</strong> the differential equation is a multiple of<br />

The choice k = 1 balances the equation, and provides the solution<br />

40. If y is a constant, then y′ ≡ 0 so the differential equation reduces <strong>to</strong><br />

the two constant-valued <strong>solutions</strong> yx ( ) ≡ 1 and yx ( ) ≡ − 1.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

yx x<br />

2<br />

( ) = .<br />

2<br />

x .<br />

2<br />

y = 1. This gives


41.<br />

x<br />

x<br />

We reason that if y = ke , then each term <strong>in</strong> the differential equation is a multiple of e .<br />

1<br />

The choice k = 2 balances the equation, and provides the solution yx ( ) = 1 x<br />

2 e.<br />

42. Two functions, each equal<strong>in</strong>g the negative of its own second derivative, are the two<br />

<strong>solutions</strong> yx ( ) = cosxand<br />

yx ( ) = s<strong>in</strong>xof<br />

the differential equation y′′ =− y.<br />

43. (a) We need only substitute x() t = 1/( C− kt)<br />

<strong>in</strong> both sides of the differential<br />

2<br />

equation x′ = kx for a rout<strong>in</strong>e verification.<br />

(b) The zero-valued function xt () ≡ 0obviously<br />

satisfies the <strong>in</strong>itial value problem<br />

2<br />

x′ = kx , x(0)<br />

= 0.<br />

44. (a) The figure on the left below shows typical graphs of <strong>solutions</strong> of the differential<br />

1 2<br />

equation x′ = x .<br />

x<br />

5<br />

4<br />

3<br />

2<br />

1<br />

2<br />

0<br />

0 1 2<br />

t<br />

3 4<br />

x<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 1 2<br />

t<br />

3 4<br />

(b) The figure on the right above shows typical graphs of <strong>solutions</strong> of the differential<br />

1 2<br />

equation x′ 1<br />

=− 2 x . We see that — whereas the graphs with k = 2 appear <strong>to</strong> "diverge<br />

1<br />

<strong>to</strong> <strong>in</strong>f<strong>in</strong>ity" — each solution with k =− 2 appears <strong>to</strong> approach 0 as t →∞ . Indeed, we<br />

1<br />

see from the Problem 43(a) solution x() t = 1/( C− 2 t)<br />

that xt () →∞ as t → 2 C.<br />

1<br />

1<br />

However, with k =− 2 it is clear from the result<strong>in</strong>g solution x() t = 1/( C+ 2 t)<br />

that<br />

x() t rema<strong>in</strong>s bounded on any f<strong>in</strong>ite <strong>in</strong>terval, but xt () → 0 as t →+∞ .<br />

45. Substitution of P′ = 1 and P = 10 <strong>in</strong><strong>to</strong> the differential equation<br />

2<br />

P′ 1<br />

= kP gives k =<br />

so Problem 43(a) yields a solution of the form Pt ( ) = 1/( C− t/100).<br />

The <strong>in</strong>itial<br />

1<br />

condition P (0) = 2 now yields C = so we get the solution<br />

2 ,<br />

100 ,<br />

Section 1.1 7<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


1 100<br />

Pt () = = .<br />

1 t<br />

−<br />

50 − t<br />

2 100<br />

We now f<strong>in</strong>d readily that P = 100 when t = 49, and that P = 1000 when t = 49.9.<br />

It appears that P grows without bound (and thus "explodes") as t approaches 50.<br />

46. Substitution of v′ =− 1andv = 5<strong>in</strong><strong>to</strong><br />

the differential equation<br />

8 Chapter 1<br />

2<br />

v′ = kv gives<br />

1<br />

25 , k =− so Problem 43(a) yields a solution of the form vt () = 1/( C+ t/25).<br />

The <strong>in</strong>itial<br />

1<br />

condition v (0) = 10 now yields C = so we get the solution<br />

10 ,<br />

1 50<br />

vt () = = .<br />

1 t<br />

+<br />

5+ 2t<br />

10 25<br />

We now f<strong>in</strong>d readily that v = 1 when t = 22.5, and that v = 0.1 when t = 247.5.<br />

It appears that v approaches 0 as t <strong>in</strong>creases without bound. Thus the boat gradually<br />

slows, but never comes <strong>to</strong> a "full s<strong>to</strong>p" <strong>in</strong> a f<strong>in</strong>ite period of time.<br />

47. (a) y(10) = 10 yields 10 = 1/( C− 10), so C = 101/10.<br />

(b) There is no such value of C, but the constant function yx ( ) ≡ 0 satisfies the<br />

2<br />

conditions y′ = y and y(0)<br />

= 0.<br />

(c) It is obvious visually (<strong>in</strong> Fig. 1.1.8 of the text) that <strong>one</strong> and only <strong>one</strong> solution<br />

curve passes through each po<strong>in</strong>t ( ab , ) of the xy-plane, so it follows that there exists a<br />

2<br />

unique solution <strong>to</strong> the <strong>in</strong>itial value problem y′ = y , y( a) = b.<br />

48. (b)<br />

4<br />

Obviously the functions ux ( ) =− x and<br />

4<br />

vx ( ) =+ x both satisfy the differential<br />

equation xy′ =<br />

3<br />

4 y.<br />

But their derivatives u′ ( x) =− 4x and<br />

3<br />

v′ ( x) =+ 4x<br />

match at<br />

x = 0, where both are zero. Hence the given piecewise-def<strong>in</strong>ed function yx ( ) is<br />

differentiable, and therefore satisfies the differential equation because ux ( ) and vx ( )<br />

do so (for x ≤0andx ≥ 0, respectively).<br />

(c) If a ≥ 0 (for <strong>in</strong>stance), choose C + fixed so that<br />

4<br />

⎧Cx − if x≤<br />

0,<br />

yx ( ) = ⎨ 4<br />

⎩ Cx + if x≥<br />

0<br />

4<br />

C a b<br />

+ = . Then the function<br />

satisfies the given differential equation for every real number value of C− .<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


SECTION 1.2<br />

INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS<br />

This section <strong>in</strong>troduces general <strong>solutions</strong> and particular <strong>solutions</strong> <strong>in</strong> the very simplest situation<br />

— a differential equation of the form y′= f( x)<br />

— where only direct <strong>in</strong>tegration and evaluation<br />

of the constant of <strong>in</strong>tegration are <strong>in</strong>volved. Students should review carefully the elementary<br />

concepts of velocity and acceleration, as well as the fps and mks unit systems.<br />

1. Integration of y′ = 2x+ 1 yields yx ( ) = ∫ (2x+ 1) dx= 2<br />

x + x+ C.<br />

Then substitution<br />

of x = 0, y = 3 gives 3 = 0 + 0 + C = C, so yx ( ) =<br />

2<br />

x + x+<br />

3.<br />

2. Integration of<br />

2 ′ = ( − 2) yields<br />

y x<br />

2 1 3<br />

∫ 3<br />

Then<br />

yx ( ) = ( x− 2) dx= ( x− 2) + C.<br />

substitution of x = 2, y = 1 gives 1 = 0 + C = C, so<br />

yx x<br />

1 3<br />

( ) = 3 ( − 2) + 1.<br />

3. Integration of y′ = x yields yx ( ) = ∫ xdx= 2 3/2<br />

3 x + C.<br />

Then substitution of<br />

x = 4, 16<br />

y = 0 gives 0 = + C,<br />

so yx ( ) = 2 3/2<br />

( x − 8).<br />

3<br />

4.<br />

2<br />

Integration of y x − ′ = yields yx ( ) =<br />

−2<br />

∫ x dx= − 1/ x+ C.<br />

Then substitution of<br />

x = 1, y = 5 gives 5=− 1 + C,<br />

so yx ( ) = − 1/ x+<br />

6.<br />

5.<br />

−1/2<br />

Integration of y′ = ( x+<br />

2) yields yx ( ) =<br />

−1/2<br />

∫ ( x+ 2) dx= 2 x+ 2 + C.<br />

Then<br />

substitution of x = 2, y = − 1 gives − 1= 2⋅ 2 + C,<br />

so yx ( ) = 2 x+<br />

2 − 5.<br />

6. Integration of<br />

2 1/2<br />

′ = ( + 9) yields<br />

y x x<br />

Then substitution of x =− 4, y = 0 gives<br />

yx ⎡<br />

⎣ x<br />

⎤<br />

⎦<br />

1 2 3/2<br />

( ) = 3 ( + 9) −125<br />

.<br />

3<br />

∫<br />

yx ( ) = xx ( + 9) dx= ( x + 9) + C.<br />

1 3<br />

0 3 (5) C,<br />

= + so<br />

2 1/2 1<br />

3<br />

2 3/2<br />

7.<br />

2<br />

Integration of y′ = 10 /( x + 1) yields yx ( ) =<br />

2<br />

∫ 10 /( x + 1) dx<br />

−1<br />

= 10 tan x+ C.<br />

Then<br />

substitution of x = 0, y = 0 gives 0= 10⋅ 0 + C,<br />

so yx ( )<br />

−1<br />

= 10tan x.<br />

8. Integration of y′ = cos2 x yields yx ( ) = ∫ cos2xdx= 1<br />

2 s<strong>in</strong>2 x+ C.<br />

Then substitution<br />

of x = 0, y = 1 gives 1= 0 + C,<br />

so yx ( ) = 1 s<strong>in</strong>2x+ 1.<br />

9. Integration of y′ = 1/<br />

2<br />

1−<br />

x yields yx ( ) =<br />

2<br />

∫ 1/ 1− x dx<br />

−1<br />

= s<strong>in</strong> x+ C.<br />

Then<br />

substitution of x = 0, y = 0 gives 0= 0 + C,<br />

so yx ( )<br />

−1<br />

= s<strong>in</strong> x.<br />

2<br />

Section 1.2 9<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


10. Integration of<br />

x<br />

y xe − ′ = yields<br />

∫ ∫<br />

−x u u −x<br />

y( x) = x e dx = u e du = ( u − 1) e = − ( x + 1) e + C<br />

(when we substitute u =− x and apply Formula #46 <strong>in</strong>side the back cover of the<br />

textbook). Then substitution of x = 0, y = 1 gives 1=− 1 + C,<br />

so<br />

yx ( )<br />

x<br />

( x 1) e 2.<br />

−<br />

= − + +<br />

11. If at () = 50then<br />

vt ( ) = ∫ 50dt= 50t+ v0 = 50t+ 10. Hence<br />

∫<br />

xt ( ) = (50t+ 10) dt= 25t + 10t+ x = 25t + 10t+ 20.<br />

10 Chapter 1<br />

2 2<br />

0<br />

12. If at () = − 20then<br />

vt ( ) = ∫ ( − 20) dt= − 20t+ v0 = −20t−15. Hence<br />

13. If at () = 3tthen<br />

14. If at () = 2t+ 1then<br />

∫<br />

xt ( ) = ( −20t− 15) dt= −10t − 15t+ x = −10t − 15t+ 5.<br />

∫<br />

2 2<br />

0<br />

3 2 3 2<br />

∫ 2 0 2 Hence<br />

vt () = 3tdt= t + v = t + 5.<br />

x() t = ( t + 5) dt = t + 5t+ x = t + 5. t<br />

∫<br />

3 2 1 3 1 3<br />

2 2 0 2<br />

2 2<br />

∫ 0<br />

Hence<br />

vt () = (2t+ 1) dt= t + t+ v = t + t−7.<br />

xt () = ( t + t− 7) dt= t + t− 7t+ x = t + t− 7t+ 4.<br />

2 1 3 1 1 3 1<br />

3 2 0 3 2<br />

15. If at () =<br />

2<br />

4( t+<br />

3). then vt () =<br />

2<br />

∫ 4( t+ 3) dt= 4 3<br />

3( t+ 3) + C = 4 3<br />

3(<br />

t+<br />

3) −37(tak<strong>in</strong>g<br />

C = –37 so that v(0) = –1). Hence<br />

∫<br />

4 3 1 4 1 4<br />

xt ( ) = ⎡<br />

⎣3( t+ 3) − 37 ⎤<br />

⎦dt=<br />

3( t+ 3) − 37 t+ C = 3(<br />

t+ 3) −37t−26. 16. If at () = 1/ t+<br />

4 then vt () = ∫ 1/ t+ 4dt= 2 t+ 4+ C = 2 t+<br />

4−5(tak<strong>in</strong>g C = –5 so that v(0) = –1). Hence<br />

∫<br />

xt () = (2t+ 4− 5) dt= ( t+ 4) − 5 t+ C = ( t+ 4) −5t− (tak<strong>in</strong>g C =− 29 / 3 so that x (0) = 1).<br />

4 3/2 4 3/2 29<br />

3 3 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


17. If<br />

at () ( t 1)<br />

(tak<strong>in</strong>g 1<br />

2<br />

−3<br />

= + then<br />

C = so that v(0) = 0). Hence<br />

∫<br />

∫<br />

vt ( ) = ( t+ 1) dt= − ( t+ 1) + C = − ( t+<br />

1) +<br />

−3 1 −2 1 −2<br />

1<br />

2 2 2<br />

1 −2 1 1 −1 1 1<br />

−1<br />

xt ( ) = ⎡<br />

⎣− 2( t+ 1) + ⎤ 2⎦dt= 2( t+ 1) + 2t+ C = ⎡ 2⎣(<br />

t+ 1) + t−1⎤<br />

⎦<br />

1<br />

(tak<strong>in</strong>g C =− 2 so that x (0) = 0 ).<br />

18. If at () = 50s<strong>in</strong>5tthen<br />

vt ( ) = ∫ 50s<strong>in</strong>5tdt= − 10cos5t+ C = −10cos5t<br />

(tak<strong>in</strong>g<br />

C = 0 so that v(0) = –10). Hence<br />

∫<br />

xt () = ( − 10cos5) t dt= − 2s<strong>in</strong>5t+ C = − 2s<strong>in</strong>5t+ 10<br />

(tak<strong>in</strong>g C =− 10 so that x (0) = 8).<br />

19. Note that vt () = 5for<br />

0≤t≤ 5 and that vt () = 10−<br />

tfor<br />

5 ≤t≤ 10. Hence<br />

1 2<br />

x() t = 5t+<br />

C1for<br />

0≤t≤ 5 and x() t = 10t−<br />

2 t + C2for<br />

5 ≤t≤ 10. Now C 1 = 0<br />

because x (0) = 0, and cont<strong>in</strong>uity of x() t requires that x() t = 5t<br />

and<br />

1 2<br />

25<br />

x() t = 10t−<br />

2 t + C2agree<br />

when t = 5. This implies that 2 2 , C =− and we get the<br />

follow<strong>in</strong>g graph.<br />

v<br />

40<br />

30<br />

20<br />

10<br />

(5,25)<br />

0<br />

0 2 4 6 8 10<br />

t<br />

Section 1.2 11<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


1 2<br />

20. Note that vt () = tfor<br />

0≤t≤ 5 and that vt () = 5for<br />

5 ≤t≤ 10. Hence x() t = 2 t + C<br />

for 0≤t≤ 5 and x() t = 5t+<br />

C2for<br />

5≤t≤ 10. Now C 1 = 0 because x (0) = 0, and<br />

1 2<br />

cont<strong>in</strong>uity of x() t requires that x() t = 2 t and x() t = 5t+<br />

C2agree<br />

when t = 5.<br />

25<br />

This implies that C =− and we get the graph on the left below.<br />

v<br />

40<br />

30<br />

20<br />

10<br />

2 2 ,<br />

0<br />

0 2 4 6 8 10<br />

t<br />

12 Chapter 1<br />

v<br />

40<br />

30<br />

20<br />

10<br />

(5,12.5)<br />

0<br />

0 2 4 6 8 10<br />

t<br />

21. Note that vt () = tfor<br />

0≤t≤ 5 and that vt () = 10−<br />

tfor<br />

5 ≤t≤ 10. Hence<br />

1 2<br />

1 2<br />

x() t = 2 t + C1for<br />

0≤t≤ 5 and x() t = 10t−<br />

2 t + C2for<br />

5≤t≤ 10. Now C 1 = 0<br />

1 2<br />

because x (0) = 0, and cont<strong>in</strong>uity of x() t requires that x() t = t and<br />

1 2<br />

x() t = 10t−<br />

2 t + C2agree<br />

when t = 5. This implies that C 2 =− 25, and we get the<br />

graph on the right above.<br />

22. 5<br />

For 0≤t≤ 3: vt () = 3 t so<br />

x() t 5 2<br />

t<br />

5 2<br />

x() t = 6 t + C1.<br />

Now C 1 = 0 because x (0) = 0, so<br />

x (3) = 7 .<br />

1<br />

= 6 on this first <strong>in</strong>terval, and its right endpo<strong>in</strong>t value is 2<br />

1<br />

1<br />

For 3≤t≤ 7: vt () = 5 so x() t = 5 t+ C2.<br />

Now x (3) = 7 2 implies that C 2 =− 7 2 ,<br />

1<br />

xt () = 5t− 7 on this second <strong>in</strong>terval, where its right endpo<strong>in</strong>t value is x (7) = 27 .<br />

1<br />

so 2<br />

(5,12.5)<br />

5<br />

5 50<br />

5 2 50<br />

For 7≤t≤ 10: v− 5 = − 3 ( t−<br />

7), so vt () =− 3t+ 3 . Hence x() t =− 6t + 3 t+ C3,<br />

1<br />

290<br />

and x (7) = 27 2 implies that 3 6 .<br />

1 2<br />

C =− F<strong>in</strong>ally, xt ( ) = 6 ( − 5t + 100t− 290) on this<br />

third <strong>in</strong>terval, and we get the graph at the <strong>to</strong>p of the next page.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

2<br />

2<br />

1


v<br />

40<br />

30<br />

20<br />

10<br />

(3,7.5)<br />

(7,27.5)<br />

0<br />

0 2 4 6 8 10<br />

t<br />

23. v = –9.8t + 49, so the ball reaches its maximum height (v = 0) after t = 5 seconds. Its<br />

maximum height then is y(5) = –4.9(5) 2 + 49(5) = 122.5 meters.<br />

24. v = –32t and y = –16t 2 + 400, so the ball hits the ground (y = 0) when<br />

t = 5 sec, and then v = –32(5) = –160 ft/sec.<br />

25. a = –10 m/s 2 and v0 = 100 km/h ≈ 27.78 m/s, so v = –10t + 27.78, and hence<br />

x(t) = –5t 2 + 27.78t. The car s<strong>to</strong>ps when v = 0, t ≈ 2.78, and thus the distance<br />

traveled before s<strong>to</strong>pp<strong>in</strong>g is x(2.78) ≈ 38.59 meters.<br />

26. v = –9.8t + 100 and y = –4.9t 2 + 100t + 20.<br />

(a) v = 0 when t = 100/9.8 so the projectile's maximum height is<br />

y(100/9.8) = –4.9(100/9.8) 2 + 100(100/9.8) + 20 ≈ 530 meters.<br />

(b) It passes the <strong>to</strong>p of the build<strong>in</strong>g when y(t) = –4.9t 2 + 100t + 20 = 20,<br />

and hence after t = 100/4.9 ≈ 20.41 seconds.<br />

(c) The roots of the quadratic equation y(t) = –4.9t 2 + 100t + 20 = 0 are<br />

t = –0.20, 20.61. Hence the projectile is <strong>in</strong> the air 20.61 seconds.<br />

27. a = –9.8 m/s2 so v = –9.8 t – 10 and<br />

y = –4.9 t 2 – 10 t + y0.<br />

The ball hits the ground when y = 0 and<br />

v = –9.8 t – 10 = –60,<br />

so t ≈ 5.10 s. Hence<br />

y0 = 4.9(5.10) 2 + 10(5.10) ≈ 178.57 m.<br />

Section 1.2 13<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


28. v = –32t – 40 and y = –16t 2 – 40t + 555. The ball hits the ground (y = 0) when t ≈<br />

4.77 sec, with velocity v = v(4.77) ≈ –192.64 ft/sec, an impact speed of about 131<br />

mph.<br />

29. Integration of dv/dt = 0.12 t 3 + 0.6 t, v(0) = 0 gives v(t) = 0.3 t 2 + 0.04 t 3 . Hence<br />

v(10) = 70. Then <strong>in</strong>tegration of dx/dt = 0.3 t 2 + 0.04 t 3 , x(0) = 0 gives<br />

x(t) = 0.1 t 3 + 0.04 t 4 , so x(10) = 200. Thus after 10 seconds the car has g<strong>one</strong> 200 ft and<br />

is travel<strong>in</strong>g at 70 ft/sec.<br />

30. Tak<strong>in</strong>g x0 = 0 and v0 = 60 mph = 88 ft/sec, we get<br />

v = –at + 88,<br />

and v = 0 yields t = 88/a. Substitut<strong>in</strong>g this value of t and x = 176 <strong>in</strong><br />

x = –at 2 /2 + 88t,<br />

we solve for a = 22 ft/sec 2 . Hence the car skids for t = 88/22 = 4 sec.<br />

31. If a = –20 m/sec 2 and x0 = 0 then the car's velocity and position at time t are given<br />

by<br />

v = –20t + v0, x = –10 t 2 + v0t.<br />

It s<strong>to</strong>ps when v = 0 (so v0 = 20t), and hence when<br />

Thus t = 7.5 sec so<br />

x = 75 = –10 t 2 + (20t)t = 10 t 2 .<br />

14 Chapter 1<br />

v0 = 20 7.5 ≈ 54.77 m/sec ≈ 197 km/hr.<br />

32. Start<strong>in</strong>g with x0 = 0 and v0 = 50 km/h = 5×10 4 m/h, we f<strong>in</strong>d by the method of<br />

Problem 30 that the car's deceleration is a = (25/3)×10 7 m/h 2 . Then, start<strong>in</strong>g with x0 =<br />

0 and v0 = 100 km/h = 10 5 m/h, we substitute t = v0/a <strong>in</strong><strong>to</strong><br />

x = – 1<br />

2 at2 + v0t<br />

and f<strong>in</strong>d that x = 60 m when v = 0. Thus doubl<strong>in</strong>g the <strong>in</strong>itial velocity quadruples the<br />

distance the car skids.<br />

33. If v0 = 0 and y0 = 20 then<br />

v = –at and y = – 1<br />

2 at2 + 20.<br />

Substitution of t = 2, y = 0 yields a = 10 ft/sec 2 . If v0 = 0 and<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


y0 = 200 then<br />

v = –10t and y = –5t 2 + 200.<br />

Hence y = 0 when t = 40 = 2 10 sec and v = –20 10 ≈ –63.25 ft/sec.<br />

34. On Earth: v = –32t + v0, so t = v0/32 at maximum height (when v = 0).<br />

Substitut<strong>in</strong>g this value of t and y = 144 <strong>in</strong><br />

y = –16t 2 + v0t,<br />

we solve for v0 = 96 ft/sec as the <strong>in</strong>itial speed with which the person can throw a ball<br />

straight upward.<br />

On Planet Gzyx: From Problem 27, the surface gravitational acceleration on planet<br />

Gzyx is a = 10 ft/sec 2 , so<br />

v = –10t + 96 and y = –5t 2 + 96t.<br />

Therefore v = 0 yields t = 9.6 sec, and thence ymax = y(9.6) = 460.8 ft is the<br />

height a ball will reach if its <strong>in</strong>itial velocity is 96 ft/sec.<br />

35. If v0 = 0 and y0 = h then the s<strong>to</strong>ne′s velocity and height are given by<br />

v = –gt, y = –0.5 gt 2 + h.<br />

Hence y = 0 when t = 2 h/ g so<br />

v = –g 2 h/ g = – 2gh .<br />

36. The method of solution is precisely the same as that <strong>in</strong> Problem 30. We f<strong>in</strong>d first that, on<br />

Earth, the woman must jump straight upward with <strong>in</strong>itial velocity v0 = 12 ft/sec <strong>to</strong><br />

reach a maximum height of 2.25 ft. Then we f<strong>in</strong>d that, on the Moon, this <strong>in</strong>itial velocity<br />

yields a maximum height of about 13.58 ft.<br />

37. We use units of miles and hours. If x0 = v0 = 0 then the car′s velocity and position<br />

after t hours are given by<br />

v = at, x = 1<br />

2 t2 .<br />

S<strong>in</strong>ce v = 60 when t = 5/6, the velocity equation yields a = 72 mi/hr 2 . Hence the<br />

distance traveled by 12:50 pm is<br />

x = (0.5)(72)(5/6) 2 = 25 miles.<br />

Section 1.2 15<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


38. Aga<strong>in</strong> we have<br />

v = at, x = 1<br />

2 t2 .<br />

But now v = 60 when x = 35. Substitution of a = 60/t (from the velocity equation)<br />

<strong>in</strong><strong>to</strong> the position equation yields<br />

whence t = 7/6 hr, that is, 1:10 p.m.<br />

39. Integration of y′ = (9/vS)(1 – 4x 2 ) yields<br />

16 Chapter 1<br />

35 = (0.5)(60/t)(t 2 ) = 30t,<br />

y = (3/vS)(3x – 4x 3 ) + C,<br />

and the <strong>in</strong>itial condition y(–1/2) = 0 gives C = 3/vS. Hence the swimmer′s trajec<strong>to</strong>ry<br />

is<br />

y(x) = (3/vS)(3x – 4x 3 + 1).<br />

Substitution of y(1/2) = 1 now gives vS = 6 mph.<br />

40. Integration of y′ = 3(1 – 16x 4 ) yields<br />

y = 3x – (48/5)x 5 + C,<br />

and the <strong>in</strong>itial condition y(–1/2) = 0 gives C = 6/5. Hence the swimmer′s trajec<strong>to</strong>ry<br />

is<br />

y(x) = (1/5)(15x – 48x 5 + 6),<br />

so his downstream drift is y(1/2) = 2.4 miles.<br />

2<br />

41. The bomb equations are a =− 32, v =− 32, and sB= s =− 16t + 800, with t = 0 at the<br />

<strong>in</strong>stant the bomb is dropped. The projectile is fired at time t = 2, so its correspond<strong>in</strong>g<br />

equations are a =− 32, v =−32( t− 2) + v0,<br />

and<br />

s = s = − t− + v t−<br />

P<br />

2<br />

16( 2) 0(<br />

2)<br />

for t ≥ 2 (the arbitrary constant vanish<strong>in</strong>g because s P(2)<br />

= 0 ). Now the condition<br />

2<br />

sB( t) =− 16t + 800 = 400 gives t = 5, and then the requirement that s P(5)<br />

= 400 also<br />

yields v 0 = 544 / 3 ≈ 181.33 ft/s for the projectile's needed <strong>in</strong>itial velocity.<br />

42. Let x() t be the (positive) altitude (<strong>in</strong> miles) of the spacecraft at time t (hours), with<br />

t = 0 correspond<strong>in</strong>g <strong>to</strong> the time at which its retrorockets are fired; let vt () = x′ () t be<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


the velocity of the spacecraft at time t. Then v 0 =− 1000 and x0 = x(0)<br />

is unknown.<br />

But the (constant) acceleration is a =+ 20000, so<br />

vt t xt t t x<br />

2<br />

( ) = 20000 − 1000 and ( ) = 10000 − 1000 + 0.<br />

Now vt ( ) = 20000t− 1000 = 1<br />

0 (soft <strong>to</strong>uchdown) when t = 20 hr (that is, after exactly<br />

3 m<strong>in</strong>utes of descent). F<strong>in</strong>ally, the condition<br />

0 = x( ) = 10000( ) − 1000( ) + x<br />

1 1 2<br />

1<br />

20 20 20<br />

yields x 0 = 25 miles for the altitude at which the retrorockets should be fired.<br />

43. The velocity and position functions for the spacecraft are vS( t) = 0.0098t<br />

and<br />

2<br />

xS ( t) = 0.0049 t , and the correspond<strong>in</strong>g functions for the projectile are<br />

1<br />

7<br />

7<br />

vP() t = 10 c=<br />

3× 10and<br />

xP () t = 3× 10 t.<br />

The condition that xS = xP<br />

when the<br />

2 7<br />

spacecraft overtakes the projectile gives 0.0049t = 3× 10 t,<br />

whence<br />

t =<br />

7<br />

3× 10<br />

0.0049<br />

≈<br />

9<br />

6.12245× 10 sec<br />

≈<br />

9<br />

6.12245× 10<br />

(3600)(24)(365.25)<br />

≈ 194 years.<br />

S<strong>in</strong>ce the projectile is travel<strong>in</strong>g at 1<br />

10 the speed of light, it has then traveled a distance of<br />

about 19.4 light years, which is about<br />

17<br />

1.8367 × 10 meters.<br />

44. Let a > 0 denote the constant deceleration of the car when brak<strong>in</strong>g, and take x 0 = 0 for<br />

the cars position at time t = 0 when the brakes are applied. In the police experiment<br />

v = 25 ft/s, the distance the car travels <strong>in</strong> t seconds is given by<br />

with 0<br />

1 2 88<br />

x() t = − at + ⋅ 25t<br />

2 60<br />

(with the fac<strong>to</strong>r 88<br />

60 used <strong>to</strong> convert the velocity units from mi/hr <strong>to</strong> ft/s). When we solve<br />

1210<br />

simultaneously the equations xt () = 45and x′ () t = 0we<br />

f<strong>in</strong>d that a = 81 ≈ 14.94 ft/s 2 .<br />

With this value of the deceleration and the (as yet) unknown velocity v 0 of the car<br />

<strong>in</strong>volved <strong>in</strong> the accident, its position function is<br />

1 1210<br />

x t t v t<br />

2 81<br />

2<br />

() = − ⋅ + 0 .<br />

Section 1.2 17<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

0


The simultaneous equations xt ( ) = 210 and<br />

ft/s, almost exactly 54 miles per hour.<br />

110<br />

x′ ( t)<br />

= 0 f<strong>in</strong>ally yield v 0 = 9 42 ≈ 79.21<br />

SECTION 1.3<br />

SLOPE FIELDS AND SOLUTION CURVES<br />

The <strong>in</strong>struc<strong>to</strong>r may choose <strong>to</strong> delay cover<strong>in</strong>g Section 1.3 until later <strong>in</strong> Chapter 1. However,<br />

before proceed<strong>in</strong>g <strong>to</strong> Chapter 2, it is important that students come <strong>to</strong> grips at some po<strong>in</strong>t with the<br />

question of the existence of a unique solution of a differential equation –– and realize that it<br />

makes no sense <strong>to</strong> look for the solution without know<strong>in</strong>g <strong>in</strong> advance that it exists. It may help<br />

some students <strong>to</strong> simplify the statement of the existence-uniqueness theorem as follows:<br />

Suppose that the function f ( xy , ) and the partial derivative ∂f/ ∂ y are both<br />

cont<strong>in</strong>uous <strong>in</strong> some neighborhood of the po<strong>in</strong>t (a, b). Then the <strong>in</strong>itial value<br />

problem<br />

dy<br />

= f ( xy , ), ya ( ) = b<br />

dx<br />

has a unique solution <strong>in</strong> some neighborhood of the po<strong>in</strong>t a.<br />

Slope fields and geometrical solution curves are <strong>in</strong>troduced <strong>in</strong> this section as a concrete aid <strong>in</strong><br />

visualiz<strong>in</strong>g <strong>solutions</strong> and existence-uniqueness questions. Instead, we provide some details of<br />

the construction of the figure for the Problem 1 answer, and then <strong>in</strong>clude without further<br />

comment the similarly constructed figures for Problems 2 through 9.<br />

1. The follow<strong>in</strong>g sequence of Mathematica commands generates the slope field and the<br />

solution curves through the given po<strong>in</strong>ts. Beg<strong>in</strong> with the differential equation<br />

dy / dx = f ( x, y)<br />

where<br />

f[x_, y_] := -y - S<strong>in</strong>[x]<br />

Then set up the view<strong>in</strong>g w<strong>in</strong>dow<br />

a = -3; b = 3; c = -3; d = 3;<br />

The comp<strong>one</strong>nts ( uv , ) of unit vec<strong>to</strong>rs correspond<strong>in</strong>g <strong>to</strong> the short slope field l<strong>in</strong>e<br />

segments are given by<br />

u[x_, y_] := 1/Sqrt[1 + f[x, y]^2]<br />

v[x_, y_] := f[x, y]/Sqrt[1 + f[x, y]^2]<br />

The slope field is then constructed by the commands<br />

Needs["Graphics`PlotField`"]<br />

dfield = PlotVec<strong>to</strong>rField[{u[x, y], v[x, y]}, {x, a, b}, {y, c, d},<br />

HeadWidth -> 0, HeadLength -> 0, PlotPo<strong>in</strong>ts -> 19,<br />

PlotRange -> {{a, b}, {c, d}}, Axes -> True, Frame -> True,<br />

FrameLabel -> {"x", "y"}, AspectRatio -> 1];<br />

18 Chapter 1<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


The orig<strong>in</strong>al curve shown <strong>in</strong> Fig. 1.3.12 of the text (and its <strong>in</strong>itial po<strong>in</strong>t not shown there)<br />

are plotted by the commands<br />

x0 = -1.9; y0 = 0;<br />

po<strong>in</strong>t0 = Graphics[{Po<strong>in</strong>tSize[0.025], Po<strong>in</strong>t[{x0, y0}]}];<br />

soln = NDSolve[{Derivative[1][y][x] == f[x, y[x]], y[x0] == y0},<br />

y[x], {x, a, b}];<br />

soln[[1,1,2]];<br />

curve0 = Plot[soln[[1,1,2]], {x, a, b},<br />

PlotStyle -> {Thickness[0.0065], RGBColor[0, 0, 1]}];<br />

The Mathematica NDSolve command carries out an approximate numerical solution of<br />

the given differential equation. Numerical solution techniques are discussed <strong>in</strong> Sections<br />

2.4–2.6 of the textbook.<br />

The coord<strong>in</strong>ates of the 12 po<strong>in</strong>ts are marked <strong>in</strong> Fig. 1.3.12 <strong>in</strong> the textbook. For <strong>in</strong>stance<br />

the 7th po<strong>in</strong>t is (–2.5, 1). It and the correspond<strong>in</strong>g solution curve are plotted by the<br />

commands<br />

x0 = -2.5; y0 = 1;<br />

po<strong>in</strong>t7 = Graphics[{Po<strong>in</strong>tSize[0.025], Po<strong>in</strong>t[{x0, y0}]}];<br />

soln = NDSolve[{Derivative[1][y][x] == f[x, y[x]], y[x0] == y0},<br />

y[x], {x, a, b}];<br />

soln[[1,1,2]];<br />

curve7 = Plot[soln[[1,1,2]], {x, a, b},<br />

PlotStyle -> {Thickness[0.0065], RGBColor[0, 0, 1]}];<br />

F<strong>in</strong>ally, the desired figure is assembled by the Mathematica command<br />

Show[ dfield, po<strong>in</strong>t0,curve0,<br />

po<strong>in</strong>t1,curve1, po<strong>in</strong>t2,curve2, po<strong>in</strong>t3,curve3,<br />

po<strong>in</strong>t4,curve4, po<strong>in</strong>t5,curve5, po<strong>in</strong>t6,curve6,<br />

po<strong>in</strong>t7,curve7, po<strong>in</strong>t8,curve8, po<strong>in</strong>t9,curve9,<br />

po<strong>in</strong>t10,curve10, po<strong>in</strong>t11,curve11, po<strong>in</strong>t12,curve12];<br />

y<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-2 -1 0 1 2 3<br />

x<br />

Section 1.3 19<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


2. 3.<br />

y<br />

4. 5.<br />

y<br />

6. 7.<br />

y<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-2 -1 0 1 2 3<br />

x<br />

-2 -1 0<br />

x<br />

1 2 3<br />

-2 -1 0 1 2 3<br />

x<br />

20 Chapter 1<br />

y<br />

y<br />

y<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-2 -1 0 1 2 3<br />

x<br />

-2 -1 0 1 2 3<br />

x<br />

-2 -1 0 1 2 3<br />

x<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


8. 9.<br />

y<br />

10.<br />

y<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-2 -1 0 1 2 3<br />

x<br />

-2 -1 0 1 2 3<br />

x<br />

y<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-2 -1 0 1 2 3<br />

x<br />

11. Because both f ( xy , ) = 2x 2 y 2 and ∂f/ ∂ y = 4x 2 y are cont<strong>in</strong>uous everywhere, the<br />

existence-uniqueness theorem of Section 1.3 <strong>in</strong> the textbook guarantees the existence of a<br />

unique solution <strong>in</strong> some neighborhood of x = 1.<br />

12. Both f ( xy , ) = x ln y and ∂f/ ∂ y = x/y are cont<strong>in</strong>uous <strong>in</strong> a neighborhood of<br />

(1, 1), so the theorem guarantees the existence of a unique solution <strong>in</strong> some<br />

neighborhood of x = 1.<br />

13. Both f ( xy , ) = y 1/3 and ∂f/ ∂ y = (1/3)y –2/3 are cont<strong>in</strong>uous near (0, 1), so the<br />

theorem guarantees the existence of a unique solution <strong>in</strong> some neighborhood of x = 0.<br />

Section 1.3 21<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


14. f ( xy , ) = y 1/3 is cont<strong>in</strong>uous <strong>in</strong> a neighborhood of (0, 0), but ∂f/ ∂ y = (1/3)y –2/3 is<br />

not, so the theorem guarantees existence but not uniqueness <strong>in</strong> some neighborhood of<br />

x = 0.<br />

15. f ( xy , ) = (x – y) 1/2 is not cont<strong>in</strong>uous at (2, 2) because it is not even def<strong>in</strong>ed if y > x.<br />

Hence the theorem guarantees neither existence nor uniqueness <strong>in</strong> any neighborhood of<br />

the po<strong>in</strong>t x = 2.<br />

16. f ( xy , ) = (x – y) 1/2 and ∂f/ ∂ y = –(1/2)(x – y) –1/2 are cont<strong>in</strong>uous <strong>in</strong> a neighborhood<br />

of (2, 1), so the theorem guarantees both existence and uniqueness of a solution <strong>in</strong> some<br />

neighborhood of x = 2.<br />

17. Both f ( xy , ) = (x – 1)/y and ∂f/ ∂ y = –(x – 1)/y 2 are cont<strong>in</strong>uous near (0, 1), so the<br />

theorem guarantees both existence and uniqueness of a solution <strong>in</strong> some neighborhood of<br />

x = 0.<br />

18. Neither f ( xy , ) = (x – 1)/y nor ∂f/ ∂ y = –(x – 1)/y 2 is cont<strong>in</strong>uous near (1, 0), so the<br />

existence-uniqueness theorem guarantees noth<strong>in</strong>g.<br />

19. Both f ( xy , ) = ln(1 + y 2 ) and ∂f/ ∂ y = 2y/(1 + y 2 ) are cont<strong>in</strong>uous near (0, 0), so<br />

the theorem guarantees the existence of a unique solution near x = 0.<br />

20. Both f ( xy , ) = x 2 – y 2 and ∂f/ ∂ y = –2y are cont<strong>in</strong>uous near (0, 1), so the theorem<br />

guarantees both existence and uniqueness of a solution <strong>in</strong> some neighborhood of x = 0.<br />

21. The curve <strong>in</strong> the figure on the left below can be constructed us<strong>in</strong>g the commands<br />

illustrated <strong>in</strong> Problem 1 above. Trac<strong>in</strong>g this solution curve, we see that y( −4) ≈ 3.<br />

An exact solution of the differential equation yields the more accurate approximation<br />

y( −4) ≈ 3.0183.<br />

y<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

(−4,?)<br />

22 Chapter 1<br />

(0,0)<br />

−5<br />

−5 −4 −3 −2 −1 0<br />

x<br />

1 2 3 4 5<br />

y<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

(−4,?)<br />

(4,0)<br />

−5<br />

−5 −4 −3 −2 −1 0<br />

x<br />

1 2 3 4 5<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


22. Trac<strong>in</strong>g the curve <strong>in</strong> the figure on the right at the bot<strong>to</strong>m of the preced<strong>in</strong>g page , we see<br />

that y( −4) ≈− 3. An exact solution of the differential equation yields the more accurate<br />

approximation y( −4) ≈− 3.0017.<br />

23. Trac<strong>in</strong>g the curve <strong>in</strong> figure on the left below, we see that y(2) ≈ 1. A more accurate<br />

approximation is y(2) ≈ 1.0044.<br />

y<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−2 −1 0<br />

x<br />

1 2<br />

y<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

(−2,0)<br />

−2 −1 0<br />

x<br />

1 2<br />

24. Trac<strong>in</strong>g the curve <strong>in</strong> the figure on the right above, we see that y(2) ≈ 1.5. A more<br />

accurate approximation is y(2) ≈ 1.4633.<br />

25. The figure below <strong>in</strong>dicates a limit<strong>in</strong>g velocity of 20 ft/sec — about the same as jump<strong>in</strong>g<br />

1 off a 6 4 -foot wall, and hence quite survivable. Trac<strong>in</strong>g the curve suggests that vt () = 19<br />

ft/sec when t is a bit less than 2 seconds. An exact solution gives t ≈ 1.8723 then.<br />

v<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

(0,0)<br />

(2,?)<br />

0<br />

0 1 2 3 4 5<br />

t<br />

Section 1.3 23<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

(2,?)


26. The figure below suggests that there are 40 deer after about 60 months; a more accurate<br />

value is 61.61.<br />

t ≈ And it's pretty clear that the limit<strong>in</strong>g population is 75 deer.<br />

P<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0<br />

0 50 100 150<br />

t<br />

200 250 300<br />

27. If b < 0 then the <strong>in</strong>itial value problem y′ = 2 y, y(0) = b has no solution, because the<br />

square root of a negative number would be <strong>in</strong>volved. If b > 0 we get a unique solution<br />

curve through (0, b ) def<strong>in</strong>ed for all x by follow<strong>in</strong>g a parabola — <strong>in</strong> the figure on the left<br />

below — down (and leftward) <strong>to</strong> the x-axis and then follow<strong>in</strong>g the x-axis <strong>to</strong> the left. But<br />

start<strong>in</strong>g at (0,0) we can follow the positive x-axis <strong>to</strong> the po<strong>in</strong>t (,0) c and then branch<strong>in</strong>g<br />

2<br />

off on the parabola y = ( x− c)<br />

. This gives <strong>in</strong>f<strong>in</strong>itely many different <strong>solutions</strong> if b = 0.<br />

y<br />

(0,0)<br />

28. The figure on the right above makes it clear <strong>in</strong>itial value problem xy′ = y, y( a) = b has<br />

a unique solution off the y-axis where a ≠ 0; <strong>in</strong>f<strong>in</strong>itely many <strong>solutions</strong> through the<br />

orig<strong>in</strong> where a = b=<br />

0; no solution if a = 0 but<br />

positive or negative y-axis).<br />

b≠<br />

0 (so the po<strong>in</strong>t ( ab , ) lies on the<br />

24 Chapter 1<br />

x<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

y<br />

x


29. Look<strong>in</strong>g at the figure on the left below, we see that we can start at the po<strong>in</strong>t ( ab , ) and<br />

follow a branch of a cubic up or down <strong>to</strong> the x-axis, then follow the x-axis an arbitrary<br />

distance before branch<strong>in</strong>g off (down or up) on another cubic. This gives <strong>in</strong>f<strong>in</strong>itely many<br />

2/3<br />

<strong>solutions</strong> of the <strong>in</strong>itial value problem y′ = 3 y , y( a) = b that are def<strong>in</strong>ed for all x.<br />

3<br />

However, if b ≠ 0 there is only a s<strong>in</strong>gle cubic y = ( x− c)<br />

pass<strong>in</strong>g through ( ab , ) , so<br />

the solution is unique near x = a.<br />

y<br />

x<br />

y<br />

1<br />

−1<br />

−pi pi<br />

30. The function yx ( ) = cos( x− c),<br />

with y′ ( x) =−s<strong>in</strong>( x− c),<br />

satisfies the differential<br />

2<br />

′ =− 1−<br />

on the <strong>in</strong>terval c x c π<br />

equation y<br />

that<br />

y<br />

< < + where s<strong>in</strong>( x− c)<br />

> 0, so it follows<br />

−<br />

2<br />

1− y = −<br />

2<br />

1−cos ( x− c) = −<br />

2<br />

s<strong>in</strong> ( x− c) = −s<strong>in</strong>( x− c) = y.<br />

2<br />

If b > 1 then the <strong>in</strong>itial value problem y′ =− 1 − y , y( a) = b has no solution because<br />

the square root of a negative number would be <strong>in</strong>volved. If b < 1 then there is only <strong>one</strong><br />

curve of the form y = cos( x− c)<br />

through the po<strong>in</strong>t ( ab , ); this give a unique solution.<br />

But if b =± 1 then we can comb<strong>in</strong>e a left ray of the l<strong>in</strong>e y =+ 1, a cos<strong>in</strong>e curve from the<br />

l<strong>in</strong>e y =+ 1 <strong>to</strong> the l<strong>in</strong>e y =− 1,<br />

and then a right ray of the l<strong>in</strong>e y =− 1. Look<strong>in</strong>g at the<br />

figure on the right above, we see that this gives <strong>in</strong>f<strong>in</strong>itely many <strong>solutions</strong> (def<strong>in</strong>ed for<br />

all x) through any po<strong>in</strong>t of the form ( a , ± 1).<br />

31. The function yx ( ) = s<strong>in</strong>( x− c),<br />

with y′ ( x) = cos( x− c),<br />

satisfies the differential<br />

equation y′ =<br />

follows that<br />

2<br />

1−<br />

y on the <strong>in</strong>terval c− π /2 < x< c+<br />

π /2 where cos( x− c)<br />

> 0, so it<br />

2 2 2<br />

1− y = 1−s<strong>in</strong> ( x− c) = cos ( x− c) = −s<strong>in</strong>( x− c) = y.<br />

Section 1.3 25<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

x


y<br />

2<br />

If b > 1 then the <strong>in</strong>itial value problem y′ = 1 − y , y( a) = b has no solution because<br />

the square root of a negative number would be <strong>in</strong>volved. If b < 1 then there is only <strong>one</strong><br />

curve of the form y = s<strong>in</strong>( x− c)<br />

through the po<strong>in</strong>t ( ab , ); this give a unique solution.<br />

But if b =± 1 then we can comb<strong>in</strong>e a left ray of the l<strong>in</strong>e y =− 1, a s<strong>in</strong>e curve from the<br />

l<strong>in</strong>e y =− 1 <strong>to</strong> the l<strong>in</strong>e y =+ 1,<br />

and then a right ray of the l<strong>in</strong>e y =+ 1. Look<strong>in</strong>g at the<br />

figure on the left below, we see that this gives <strong>in</strong>f<strong>in</strong>itely many <strong>solutions</strong> (def<strong>in</strong>ed for all x)<br />

through any po<strong>in</strong>t of the form ( a , ± 1).<br />

1<br />

−1<br />

−pi/2 pi/2<br />

32. Look<strong>in</strong>g at the figure on the right above, we see that we can piece <strong>to</strong>gether a "left half" of<br />

a quartic for x negative, an <strong>in</strong>terval along the x-axis, and a "right half" of a quartic curve<br />

for x positive. This makes it clear that the <strong>in</strong>itial value problem y′ = 4 x y, y( a) = b<br />

has <strong>in</strong>f<strong>in</strong>itely many <strong>solutions</strong> (def<strong>in</strong>ed for all x) if b ≥ 0; there is no solution if b < 0<br />

because this would <strong>in</strong>volve the square root of a negative number.<br />

33. Look<strong>in</strong>g at the figure provided <strong>in</strong> the answers section of the textbook, it suffices <strong>to</strong><br />

observe that, among the pictured curves y = x/( cx−<br />

1) for all possible values of c,<br />

• there is a unique <strong>one</strong> of these curves through any po<strong>in</strong>t not on either coord<strong>in</strong>ate axis;<br />

• there is no such curve through any po<strong>in</strong>t on the y-axis other than the orig<strong>in</strong>; and<br />

• there are <strong>in</strong>f<strong>in</strong>itely many such curves through the orig<strong>in</strong> (0,0).<br />

But <strong>in</strong> addition we have the constant-valued solution yx ( ) ≡ 0 that "covers" the x-axis.<br />

It follows that the given differential equation has near ( ab , )<br />

• a unique solution if a ≠ 0 ;<br />

• no solution if a = 0 but b ≠ 0 ;<br />

• <strong>in</strong>f<strong>in</strong>itely many different <strong>solutions</strong> if a = b=<br />

0.<br />

26 Chapter 1<br />

x<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

y<br />

x


34. (a) With a computer algebra system we f<strong>in</strong>d that the solution of the <strong>in</strong>itial value<br />

problem y′ = y− x+ 1,<br />

1<br />

y(<br />

− 1) = − 1.2 is ( ) 0.2 x<br />

yx x e +<br />

= − , whence y(1) ≈− 0.4778.<br />

With the same differential equation but with <strong>in</strong>itial condition y( − 1) = − 0.8 the solution<br />

1<br />

is ( ) 0.2 x<br />

yx x e +<br />

= + , whence y(1) ≈ 2.4778.<br />

(b) Similarly, the solution of the <strong>in</strong>itial value problem y′ = y− x+ 1, y(<br />

− 3) = − 3.01<br />

3<br />

is ( ) 0.01 x<br />

yx x e +<br />

= − , whence y(3) ≈− 1.0343. With the same differential equation but<br />

3<br />

with <strong>in</strong>itial condition y( − 3) = − 2.99 the solution is ( ) 0.01 x<br />

yx x e +<br />

= + , whence<br />

y(3) ≈ 7.0343. Thus close <strong>in</strong>itial values y( − 3) = − 3 ± 0.01 yield y(3) values that are far<br />

apart.<br />

35. (a) With a computer algebra system we f<strong>in</strong>d that the solution of the <strong>in</strong>itial value<br />

problem y′ = x− y+ 1,<br />

3<br />

y(<br />

− 3) = − 0.2 is ( ) 2.8 x − −<br />

yx = x+ e , whence y(2) ≈ 2.0189.<br />

With the same differential equation but with <strong>in</strong>itial condition y( − 3) = + 0.2 the solution<br />

3<br />

is ( ) 3.2 x − −<br />

yx = x+ e , whence y(2) ≈ 2.0216.<br />

(b) Similarly, the solution of the <strong>in</strong>itial value problem y′ = x− y+ 1, y(<br />

− 3) = − 0.5<br />

3<br />

is ( ) 2.5 x − −<br />

yx = x+ e , whence y(2) ≈ 2.0189. With the same differential equation but<br />

3<br />

with <strong>in</strong>itial condition y( − 3) = + 0.5 the solution is ( ) 3.5 x − −<br />

yx = x+ e , whence<br />

y(2) ≈ 2.0236. Thus the <strong>in</strong>itial values y( − 3) = ± 0.5 that are not close both yield<br />

y(2) ≈ 2.02.<br />

SECTION 1.4<br />

SEPARABLE EQUATIONS AND APPLICATIONS<br />

Of course it should be emphasized <strong>to</strong> students that the possibility of separat<strong>in</strong>g the variables is<br />

the first <strong>one</strong> you look for. The general concept of natural growth and decay is important for all<br />

differential equations students, but the particular applications <strong>in</strong> this section are optional.<br />

Torricelli's law <strong>in</strong> the form of Equation (24) <strong>in</strong> the text leads <strong>to</strong> some nice concrete examples and<br />

<strong>problems</strong>.<br />

1.<br />

2.<br />

⌠ dy<br />

⎮<br />

⌡ y ∫<br />

2 2<br />

2<br />

− x + c −x<br />

= − 2 x dx; ln y = − x + c; y( x) = e = C e<br />

⌠ dy ⌠ 1 2<br />

1<br />

⎮ = − 2 xdx; x C; y( x)<br />

2 ⎮ − = − − = 2<br />

⌡ y ⌡ y x + C<br />

Section 1.4 27<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


3.<br />

4.<br />

⌠ dy<br />

⎮ = s<strong>in</strong> xdx; ln y = − cos x+ c; y( x) = e = Ce<br />

⌡ y ∫<br />

28 Chapter 1<br />

− cos x+ c −cosx<br />

⌠ dy 4dx<br />

=<br />

⌠<br />

⎮ ⎮ ; ln y = 4 ln(1 + x) + ln C; y( x) = C(1 + x)<br />

⌡ y ⌡ 1+<br />

x<br />

⌠ dy dx<br />

−1<br />

5. =<br />

⌠<br />

⎮ ; s<strong>in</strong> y = x + C; y( x) = s<strong>in</strong> ( x + C)<br />

⎮<br />

⌡<br />

1−<br />

y<br />

2<br />

⌠ dy<br />

⎮<br />

⌡ y ∫<br />

⌡ 2<br />

x<br />

6. ( ) 2<br />

3/2 3/2<br />

= 3 x dx; 2 y = 2x+ 2 C; y( x) = x + C<br />

7. ( ) 3/2<br />

⌠ dy<br />

1/3 3 2/3 4/3 3<br />

4/3<br />

⎮ = 4 x dx; 1/3 2 y = 3 x + 2C;<br />

y( x) = 2x<br />

+ C<br />

⌡ y ∫<br />

2 −1<br />

2<br />

8. ∫cos ydy = ∫ 2 xdx; s<strong>in</strong> y = x + C; y( x) = s<strong>in</strong> ( x + C)<br />

⌠ dy<br />

⎮<br />

⌡ y<br />

=<br />

⌠ 2dx ⎮<br />

⌡1− x<br />

=<br />

⌠⎛<br />

1 1 ⎞<br />

⎮⎜<br />

+ ⎟dx<br />

⌡⎝1+<br />

x 1−x⎠<br />

(partial fractions)<br />

ln y = ln(1 + x) −ln(1 − x) + ln C; y( x) 1+<br />

x<br />

= C<br />

1−<br />

x<br />

9. 2<br />

⌠ dy ⌠ dx 1 1 1 + C(1 + x)<br />

= ⎮ ; − = − − C = −<br />

⌡ (1 + y) ⌡ (1 + x) 1 + y 1 + x 1 + x<br />

10. ⎮ 2 2<br />

1+ x 1 + x x− C(1 + x)<br />

1 + y = ; y( x)<br />

= − 1 =<br />

1 + C(1 + x) 1 + C(1 + x) 1 + C(1 + x)<br />

⌠ dy ⌠ 1 x C<br />

⎮ ⎮<br />

⌡ y ⌡ 2y 2 2<br />

2<br />

2<br />

11. = xdx; − = − ; y( x) = 3 2<br />

( C−x) 12.<br />

⌠<br />

⎮<br />

( )<br />

−1/2<br />

ydy<br />

1 2 1 2 1<br />

2<br />

= x dx; 2 2ln y + 1 = 2 x + 2ln<br />

C ; y + 1 = C e<br />

⌡ y + 1 ∫<br />

⌠ y dy<br />

⎮ = cos x dx; ln y + 1 = s<strong>in</strong> x + C<br />

4<br />

⌡ y + 1 ∫<br />

3<br />

1 4<br />

13. 4 ( )<br />

∫ ∫<br />

1+ y dy = 1 + x dx; y+ y = x+ x + C<br />

2 3/2 2 3/2<br />

14. ( ) ( )<br />

3 3<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

4<br />

2<br />

x


⌠ ⎛ 2 1 ⎞ ⌠ ⎛1 1 ⎞ 2 1 1<br />

⎮ ⎜ − dy dx; ln x C<br />

y y<br />

⎟ = ⎮ ⎜ − ⎟ − + = + +<br />

⌡ ⎝ ⎠ ⌡ ⎝ x x ⎠ y 3y<br />

x<br />

15. 2 4 2 3<br />

s<strong>in</strong> ydy xdx<br />

= ; − ln(cos x) = ln 1+ x + lnC<br />

⌡ cos y ⌡ 1+<br />

x<br />

⌠<br />

16.<br />

⌠ 1<br />

2<br />

⎮ ⎮ 2<br />

2 ( )<br />

( )<br />

sec y = C 1 + x ; y( x) = sec C 1+<br />

x<br />

2 −1<br />

2<br />

17. y′ = 1 + x+ y+ xy = (1 + x)(1 + y)<br />

18.<br />

⌠ dy<br />

⎮ = (1 + ) ; ln 1 + = + +<br />

⌡ 1+<br />

y ∫<br />

1 2<br />

x dx y x 2 x C<br />

2 2 2 2 2 2 2<br />

x y′ = 1 − x + y − x y = (1 − x )(1 + y )<br />

⌠ dy ⌠ ⎛ 1 ⎞ −1<br />

1 ⎛ 1 ⎞<br />

⎮ = 1 dx; tan y x C; y( x) tan C x<br />

2 ⎮ ⎜ − = − − + = − −<br />

2 ⎟ ⎜ ⎟<br />

⌡ 1+<br />

y ⌡ ⎝ x ⎠ x ⎝ x ⎠<br />

19.<br />

⌠ dy x x x<br />

⎮ = e dx; ln y = e + ln C; y( x) = Cexp( e )<br />

⌡ y ∫<br />

x<br />

y(0) = 2e implies C = 2 so y( x) = 2exp( e ) .<br />

dy<br />

⌡ 1+<br />

y ∫<br />

20.<br />

⌠<br />

2 −1<br />

3 3<br />

⎮ = 3 x dx; tan y = x + C; y( x) = tan<br />

2 ( x + C )<br />

21.<br />

( )<br />

−1<br />

3<br />

y(0) = 1 implies C = tan 1 = π / 4 so y( x) = tan x + π / 4 .<br />

⌠ ⌠ xdx<br />

2 2<br />

⎮ 2 ydy = ⎮ ; y = x − 16+<br />

C<br />

2<br />

⌡ ⌡ x −16<br />

2 2<br />

y(5) = 2 implies C = 1 so y = 1+ x − 16.<br />

dy<br />

= − = − + = −<br />

⌡ y ∫<br />

22.<br />

⌠<br />

⎮ ( )<br />

23.<br />

3 4 4<br />

4x 1 dx; ln y x x ln C; y( x) C exp( x x)<br />

4<br />

y(1) =− 3 implies C =− 3 so y( x) = −3exp( x − x)<br />

.<br />

⌠ dy<br />

1 1<br />

⎮ = dx; 2ln(2y− 1) = x + 2ln<br />

C; 2y− 1 = C e<br />

⌡ 2y−1 ∫<br />

x ( )<br />

y(1) = 1 implies C = e so y( x) = 1 + e .<br />

−2 1<br />

2<br />

2 −2<br />

Section 1.4 29<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

2 x


24.<br />

25.<br />

⌠ dy ⌠ cos x dx<br />

⎮ = ⎮ ; lny = ln(s<strong>in</strong> x) + ln C; y( x) = Cs<strong>in</strong>x ⌡ y ⌡ s<strong>in</strong> x<br />

y( ) = implies C = so y( x) = s<strong>in</strong> x .<br />

π π π π<br />

2 2 2 2<br />

⌠ dy ⌠ ⎛1⎞ ⎮ = ⎮ ⎜ + x ⎟ y = x+ x + C y x = Cx x<br />

⌡ y ⌡ ⎝ x ⎠<br />

2 2<br />

2 ; ln ln ln ; ( ) exp( )<br />

−1<br />

2<br />

y(1) = 1 implies C = e so y( x) = xexp( x − 1) .<br />

dy<br />

2 1 2 3<br />

−1<br />

= 2x+ 3 x ; − = x + x + C; y( x)<br />

=<br />

2 2 3<br />

⌡ y ⌡<br />

y x + x + C<br />

⌠<br />

26.<br />

⌠<br />

⎮ ⎮ ( )<br />

1<br />

y(1) =− 1 implies C =− 1 so y( x)<br />

= . 2 3<br />

1−<br />

x − x<br />

27.<br />

y<br />

∫e dy<br />

2x = ∫ 6 e dx; y<br />

e =<br />

2x 3 e + C; y( x) 2x<br />

= ln( 3e<br />

+ C)<br />

y(0) = 0 implies C = − 2 so y( x) 2x<br />

= ln ( 3e − 2)<br />

.<br />

28.<br />

⌠ 2<br />

⎮ sec ydy<br />

⌡<br />

=<br />

⌠ dx<br />

⎮ ;<br />

⌡ 2 x<br />

tan y = x + C; y( x) −1<br />

= tan ( x + C)<br />

π y(4) = 4 implies C = − 1 so y( x) −1<br />

= tan ( x − 1)<br />

.<br />

29. (a) Separation of variables gives the general solution<br />

⌠ ⎛ 1 ⎞<br />

⎮ ⎜− dy 2<br />

y<br />

⎟<br />

⌡ ⎝ ⎠<br />

⌠<br />

= − ⎮<br />

⌡<br />

x dx; 1<br />

y<br />

= − x + C; y( x)<br />

1<br />

= − .<br />

x−C (b) Inspection yields the s<strong>in</strong>gular solution yx ( ) ≡ 0 that corresponds <strong>to</strong> no value of<br />

the constant C.<br />

(c) In the figure at the <strong>to</strong>p of the next page we see that there is a unique solution<br />

curve through every po<strong>in</strong>t <strong>in</strong> the xy-plane.<br />

30. When we take square roots on both sides of the differential equation and separate<br />

variables, we get<br />

( ) 2<br />

⌠ dy ⌠<br />

⎮ = ⎮ dx; y = x − C; y( x) = x −C.<br />

⌡ 2 y ⌡<br />

This general solution provides the parabolas illustrated <strong>in</strong> Fig. 1.4.5 <strong>in</strong> the textbook.<br />

30 Chapter 1<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


y<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

(0,2)<br />

−6<br />

−6 −4 −2 0<br />

x<br />

2 4 6<br />

Problem 29 Figure<br />

Observe that yx ( ) is always nonnegative, consistent with both the square root and the<br />

orig<strong>in</strong>al differential equation. We spot also the s<strong>in</strong>gular solution yx ( ) ≡ 0 that<br />

corresponds <strong>to</strong> no value of the constant C.<br />

(a) Look<strong>in</strong>g at Fig. 1.4.5, we see immediately that the differential equation<br />

2<br />

( y′ ) = 4y<br />

has no solution curve through the po<strong>in</strong>t ( ab , ) if b < 0.<br />

(b) But if b ≥ 0 we obviously can comb<strong>in</strong>e branches of parabolas with segments<br />

along the x-axis <strong>to</strong> form <strong>in</strong>f<strong>in</strong>itely many solution curves through ( ab , ) .<br />

(c) F<strong>in</strong>ally, if b > 0 then on a <strong>in</strong>terval conta<strong>in</strong><strong>in</strong>g ( ab , ) there are exactly two<br />

solution curves through this po<strong>in</strong>t, correspond<strong>in</strong>g <strong>to</strong> the two <strong>in</strong>dicated parabolas through<br />

( ab , ) , <strong>one</strong> ascend<strong>in</strong>g and <strong>one</strong> descend<strong>in</strong>g from left <strong>to</strong> right.<br />

31. The formal separation-of-variables process is the same as <strong>in</strong> Problem 30 where, <strong>in</strong>deed,<br />

2<br />

we started by tak<strong>in</strong>g square roots <strong>in</strong> ( y′ ) = 4y<br />

<strong>to</strong> get the differential equation<br />

y′ = 2 y.<br />

But whereas y′ can be either positive or negative <strong>in</strong> the orig<strong>in</strong>al equation, the<br />

latter equation requires that y′ be nonnegative. This means that only the right half of<br />

each parabola ( ) 2<br />

y = x− C qualifies as a solution curve. Inspect<strong>in</strong>g the figure at the <strong>to</strong>p<br />

of the next page, we therefore see that through the po<strong>in</strong>t ( ab , ) there passes:<br />

(a) No solution curve if b < 0,<br />

(b) A unique solution curve if b > 0,<br />

(c) Inf<strong>in</strong>itely many solution curves if b = 0, because <strong>in</strong> this case we can pick any<br />

c> a and def<strong>in</strong>e the solution y( x) = 0 if x ≤ c, 2<br />

y( x) = ( x−c) if x ≥ c.<br />

Section 1.4 31<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


−15 −10 −5 0<br />

x<br />

5 10 15<br />

32 Chapter 1<br />

y<br />

32. Separation of variables gives<br />

75<br />

50<br />

25<br />

0<br />

⌠<br />

Problem 31 Figure<br />

dy<br />

−1<br />

x = ⎮ = sec y + C<br />

2<br />

⌡ y y<br />

−1<br />

if y > 1, so the general solution has the form yx ( ) =± sec( x− C).<br />

But the orig<strong>in</strong>al<br />

2<br />

differential equation y′ = y y − 1 implies that y′ > 0ify > 1, while y′ < 0if<br />

y


general solution curves we see <strong>in</strong> the figure below. In addition, we spot the two s<strong>in</strong>gular<br />

<strong>solutions</strong> yx ( ) ≡1and yx ( ) ≡ − 1. It follows upon <strong>in</strong>spection of this figure that the<br />

<strong>in</strong>itial value problem y′ = y<br />

2<br />

y − 1, y( a) = b has a unique solution if b > 1 and has<br />

no solution if b < 1. But if b = 1 (and similarly if b =− 1) then we can pick any<br />

c> aand<br />

def<strong>in</strong>e the solution yx ( ) = 1 if x≤ c,<br />

yx ( ) = sec( x− c)<br />

if 2 .<br />

c x c π ≤ < +<br />

So we see that if b =± 1, then the <strong>in</strong>itial value problem<br />

<strong>in</strong>f<strong>in</strong>itely many <strong>solutions</strong>.<br />

y<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−4 −3 −2 −1 0 1 2 3 4<br />

x<br />

2<br />

y′ = y y − 1, y( a) = b has<br />

33. The population growth rate is k = ln(30000 / 25000) /10 ≈ 0.01823, so the population<br />

of the city t years after 1960 is given by ( )<br />

0.01823<br />

25000 .<br />

t<br />

Pt = e The expected year<br />

2000 population is then P(40) =<br />

0.01823× 40<br />

25000e ≈ 51840.<br />

34. The population growth rate is k = ln(6) /10 ≈ 0.17918, so the population after t<br />

hours is given by Pt () =<br />

0.17918t<br />

Pe 0 . To f<strong>in</strong>d how long it takes for the population <strong>to</strong><br />

double, we therefore need only solve the equation 2 P0 =<br />

0.17918t<br />

P0e for<br />

t = (ln 2) / 0.17918 ≈ 3.87 hours.<br />

35. As <strong>in</strong> the textbook discussion of radioactive decay, the number of 14 C a<strong>to</strong>ms after t<br />

years is given by Nt ()<br />

0.0001216 t<br />

Ne .<br />

−<br />

= Hence we need only solve the equation<br />

0<br />

0 = 0<br />

0.0001216 t<br />

for (ln 6) / 0.0001216 14735<br />

1<br />

6 N N e −<br />

skull.<br />

t = ≈ years <strong>to</strong> f<strong>in</strong>d the age of the<br />

Section 1.4 33<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


36. As <strong>in</strong> Problem 35, the number of 14 C a<strong>to</strong>ms after t years is given by<br />

()<br />

10 0.0001216<br />

5.010 .<br />

t<br />

Nt e −<br />

= × Hence we need only solve the equation<br />

4.6 10 5.0 10<br />

t = ln (5.0 / 4.6) / 0.0001216 ≈ 686 years<br />

of the relic. Thus it appears not <strong>to</strong> be a genu<strong>in</strong>e relic of the time of Christ 2000 years<br />

ago.<br />

10 10 0.0001216 t<br />

e −<br />

× = × for the age ( )<br />

37. The amount <strong>in</strong> the account after t years is given by ( )<br />

0.08<br />

5000 .<br />

t<br />

At = e Hence the<br />

amount <strong>in</strong> the account after 18 years is given by A(18) dollars.<br />

0.08× 18<br />

= 5000e ≈ 21,103.48<br />

38. When the book has been overdue for t years, the f<strong>in</strong>e owed is given <strong>in</strong> dollars by<br />

( )<br />

0.05<br />

0.30 .<br />

t<br />

At = e Hence the amount owed after 100 years is given by<br />

A(100) =<br />

0.05× 100<br />

0.30e ≈ 44.52 dollars.<br />

39. To f<strong>in</strong>d the decay rate of this drug <strong>in</strong> the dog's blood stream, we solve the equation<br />

1<br />

2<br />

5k<br />

e −<br />

= (half-life 5 hours) for k = (ln 2) / 5 ≈ 0.13863. Thus the amount <strong>in</strong> the dog's<br />

bloodstream after t hours is given by At ()<br />

0.13863t<br />

Ae 0 .<br />

−<br />

= We therefore solve the<br />

equation A(1) 0.13863<br />

A0e 50 45 2250<br />

−<br />

= = × = for A0 ≈ 2585mg,<br />

the amount <strong>to</strong><br />

anesthetize the dog properly.<br />

40. 1<br />

To f<strong>in</strong>d the decay rate of radioactive cobalt, we solve the equation 2<br />

5.27k<br />

e −<br />

= (half-life<br />

5.27 years) for k = (ln 2) / 5.27 ≈ 0.13153. Thus the amount of radioactive cobalt left<br />

after t years is given by At ()<br />

0.13153t<br />

Ae 0 .<br />

−<br />

= We therefore solve the equation<br />

At ( ) =<br />

−0.13153t<br />

Ae 0 = 0.01 A0<br />

for t = (ln100) / 0.13153 ≈ 35.01 and f<strong>in</strong>d that it will be<br />

about 35 years until the region is aga<strong>in</strong> <strong>in</strong>habitable.<br />

41. Tak<strong>in</strong>g t = 0 when the body was formed and t = T now, the amount Q(t) of 238 U <strong>in</strong><br />

the body at time t (<strong>in</strong> years) is given by Q(t) = Q0e –kt , where k = (ln 2)/(4.51×10 9 ).<br />

The given <strong>in</strong>formation tells us that<br />

QT ( )<br />

0.9<br />

Q Q( T )<br />

= .<br />

−<br />

34 Chapter 1<br />

0<br />

After substitut<strong>in</strong>g Q(T) = Q0e –kT , we solve readily for e kT = 19/9, so<br />

T = (1/k)ln(19/9) ≈ 4.86×10 9 . Thus the body was formed approximately 4.86 billion<br />

years ago.<br />

42. Tak<strong>in</strong>g t = 0 when the rock conta<strong>in</strong>ed only potassium and t = T now, the amount<br />

Q(t) of potassium <strong>in</strong> the rock at time t (<strong>in</strong> years) is given by Q(t) = Q0e –kt , where<br />

k = (ln 2)/(1.28×10 9 ). The given <strong>in</strong>formation tells us that the amount A(t) of argon at<br />

time t is<br />

At () = [ Q − Qt ()]<br />

1<br />

9<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

0


and also that A(T) = Q(T). Thus<br />

Q0 − Q( T) = 9 Q( T)<br />

.<br />

kT<br />

After substitut<strong>in</strong>g QT ( ) Qe 0<br />

−<br />

= we readily solve for<br />

9 9<br />

T = (ln10 / ln 2)(1.28× 10 ) ≈ 4.25× 10 .<br />

Thus the age of the rock is about 1.25 billion years.<br />

43. Because A = 0 the differential equation reduces <strong>to</strong> T' = kT, so T(t) = 25e –kt . The<br />

fact that T(20) = 15 yields k = (1/20)ln(5/3), and f<strong>in</strong>ally we solve<br />

5 = 25e –kt for t = (ln 5)/k ≈ 63 m<strong>in</strong>.<br />

44. The amount of sugar rema<strong>in</strong><strong>in</strong>g undissolved after t m<strong>in</strong>utes is given by At ()<br />

kt<br />

Ae 0 ;<br />

−<br />

=<br />

we f<strong>in</strong>d the value of k by solv<strong>in</strong>g the equation A(1) =<br />

−k<br />

Ae 0 = 0.75 A0<br />

for<br />

k =−ln0.75 ≈ 0.28768. To f<strong>in</strong>d how long it takes for half the sugar <strong>to</strong> dissolve, we solve<br />

the equation At () =<br />

−kt<br />

Ae 1 = A for t = (ln 2) / 0.28768 ≈ 2.41 m<strong>in</strong>utes.<br />

0 2 0<br />

45. (a)<br />

1.4 x<br />

The light <strong>in</strong>tensity at a depth of x meters is given by I( x) I0e .<br />

−<br />

= We solve<br />

−1.4<br />

x<br />

the equation I ( x) = I e 1 = I for x = (ln 2) /1.4 ≈ 0.495 meters.<br />

0 2 0<br />

− 1.4× 10 −7<br />

(b) At depth 10 meters the <strong>in</strong>tensity is I (10) = Ie ≈ (8.32 × 10 ) I .<br />

(c) We solve the equation<br />

meters.<br />

−1.4<br />

x<br />

0 0<br />

0 0<br />

I ( x) = I e = 0.01I<br />

for x = (ln100) /1.4 ≈ 3.29<br />

0.2 x<br />

46. (a) The pressure at an altitude of x miles is given by px ( ) 29.92 e .<br />

−<br />

= Hence the<br />

pressure at altitude 10000 ft is p(10000 / 5280) ≈ 20.49 <strong>in</strong>ches, and the pressure at<br />

altitude 30000 ft is p(30000 / 5280) ≈ 9.60 <strong>in</strong>ches.<br />

(b) To f<strong>in</strong>d the altitude where p = 15 <strong>in</strong>., we solve the equation<br />

x = (ln 29.92 /15) / 0.2 ≈3.452 miles ≈ 18,200 ft.<br />

0.2 x<br />

29.92e 15<br />

−<br />

= for<br />

47. If N(t) denotes the number of people (<strong>in</strong> thousands) who have heard the rumor after t<br />

days, then the <strong>in</strong>itial value problem is<br />

N′ = k(100 – N), N(0) = 0<br />

Section 1.4 35<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


and we are given that N(7) = 10. When we separate variables ( dN /(100 − N ) = k dt )<br />

and <strong>in</strong>tegrate, we get ln(100 − N ) = − kt + C,<br />

and the <strong>in</strong>itial condition N (0) = 0 gives<br />

−kt −kt<br />

ln 100. 100 − N = 100 e , so N( t) = 100 1 − e . We substitute t = 7,<br />

C = Then ( )<br />

N = 10 and solve for the value k = ln(100 / 90) / 7 ≈ 0.01505. F<strong>in</strong>ally, 50 thousand<br />

people have heard the rumor after t = (ln 2) / k ≈ 46.05 days.<br />

48. Let 8 () N t and 5 () N t be the numbers of 238 U and 235 U a<strong>to</strong>ms, respectively, at time t (<strong>in</strong><br />

kt<br />

billions of years after the creation of the universe). Then N8() t N0e −<br />

= and<br />

ct<br />

N5() t N0e −<br />

= , where N 0 is the <strong>in</strong>itial number of a<strong>to</strong>ms of each iso<strong>to</strong>pe. Also,<br />

k = (ln 2) / 4.51 and c = (ln 2) / 0.71 from the given half-lives. We divide the equations<br />

for N8 and N 5 and f<strong>in</strong>d that when t has the value correspond<strong>in</strong>g <strong>to</strong> "now",<br />

N<br />

= =<br />

N<br />

( c−k) t 8<br />

36 Chapter 1<br />

e<br />

5<br />

137.7.<br />

F<strong>in</strong>ally we solve this last equation for t = (ln137.7) /( c−k) ≈ 5.99. Thus we get an<br />

estimate of about 6 billion years for the age of the universe.<br />

49. The cake's temperature will be 100° after 66 m<strong>in</strong> 40 sec; this problem is just like<br />

Example 6 <strong>in</strong> the text.<br />

50. (a)<br />

At = e = A = e so<br />

Therefore<br />

kt 15 15 k / 2<br />

() 10 . Also30 ( 2 ) 10 ,so<br />

15 k / 2<br />

e = 3; k =<br />

2<br />

ln 3<br />

15<br />

=<br />

2 /15<br />

ln ( 3 ) .<br />

k t<br />

At ( ) = 10( e )<br />

2 t/15<br />

= 10⋅ 3 .<br />

(b) After 5 years we have<br />

(c) At ( ) = 100 when<br />

−kt −kt<br />

51. (a) At ( ) = 15 e ; 10 = A(5) = 15 e , so<br />

Therefore<br />

2/3<br />

A (5) = 10⋅3 ≈ 20.80 pu.<br />

15 ln(10)<br />

At = ⋅ t = ⋅ ≈<br />

2 ln(3)<br />

2 t /15<br />

( ) 10 3 ; 15.72 years.<br />

3 kt 1 3<br />

= e ; k = ln .<br />

2 5 2<br />

−t/5<br />

t/5<br />

At ()<br />

⎛ t 3⎞ = 15exp⎜− ln ⎟<br />

⎝ 5 2⎠ ⎛3⎞ = 15⋅ ⎜ ⎟<br />

⎝2⎠ ⎛2⎞ = 15 ⋅⎜<br />

⎟<br />

⎝3⎠ .<br />

(b) After 8 months we have<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


(c) At () = 1 when<br />

8/5<br />

⎛2⎞ A(8)<br />

= 15⋅⎜ ⎟ ≈ 7.84 su.<br />

⎝3⎠ t /5<br />

At ( )<br />

⎛2⎞ = 15⋅ ⎜ ⎟<br />

⎝3⎠ = 1; t =<br />

1 ln( 15)<br />

5⋅ 2 ln( 3)<br />

≈ 33.3944.<br />

Thus it will be safe <strong>to</strong> return after about 33.4 months.<br />

52. If L() t denotes the number of human language families at time t (<strong>in</strong> years), then<br />

kt<br />

6000k<br />

L() t = e for some constant k. The condition that L(6000) = e = 1.5 gives<br />

1 3<br />

k = ln . If "now" corresponds <strong>to</strong> time t = T,<br />

then we are given that<br />

6000 2<br />

kT<br />

1 6000ln 3300<br />

LT ( ) = e = 3300, so T = ln 3300 = ≈ 119887.18. This result suggests<br />

k<br />

ln(3/ 2)<br />

that the orig<strong>in</strong>al human language was spoken about 120 thousand years ago.<br />

53. If L() t denotes the number of Native American language families at time t (<strong>in</strong> years),<br />

kt<br />

6000k<br />

then L( t) = e for some constant k. The condition that L(6000) = e = 1.5 gives<br />

1 3<br />

k = ln . If "now" corresponds <strong>to</strong> time t = T,<br />

then we are given that<br />

6000 2<br />

kT<br />

1 6000ln150<br />

LT ( ) = e = 150, so T = ln150 = ≈ 74146.48. This result suggests that the<br />

k ln(3/ 2)<br />

ances<strong>to</strong>rs of <strong>to</strong>day's Native Americans first arrived <strong>in</strong> the western hemisphere about 74<br />

thousand years ago.<br />

54. With A(y) constant, Equation (19) <strong>in</strong> the text takes the form<br />

dy<br />

k y<br />

dt =<br />

We readily solve this equation for 2 y = kt+ C.<br />

The condition y(0) = 9 yields<br />

C = 6, and then y(1) = 4 yields k = 2. Thus the depth at time t (<strong>in</strong> hours) is<br />

y(t) = (3 – t) 2 , and hence it takes 3 hours for the tank <strong>to</strong> empty.<br />

55.<br />

2<br />

With A = π (3) and a<br />

2<br />

= π (1/12) , and tak<strong>in</strong>g g = 32 ft/sec 2 , Equation (20)<br />

reduces <strong>to</strong> 162 y′ = – y . The solution such that y = 9 when t = 0 is given by<br />

324 y = –t + 972. Hence y = 0 when t = 972 sec = 16 m<strong>in</strong> 12 sec.<br />

56. The radius of the cross-section of the c<strong>one</strong> at height y is proportional <strong>to</strong> y, so A(y) is<br />

proportional <strong>to</strong> y 2 . Therefore Equation (20) takes the form<br />

Section 1.4 37<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


and a general solution is given by<br />

2<br />

yy′ = − k y,<br />

2y 5/2 = –5kt + C.<br />

The <strong>in</strong>itial condition y(0) = 16 yields C = 2048, and then y(1) = 9 implies that<br />

5k = 1562. Hence y = 0 when<br />

t = C/5k = 2048/1562 ≈ 1.31 hr.<br />

57. The solution of y′ = –k y is given by<br />

2 y = –kt + C.<br />

The <strong>in</strong>itial condition y(0) = h (the height of the cyl<strong>in</strong>der) yields C = 2 h . Then<br />

substitution of t = T, y = 0 gives k = (2 h )/T. It follows that<br />

y = h(1 – t/T) 2 .<br />

If r denotes the radius of the cyl<strong>in</strong>der, then<br />

V( y) = πr y = πr<br />

h(1 − t/ T) = V (1 − t/ T)<br />

.<br />

38 Chapter 1<br />

2 2 2 2<br />

0<br />

58. S<strong>in</strong>ce x = y 3/4 , the cross-sectional area is Ay ( )<br />

2<br />

= πx 3/2<br />

= πy.<br />

Hence the<br />

general equation Ay ( ) y′ = − a<br />

with general solution<br />

2gyreduces<br />

<strong>to</strong> the differential equation yy′ =− k<br />

(1/2)y 2 = –kt + C.<br />

The <strong>in</strong>itial condition y(0) = 12 gives C = 72, and then y(1) = 6 yields k = 54.<br />

Upon solv<strong>in</strong>g for y we f<strong>in</strong>d that the depth at time t is<br />

yt ( ) = 144 − 108t<br />

.<br />

Hence the tank is empty after t = 144/108 hr, that is, at 1:20 p.m.<br />

59. (a) S<strong>in</strong>ce x 2 = by, the cross-sectional area is Ay ( )<br />

2<br />

= πx= πby.<br />

Hence the<br />

equation Ayy ( ) ′ = − a 2gyreduces<br />

<strong>to</strong> the differential equation<br />

′ = − = −<br />

π<br />

1/2<br />

y y k ( a/ b) 2g<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


with the general solution<br />

(2/3)y 3/2 = –kt + C.<br />

The <strong>in</strong>itial condition y(0) = 4 gives C = 16/3, and then y(1) = 1 yields k = 14/3.<br />

It follows that the depth at time t is<br />

y(t) = (8 – 7t) 2/3 .<br />

(b) The tank is empty after t = 8/7 hr, that is, at 1:08:34 p.m.<br />

(c) We see above that k = (a/πb) 2g = 14/3. Substitution of a<br />

2<br />

= π r , b = 1,<br />

g = (32)(3600) 2 ft/hr 2 yields r = (1/60)<br />

bot<strong>to</strong>m-hole.<br />

7/12 ft ≈ 0.15 <strong>in</strong> for the radius of the<br />

60. With g = 32 ft/sec 2 and<br />

61.<br />

a π<br />

2<br />

= (1/12) , Equation (24) simplifies <strong>to</strong><br />

dy π<br />

Ay ( ) = − y.<br />

dt 18<br />

If z denotes the distance from the center of the cyl<strong>in</strong>der down <strong>to</strong> the fluid surface, then<br />

y = 3 – z and A(y) = 10(9 – z 2 ) 1/2 . Hence the equation above becomes<br />

and <strong>in</strong>tegration yields<br />

z<br />

dz<br />

dt<br />

π<br />

18<br />

z<br />

+ z dz = π dt<br />

2 1/2 1/2<br />

10(9 − ) = (3 − ) ,<br />

1/2<br />

180(3 ) ,<br />

π<br />

1/2<br />

120(3 + z) = t+ C.<br />

Now z = 0 when t = 0, so C = 120(3) 3/2 . The tank is empty when z = 3 (that is,<br />

when y = 0) and thus after<br />

t = (120/π)(6 3/2 – 3 3/2 ) ≈ 362.90 sec.<br />

It therefore takes about 6 m<strong>in</strong> 3 sec for the fluid <strong>to</strong> dra<strong>in</strong> completely.<br />

Ay ( )<br />

2<br />

= π (8 y− y)<br />

as <strong>in</strong> Example 7 <strong>in</strong> the text, but now a = π /144 <strong>in</strong> Equation (24),<br />

so the <strong>in</strong>itial value problem is<br />

18(8y – y 2 )y′ = – y , y(0) = 8.<br />

We seek the value of t when y = 0. The answer is t ≈ 869 sec = 14 m<strong>in</strong> 29 sec.<br />

Section 1.4 39<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


62.<br />

2<br />

The cross-sectional area function for the tank is A = π (1 − y ) and the area of the<br />

bot<strong>to</strong>m-hole is a<br />

−4<br />

= 10 π , so Eq. (24) <strong>in</strong> the text gives the <strong>in</strong>itial value problem<br />

Simplification gives<br />

so <strong>in</strong>tegration yields<br />

dy<br />

π π<br />

dt<br />

2 −4<br />

(1 − y ) = − 10 2 × 9.8 y, y(0)<br />

= 1.<br />

( y y )<br />

−1/2 3/2 −4<br />

40 Chapter 1<br />

dy<br />

− = − 1.4 × 10 10<br />

dt<br />

2<br />

5<br />

1/2 5/2 −4<br />

2 y − y = − 1.4 × 10 10 t+ C.<br />

The <strong>in</strong>itial condition y(0) = 1 implies that C = 2 - 2/5 = 8/5, so y = 0 after<br />

−4<br />

t = (8/5) /(1.4 × 10 10) ≈ 3614 seconds. Thus the tank is empty at about 14<br />

seconds after 2 pm.<br />

63. (a) As <strong>in</strong> Example 8, the <strong>in</strong>itial value problem is<br />

dy<br />

π π<br />

dt<br />

2<br />

(8 y− y ) = − k y, y(0)<br />

= 4<br />

where k =<br />

2<br />

0.6r 2g =<br />

2<br />

4.8 r . Integrat<strong>in</strong>g and apply<strong>in</strong>g the <strong>in</strong>itial condition just <strong>in</strong><br />

the Example 8 solution <strong>in</strong> the text, we f<strong>in</strong>d that<br />

16 3/2 2 5/2 448<br />

y − y = − kt+<br />

.<br />

3 5 15<br />

When we substitute y = 2 (ft) and t = 1800 (sec, that is, 30 m<strong>in</strong>), we f<strong>in</strong>d that<br />

k ≈ 0.009469. F<strong>in</strong>ally, y = 0 when<br />

Thus the tank is empty at 1:52:34 pm.<br />

t<br />

(b) The radius of the bot<strong>to</strong>m-hole is<br />

448<br />

= ≈ 3154 sec = 52 m<strong>in</strong> 34 sec.<br />

15k<br />

r = k/<br />

4.8 ≈0.04442 ft ≈ 0.53 <strong>in</strong>, thus about a half <strong>in</strong>ch.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


64. The given rate of fall of the water level is dy/dt = –4 <strong>in</strong>/hr = –(1/10800) ft/sec. With<br />

2<br />

A = πx and a<br />

2<br />

= πr<br />

, Equation (24) is<br />

π π π<br />

2 2 2<br />

( x )(1/10800) = − ( r ) 2gy = − 8 r y.<br />

Hence the curve is of the form y = kx 4 , and <strong>in</strong> order that it pass through (1, 4) we<br />

must have k = 4. Compar<strong>in</strong>g y = 2x 2 with the equation above, we see that<br />

(8r 2 )(10800) = 1/2,<br />

so the radius of the bot<strong>to</strong>m hole is r = 1/(240 3) ft ≈ 1/35 <strong>in</strong>.<br />

65. Let t = 0 at the time of death. Then the solution of the <strong>in</strong>itial value problem<br />

is<br />

T' = k(70 – T), T(0) = 98.6<br />

If t = a at 12 noon, then we know that<br />

Hence<br />

kt<br />

Tt ( ) 70 28.6 e .<br />

−<br />

= +<br />

−ka<br />

Tt ( ) = 70 + 28.6e = 80,<br />

T a e<br />

− k( a+<br />

1)<br />

( + 1) = 70 + 28.6 = 75.<br />

−ka −ka −k<br />

28.6e = 10 and 28.6e e = 5.<br />

It follows that e –k = 1/2, so k = ln 2. F<strong>in</strong>ally the first of the previous two equations<br />

yields<br />

a = (ln 2.86)/(ln 2) ≈ 1.516 hr ≈ 1 hr 31 m<strong>in</strong>,<br />

so the death occurred at 10:29 a.m.<br />

66. Let t = 0 when it began <strong>to</strong> snow, and t = t0 at 7:00 a.m. Let x denote distance along<br />

the road, with x = 0 where the snowplow beg<strong>in</strong>s at 7:00 a.m. If y = ct is the snow<br />

depth at time t, w is the width of the road, and v = dx/dt is the plow′s velocity, then<br />

"plow<strong>in</strong>g at a constant rate" means that the product wyv is constant. Hence our<br />

differential equation is of the form<br />

dx 1<br />

k = .<br />

dt t<br />

Section 1.4 41<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


The solution with x = 0 when t = t0 is<br />

t = t0 e kx .<br />

We are given that x = 2 when t = t0 + 1 and x = 4 when t = t0 + 3, so it follows<br />

that<br />

Elim<strong>in</strong>ation of t0 yields the equation<br />

t0 + 1 = t0 e 2k and t0 + 3 = t0 e 4k .<br />

e 4k – 3e 2k + 2 = (e 2k – 1)(e 2k – 2) = 0,<br />

so it follows (s<strong>in</strong>ce k > 0) that e 2k = 2. Hence t0 + 1 = 2t0, so t0 = 1. Thus it began<br />

<strong>to</strong> snow at 6 a.m.<br />

67. We still have t = t0 e kx , but now the given <strong>in</strong>formation yields the conditions<br />

t0 + 1 = t0 e 4k and t0 + 2 = t0 e 7k<br />

at 8 a.m. and 9 a.m., respectively. Elim<strong>in</strong>ation of t0 gives the equation<br />

2e 4k – e 7k – 1 = 0,<br />

which we solve numerically for k = 0.08276. Us<strong>in</strong>g this value, we f<strong>in</strong>ally solve <strong>one</strong> of<br />

the preced<strong>in</strong>g pair of equations for t0 = 2.5483 hr ≈ 2 hr 33 m<strong>in</strong>. Thus it began <strong>to</strong><br />

snow at 4:27 a.m.<br />

68. (a) Note first that if θ denotes the angle between the tangent l<strong>in</strong>e and the horizontal,<br />

π<br />

π<br />

then α = 2 − θ so cotα = cot( 2 − θ) = tan θ = y′ ( x).<br />

It follows that<br />

s<strong>in</strong> α =<br />

s<strong>in</strong>α =<br />

2 2<br />

s<strong>in</strong> α + cos α<br />

1<br />

=<br />

2<br />

1+ cot α<br />

1<br />

.<br />

2<br />

1 + y′ ( x)<br />

Therefore the mechanical condition (s<strong>in</strong> α ) / v = constant (positive) with v = 2gy<br />

translates <strong>to</strong><br />

42 Chapter 1<br />

1<br />

2gy 1 + ( y′<br />

)<br />

2<br />

=<br />

constant,<br />

so<br />

′<br />

2<br />

y[1 + ( y ) ] = 2a<br />

for some positive constant a. We readily solve the latter equation for the differential<br />

equation<br />

dy 2a<br />

− y<br />

y′<br />

= = .<br />

dx y<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


(b) The substitution<br />

Integration now gives<br />

2<br />

y 2as<strong>in</strong> t, dy 4as<strong>in</strong>tcost dt<br />

= = now gives<br />

2<br />

2<br />

− 2 s<strong>in</strong><br />

2<br />

cos<br />

4as<strong>in</strong>tcos tdt =<br />

a a<br />

2as<strong>in</strong> t<br />

t<br />

dx =<br />

t<br />

dx,<br />

s<strong>in</strong>t<br />

dx =<br />

2<br />

4as<strong>in</strong> t dt.<br />

∫ ∫<br />

2<br />

x = 4as<strong>in</strong> t dt = 2 a (1−cos2 t) dt<br />

= 2 a( t− s<strong>in</strong>2 t) + C = a(2t− s<strong>in</strong>2 t) + C,<br />

1<br />

2<br />

2<br />

and we recall that y = 2as<strong>in</strong> t = a(1− cos2 t).<br />

The requirement that x = 0 when t = 0<br />

implies that C = 0. F<strong>in</strong>ally, the substitution θ = 2t (noth<strong>in</strong>g <strong>to</strong> do with the previously<br />

menti<strong>one</strong>d angle θ of <strong>in</strong>cl<strong>in</strong>ation from the horizontal) yields the desired parametric<br />

equations<br />

x = a( θ − s<strong>in</strong> θ),<br />

y = a(1 − cos θ )<br />

of the cycloid that is generated by a po<strong>in</strong>t on the rim of a circular wheel of radius a as it<br />

rolls along the x-axis. [See Example 5 <strong>in</strong> Section 9.4 of Edwards and Penney, Calculus:<br />

Early Transcendentals, 7th edition (Upper Saddle River, NJ: Prentice Hall, 2008).]<br />

69. Substitution of v = dy/ dx <strong>in</strong> the differential equation for y = y( x)<br />

gives<br />

dv<br />

a = + v<br />

dx<br />

and separation of variables then yields<br />

2<br />

1 ,<br />

⌠ dv dx − x dy ⎛ x ⎞<br />

=<br />

⌠<br />

⎮ ⎮<br />

= + =<br />

2<br />

⎜ + ⎟<br />

⌡ 1+<br />

v ⌡ a a dx ⎝a ⎠<br />

1<br />

; s<strong>in</strong>h v C1; s<strong>in</strong>h C1<br />

.<br />

The fact that y′ (0) = 0 implies that C 1 = 0, so it follows that<br />

dy ⎛ x ⎞ ⎛ x ⎞<br />

= s<strong>in</strong>h ⎜ ⎟; yx ( ) = acosh ⎜ ⎟+<br />

C.<br />

dx ⎝a⎠ ⎝a⎠ Of course the (vertical) position of the x-axis can be adjusted so that C = 0, and the units<br />

<strong>in</strong> which T and ρ are measured may be adjusted so that a = 1. In essence, then the<br />

shape of the hang<strong>in</strong>g cable is the hyperbolic cos<strong>in</strong>e graph y = cosh x.<br />

Section 1.4 43<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


SECTION 1.5<br />

LINEAR FIRST-ORDER EQUATIONS<br />

∫<br />

1. ρ ( ) x ( )<br />

= exp 1 dx = e ; D y ⋅ e = 2 e ; y ⋅ e = 2 e + C; y( x) = 2 + Ce<br />

44 Chapter 1<br />

x x x x x − x<br />

(0) 0 implies 2 so ( ) 2 2 x<br />

y C y x e −<br />

= = − = −<br />

∫<br />

2. ρ ( ) x ( )<br />

= exp ( − 2) dx = e ; D y⋅ e = 3; y⋅ e = 3 x+ C; y( x) = (3 x+ C) e<br />

y(0) = 0 implies C = 0 so y( x) = 3xe<br />

∫<br />

3. ρ ( ) x ( )<br />

−2x −2x −2x<br />

2x<br />

= exp 3 dx = e ; D y ⋅ e = 2 x; y ⋅ e = x + C; y( x) = ( x + C) e<br />

∫<br />

4. ρ ( ) x ( )<br />

2 x<br />

3x 3x 3x 2 2 −3x<br />

2 2 2 2<br />

− − −<br />

= exp ( − 2 x) dx = e ; D y⋅ e = 1; y⋅ e = x+ C; y( x) = ( x+ C) e<br />

∫<br />

x<br />

5. ( ) x ( )<br />

x x x x<br />

ρ = exp (2 / ) = = ; ⋅ = 3 ; ⋅ = +<br />

2ln 2 2 2 2 3<br />

x dx e x D y x x y x x C<br />

yx ( ) = x+ C/ x; y(1) = 5 implies C= 4 so yx ( ) = x+ 4/ x<br />

∫<br />

2 2<br />

ρ = exp (5/ ) = = ; ⋅ = 7 ; ⋅ = +<br />

5ln 5 5 6 5 7<br />

x dx e x D y x x y x x C<br />

x<br />

6. ( ) x ( )<br />

yx ( ) = x + C/ x; y(2) = 5 implies C= 32 so yx ( ) = x + 32/ x<br />

∫<br />

2 5 2 5<br />

ρ = exp (1/ 2 x) dx = e = x; D y ⋅ x = 5; y ⋅ x = 5x<br />

+ C<br />

(ln x)<br />

/ 2<br />

7. ( ) x ( )<br />

yx ( ) = 5 x+ C/ x<br />

∫<br />

ρ = exp (1/ 3 ) = = ; ⋅ = 4 ; ⋅ = 3 +<br />

(ln ) / 3 3 3 3 3<br />

4 / 3<br />

x dx e x D y x x y x x C<br />

x<br />

8. ( ) x ( )<br />

yx ( ) 3x<br />

Cx −<br />

= +<br />

∫<br />

1/3<br />

−ln<br />

x<br />

9. ρ ( ) ( )<br />

= exp ( − 1/ x) dx = e = 1/ x; D y ⋅ 1/ x = 1/ x; y ⋅ 1/ x = lnx<br />

+ C<br />

yx ( ) = xln x+ Cx; y(1) = 7 implies C= 7 so yx ( ) = xlnx+ 7x<br />

∫<br />

( )<br />

ρ = exp ( − 3/ 2 x) dx = e = x ;<br />

( −3ln x)/2<br />

−3/2<br />

10. ( )<br />

−3/2 1/2 −3/2<br />

3/2<br />

Dx y⋅ x = x y⋅ x = x + C<br />

9 /2; 3 ;<br />

x<br />

yx ( ) = 3x+<br />

Cx<br />

3 3/2<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


∫<br />

11. ρ ( ) x ( )<br />

= exp (1/ − 3) = = ; ⋅ = 0; ⋅ =<br />

ln x−3x −3x −3x −3x<br />

x dx e x e D y x e y x e C<br />

yx Cx e y C yx<br />

−1<br />

3x<br />

( ) = ; (1) = 0 implies = 0 so ( ) ≡ 0 (constant)<br />

∫<br />

ρ = exp (3/ x) dx = e = x ; D y ⋅ x = 2 x ; y ⋅ x = x + C<br />

x<br />

12. ( ) x ( )<br />

3ln 3 3 7 3 1<br />

4<br />

8<br />

yx ( ) = x + Cx ; y(2) = 1 implies C= − 56 so yx ( ) = x− 56 x<br />

1 5 −3 1 5 −3<br />

4 4<br />

∫<br />

ρ = exp 1 dx = e ; D y ⋅ e = e ; y ⋅ e = e + C<br />

2 1 2<br />

13. ( ) ( )<br />

x x x x x<br />

x<br />

2<br />

yx ( ) = e + Ce ; y(0) = 1 implies C= so yx ( ) = e + e<br />

1 x − x 1 1 x 1 − x<br />

2 2 2 2<br />

∫<br />

x<br />

14. ρ ( ) x ( )<br />

−3ln −3 −3−1−3 = exp ( − 3/ ) = = ; ⋅ = ; ⋅ = ln +<br />

x dx e x D y x x y x x C<br />

y( x) = x ln x+ Cx ; y(1) = 10 implies C = 10 so y( x) = x ln x+ 10 x<br />

∫<br />

3 3 3 3<br />

15. ( ) x ( )<br />

2 2 2 2 2<br />

ρ = exp 2 x dx = e ; D y⋅ e = xe ; y⋅ e = e + C<br />

x x x x 1<br />

2<br />

x<br />

2 2<br />

yx ( ) = + Ce ; y(0) =− 2 implies C=− so yx ( ) = − e<br />

1 − x 5 1 5 − x<br />

2 2 2 2<br />

∫<br />

ρ = exp cos = ; ⋅ = cos ; ⋅ = +<br />

s<strong>in</strong> x s<strong>in</strong> x s<strong>in</strong> x s<strong>in</strong> x s<strong>in</strong> x<br />

x dx e D y e e x y e e C<br />

16. ( ) x ( )<br />

yx ( ) = 1 + Ce ; y( π ) = 2 implies C= 1 so yx ( ) = 1+<br />

e<br />

∫<br />

−s<strong>in</strong> x −s<strong>in</strong><br />

x<br />

ln(1 + x)<br />

17. ρ ( ) ( )<br />

( ) ( )<br />

= exp 1/(1 + x) dx = e = 1 + x; D y ⋅ 1+ x = cos x; y ⋅ 1+ x = s<strong>in</strong> x + C<br />

C+ s<strong>in</strong> x 1+ s<strong>in</strong> x<br />

yx ( ) = ; y(0) = 1 implies C= 1 so yx ( ) =<br />

1+ x 1+<br />

x<br />

∫<br />

x<br />

18. ρ ( ) x ( )<br />

−2ln −2 −2 −2<br />

= exp ( − 2 / ) = = ; ⋅ = cos ; ⋅ = s<strong>in</strong> +<br />

x<br />

x dx e x D y x x y x x C<br />

( )<br />

2<br />

yx ( ) = x s<strong>in</strong>x+<br />

C<br />

∫<br />

ρ = exp cot x dx = e = s<strong>in</strong> x; D y ⋅ s<strong>in</strong> x = s<strong>in</strong> x cos x<br />

ln(s<strong>in</strong> x)<br />

19. ( ) ( )<br />

y⋅ s<strong>in</strong> x = s<strong>in</strong> x+ C; y( x) = s<strong>in</strong> x+ Ccscx 1 2<br />

1<br />

2 2<br />

x<br />

Section 1.5 45<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


∫<br />

20. ρ ( ) x ( )<br />

46 Chapter 1<br />

2 2 2<br />

= exp ( −1 − xdx ) = e ; D ye ⋅ = (1 + xe )<br />

−x−x /2 −x−x /2 −x−x /2<br />

2 2 2<br />

y⋅ e =− e + C; y( x) = − 1+<br />

Ce<br />

−x−x /2 −x− x /2 x+ x /2<br />

y(0) 0 implies C 1 so y( x) 1 e +<br />

= = = − +<br />

∫<br />

x<br />

21. ρ ( ) x ( )<br />

−3ln −3 −3 −3<br />

= exp ( − 3/ ) = = ; ⋅ = cos ; ⋅ = s<strong>in</strong> +<br />

x x<br />

x dx e x D y x x y x x C<br />

3 3 3<br />

yx ( ) = xs<strong>in</strong> x+ Cx; y(2 π ) = 0 implies C= 0 so yx ( ) = xs<strong>in</strong> x<br />

∫ x dx<br />

2<br />

−x e D<br />

2<br />

−x y e<br />

2<br />

x<br />

2<br />

−x<br />

y e<br />

3<br />

x C<br />

( 3 ) ( 3 )<br />

22. ρ ( ) x ( )<br />

= exp ( − 2 ) = ; ⋅ = 3 ; ⋅ = +<br />

2 /2<br />

2 2<br />

yx ( ) = x+ Ce ; y(0) = 5 implies C= 5 so yx ( ) = x + 5 e<br />

∫<br />

+ x + x<br />

= exp (2 − 3/ x) dx = e = x e ; D y ⋅ x e = 4e<br />

− − −<br />

23. ρ ( ) x ( )<br />

y⋅ x e = 2 e + C; y( x) = 2x<br />

+ Cx e<br />

2x 3lnx 3 2x 3 2x 2x<br />

−3 2x 2x 3 3 −2x<br />

∫<br />

2<br />

x +<br />

24. ρ ( ) x ( )<br />

= exp 3 x/( x + 4) dx = e = ( x + 4) ; D y⋅ ( x + 4) = x( x + 4)<br />

2 3ln( 4)/2 2 3/2 2 3/2 2 1/2<br />

y⋅ ( x + 4) = ( x + 4) + C; y( x) = + C( x + 4)<br />

2 3/2 1 2 3/2 1 2 −3/2<br />

3 3<br />

16 1<br />

2 −3/2<br />

⎡ ⎤<br />

3 3<br />

y(0) = 1 implies C = so y( x) =<br />

⎣<br />

1+ 16( x + 4)<br />

⎦<br />

25. First we calculate<br />

It follows that<br />

3<br />

⌠ 3x dx ⌠ ⎡ 3x ⎤ 3 2 2<br />

⎮ = ⎮ 3x− dx = x − ln( x + 1)<br />

⎮ 2 2<br />

x 1 ⎮<br />

⌡ + ⎢<br />

⌡ x + 1⎥ 2<br />

ρ<br />

⎣ ⎦<br />

2 −3/2<br />

2<br />

= ( x + 1) exp(3 x / 2) and thence that<br />

x<br />

( )<br />

D y⋅ x + x = x x +<br />

⎡<br />

⎣<br />

⎤<br />

⎦ .<br />

2 −3/2 2 2 −5/2<br />

( 1) exp(3 / 2) 6 ( 4) ,<br />

2 −3/2 2<br />

y⋅ ( x + 1) exp(3 x / 2)<br />

2 −3/2<br />

= − 2( x + 4) + C,<br />

yx ( )<br />

2 2 3/2 2<br />

= − 2exp(3 x / 2) + C( x + 1) exp( −3<br />

x/<br />

2).<br />

F<strong>in</strong>ally, y(0) = 1 implies that C = 3 so the desired particular solution is<br />

yx x x x<br />

2 2 3/2 2<br />

( ) = − 2exp(3 / 2) + 3( + 1) exp( − 3 / 2).<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


26. With x′ = dx / dy , the differential equation is<br />

<strong>in</strong>dependent variable we calculate<br />

′ + 4 = 1. Then with y as the<br />

3 2<br />

yx yx<br />

4lny 4 4<br />

( ) y ( )<br />

∫<br />

ρ ( y) = exp (4/ y) dy = e = y ; D x⋅ y = y<br />

1 1 C<br />

⋅ = + ; ( ) = + 2 4<br />

2 2y<br />

y<br />

4 2<br />

x y y C x y<br />

y<br />

27. With x′ = dx / dy , the differential equation is x′ − x = ye . Then with y as the<br />

<strong>in</strong>dependent variable we calculate<br />

−y −y<br />

( ) y ( )<br />

∫<br />

ρ(<br />

y) = exp ( − 1) dy = e ; D x⋅ e = y<br />

( )<br />

x ⋅ e = y + C; x( y) = y + C e<br />

− y 1 2 1 2 y<br />

2 2<br />

28. With x′ = dx / dy , the differential equation is<br />

<strong>in</strong>dependent variable we calculate<br />

∫<br />

( )<br />

( )<br />

+ ′ − = Then with y as the<br />

2<br />

(1 y ) x 2 yx 1.<br />

2<br />

2 − ln( y + 1) 2 −1<br />

ρ(<br />

y) = exp ( − 2 y/(1 + y ) dy = e = (1 + y )<br />

D x⋅ (1 + y ) = (1 + y )<br />

y<br />

2 −1 2 −2<br />

An <strong>in</strong>tegral table (or trigonometric substitution) now yields<br />

x ⌠ dy 1 ⎛ y<br />

−1<br />

⎞<br />

= tan y C<br />

2 ⎮ = + +<br />

2<br />

1+ y 2<br />

⎜<br />

1+<br />

y<br />

⎟<br />

⌡<br />

⎝ ⎠<br />

2<br />

2<br />

( 1+<br />

y )<br />

( 2)( −1<br />

)<br />

1 x( y) = ⎡ 2 y+ 1+ y tan y+ C ⎤<br />

⎣ ⎦<br />

29. ρ ( ) x ( )<br />

yx ( ) =<br />

2<br />

x 1 e ( C+ 2 π erf( x)<br />

)<br />

2<br />

−x 2<br />

−x 2<br />

−x 2<br />

−x x<br />

0<br />

2<br />

−t<br />

∫ ∫<br />

= exp ( − 2 x) dx = e ; D y ⋅ e = e ; y ⋅ e = C + e dt<br />

30. After division of the given equation by 2x, multiplication by the <strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r<br />

ρ = x –1/2 yields<br />

x y′ − x y = x cos x,<br />

D x y x cos x,<br />

−1/2 1<br />

2<br />

−3/2−1/2 x ( −1/2 ) =<br />

−1/2<br />

−1/2 =<br />

x<br />

+∫1<br />

−1/2<br />

x y C t cos t dt.<br />

Section 1.5 47<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


The <strong>in</strong>itial condition y(1) = 0 implies that C = 0, so the desired particular solution is<br />

1/2<br />

x<br />

1<br />

−1/2<br />

yx ( ) = x ∫ t costdt.<br />

−∫ Pdx<br />

c c c c<br />

31. (a) y′ = Ce ( − P) = − P y , so y′ + P y = 0.<br />

− Pdx ⎡ Pdx ⎤ − Pdx Pdx<br />

(b) y′ p = ( −P) e<br />

∫<br />

⋅<br />

⌠ ⎛<br />

Qe<br />

∫ ⎞<br />

dx e<br />

∫<br />

Qe<br />

∫<br />

⎢⎮⎜ ⎟ ⎥<br />

+ ⋅ = − Pyp+ Q<br />

⎣⌡⎝ ⎠ ⎦<br />

32. (a) If y = Acos x+ Bs<strong>in</strong> x then<br />

y′ + y = ( A+ B)cos x+ ( B− A)s<strong>in</strong>x = 2s<strong>in</strong>x<br />

provided that A = –1 and B = 1. These coefficient values give the particular solution<br />

yp(x) = s<strong>in</strong> x – cos x.<br />

(b) The general solution of the equation y′ + y = 0 is y(x) = Ce –x so addition <strong>to</strong> the<br />

particular solution found <strong>in</strong> part (a) gives y(x) = Ce –x + s<strong>in</strong> x – cos x.<br />

(c) The <strong>in</strong>itial condition y(0) = 1 implies that C = 2, so the desired particular<br />

solution is y(x) = 2e –x + s<strong>in</strong> x – cos x.<br />

33. The amount x() t of salt (<strong>in</strong> kg) after t seconds satisfies the differential equation<br />

x′ =− x/<br />

200, so<br />

48 Chapter 1<br />

t / 200<br />

xt ( ) 100 e .<br />

−<br />

= Hence we need only solve the equation<br />

/200<br />

10 100 t<br />

e −<br />

= for t = 461 sec = 7 m<strong>in</strong> 41 sec (approximately).<br />

34. Let x() t denote the amount of pollutants <strong>in</strong> the lake after t days, measured <strong>in</strong> millions of<br />

cubic feet (mft 3 ). The volume of the lake is 8000 mft 3 , and the <strong>in</strong>itial amount x (0) of<br />

pollutants is x 0 = (0.25%)(8000) = 20 mft 3 . We want <strong>to</strong> know when<br />

xt ( ) = (0.10%)(8000) = 8 mft 3 . We set up the differential equation <strong>in</strong> <strong>in</strong>f<strong>in</strong>itesimal form<br />

by writ<strong>in</strong>g<br />

dx = [<strong>in</strong>] − [out] =<br />

x<br />

(0.0005)(500) dt − ⋅ 500 dt,<br />

8000<br />

which simplifies <strong>to</strong><br />

dx<br />

dt<br />

=<br />

1 x<br />

− ,<br />

4 16<br />

or<br />

dx 1<br />

+ x<br />

dt 16<br />

=<br />

1<br />

.<br />

4<br />

t /16 /16<br />

Us<strong>in</strong>g the <strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ρ = e , we readily derive the solution () 4 16 t<br />

xt e −<br />

= +<br />

for which x (0) = 20. F<strong>in</strong>ally, we f<strong>in</strong>d that x = 8 when t = 16ln 4 ≈ 22.2 days.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


35. The only difference from the Example 4 solution <strong>in</strong> the textbook is that V = 1640 km 3<br />

and r = 410 km 3 /yr for Lake Ontario, so the time required is<br />

t<br />

V<br />

= ln 4 = 4 ln 4 ≈ 5.5452 years.<br />

r<br />

36. (a) The volume of br<strong>in</strong>e <strong>in</strong> the tank after t m<strong>in</strong> is V(t) = 60 – t gal, so the <strong>in</strong>itial<br />

value problem is<br />

The solution is<br />

dx 3x<br />

= 2 − , x(0)<br />

= 0.<br />

dt 60 − t<br />

3<br />

(60 − t)<br />

xt () = (60 −t) − .<br />

3600<br />

(b) The maximum amount ever <strong>in</strong> the tank is 40 / 3 ≈ 23.09 lb. This occurs after<br />

t = 60 −20 3 ≈ 25/ 36 m<strong>in</strong>.<br />

37. The volume of br<strong>in</strong>e <strong>in</strong> the tank after t m<strong>in</strong> is V(t) = 100 + 2t gal, so the <strong>in</strong>itial value<br />

problem is<br />

dx<br />

dt<br />

=<br />

3x<br />

5 − ,<br />

100 + 2t<br />

x(0)<br />

= 50.<br />

The <strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ρ () t = (100 + 2t) 3/2 leads <strong>to</strong> the solution<br />

50000<br />

xt ( ) = (100 + 2 t)<br />

−<br />

(100 + 2 t)<br />

such that x(0) = 50. The tank is full after t = 150 m<strong>in</strong>, at which time<br />

x(150) = 393.75 lb.<br />

38. (a) dx / dt = − x / 20 and x(0)<br />

= 50 so<br />

(b) The solution of the l<strong>in</strong>ear differential equation<br />

with y(0) = 50 is<br />

3/2<br />

/20<br />

() 50 t<br />

xt e −<br />

= .<br />

dy 5x5y5 1<br />

= − = −<br />

dt 100 200 2 40<br />

yt e e<br />

−t<br />

/20<br />

e y<br />

−t/40 −t/20<br />

( ) = 150 − 100 .<br />

(c) The maximum value of y occurs when<br />

.<br />

Section 1.5 49<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


15 5<br />

y t e e e e<br />

4 4<br />

50 Chapter 1<br />

( )<br />

−t/40 −t/20 −t/40 −t/40<br />

′ () = − + 5 = − 3− 4 = 0.<br />

We f<strong>in</strong>d that ymax = 56.25 lb when t = 40 ln(4/3) ≈ 11.51 m<strong>in</strong>.<br />

39. (a) The <strong>in</strong>itial value problem<br />

for Tank 1 has solution<br />

for Tank 2 has solution<br />

dx x<br />

= − , x(0)<br />

= 100<br />

dt 10<br />

t /10<br />

xt ( ) 100 e .<br />

−<br />

= Then the <strong>in</strong>itial value problem<br />

dy x y y<br />

= − = − =<br />

dt 10 10 10<br />

yt te −<br />

t /10<br />

() = 10 .<br />

(b) The maximum value of y occurs when<br />

y′ t = e − te =<br />

−t/10 −t/10<br />

() 10 0<br />

−t<br />

/10<br />

10 e , y(0)<br />

0<br />

and thus when t = 10. We f<strong>in</strong>d that ymax = y(10) = 100e –1 ≈ 36.79 gal.<br />

n −t/2<br />

n<br />

40. (b) Assum<strong>in</strong>g <strong>in</strong>ductively that xnt e / ( n!2<br />

)<br />

dxn+ 1<br />

t e<br />

= − = −<br />

dt 2 2 n!2<br />

2<br />

= , the equation for xn+1 is<br />

n −t/2<br />

1 1 1<br />

xn xn+ 1 x<br />

n+<br />

1 n+<br />

1<br />

We easily solve this first–order equation with x + 1 (0) = 0 and f<strong>in</strong>d that<br />

x<br />

t e<br />

( n + 1)!2<br />

1 /2<br />

1 1 ,<br />

n+ −t<br />

n+ =<br />

n+<br />

thereby complet<strong>in</strong>g the proof by <strong>in</strong>duction.<br />

41. (a) A'(t) = 0.06A + 0.12S =<br />

(b) The solution with A(0) = 0 is<br />

0.06A+ 3.6e<br />

n<br />

0.05t<br />

A(t) = 360(e 0.06 t – e 0.05 t ),<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

.


so A(40) ≈ 1308.283 thousand dollars.<br />

42. The mass of the hails<strong>to</strong>ne at time t is<br />

d(mv)/dt = mg simplifies <strong>to</strong><br />

tv' + 3v = gt.<br />

m r k t<br />

3 3 3<br />

= (4/3) π = (4/3) π . Then the equation<br />

The solution satisfy<strong>in</strong>g the <strong>in</strong>itial condition v(0) = 0 is v(t) = gt/4, so v'(t) = g/4.<br />

y′ = x− y, y( − 5) = y is<br />

43. The solution of the <strong>in</strong>itial value problem 0<br />

yx x y e<br />

−x−5 ( ) = − 1 + ( 0 + 6) .<br />

−10<br />

Substitut<strong>in</strong>g x = 5, we therefore solve the equation 4 + ( y + 6) e = y<br />

with y1 = 3.998, 3.999, 4, 4.001, 4.002 for the desired <strong>in</strong>itial values<br />

y0 = –50.0529, –28.0265, –6.0000, 16.0265, 38.0529, respectively.<br />

44. The solution of the <strong>in</strong>itial value problem 0<br />

yx x y e +<br />

0 1<br />

y′ = x+ y, y( − 5) = y is<br />

x 5<br />

( ) = − − 1 + ( 0 − 4) .<br />

Substitut<strong>in</strong>g x = 5, we therefore solve the equation − 6 + ( y<br />

with y1 = –10, –5, 0, 5, 10 for the desired <strong>in</strong>itial values<br />

10<br />

− 4) e = y<br />

y0 = 3.99982, 4.00005, 4.00027, 4.00050, 4.00073, respectively.<br />

0 1<br />

45. With the pollutant measured <strong>in</strong> millions of liters and the reservoir water <strong>in</strong> millions of<br />

1<br />

cubic meters, the <strong>in</strong>flow-outflow rate is 5 , r = the pollutant concentration <strong>in</strong> the <strong>in</strong>flow<br />

is c o = 10, and the volume of the reservoir is V = 2. Substitut<strong>in</strong>g these values <strong>in</strong> the<br />

equation x′ = rco − ( r / V ) x,<br />

we get the equation<br />

dx 1<br />

= 2 − x<br />

dt 10<br />

for the amount x() t of pollutant <strong>in</strong> the lake after t months. With the aid of the<br />

t /10<br />

<strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ρ = e , we readily f<strong>in</strong>d that the solution with x (0) = 0 is<br />

t /10 ( )<br />

xt () 201 e .<br />

−<br />

= −<br />

Then we f<strong>in</strong>d that x = 10 when t = 10ln 2 ≈ 6.93 months, and observe f<strong>in</strong>ally that, as<br />

expected, xt () →20as t→∞<br />

.<br />

Section 1.5 51<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


46. With the pollutant measured <strong>in</strong> millions of liters and the reservoir water <strong>in</strong> millions of<br />

1<br />

cubic meters, the <strong>in</strong>flow-outflow rate is 5 , r = the pollutant concentration <strong>in</strong> the <strong>in</strong>flow<br />

is co= 10(1 + cos t),<br />

and the volume of the reservoir is V = 2. Substitut<strong>in</strong>g these values<br />

<strong>in</strong> the equation x′ = rco − ( r / V ) x,<br />

we get the equation<br />

dx 1 dx 1<br />

= 2(1 + cos t) − x, that is, + x = 2(1 + cos t)<br />

dt 10 dt 10<br />

for the amount x() t of pollutant <strong>in</strong> the lake after t months. With the aid of the<br />

t /10<br />

<strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ρ = e , we get<br />

t/10 t/10 t/10<br />

x ⋅ e = (2e + 2e cos t) dt<br />

52 Chapter 1<br />

∫<br />

e<br />

t /10<br />

t /10<br />

20e 2<br />

1 2 2<br />

( 10)<br />

+ 1<br />

= + ⋅<br />

⎛ 1 ⎞<br />

⎜ cost+ s<strong>in</strong> t⎟+ C.<br />

⎝10 ⎠<br />

When we impose the condition x (0) = 0, we get the desired particular solution<br />

20<br />

−t<br />

/10<br />

x( t) = ( 101− 102e + cost+ 10s<strong>in</strong> t)<br />

.<br />

101<br />

In order <strong>to</strong> determ<strong>in</strong>e when x = 10, we need <strong>to</strong> solve numerically. For <strong>in</strong>stance, we can<br />

use the Mathematica commands<br />

x = (20/101)(101 - 102 Exp[-t/10] + Cos[t] + 10 S<strong>in</strong>[t]);<br />

F<strong>in</strong>dRoot[ x == 10, {t,7} ]<br />

{t -> 6.474591767017537}<br />

and f<strong>in</strong>d that this occurs after about 6.47 months. F<strong>in</strong>ally, as t →∞ we observe that<br />

20<br />

x() t approaches the function 20 + 101 (cost+ 10s<strong>in</strong> t)<br />

that does, <strong>in</strong>deed, oscillate about<br />

the equilibrium solution xt ( ) ≡ 20.<br />

SECTION 1.6<br />

SUBSTITUTION METHODS AND EXACT EQUATIONS<br />

It is traditional for every elementary differential equations text <strong>to</strong> <strong>in</strong>clude the particular types of<br />

equations that are found <strong>in</strong> this section. However, no <strong>one</strong> of them is vitally important solely <strong>in</strong><br />

its own right. Their ma<strong>in</strong> purpose (at this po<strong>in</strong>t <strong>in</strong> the course) is <strong>to</strong> familiarize students with the<br />

technique of transform<strong>in</strong>g a differential equation by substitution. The subsection on airplane<br />

flight trajec<strong>to</strong>ries (<strong>to</strong>gether with Problems 56–59) is <strong>in</strong>cluded as an application, but is optional<br />

material and may be omitted if the <strong>in</strong>struc<strong>to</strong>r desires.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


The differential equations <strong>in</strong> Problems 1–15 are homogeneous, so we make the substitutions<br />

y dy dv<br />

v = , y = vx, = v+ x .<br />

x dx dx<br />

For each problem we give the differential equation <strong>in</strong> x, vx ( ), and v′ = dv/ dx that results,<br />

<strong>to</strong>gether with the pr<strong>in</strong>cipal steps <strong>in</strong> its solution.<br />

2( v+ 1) dv<br />

x v+ 1 v = − v + 2v− 1 ; = − 2 xdx; ln v + 2v− 1 = − 2lnx+ lnC<br />

2<br />

⌡ v + 2v−1 ∫<br />

2 2<br />

1. ( ) ′<br />

⌠<br />

( ) ⎮<br />

( )<br />

( )<br />

2 2 2 2<br />

x v + 2v− 1 = C; y + 2xy−<br />

x = C<br />

∫<br />

⌠ dx<br />

⌡ x<br />

2 2 2<br />

2. 2xvv′ = 1; 2 vdv= ⎮ ; v = ln x+ C; y = x ( lnx+<br />

C)<br />

dv dx<br />

x v′ = 2 v; ⌠<br />

=<br />

⌠<br />

⎮ ⎮ ; v = ln x+ C; y = x lnx+<br />

C<br />

⌡ 2 v ⌡ x<br />

3. ( ) 2<br />

2 2(1 − v) dv 2dx<br />

−1<br />

2<br />

x v− 1 v = − v + 1 ;<br />

⌠<br />

=<br />

⌠<br />

⎮ ; 2tan v− ln( v + 1) = 2lnx+<br />

C<br />

2 ⎮<br />

⌡ v + 1 ⌡ x<br />

4. ( ) ′ ( )<br />

( )<br />

−1<br />

2 2<br />

2tan / ln( / 1) 2ln<br />

5. ( ) 2<br />

y x − y x + = x+ C<br />

⌠ ⎛1 1 ⎞ 2dx 1<br />

x v+ 1 v′ =− 2 v ; + dv = −<br />

⌠<br />

⎮ ⎜ ; lnv− = − 2lnx+<br />

C<br />

2 ⎟ ⎮<br />

⌡ ⎝v v ⎠ ⌡ x v<br />

x x<br />

ln y−ln x− = − 2ln x+ C; ln( xy) = C+<br />

y y<br />

⌠ ⎛2 1 ⎞ 2dx 1<br />

x 2v+ 1 v′ = − 2 v ; + dv = −<br />

⌠<br />

⎮ ⎜ ; lnv − = − 2lnx+<br />

C<br />

2 ⎟ ⎮<br />

⌡ ⎝v v ⎠ ⌡ x v<br />

6. ( ) 2 2<br />

x<br />

2lny−2lnx− = − 2ln x+ C; 2ylny = x+ C y<br />

y<br />

∫<br />

⌠ 3dx<br />

⌡ x<br />

2 2 3 3 3<br />

7. x v v′ = 1; 3 v dv = ⎮ ; v = 3ln x+ C; y = x ( 3lnx+<br />

C)<br />

v −v dx −v<br />

8. x v′ = e ; − e dv = −<br />

⌠<br />

∫ ⎮ ; e = − ln x+ C; − v = ln( C−ln x)<br />

⌡ x<br />

( )<br />

y = −x ln C− ln x<br />

Section 1.6 53<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


⌠ dv ⌠ dx<br />

⌡ ⌡<br />

2<br />

9. x v′ = v ; − ⎮ = − ⎮ ; = − ln x+ C; x = y( C−lnx) 2<br />

v x v<br />

2 ⌠<br />

10.<br />

⌠ 2<br />

⎮ 2 ⎮ ( )<br />

54 Chapter 1<br />

1<br />

4vdv 4dx<br />

x vv′ = 2v+ 1; = ; ln 2v+ 1 = 4lnx+ lnC<br />

⌡ 2v + 1 ⌡ x<br />

2 y / x + 1 = Cx ; x + 2y<br />

= Cx<br />

11. ( )<br />

12.<br />

2 2 4 2 2 6<br />

2<br />

2 3 1−v dx ⎛ 1 2v<br />

⎞ dx<br />

x 1 − v v′ = v+ v ;<br />

⌠<br />

dv =<br />

⌠ ⌠<br />

; − dv =<br />

⌠<br />

⎮ 3 ⎮ ⎮ ⎜ 2 ⎟ ⎮<br />

⌡ v + v ⌡ x ⌡ ⎝v v + 1⎠<br />

⌡ x<br />

2 2 2 2<br />

( ) ( ) ( )<br />

ln v− ln v + 1 = ln x+ ln C; v = Cx v + 1 ; y = C x + y<br />

2 vdv dx<br />

2<br />

x vv′ ⌠<br />

= v + 4; =<br />

⌠<br />

⎮ ⎮ ; v + 4 = lnx+<br />

C<br />

2 ⌡ v + 4 ⌡ x<br />

( ) ( )<br />

2 2 2 2 2<br />

2<br />

v + 4 = ln x+ C ; 4x + y = x lnx+<br />

C<br />

2 ⌠ dv 2<br />

13.<br />

⌠ dx<br />

⎮ ⎮<br />

2<br />

( )<br />

x v′ = v + 1; = ; ln v+ v + 1 = ln x+ lnC<br />

⌡ v + 1 ⌡ x<br />

v+ v + 1 = Cx; y+ x + y = Cx<br />

2 2 2 2<br />

2 2<br />

14. x vv′ = 1+ v − ( 1+<br />

v )<br />

ln x<br />

=<br />

vdv<br />

⌠<br />

⎮<br />

⎮<br />

⌡<br />

2<br />

1 + v<br />

2<br />

− (1 + v )<br />

⌠<br />

⎮<br />

⎮<br />

⌡ u<br />

du<br />

u<br />

=<br />

1<br />

2 ( 1−<br />

)<br />

= +<br />

=<br />

⌠ dw<br />

− ⎮<br />

⌡ w<br />

= − ln w+ lnC<br />

2<br />

( u 1 v )<br />

with w= 1−<br />

u . Back-substitution and simplification f<strong>in</strong>ally yields the implicit<br />

solution<br />

2 2<br />

x − x + y = C<br />

.<br />

2( v+ 1) dv 4dx<br />

x ( v+ 1) v = − 2 v + 2 v ; = − ; ln v + 2v = − 4lnx+ lnC<br />

⌡ ⌡<br />

2 2<br />

15. ′<br />

⌠ ⌠<br />

( ) ⎮ ⎮ ( )<br />

2 4 2 2 3<br />

v + 2 v = C/ x ; x y + 2x<br />

y = C<br />

2<br />

v + 2v<br />

x<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


16. The substitution v = x + y + 1 leads <strong>to</strong><br />

x =<br />

⌠ dv<br />

⎮<br />

⎮<br />

⌡ 1+<br />

v<br />

=<br />

⌠ 2u<br />

du<br />

⎮ ⌡ 1+<br />

u<br />

( v =<br />

2<br />

u )<br />

= 2u− 2ln(1 + u) + C<br />

x = 2 x+ y+ 1− 2 ln(1+ x+ y+ 1) + C<br />

17.<br />

2<br />

v = 4x + y; v′ = v + 4; x =<br />

⌠ dv<br />

⎮ 2<br />

⌡ v + 4<br />

=<br />

1 −1<br />

v C<br />

tan +<br />

2 2 2<br />

v = 2tan(2 x− C); y = 2tan(2 x−C) − 4x<br />

18. v = x + y;<br />

y = ln(x + y + 1) + C.<br />

vdv<br />

1<br />

vv′ ⎛ ⎞<br />

= v+ 1; x =<br />

⌠ ⌠<br />

⎮ = ⎮ ⎜1− ⎟dv=<br />

v− ln( v+ 1) −C<br />

⌡ v+ 1 ⌡ ⎝ v+<br />

1⎠<br />

Problems 19–25 are Bernoulli equations. For each, we <strong>in</strong>dicate the appropriate substitution as<br />

specified <strong>in</strong> Equation (10) of this section, the result<strong>in</strong>g l<strong>in</strong>ear differential equation <strong>in</strong> v, its<br />

<strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ρ, and f<strong>in</strong>ally the result<strong>in</strong>g solution of the orig<strong>in</strong>al Bernoulli equation.<br />

−2<br />

2 4 2 5<br />

19. v = y ; v′ − 4 v/ x = − 10/ x ; ρ = 1/ x ; y = x/ ( Cx + 2)<br />

20.<br />

v = y ; v′ + 6xv = 18 x; ρ = e ; y = 3+<br />

Ce<br />

2 2<br />

3 3x 3 −3x<br />

−2 2x 2 −2x<br />

21. v = y ; v′ + 2v = − 2; ρ = e ; y = 1/ ( Ce − 1)<br />

−3 2 −6<br />

3 7<br />

22. v = y ; v′ − 6 v/ x = − 15/ x ; ρ = x ; y = 7 x/ ( 7Cx + 15)<br />

23. ( ) 3<br />

−1/3 −22<br />

−<br />

v = y ; v′ − 2 v/ x = − 1; ρ = x ; y = x+ Cx<br />

24.<br />

= ; ′ + 2 = / ; = ; = /( + ln )<br />

−2 −2x<br />

2x 2 2x<br />

v y v v e x ρ e y e C x<br />

3 4 3 3 4 3<br />

25. v = y ; v′ + 3 v/ x = 3/ 1 + x ; ρ = x ; y = ( C+ 3 1 + x ) / ( 2x<br />

)<br />

26. The substitution v = y 3 yields the l<strong>in</strong>ear equation v' + v = e –x with <strong>in</strong>tegrat<strong>in</strong>g<br />

fac<strong>to</strong>r ρ = e x . Solution: y 3 = e –x (x + C)<br />

27. The substitution v = y 3 yields the l<strong>in</strong>ear equation x v' – v = 3x 4 with <strong>in</strong>tegrat<strong>in</strong>g<br />

fac<strong>to</strong>r ρ = 1/x. Solution: y = (x 4 + C x) 1/3<br />

Section 1.6 55<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


28. The substitution v = e y yields the l<strong>in</strong>ear equation x v' – 2v = 2x 3 e 2x with <strong>in</strong>tegrat<strong>in</strong>g<br />

fac<strong>to</strong>r ρ = 1/x 2 . Solution: y = ln(C x 2 + x 2 e 2x )<br />

29. The substitution v = s<strong>in</strong> y yields the homogeneous equation 2xv v' = 4x 2 + v 2 .<br />

Solution: s<strong>in</strong> 2 y = 4x 2 – C x<br />

30. First we multiply each side of the given equation by e y . Then the substitution v = e y<br />

gives the homogeneous equation (x + v) v' = x – v of Problem 1 above.<br />

Solution: x 2 – 2x e y – e 2 y = C<br />

Each of the differential equations <strong>in</strong> Problems 31–42 is of the form Mdx+ Ndy=<br />

0, and the<br />

exactness condition ∂M/ ∂ y =∂N / ∂ x is rout<strong>in</strong>e <strong>to</strong> verify. For each problem we give the<br />

pr<strong>in</strong>cipal steps <strong>in</strong> the calculation correspond<strong>in</strong>g <strong>to</strong> the method of Example 9 <strong>in</strong> this section.<br />

31.<br />

32.<br />

33.<br />

34.<br />

35.<br />

∫<br />

F = x+ y dx = x + xy+ g y F = x+ g′ y = x+ y = N<br />

2<br />

(2 3 ) 3 ( ); y 3 ( ) 3 2<br />

′ = = + + =<br />

2 2 2<br />

g ( y) 2 y; g( y) y ; x 3xy<br />

y C<br />

∫<br />

F = x− y dx = x − xy+ g y F = − x+ g′ y = y− x = N<br />

2<br />

(4 ) 2 ( ); y ( ) 6<br />

′ = = − + =<br />

2 2 2<br />

g ( y) 6 y; g( y) 3 y ; x xy 3y<br />

C<br />

∫<br />

F = (3x+ 2 y ) dx = x + xy + g( y); F = 4 xy + g′ ( y) = 4xy + 6y<br />

= N<br />

2 2 3 2 2<br />

y<br />

′ = = + + =<br />

2 3 3 2 3<br />

g ( y) 6 y ; g( y) 2 y ; x 2xy 2y<br />

C<br />

∫<br />

F = (2xy + 3 x ) dx = x + x y + g( y); F = 2 x y + g′ ( y) = 2xy + 4y<br />

= N<br />

2 2 3 2 2 2 2 3<br />

y<br />

′ = = + + =<br />

3 4 3 2 2 4<br />

g ( y) 4 y ; g( y) y ; x x y y C<br />

∫<br />

F = ( x + y/ x) dx = x + yln x+ g( y); F = ln x+ g′ ( y) = y + lnx<br />

= N<br />

3 1 4 2<br />

4<br />

y<br />

g′ ( y) = y ; g( y) = y ; x + y + ylnx = C<br />

∫<br />

2 1 3 1 3 1 2<br />

3 4 3<br />

xy xy xy xy<br />

36. F = (1 + ye ) dx = x+ e + g( y); F = xe + g′ ( y) = 2 y+ xe = N<br />

′ = = + + =<br />

2 xy 2<br />

g ( y) 2 y; g( y) y ; x e y C<br />

∫<br />

y<br />

37. F = (cos x+ ln y) dx = s<strong>in</strong> x+ xln y+ g( y); F = x/ y+ g′ ( y) = x/ y+ e = N<br />

y y y<br />

g′ ( y) = e ; g( y) = e ; s<strong>in</strong>x+ xln y+ e = C<br />

56 Chapter 1<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

y<br />

y


38.<br />

39.<br />

∫<br />

−1 1 2 − 1<br />

x x+ y<br />

′<br />

2 y<br />

2 2<br />

F = ( x+ tan y) dx = x + xtan y+ g( y); F = + g ( y) = = N<br />

1+ y 1+<br />

y<br />

y<br />

1 2 1 2 −1<br />

1<br />

2<br />

g′ ( y) = ; g( y) = 2<br />

2ln(1 + y ); 2 x + xtan y+ 2ln(1<br />

+ y ) = C<br />

1+<br />

y<br />

∫<br />

F = x y + y dx = x y + x y + g y<br />

2 3 4 3 3 4<br />

(3 ) ( );<br />

′<br />

3 2 3 3 2 4 3<br />

Fy = 3xy + 4 xy+ g( y) = 3xy+ y + 4xy=<br />

N<br />

g′ ( y) = y ; g( y) = y ; x y + xy + y = C<br />

∫<br />

4 1 5 3 3 4 1 5<br />

5 5<br />

x x<br />

40. F = ( e s<strong>in</strong> y+ tan y) dx = e s<strong>in</strong> y+ xtan y+ g( y);<br />

41.<br />

42.<br />

′<br />

x 2 x<br />

2<br />

Fy = e cos y+ xsec y+ g ( y) = e cos y+ xsec y = N<br />

x<br />

g′ ( y) = 0; g( y) = 0; e s<strong>in</strong> y+ xtan y = C<br />

2 2 2<br />

⌠ ⎛2x 3y<br />

⎞ x y<br />

F = ⎮ ⎜ − dx g( y);<br />

4 ⎟ = + + 3<br />

⌡ ⎝ y x ⎠ y x<br />

2 2<br />

x 2y x 2y 1<br />

Fy = − + + g′ ( y) = − + + = N<br />

2 3 2 3<br />

y x y x y<br />

2 2<br />

1<br />

x y<br />

g′ ( y) = ; g( y) = 2 y; + + 2 y = C<br />

3<br />

y<br />

y x<br />

⌠ ⎛ 3 ⎞<br />

= ⎮ ⎜ − ⎟ = + +<br />

⌡ ⎝ 2 ⎠<br />

−2/3 −5/2 −2/3 −3/2<br />

F y x y dx x y x y g y<br />

2<br />

= −<br />

3<br />

+ + ′ =<br />

2<br />

−<br />

3<br />

=<br />

g′ ( y) = 0; g( y) = 0;<br />

−2/3 −3/2<br />

x y + x y = C<br />

( );<br />

−5/3 −3/2 −3/2 −5/3<br />

Fy x y x g ( y) x x y N<br />

43. The substitution y′ = p, y′′ = p′<br />

<strong>in</strong> xy′′ = y′<br />

yields<br />

xp′ = p,<br />

(separable)<br />

⌠ dp<br />

⎮<br />

⌡ p<br />

=<br />

⌠ dx<br />

⎮<br />

⌡ x<br />

⇒ ln p = ln x+ ln C,<br />

y′ = p = Cx,<br />

yx = Cx+ B= Ax+ B<br />

1 2 2<br />

( ) 2<br />

.<br />

Section 1.6 57<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


= = = <strong>in</strong> ( ) 2<br />

yy′′ y′<br />

44. The substitution y′ p, y′′ p p′ p( dp / dy)<br />

58 Chapter 1<br />

+ = 0 yields<br />

2<br />

ypp′ + p = 0 ⇒ yp′ = − p,<br />

(separable)<br />

⌠ dp<br />

⎮<br />

⌡ p<br />

⌠ dy<br />

= −⎮ ⌡ y<br />

⇒ ln p = − ln y+ ln C,<br />

p = C / y ⇒ x =<br />

⌠ 1<br />

⎮ dy<br />

⌡ p<br />

=<br />

⌠ y<br />

⎮ dy<br />

⌡ C<br />

x( y) =<br />

2<br />

y<br />

+ B<br />

2C<br />

=<br />

2<br />

Ay + B.<br />

45. The substitution y′ = p, y′′ = p p′ = p( dp / dy)<br />

<strong>in</strong> y′′ + 4y = 0 yields<br />

pp′ + 4 y = 0, (separable)<br />

∫ ∫<br />

p dp = − y dy ⇒ p = − y + C<br />

1 2 2<br />

4 2 2 ,<br />

1 ( 2 )<br />

2 2 2<br />

p = − 4y + 2C = 4 C− y ,<br />

x =<br />

⌠ 1<br />

⎮ dy<br />

⌡ p<br />

=<br />

⌠<br />

⎮<br />

⌡ 2<br />

dy<br />

2 2<br />

k − y<br />

=<br />

1 −1<br />

y<br />

s<strong>in</strong> + D,<br />

2 k<br />

yx ( ) = ks<strong>in</strong>[2x− 2 D] = k(s<strong>in</strong>2xcos2D−cos2 xs<strong>in</strong>2 D),<br />

yx ( ) = Acos2x+ Bs<strong>in</strong>2 x.<br />

46. The substitution y′ = p, y′′ = p′<br />

<strong>in</strong> xy′′ + y′ = 4x<br />

yields<br />

47. The substitution y′ p, y′′ p′<br />

xp′ + p = 4 x, (l<strong>in</strong>ear <strong>in</strong> p)<br />

D x p x x p x A<br />

p =<br />

dy<br />

dx<br />

=<br />

A<br />

2 x+<br />

,<br />

x<br />

yx ( ) =<br />

2<br />

x + Aln x+ B.<br />

2<br />

x[<br />

⋅ ] = 4 ⇒ ⋅ = 2 + ,<br />

= = <strong>in</strong> ( ) 2<br />

y′′ y′<br />

= yields<br />

p′ =<br />

2<br />

p , (separable)<br />

⌠ dp<br />

⎮ 2<br />

⌡ p<br />

= ∫ x dx ⇒<br />

1<br />

−<br />

p<br />

= x + B,<br />

dy<br />

dx<br />

1<br />

= − ,<br />

x + B<br />

yx ( ) = A− ln x+ A.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


48. The substitution y′ = p, y′′ = p′<br />

<strong>in</strong><br />

′′ + 3 ′ = 2 yields<br />

2<br />

xy xy<br />

2<br />

x p′ + 3xp = 2 ⇒<br />

3<br />

p′ + p<br />

p<br />

=<br />

2<br />

, 2<br />

x<br />

(l<strong>in</strong>ear <strong>in</strong> p)<br />

3<br />

Dx[ x ⋅ p] = 2 x ⇒<br />

3<br />

x ⋅ p =<br />

2<br />

x + C,<br />

dy<br />

dx<br />

=<br />

1 C<br />

+ , 3<br />

x x<br />

yx ( ) =<br />

A<br />

ln x+ + B.<br />

2<br />

x<br />

49. The substitution y′ p, y′′ p p′ p( dp / dy)<br />

= = = <strong>in</strong> ( ) 2<br />

′ ′<br />

D [ y⋅ p] = y,<br />

yy′′ + y′ = yy′<br />

yields<br />

2<br />

yp p + p = yp ⇒ y p + p = y p<br />

y<br />

1 1<br />

= + ⇒ =<br />

2 2 2y<br />

2<br />

yp y C p<br />

2<br />

y + C<br />

x =<br />

⌠ 1<br />

⎮ dy<br />

⌡ p<br />

=<br />

⌠ 2ydy<br />

⎮ 2<br />

⌡ y + C<br />

=<br />

2<br />

ln ( y + C) −ln<br />

B,<br />

2<br />

y + C =<br />

x<br />

Be ⇒ y( x) = ±<br />

x<br />

1/2<br />

A+ Be .<br />

,<br />

( )<br />

50. The substitution y′ p, y′′ p′<br />

y′′ = x+ y′<br />

gives<br />

substitution v = x+ p, p′ = v′<br />

− 1 yields<br />

= = <strong>in</strong> ( ) 2<br />

1 2<br />

( ) = ln sec( + ) − 2 + .<br />

(l<strong>in</strong>ear <strong>in</strong> ),<br />

2 ′ = ( + ) , and then the<br />

p x p<br />

v′ − 1 =<br />

2<br />

v ⇒<br />

dv<br />

dx<br />

2<br />

= 1 + v ,<br />

⌠ dv<br />

⎮ 2<br />

⌡ 1+<br />

v<br />

= ∫ dx ⇒<br />

−1<br />

tan v = x + A,<br />

x + y′ = v = tan( x+ A) ⇒<br />

dy<br />

dx<br />

= tan( x+ A) − x,<br />

yx x A x B<br />

= = = <strong>in</strong> ( ) 3<br />

y′′ 2 y y′<br />

51. The substitution y′ p, y′′ p p′ p( dp / dy)<br />

3<br />

x = dy = − y − Cx+ D<br />

3<br />

y x Ay B<br />

= yields<br />

p p′ =<br />

3<br />

2yp ⇒<br />

⌠ dp<br />

⎮ 2<br />

⌡ p<br />

= ∫ 2 ydy<br />

1<br />

⇒ −<br />

p<br />

=<br />

2<br />

y + C,<br />

⌠ 1<br />

⎮<br />

⌡ p<br />

1<br />

3<br />

,<br />

+ 3 + + = 0<br />

Section 1.6 59<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


52. The substitution y′ = p, y′′ = p p′ = p( dp / dy)<br />

<strong>in</strong><br />

60 Chapter 1<br />

3<br />

yy′′ = 1 yields<br />

3<br />

ypp′ = 1 ⇒ ∫ pdp= ⌠ dy<br />

⎮ 3<br />

⌡ y<br />

⇒<br />

1 2<br />

p<br />

2<br />

1 A<br />

= − + , 2<br />

2y 2<br />

2<br />

p =<br />

2<br />

Ay −1<br />

2<br />

y<br />

⇒ x =<br />

⌠ 1<br />

⎮ dy<br />

⌡ p<br />

=<br />

⌠<br />

⎮<br />

⌡<br />

y dy<br />

,<br />

2<br />

Ay −1<br />

x =<br />

1<br />

A<br />

2<br />

Ay − 1+ C ⇒ Ax+ B =<br />

2<br />

Ay −1,<br />

2 2<br />

Ay − ( Ax + B)<br />

= 1.<br />

53. The substitution y′ = p, y′′ = p p′ = p( dp / dy)<br />

<strong>in</strong> y′′ = 2 yy′<br />

yields<br />

∫ ∫<br />

p p′ = yp ⇒ dp = ydy ⇒ p = y + A<br />

2 2<br />

2 2 ,<br />

1 dy 1 −1<br />

y<br />

tan ,<br />

2 2<br />

⌠ ⌠<br />

x = ⎮ dy = ⎮ = + C<br />

⌡ p ⌡ y + A A A<br />

y y<br />

A A<br />

yx ( ) = Atan( Ax+ B).<br />

−1<br />

tan = Ax ( −C) ⇒ = tan( Ax− AC),<br />

= = = <strong>in</strong> ( ) 2<br />

′′ ′<br />

54. The substitution y′ p, y′′ p p′ p( dp / dy)<br />

yp p′ =<br />

2<br />

3p<br />

⇒<br />

⌠ dp<br />

⎮<br />

⌡ p<br />

=<br />

⌠3dy<br />

⎮<br />

⌡ y<br />

ln p = 3ln y+ ln C ⇒ p =<br />

3<br />

Cy ,<br />

x =<br />

⌠ 1<br />

⎮ dy<br />

⌡ p<br />

=<br />

⌠ dy<br />

⎮ 3<br />

⌡ Cy<br />

1<br />

= − + B,<br />

2<br />

2Cy<br />

2<br />

Ay ( B − x)<br />

= 1.<br />

yy = 3 y yields<br />

55. The substitution v = ax+ by+ c, y = ( v−ax− c)/ b <strong>in</strong> y′ = F( ax + by + c)<br />

yields the<br />

separable differential equation ( dv / dx − a)/ b = F( v),<br />

that is, dv / dx = a + b F( v).<br />

56. If v<br />

1 n<br />

y −<br />

= then y =<br />

1/(1 −n)<br />

v so<br />

equation transforms <strong>to</strong><br />

′ = ′ /(1 − ) . Hence the given Bernoulli<br />

n/(1 −n)<br />

y v v n<br />

n/(1 −n)<br />

v dv 1/(1 −n) n/(1 −n).<br />

Px v Qxv<br />

+ ( ) = ( )<br />

1−<br />

n dx<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


n/(1 −n)<br />

Multiplication by (1 − n) / v then yields the l<strong>in</strong>ear differential equation<br />

v′ + (1 − n) Pv = (1 − n) Qv.<br />

57. If v = ln y then<br />

v<br />

v<br />

y = e so y′ = e v′<br />

. Hence the given equation transforms <strong>to</strong><br />

v v<br />

ev′ + Px ( ) e<br />

v<br />

= Q( x) ve.<br />

Cancellation of the fac<strong>to</strong>r<br />

differential equation v′ − Q( x) v = P( x).<br />

v<br />

e then yields the l<strong>in</strong>ear<br />

58. The substitution v = ln y, y = e v , y' = e v v' yields the l<strong>in</strong>ear equation x v' + 2 v = 4x 2<br />

with <strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ρ = x 2 . Solution: y = exp(x 2 + C/x 2 )<br />

59. The substitution x = u – 1, y = v – 2 yields the homogeneous equation<br />

The substitution v = pu leads <strong>to</strong><br />

dv u − v<br />

=<br />

du u + v<br />

.<br />

( p+ 1) dp 1 2<br />

ln u = − = − ⎡ln ( p 2 p 1) ln C⎤<br />

⎣<br />

+ − −<br />

⎦<br />

.<br />

⌠<br />

⎮<br />

⎮ 2<br />

⌡ ( p + 2p−1) 2<br />

We thus obta<strong>in</strong> the implicit solution<br />

( 2 1)<br />

+ − =<br />

2 2<br />

u p p C<br />

2<br />

2⎛v v ⎞<br />

u ⎜ + 2 − 1 2 ⎟<br />

⎝u u ⎠<br />

=<br />

2 2<br />

v + 2uv−<br />

u = C<br />

( + 2) + 2( + 1)( + 2) − ( + 1) =<br />

y + 2xy− x + 2x+ 6 y = C.<br />

y<br />

2<br />

x y x<br />

2<br />

C<br />

2 2<br />

60. The substitution x = u – 3, y = v – 2 yields the homogeneous equation<br />

The substitution v = pu leads <strong>to</strong><br />

dv − u + 2v<br />

= .<br />

du 4u−3v ln u =<br />

⌠ (4 − 3 p) dp<br />

⎮<br />

⎮<br />

⌡ (3p+ 1)( p−1) =<br />

1 ⌠ ⎛ 1 15 ⎞<br />

dp<br />

4<br />

⎮ ⎜ −<br />

p 1 3p 1<br />

⎟<br />

⌡ ⎝ − + ⎠<br />

=<br />

1<br />

[ ln( p−1) − 5ln(3p+ 1) + ln C]<br />

.<br />

4<br />

Section 1.6 61<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


We thus obta<strong>in</strong> the implicit solution<br />

( −1) ( / −1) 4<br />

( − )<br />

5 5 5<br />

4<br />

u =<br />

C p<br />

(3p + 1)<br />

=<br />

C v u<br />

(3 v/ u+ 1)<br />

=<br />

Cu v u<br />

(3 v+ u)<br />

5<br />

(3 v+ u) = C( v−u) 5<br />

( x+ 3y+ 3) = C( y− x−5).<br />

61. The substitution v = x – y yields the separable equation v' = 1 – s<strong>in</strong> v. With the aid<br />

of the identity<br />

1<br />

1−s<strong>in</strong>v =<br />

1+ s<strong>in</strong>v<br />

2<br />

cos v<br />

2<br />

= sec v+ sec v tan v<br />

we obta<strong>in</strong> the solution<br />

x = tan(x – y) + sec(x – y) + C.<br />

62. The substitution y = vx <strong>in</strong> the given homogeneous differential equation yields the<br />

3<br />

x 2v − 1 v′ = −<br />

4<br />

v + v that we solve as follows:<br />

separable equation ( ) ( )<br />

3<br />

⌠ 2v −1<br />

⎮ dv<br />

4<br />

⌡ v + v<br />

dx<br />

= −<br />

⌠<br />

⎮<br />

⌡ x<br />

⌠ ⎛ 2v−1 1 1 ⎞<br />

⎮ ⎜ − + 2<br />

⎟dv<br />

⌡ ⎝v − v+ 1 v v+ 1⎠<br />

dx<br />

= −<br />

⌠<br />

⎮<br />

⌡ x<br />

(partial fractions)<br />

2<br />

ln( v − v+ 1) − ln v+ ln( v+ 1) = − ln x+ lnC<br />

2<br />

x( v − v+ 1)( v+ 1) = Cv<br />

2 2<br />

( y − xy+ x )( x+ y) = Cxy<br />

+ =<br />

3 3<br />

x y Cxy<br />

63. If we substitute y = y1+ 1/ v, y′ =<br />

2<br />

y′ 1 − v′ / v (primes denot<strong>in</strong>g differentiation with<br />

respect <strong>to</strong> x) <strong>in</strong><strong>to</strong> the Riccati equation y′ =<br />

2<br />

Ay + By+ C and use the fact that<br />

y′ 1 =<br />

2<br />

Ay1 + By1+ C,<br />

then we immediately get the l<strong>in</strong>ear differential equation<br />

v′ + ( B+ 2 Ay ) v = − A.<br />

1<br />

In Problems 64 and 65 we outl<strong>in</strong>e the application of the method of Problem 63 <strong>to</strong> the given<br />

Riccati equation.<br />

64. The substitution y = x+ 1/ v yields the l<strong>in</strong>ear equation v′ − 2xv = 1 with <strong>in</strong>tegrat<strong>in</strong>g<br />

fac<strong>to</strong>r ρ =<br />

2<br />

− x<br />

e . In Problem 29 of Section 1.5 we saw that the general solution of this<br />

62 Chapter 1<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


l<strong>in</strong>ear equation is vx ( ) =<br />

2<br />

x<br />

e ⎡<br />

⎣<br />

C+ π<br />

2 erf( x)<br />

⎤<br />

⎦<br />

<strong>in</strong> terms of the error function erf(x)<br />

<strong>in</strong>troduced there. Hence the general solution of our Riccati equation is given by<br />

yx ( ) =<br />

2<br />

− x<br />

x+ e ⎡<br />

⎣<br />

C+ −1<br />

π<br />

2 erf( x)<br />

⎤<br />

⎦<br />

.<br />

65. The substitution y = x+ 1/ v yields the trivial l<strong>in</strong>ear equation v′ = − 1 with immediate<br />

solution vx ( ) = C− x.<br />

Hence the general solution of our Riccati equation is given by<br />

yx ( ) = x+ 1/( C− x).<br />

66. The substitution y' = C <strong>in</strong> the Clairaut equation immediately yields the general solution<br />

y = Cx + g(C).<br />

67. Clearly the l<strong>in</strong>e y = Cx – C 2 /4 and the tangent l<strong>in</strong>e at (C/2, C 2 /4) <strong>to</strong> the parabola<br />

y = x 2 both have slope C.<br />

2<br />

68. ln ( + 1+ ) = − ln + ln = ln ( / )<br />

v v k x k a x a −<br />

( )<br />

2<br />

k<br />

v 1 v x/ a −<br />

+ + =<br />

( )<br />

−k<br />

⎡ x / a − v⎤ = 1+<br />

v<br />

⎣ ⎦<br />

( ) ( )<br />

v<br />

2<br />

−2k −k<br />

2 2<br />

x / a − 2 v x/ a + v = 1+<br />

v<br />

2<br />

−2k −k −k<br />

k<br />

⎡ ⎤ ⎡ ⎤<br />

1 ⎛ x⎞ ⎛ x⎞ 1 ⎛ x⎞ ⎛ x⎞<br />

= ⎢⎜ ⎟ − 1/ ⎥ ⎜ ⎟ = ⎢⎜ ⎟ −⎜<br />

⎟ ⎥<br />

2⎢⎣⎝a⎠ ⎥⎦ ⎝a⎠ 2⎢⎣⎝a⎠<br />

⎝a⎠ ⎥⎦<br />

69. With a = 100 and k = 1/10, Equation (19) <strong>in</strong> the text is<br />

The equation y'(x) = 0 then yields<br />

so it follows that<br />

70. With 0<br />

y = 50[(x/100) 9/10 – (x/100) 11/10 ].<br />

(x/100) 1/10 = (9/11) 1/2 ,<br />

ymax = 50[(9/11) 9/2 – (9/11) 11/2 ] ≈ 3.68 mi.<br />

k = w/ v = 10 / 500 = 1/10, Eq. (16) <strong>in</strong> the text gives<br />

2 ( )<br />

1<br />

ln v+ 1+ v = − ln x+ C<br />

10<br />

k<br />

Section 1.6 63<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


where v = y/ x.<br />

Substitution of x<br />

thence<br />

200, y 150, v 3/ 4<br />

⎛ 2<br />

y y ⎞<br />

⎜ 2 ⎟<br />

⎜ ⎟<br />

64 Chapter 1<br />

1/10<br />

= = = yields C = ( ⋅ )<br />

1<br />

1/10<br />

ln + 1+ = − ln x + ln ( 2 ⋅200<br />

) ,<br />

⎝<br />

x x<br />

⎠<br />

10<br />

ln 2 200 ,<br />

which — after exp<strong>one</strong>ntiation and then multiplication of the result<strong>in</strong>g equation by x —<br />

simplifies as desired <strong>to</strong> ( ) 1/10<br />

2 2 9<br />

y+ x + y = 2 200 x . If x = 0 then this equation<br />

yields y = 0, thereby verify<strong>in</strong>g that the airplane reaches the airport at the orig<strong>in</strong>.<br />

71. (a) With a = 100 and k = w/ v0=<br />

2/4= 1/2, the solution given by equation (19) <strong>in</strong><br />

the textbook is y(x) = 50[(x/100) 1/2 – (x/100) 3/2 ]. The fact that y(0) = 0 means that<br />

this trajec<strong>to</strong>ry goes through the orig<strong>in</strong> where the tree is located.<br />

(b) With k = 4/4 = 1 the solution is y(x) = 50[1 – (x/100) 2 ] and we see that the<br />

swimmer hits the bank at a distance y(0) = 50 feet north of the tree.<br />

(c) With k = 6/4 = 3/2 the solution is y(x) = 50[(x/100) –1/2 – (x/100) 5/2 ]. This<br />

trajec<strong>to</strong>ry is asymp<strong>to</strong>tic <strong>to</strong> the positive x-axis, so we see that the swimmer never reaches<br />

the west bank of the river.<br />

72. The substitution y′ = p, y′′ = p′<br />

<strong>in</strong><br />

ry′′ y′<br />

2 3/2<br />

= [1 + ( ) ] yields<br />

rp′ =<br />

2 3/2<br />

(1 + p ) ⇒<br />

⌠ rdp<br />

⎮ 2 3/2<br />

⌡ (1 + p )<br />

= ∫ dx.<br />

Now <strong>in</strong>tegral formula #52 <strong>in</strong> the back of our favorite calculus textbook gives<br />

rp<br />

1+<br />

p<br />

and we solve readily for<br />

whence<br />

which f<strong>in</strong>ally gives<br />

2<br />

2 2 2 2<br />

= x −a ⇒ r p = (1 + p )( x−a) ,<br />

2<br />

2 ( x−a) dy x−a p = ⇒ = p =<br />

2 2 2 2<br />

⌠<br />

r −( x−a) dx r −( x−a) ( x−a) dx<br />

2 2<br />

y = ⎮<br />

= − r − x− a + b<br />

2 2<br />

⌡<br />

r −( x−a) ( x a) ( y b) r<br />

( ) ,<br />

2 2 2<br />

− + − = as desired.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.<br />

,


CHAPTER 1 Review Problems<br />

The ma<strong>in</strong> objective of this set of review <strong>problems</strong> is practice <strong>in</strong> the identification of the different<br />

types of first-order differential equations discussed <strong>in</strong> this <strong>chapter</strong>. In each of Problems 1–36 we<br />

identify the type of the given equation and <strong>in</strong>dicate an appropriate method of solution.<br />

2<br />

1. If we write the equation <strong>in</strong> the form y′ − (3/ x) y = x we see that it is l<strong>in</strong>ear with<br />

−3<br />

<strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ρ = x . The method of Section 1.5 then yields the general solution<br />

y = x 3 (C + ln x).<br />

2 2<br />

2. We write this equation <strong>in</strong> the separable form y′ / y = ( x+ 3)/ x . Then separation of<br />

variables and <strong>in</strong>tegration as <strong>in</strong> Section 1.4 yields the general solution<br />

y = x / (3 – Cx – x ln x).<br />

3. This equation is homogeneous. The substitution y = vx of Equation (8) <strong>in</strong> Section 1.6<br />

leads <strong>to</strong> the general solution y = x/(C – ln x).<br />

x<br />

4. We note that y( ) x(<br />

)<br />

3 2 2 2<br />

D 2xy + e = D 3xy+ s<strong>in</strong> y = 6 xy , so the given equation is<br />

exact. The method of Example 9 <strong>in</strong> Section 1.6 yields the implicit general solution<br />

x 2 y 3 + e x – cos y = C.<br />

2 4<br />

5. We write this equation <strong>in</strong> the separable form y′ / y = (2x− 3)/ x . Then separation<br />

of variables and <strong>in</strong>tegration as <strong>in</strong> Section 1.4 yields the general solution<br />

y = C exp[(1 – x)/x 3 ].<br />

2 2<br />

6. We write this equation <strong>in</strong> the separable form y′ / y = (1− 2 x)/ x . Then separation<br />

of variables and <strong>in</strong>tegration as <strong>in</strong> Section 1.4 yields the general solution<br />

y = x / (1 + Cx + 2x ln x).<br />

3<br />

7. If we write the equation <strong>in</strong> the form y′ + (2/ x) y = 1/ x we see that it is l<strong>in</strong>ear with<br />

2<br />

<strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ρ = x . The method of Section 1.5 then yields the general solution<br />

y = x –2 (C + ln x).<br />

8. This equation is homogeneous. The substitution y = vx of Equation (8) <strong>in</strong> Section 1.6<br />

leads <strong>to</strong> the general solution y = 3Cx/(C – x 3 ).<br />

9. If we write the equation <strong>in</strong> the form y′ + (2/ x) y = 6x<br />

y we see that it is a Bernoulli<br />

equation with n = 1/2. The substitution v<br />

1/2<br />

y −<br />

yields the general solution y = (x<br />

= of Eq. (10) <strong>in</strong> Section 1.6 then<br />

2 + C/x) 2 .<br />

10. We write this equation <strong>in</strong> the separable form ( )<br />

2 2<br />

′ /1+ = 1 + . Then separation<br />

y y x<br />

of variables and <strong>in</strong>tegration as <strong>in</strong> Section 1.4 yields the general solution<br />

Review Problems 65<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


y = tan(C + x + x 3 /3).<br />

11. This equation is homogeneous. The substitution y = vx of Equation (8) <strong>in</strong> Section 1.6<br />

leads <strong>to</strong> the general solution y = x / (C – 3 ln x).<br />

12. We note that y( ) x(<br />

)<br />

3 4 2 2 3 2 3<br />

D 6xy + 2y= D 9xy+ 8xy = 18xy + 8 y , so the given<br />

equation is exact. The method of Example 9 <strong>in</strong> Section 1.6 yields the implicit general<br />

solution 3x 2 y 3 + 2xy 4 = C.<br />

2 4<br />

13. We write this equation <strong>in</strong> the separable form y′ / y = 5x − 4 x.<br />

Then separation<br />

of variables and <strong>in</strong>tegration as <strong>in</strong> Section 1.4 yields the general solution<br />

y = 1 / (C + 2x 2 – x 5 ).<br />

14. This equation is homogeneous. The substitution y = vx of Equation (8) <strong>in</strong> Section 1.6<br />

leads <strong>to</strong> the implicit general solution y 2 = x 2 / (C + 2 ln x).<br />

15. This is a l<strong>in</strong>ear differential equation with <strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r<br />

Section 1.5 yields the general solution y = (x 3 + C)e -3x .<br />

66 Chapter 1<br />

3 x<br />

ρ = e . The method of<br />

16. The substitution v = y− x, y = v+ x, y′ = v′<br />

+ 1 gives the separable equation<br />

2 2<br />

′ + 1 = ( − ) = <strong>in</strong> the new dependent variable v. The result<strong>in</strong>g implicit general<br />

v y x v<br />

solution of the orig<strong>in</strong>al equation is y – x – 1 = C e 2x (y – x + 1).<br />

x xy y xy xy xy<br />

17. We note that D ( e ye ) D ( e xe ) e xye ,<br />

y + = x + = + so the given equation is<br />

exact. The method of Example 9 <strong>in</strong> Section 1.6 yields the implicit general solution<br />

e x + e y + e x y = C.<br />

18. This equation is homogeneous. The substitution y = vx of Equation (8) <strong>in</strong> Section 1.6<br />

leads <strong>to</strong> the implicit general solution y 2 = Cx 2 (x 2 – y 2 ).<br />

19. We write this equation <strong>in</strong> the separable form ( )<br />

2 5 3<br />

′ / = 2− 3 / . Then separation<br />

y y x x<br />

of variables and <strong>in</strong>tegration as <strong>in</strong> Section 1.4 yields the general solution<br />

y = x 2 / (x 5 + Cx 2 + 1).<br />

5/2<br />

20. If we write the equation <strong>in</strong> the form y (3/ x) y 3x<br />

−<br />

′ + = we see that it is l<strong>in</strong>ear with<br />

3<br />

<strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ρ = x . The method of Section 1.5 then yields the general solution<br />

y = 2x –3/2 + Cx –3 .<br />

y′ + 1/( x+ 1) y = 1/( x − 1) we see that it is l<strong>in</strong>ear<br />

with <strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ρ = x + 1. The method of Section then 1.5 yields the general<br />

solution y = [C + ln(x – 1)] / (x + 1).<br />

21. If we write the equation <strong>in</strong> the form ( ) 2<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


22. If we write the equation <strong>in</strong> the form y′ − (6/ x) y<br />

3 2/3<br />

= 12x<br />

y we see that it is a Bernoulli<br />

equation with n = 1/3. The substitution v<br />

2/3<br />

y −<br />

= of Eq. (10) <strong>in</strong> Section 1.6 then<br />

yields the general solution y = (2x 4 + Cx 2 ) 3 .<br />

23. We note that y( ) x(<br />

)<br />

y y y<br />

D e + ycos x = D xe + s<strong>in</strong> x = e + cos x,<br />

so the given equation<br />

is exact. The method of Example 9 <strong>in</strong> Section 1.6 yields the implicit general solution<br />

x e y + y s<strong>in</strong> x = C .<br />

24. We write this equation <strong>in</strong> the separable form ( )<br />

2 2 3/2<br />

′ / = 1− 9 / . Then separation<br />

y y x x<br />

of variables and <strong>in</strong>tegration as <strong>in</strong> Section 1.4 yields the general solution<br />

y = x 1/2 / (6x 2 + Cx 1/2 + 2).<br />

25. If we write the equation <strong>in</strong> the form ( )<br />

<strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ( ) 2<br />

x 1 .<br />

y′ + 2/( x+ 1) y = 3 we see that it is l<strong>in</strong>ear with<br />

ρ = + The method of Section 1.5 then yields the general<br />

solution y = x + 1 + C (x + 1) –2 .<br />

1/2 4/3 1/5 3/2 3/2 1/3 6/5 1/2<br />

26. We note that Dy( 9x y 12x y ) Dx( 8x y 15x<br />

y )<br />

− = − =<br />

1/2 1/3 1/5 1/2<br />

12x y −18 x y , so the given equation is exact. The method of Example 9 <strong>in</strong><br />

Section 1.6 yields the implicit general solution 6x 3/2 y 4/3 – 10x 6/5 y 3/2 = C.<br />

27. If we write the equation <strong>in</strong> the form y′ + (1/ x) y<br />

2 4<br />

= − x y / 3 we see that it is a Bernoulli<br />

equation with n = 4. The substitution v<br />

3<br />

y −<br />

the general solution y = x<br />

= of Eq. (10) <strong>in</strong> Section 1.6 then yields<br />

–1 (C + ln x) –1/3 .<br />

2 x<br />

28. If we write the equation <strong>in</strong> the form y′ + (1/ x) y = 2 e / x we see that it is l<strong>in</strong>ear with<br />

<strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ρ = x.<br />

The method of Section 1.5 then yields the general solution<br />

y = x –1 (C + e 2x ).<br />

y′ + 1/(2 x+ 1) y = (2 x+<br />

1) we see that it is<br />

29. If we write the equation <strong>in</strong> the form ( ) 1/2<br />

l<strong>in</strong>ear with <strong>in</strong>tegrat<strong>in</strong>g fac<strong>to</strong>r ( ) 1/2<br />

x<br />

ρ = 2 + 1 . The method of Section 1.5 then yields<br />

the general solution y = (x 2 + x + C)(2x + 1) –1/2 .<br />

30. The substitution v = x+ y, y = v− x, y′ = v′<br />

− 1 gives the separable equation<br />

31.<br />

32.<br />

v′ − 1 = v <strong>in</strong> the new dependent variable v. The result<strong>in</strong>g implicit general solution of<br />

the orig<strong>in</strong>al equation is x = 2(x + y) 1/2 – 2 ln[1 + (x + y) 1/2 ] + C.<br />

2<br />

dy /( y 7) 3x<br />

dx<br />

+ = is separable;<br />

2<br />

dy /( y 1) x dx<br />

− = is separable;<br />

2 2<br />

′ + 3 = 21 is l<strong>in</strong>ear.<br />

y x y x<br />

3<br />

y′ + x y = x y is a Bernoulli equation with n = 3.<br />

Review Problems 67<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.


33.<br />

2 2<br />

(3x 2 y ) dx 4xy dy 0<br />

1<br />

+ + = is exact; y ( 3 x/ y 2 y/ x)<br />

34. ( x + 3 y) dx + (3 x − y) dy = 0is<br />

exact;<br />

68 Chapter 1<br />

′ = − + is homogeneous.<br />

4<br />

1+ 3 y/ x<br />

y′<br />

= is homogeneous.<br />

y/ x−3<br />

2<br />

35. dy /( y + 1) = 2 x dx / ( x + 1)<br />

is separable; ( )<br />

36. ( )<br />

2 2<br />

′ − 2 /( + 1) = 2 /( + 1) is l<strong>in</strong>ear.<br />

y x x y x x<br />

dy / y − y = cotxdx<br />

is separable; y′ + (cot x) y = (cot x) y is a Bernoulli equation<br />

with n = 1/2.<br />

Copyright © 2010 Pearson Education, Inc. Publish<strong>in</strong>g as Prentice Hall.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!