12.08.2013 Views

Slides Week 9 - James Franck Institute - University of Chicago

Slides Week 9 - James Franck Institute - University of Chicago

Slides Week 9 - James Franck Institute - University of Chicago

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The 77 th Compton lecture series<br />

Frustrating geometry:<br />

Geometry and incompatibility shaping the physical world<br />

Efi Efrati<br />

Simons postdoctoral fellow<br />

<strong>James</strong> <strong>Franck</strong> <strong>Institute</strong><br />

The <strong>University</strong> <strong>of</strong> <strong>Chicago</strong><br />

Lecture 9:<br />

Fractal geometry<br />

1


Outline:<br />

• What are fractals ?<br />

• Brief history <strong>of</strong> fractals<br />

• The Mandelbrot set<br />

• Fractals in nature and a practical fractal<br />

2


What are fractals ?<br />

3<br />

Properties <strong>of</strong> fractals:<br />

• Features in multiple scales<br />

• Self-similar<br />

• Fractional dimension<br />

• Irregularity


Brief history <strong>of</strong> fractals<br />

Koch curve<br />

4


9a=A=8a<br />

a=0<br />

Brief history <strong>of</strong> fractals<br />

Sierpinski carpet<br />

5


Pierre Fatou<br />

Brief history <strong>of</strong> fractals<br />

6<br />

Gaston Julia<br />

Multiple iterations <strong>of</strong> a function F(z):<br />

F(z), F(F(z)), F(F(F(z))), F(F(F(F(z)))), F(F(F(F(F(z)))))<br />

If all the infinite points generated iteratively from a point P are<br />

contained in a bounded domain, then P is in the Julia set <strong>of</strong> F.


Pierre Fatou<br />

Brief history <strong>of</strong> fractals<br />

7<br />

Gaston Julia<br />

Multiple iterations <strong>of</strong> a function F(z):<br />

F(z), F(F(z)), F(F(F(z))), F(F(F(F(z)))), F(F(F(F(F(z)))))<br />

If all the infinite points generated iteratively from a point P are<br />

contained in a bounded domain, then P is in the Julia set <strong>of</strong> F.


Brief history <strong>of</strong> fractals<br />

Hausdorff Dimension<br />

N(r) = # <strong>of</strong> balls <strong>of</strong> size r needed to cover the object ~ 1/r D<br />

8


hich completely annihilates all linear birefringent an<br />

Brief history <strong>of</strong> fractals<br />

chroic effects. Last we note that the maximal circ<br />

r polarization effects Hausdorff per-scatterer Dimension read only 2/3 <strong>of</strong> th<br />

lue for a single scatterer. Therefore the result <strong>of</strong> this a<br />

N(r) = # <strong>of</strong> balls <strong>of</strong> size r needed to cover the object ~ 1/r D<br />

ngement should be interpreted as selective attenuatio<br />

undesired effects rather than an increase in response<br />

rcular polarization. As this is the result <strong>of</strong> a geometr<br />

inciple it is independent <strong>of</strong> frequency.<br />

r → r/2 ⇒ N → 2N<br />

D=1<br />

9


Brief history <strong>of</strong> fractals<br />

Hausdorff Dimension<br />

N(r) = # <strong>of</strong> balls <strong>of</strong> size r needed to cover the object ~ 1/r D<br />

10


ich completely annihilates all linear birefringent a<br />

Brief history <strong>of</strong> fractals<br />

chroic effects. Last we note that the maximal cir<br />

Hausdorff Dimension<br />

r polarization effects per-scatterer read only 2/3 <strong>of</strong> t<br />

N(r) = # <strong>of</strong> balls <strong>of</strong> size r needed to cover the object ~ 1/r D<br />

lue for a single scatterer. Therefore the result <strong>of</strong> this<br />

ngement should be interpreted as selective attenuat<br />

undesired effects rather than an increase in response<br />

cular polarization. As this is the result <strong>of</strong> a geomet<br />

inciple it is independent <strong>of</strong> frequency.<br />

r → r/2 ⇒ N → 4N<br />

D=2<br />

11


Lewis Fry Richardson<br />

Brief history <strong>of</strong> fractals<br />

12<br />

Coast-line paradox<br />

Total length increases without bound with resolution


Brief history <strong>of</strong> fractals<br />

Hausdorff Dimension<br />

N(r) = # <strong>of</strong> balls <strong>of</strong> size r needed to cover the object ~ 1/r D<br />

D= 1.25<br />

13


Brief history <strong>of</strong> fractals<br />

Hausdorff Dimension<br />

N(r) = # <strong>of</strong> balls <strong>of</strong> size r needed to cover the object ~ 1/r D<br />

D= 1.26 D= 1.1<br />

14


Benoit Mandelbrot<br />

Brief history <strong>of</strong> fractals<br />

Worked for IBM research for 35 years (until 1987)<br />

Tenured at Yale at the age <strong>of</strong> 75 (1999)<br />

15<br />

F(z)=z 2 +c<br />

X(x,y)=x 2 -y 2 +cx<br />

Y(x,y)= 2xy+cy


Benoit Mandelbrot<br />

The Mandelbrot Set<br />

16


Benoit Mandelbrot<br />

The Mandelbrot Set<br />

17


The Mandelbrot Set<br />

First computer image <strong>of</strong> the Mandelbrot (Matelski,1978)<br />

18


The Mandelbrot Set<br />

19


The Mandelbrot Set<br />

20


The Mandelbrot Set<br />

21


Self similar<br />

Exhibit features at all scales<br />

Infinitely refinable<br />

Its boundary has<br />

fractal dimension 2<br />

The Mandelbrot Set<br />

22


principle it is independent <strong>of</strong> frequency.<br />

The Mandelbrot Set<br />

F (z) =z 2 + c<br />

23


Fractals in nature<br />

24


Fractals in nature<br />

Dendritic crystals<br />

25<br />

The edge <strong>of</strong> a torn plastic sheet


Diffusion limited aggregation<br />

Tom Witten and Len Sander<br />

26<br />

D~1.7


Electric discharge: Lichtenberg figure<br />

27<br />

D~1.7


Electric discharge: Lichtenberg figure<br />

28<br />

D~1.7


Lung surface area<br />

D= 2.97<br />

29


Cell phone broad band antenna<br />

Cell phones need to communicate over a wide range <strong>of</strong> frequencies<br />

4G frequency ~ 2.7 GHz, 1.9 GHz<br />

GSM frequency ~ 1.9 GHz, 850 MHz<br />

WiFi frequency ~ 20 MHz, 40MHz<br />

30


Summary<br />

Fractals are objects <strong>of</strong> exotic geometry<br />

They arise naturally in many iterative processes, and scale free processes<br />

Analyzing such structures calls for specialized tools<br />

31


The 77 th Compton lecture series<br />

Frustrating geometry:<br />

Geometry and incompatibility shaping the physical world<br />

Geometry and frustration<br />

Efi Efrati<br />

Simons postdoctoral fellow<br />

<strong>James</strong> <strong>Franck</strong> <strong>Institute</strong><br />

The <strong>University</strong> <strong>of</strong> <strong>Chicago</strong><br />

32


Lecture series overview:<br />

Geometry and frustration<br />

• Geometric shaping principles govern the form and<br />

function <strong>of</strong> much <strong>of</strong> our surrounding world.<br />

• Geometric frustration (local property) leads to rich and<br />

exotic (global) response.<br />

33


Lecture series overview:<br />

Geometry and frustration<br />

• Euclid’s postulates<br />

• Elimination <strong>of</strong> the fifth postulate: Non Euclidean geometry<br />

• Generalized the notion <strong>of</strong> straight lines<br />

34<br />

Lecture 1


Lecture series overview:<br />

Geometry and frustration<br />

• Riemannian geometry<br />

The metric, Parallel transport, Riemannian curvature<br />

• Realizing non-Euclidean geometries:<br />

paper model, crochet, Poincare disc<br />

ds 2 = dx i dx j gij<br />

Elliptic geometry cutout:<br />

Cut the strips. Tape together the appropriate<br />

edges (noted by the same number), red to<br />

blue. Note that the turning rate decreases to<br />

zero and even changes sign.<br />

1<br />

1<br />

instability. I followed the notation<br />

1<br />

<strong>of</strong> Chernikova,<br />

2<br />

2<br />

3<br />

3<br />

4<br />

5<br />

4 5<br />

ding a similar logic). There’s<br />

Hyperbolic ageometry paper<br />

cutout:<br />

by her (Sov.<br />

Cut the strips. Tape together the<br />

appropriate edges red to blue.<br />

Note that the turning rate is constant<br />

6) in which I believe she works things out in detail.<br />

et it from the library.<br />

sense <strong>of</strong> it is by adapting the electron density to<br />

35<br />

1<br />

1<br />

1<br />

2<br />

1<br />

2<br />

2<br />

3<br />

2<br />

3<br />

3<br />

4<br />

3<br />

4<br />

4<br />

4<br />

5<br />

5<br />

5<br />

5<br />

Lecture 2


Lecture series overview:<br />

Geometry and frustration<br />

• Relating intrinsic geometry and shape<br />

• Thin sheet elasticity and isometries<br />

• Shaping by metric prescription<br />

neralize conclusions to more<br />

plex systems.<br />

Front Side<br />

36<br />

Plastic<br />

Violet<br />

Beet<br />

Lettuce<br />

Is there a connection?<br />

Lecture 3


! Differential growth<br />

Lecture series overview:<br />

Geometry and frustration<br />

• Residual Geometric stress frustration in plants and residual stress<br />

• Visualizing residual stress<br />

• Properties <strong>of</strong> residually stressed materials<br />

Tuesday, November 17, 2009<br />

Rhubarb: Rheum rhabarbarum<br />

Tissue tension Brucke 1848<br />

Green grows faster than red.<br />

So red is in tension, green is in compression<br />

This stress is called residual stress.<br />

37<br />

Lecture 4


Lecture series overview:<br />

Geometry and frustration<br />

• Theory <strong>of</strong> crystals, wallpaper symmetries<br />

• Crystallographic restriction<br />

• Penrose tiling<br />

• Quasicrystals<br />

L! L! L!<br />

S! S! L! S! L!<br />

38<br />

Lecture 5


Lecture series overview:<br />

Geometry and frustration<br />

• Knot theroy<br />

• Vortex knots<br />

• Coherence from topology<br />

40<br />

Saturday, May 18, 2013<br />

Peter Tait’s Table <strong>of</strong> Knots<br />

Lecture 7


Lecture series overview:<br />

Geometry and frustration<br />

tion. In this work we study the simultaneous<br />

confinement and incompatibility.<br />

a + b a<br />

= = Φ<br />

• Exotic mathematical a properties b<br />

• Phylotactic patterns<br />

• Fibonacci spirals and golden rectangles<br />

Φ = 1+√ 5<br />

2<br />

=1.618033988...<br />

. DEFINITION OF THE PROBLEM<br />

nsider a thin elastic disc to which a wedge <strong>of</strong><br />

was added (or removed). This constitutes a non-<br />

41<br />

Lecture 8<br />

tu<br />

s


Lecture series overview:<br />

Geometry and frustration<br />

• Fractals: A different kind <strong>of</strong> geometry<br />

42<br />

Lecture 9


The 77 th Compton lecture series<br />

Frustrating geometry:<br />

Geometry and incompatibility shaping the physical world<br />

Thank you<br />

Efi Efrati<br />

Simons postdoctoral fellow<br />

<strong>James</strong> <strong>Franck</strong> <strong>Institute</strong><br />

The <strong>University</strong> <strong>of</strong> <strong>Chicago</strong><br />

43

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!