15.08.2013 Views

Launch / Propulsion Group - Department of Mechanical and ...

Launch / Propulsion Group - Department of Mechanical and ...

Launch / Propulsion Group - Department of Mechanical and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Launch</strong> <strong>and</strong> Space <strong>Propulsion</strong><br />

By:<br />

Karen Au, Forrest Edwards, Eric<br />

Han, Nick Giannini, Gordon Liao,<br />

Matthew M<strong>and</strong>eville, Jr., Vincent<br />

Wong


<strong>Launch</strong>time


INTRODUCTION!!!!!!!!!!!!!<br />

Background<br />

Fuels<br />

Typical Heavy lifters<br />

Typical Medium <strong>and</strong> Light lifters<br />

Space <strong>Propulsion</strong><br />

Current Missions<br />

Conclusion


Background<br />

First pioneers in launch were Konstantin<br />

Tsiolkovsky <strong>and</strong> Robert Goddard in the early 20th<br />

century.<br />

Goddard built the first liquid fueled rocket in 1926<br />

From there rockets evolved to the weapons <strong>and</strong><br />

means <strong>of</strong> transportation that they are today.


How Rockets Work<br />

Rockets push against themselves by expulsion <strong>of</strong> exhaust<br />

gas, a concept many earlier critics could not grasp.<br />

They are currently fueled by solid, monopropellant <strong>and</strong><br />

bipropellant liquids.<br />

The power <strong>of</strong> a rocket is measured in its specific impulse,<br />

Isp. This is a relation <strong>of</strong> thrust to exhaust flow.<br />

Escape velocity is about 7 miles per second.


How Rockets Work<br />

A solid fuel rocket stores fuel in a solid form,<br />

typically powdered aluminum with aluminum<br />

perchlorate as an oxidizer.<br />

Safer, easier <strong>and</strong> cheaper<br />

Can not be stopped or adjusted on the fly,<br />

typically lower performance <strong>and</strong> thrust. (Isp is<br />

between 285 <strong>and</strong> 292)


How Rockets Work<br />

Monopropellant liquid fuel rockets use a<br />

fuel, typically hydrazine, that breaks down<br />

on contact with a catalyst to produce thrust.<br />

Typically used in attitude <strong>and</strong> velocity<br />

control because <strong>of</strong> its excellent h<strong>and</strong>ling<br />

characteristics <strong>and</strong> clean exhaust products,<br />

as well as its reusability.


How Rockets Work<br />

Liquid bipropellant rockets work by mixing an oxidizer<br />

<strong>and</strong> a fuel in a combustion chamber.<br />

Flowing fuel typically also powers a turbine that pumps<br />

more fuel into the engine.<br />

Provides higher thrust than solid fuels. Isp ranges from 310<br />

to 446 seconds.<br />

Chemicals that power liquid rockets can be dangerous to<br />

store or use.


Fuels


LOX (Liquid Oxygen)<br />

Features:<br />

Earliest, safest, cheapest; preferred oxidizer<br />

Drawback – Moderately cryogenic<br />

Transparent light blue color, no odor.<br />

LOX does not burn but will support combustion<br />

vigorously.<br />

Liquid is stable, but mixture <strong>of</strong> LOX <strong>and</strong> fuel is shock<br />

sensitive.<br />

Obtained from air by fractional distillation<br />

By 1980, $0.08 per kg


Kerosene<br />

1954 st<strong>and</strong>ard US kerosene rocket furl RP-1.<br />

Russian kerosene (T-1, RG-1), 1980 Sintin synthetic<br />

kerosene.<br />

RP-1 straight-run kerosene fraction that subject to further<br />

treatment. (detail refer to article)<br />

Flash point 43 deg Celsius (above 43 deg will form<br />

explosive mixture with air)<br />

Temperature range for explosive mixture is 79-85 (rich<br />

limit)<br />

By 1980’s, $0.20 per kg<br />

Russian formulation has physical densities <strong>of</strong> 0.82-0.85<br />

g/cc


LH2 (Liquid Hydrogen)<br />

Theoretically ideal rocket fuel<br />

Drawbacks: highly cryogenic, very low density<br />

U.S. mastered hydrogen technology for highly classified<br />

Lockheed CL-400 in mid 1950’s.<br />

99.79% parahydrogen <strong>and</strong> 0.21% orthohydrogen.<br />

Boiling pt. 253 deg Celcius.<br />

Transparent w/o odor.<br />

Not toxic, but extremely flammable.<br />

Flammable limit is 4-75 volume percent<br />

1980’s, $3.60 per kg


How to Get From Planet to<br />

Planet<br />

Hohmann vs. Direct vs. “Slingshot”<br />

Hohmann orbits are the most economical, but<br />

<strong>of</strong>ten the longest.<br />

A Hohmann orbit is the gradual change <strong>of</strong> a space<br />

craft from Earth’s orbit to the Mars’ orbit.<br />

Direct straight line routes require too much fuel.<br />

Slingshot orbits are most imperative for<br />

expeditions to the sun, <strong>and</strong> rely on “slingshotting”<br />

<strong>of</strong>f <strong>of</strong> a celestial body’s gravity pull.


Heavy Lift <strong>Launch</strong> Vehicles


Long March Family


CZ-NGLV CZ NGLV-540 540<br />

Heavy <strong>Launch</strong> Vehicle<br />

LEO Payload > 11,340 kg


Stage 1.4x CZ-NGLV CZ NGLV-200 200<br />

Engine: YF-120t (Development stage)<br />

Gross Mass: 69,000 kg<br />

Empty Mass: 6,000 kg<br />

Thrust(vac): 136,660 kgf<br />

Isp: 336 sec.<br />

Isp(sea level): 301 sec<br />

Burn time: 150 sec<br />

Diameter: 2.25 m<br />

Span: 4.60 m<br />

Length: 25.00 m<br />

Propellants: Lox/Kerosene


YF-120t YF 120t<br />

Designer: China Academy <strong>of</strong><br />

Aerospace Liquid <strong>Propulsion</strong><br />

Technology.<br />

Developed in: 1999-2006.<br />

Used on stages: CZ-NGLV-2-1,<br />

CZ-NGLV-3-1.<br />

Used on launch vehicles: CZ-<br />

NGLV-Light, CZ-NGLV-<br />

Medium, CZ-NGLV-A, CZ-<br />

NGLV-B, CZ-NGLV-C, CZ-<br />

NGLV-D, CZ-NGLV-E, CZ-<br />

NGLV-F.<br />

Propellants: Lox/Kerosene<br />

Isp: 336 sec.<br />

Isp (sea level): 301 sec.<br />

Chambers: 1.<br />

Country: China.<br />

Status: In development.


Stage 2.1x CZ-NGLV CZ NGLV-500 500<br />

Engine: YF-50t (Development stage)<br />

Gross Mass: 175,000 kg<br />

Empty Mass: 17,000 kg<br />

Thrust(vac): 142,760 kgf<br />

Isp: 432 sec.<br />

Isp(sea level): 333 sec<br />

Burn time: 480 sec<br />

Diameter: 5.00m<br />

Span: 5.00 m<br />

Length: 31.00 m<br />

Propellants: Lox/LH2


YF-50t YF 50t<br />

Designer: China Academy <strong>of</strong><br />

Aerospace Liquid <strong>Propulsion</strong><br />

Technology.<br />

Developed in: 1999-2006.<br />

Used on stages: CZ-NGLV-5-1.<br />

Used on launch vehicles: CZ-<br />

NGLV-A, CZ-NGLV-B, CZ-<br />

NGLV-C, CZ-NGLV-D, CZ-<br />

NGLV-E, CZ-NGLV-F.<br />

Propellants: Lox/LH2<br />

Isp: 432 sec.<br />

Isp (sea level): 333 sec.<br />

Chambers: 1.<br />

Country: China.<br />

Status: In development.


Dimension: CZ-NGLV CZ NGLV-540 540<br />

Core Stage<br />

Diameter: D = 5.0 m<br />

Strap-ons:<br />

Diameter: D = 2.25 m (x4)<br />

Core:<br />

Diameter: D = 5.00 m<br />

Total length: L = 55.0 m<br />

Span: 11.00 m


CZ-NGLV CZ NGLV-540 540 Performance<br />

LEO Payload: 10,000 kg<br />

Orbit: 200 km orbit at 52 degrees<br />

Lift<strong>of</strong>f Thrust: 596,000 kgf<br />

Lift<strong>of</strong>f Thrust: 5,840.00 kN<br />

Total Mass: 470,000 kg<br />

Core Diameter: 5.00 m<br />

Total Length: 55.00 m<br />

Span: 11.00 m


CZ-NGLV-522<br />

Other Variants<br />

• 2 x 2.25 m <strong>and</strong> 2 x 3.35 m strap-on<br />

stages<br />

• 3.35 m strap on stages give launch<br />

vehicle extra boost.<br />

Stage 1.2 x CZ-NGLV-300<br />

Engine: YF-120t (Development stage)<br />

Gross Mass: 147,000 kg<br />

Empty Mass: 12,000 kg<br />

Thrust(vac): 273,320 kgf<br />

Isp: 336 sec.<br />

Isp(sea level): 301 sec<br />

Burn time: 150 sec<br />

Diameter: 3.35 m<br />

Span: 4.60 m<br />

Length: 26.30 m<br />

Propellants: Lox/Kerosene<br />

CZ-NGLV-522 CZ-NGLV-540


DELTA 4


History<br />

-Latest class among the long history <strong>of</strong> DELTA rockets<br />

Introduced in 2001, Heavy model introduced in 2003<br />

History<br />

First started from Thor ICBM, developed in the mid-1950s for the U.S. Air Force<br />

1st launch on 11/20/02 with MED PLUS 4,2 Eutelsat W5 satellite, Successful Nov 20, 2002<br />

<strong>Launch</strong>ed 3 so far, all successful with high accuracy<br />

Improvements from previous <strong>and</strong> new updated improvements<br />

New low-cost cryogenic booster engine<br />

Common booster core<br />

Consolidated manufacturing <strong>and</strong> launch operations facilities<br />

Parallel <strong>of</strong>f-pad vehicle <strong>and</strong> payload processing<br />

Simplified horizontal integrate, erect, <strong>and</strong> launch concept


Types


Types<br />

3 classes, 5 types<br />

Medium<br />

uses 1 Common Booster Core (CBC)<br />

CBC is 5m in diameter<br />

Medium plus has 3 types<br />

1 st number means the diameter <strong>of</strong> the fairing, 2 nd number means the number <strong>of</strong> solid rocket<br />

motors (SRM)<br />

(4,2) has 4m diameter fairing with 2 SRMs<br />

(5,2) has 5m diameter fairing with 2 SRMs<br />

(5,4) has 5m diameter fairing with 4 SRMs<br />

Heavy<br />

has 5m diameter fairing with an option <strong>of</strong> using composite fairing or aluminum isogrid<br />

fairing<br />

instead <strong>of</strong> SRMs uses 2 more strap-on CBCs as liquid rocket boosters (LRB)<br />

first launch expected in summer <strong>of</strong> 2004


Fairing<br />

has 3 sizes (4 types)<br />

1. 4-m diameter used by Medium <strong>and</strong><br />

Medium Plus (4,2) 11.7m tall<br />

2. 5-m diameter used by Medium Plus<br />

(5,2) <strong>and</strong> (5,4) 14.3m tall<br />

3. 5-m diameter used by Heavy<br />

(composite) 19.1m tall<br />

4. 5-m diameter used by Heavy, made <strong>of</strong><br />

aluminum isogrid 19.8 tall<br />

Fairing


Engine<br />

Uses Boeing Rocketdyne RS-68 for CBC using<br />

liquid hydrogen <strong>and</strong> liquid oxygen<br />

Produces 2891 kN <strong>of</strong> thrust<br />

RS-68 is environmentally friendly, producing<br />

only steam as a combustion by-product<br />

Specific impulse : 410sec


Secondary Engines<br />

Solid Rocket Motors (SRM)<br />

Manufactured by Alliant Techsystems <strong>and</strong> designated as graphite-epoxy motors<br />

(GEM-60)<br />

1.55m diameter<br />

Burns out <strong>and</strong> jettisoned <strong>of</strong>f in the first stage<br />

2 nd stage starts 4.5 mins after lift<strong>of</strong>f<br />

Uses Pratt & Whitney RL10B-2 engine<br />

Thrust: 24,750 lb<br />

Weight: 664 lb<br />

Fuel/oxidizer: LH 2 /LO 2<br />

multiple firing <strong>and</strong> restarts<br />

Specific impulse: 465.5 sec


Medium<br />

Medium plus<br />

Heavy<br />

Payload<br />

4,210 kg<br />

5,845kg (4,2)<br />

4,640kg (5,2)<br />

6,565kg (5,4)<br />

13,130 kg


ATLAS


Made from Lockheed Martin<br />

First designed as ICBM<br />

First flight <strong>of</strong> ATLAS II in 1991<br />

Now over 550 Atlas missions<br />

History/Background


ATLAS III<br />

Introduced in 2003<br />

Has IIIA <strong>and</strong> IIIB<br />

thrust 4,500kg GTO<br />

Improvements:<br />

uses RD-180 engine, liquid oxygen <strong>and</strong> kerosene, <strong>and</strong> is Russian designed


Made jointly by Russia <strong>and</strong> Pratt &<br />

Whitney<br />

Powers both Atlas III <strong>and</strong> V<br />

Fuel = LOX/ RP-1<br />

Thrust = sea level 3,820 kN<br />

vacuum 4,142 kN<br />

Specific impulse = sea level 311 s<br />

vacuum 337 s<br />

Mixture ratio = 2.6 : 1<br />

You’ll hear more on this later.<br />

RD-180 RD 180


ATLAS V<br />

Introduced in 2002<br />

Has four types: 300, 400, 500, <strong>and</strong> heavy series<br />

thrust 8,200 kg GTO<br />

RD-180 Common Core Booster plus five strap on booster


Upper Stage<br />

Centaur<br />

powered by two Pratt & Whitney RL-10 turbopump-fed engines<br />

LOX/LH2<br />

Atlas IIs<br />

uses 2 RL-10s<br />

thrust 198.4 kN<br />

Atlas IIIA<br />

IIIA - uses 1 RL10A-4-1 (99kN)<br />

IIIB – extended 1.68m, uses either one or two<br />

RL10A-4-2 with 99.2 kN thrust each<br />

Atlas V<br />

identical to Centaur stage on IIIB<br />

Inertial navigation unit (INU) located on Centaur that provides guidance <strong>and</strong> navigation both<br />

Atlas <strong>and</strong> Centaur<br />

Multiple restarts possible


All use LOX/LH2, restart available<br />

Thrust<br />

Specific impulse<br />

Vehicles Used<br />

RL-10A-3-3A<br />

73.2 kN<br />

444.4 s<br />

Titan <strong>and</strong> Atlas<br />

Centuar<br />

RL-10 Engines<br />

RL-10A-4<br />

92.5 kN<br />

449 s<br />

Atlas II<br />

RL-10A-4-1<br />

99.2 kN<br />

451 s<br />

Atlas IIAS, III, V<br />

RL-10B-2<br />

109.8 kN<br />

464 s<br />

Delta III & V


Russian <strong>Launch</strong> Vehicles


Why Proton & Energia<br />

Proton is typical is on the High end <strong>of</strong> what<br />

are currently considered to be Heavy Lift<br />

<strong>Launch</strong> Vehicles. Provides a good<br />

comparison <strong>of</strong> what is “available now”.<br />

Energia is the only currently “available”<br />

launch platform that comes close to the<br />

Mars DRM/Direct/ChemA-B missions.


200000<br />

180000<br />

160000<br />

140000<br />

120000<br />

100000<br />

80000<br />

60000<br />

40000<br />

20000<br />

0<br />

'99 DRM: 6 @ 80mt<br />

Gross Payload to LEO capability<br />

'92 DRM: 3 @ 200mt<br />

'90 Direct: 2 @ 120mt<br />

'99 Chem-AB: 8 @ 80mt<br />

Ariane 5G Long March 3B Proton Space Shuttle Zenit 2 Zenit 3SL Shuttle-C Delta IV heavy Energia


•3 & 4 stage variants<br />

Proton-- Proton--Overview<br />

Overview<br />

•Proton-K/M is largest version<br />

•21,000kg LEO<br />

Proton <strong>Launch</strong> System Mission Planner’s Guide, LKEB-9812-1990


•Stage1<br />

•RD-0252 Engines (x6)<br />

Proton<br />

•NTO: nitrogen tetroxide (N 2 O 4 )<br />

•Stored in central tank<br />

•UDMH: unsymmetrical<br />

dimethalhydrazine<br />

•Stored in 6 outboard tanks<br />

•Sea level thrust: 9.5 MN<br />

•Vacuum thrust: 10.5 MN<br />

•ISP 316sec<br />

Proton <strong>Launch</strong> System Mission Planner’s Guide, LKEB-9812-1990


•Stage1<br />

•Weight data<br />

Proton<br />

•Empty Weight: 31,000 kg<br />

•Propellant Weight: 419,410 kg<br />

Proton <strong>Launch</strong> System Mission Planner’s Guide, LKEB-9812-1990


•Stage 2<br />

•RD-0210 Engines (x4)<br />

•Same fuel as Stage 1<br />

•Vacuum thrust: 2.3 MN<br />

•Empty Weight: 11,750kg<br />

Proton<br />

•Propellant Weight: 156,113kg<br />

Proton <strong>Launch</strong> System Mission Planner’s Guide, LKEB-9812-1990


•Stage 3<br />

•RD-0210 Engines (x1)<br />

Proton<br />

•Same fuel as Stage 1&2<br />

•Vacuum Thrust: 583 kN<br />

•Four-Nozzle Vernier engine<br />

•Vacuum Thrust: 31 kN<br />

•Empty Weight: 4185 kg<br />

•Propellant Weight: 46,562 kg<br />

Proton <strong>Launch</strong> System Mission Planner’s Guide, LKEB-9812-1990


Proton<br />

•Stage 4– Two Possiblities<br />

•Block DM 4 th Stage<br />

•11D58M (x1)- Gimbaled<br />

•LOX / Kerosene<br />

•NTO / UDMH Attitude Control<br />

•Vacuum Thrust: 83.5 kN<br />

•Restartable (7x)<br />

•Empty Weight: 2440 kg<br />

•Propellant Weight: 15,050 kg<br />

Proton <strong>Launch</strong> System Mission Planner’s Guide, LKEB-9812-1990


•Stage 4– Two Possiblities<br />

•Breeze/M 4 th Stage<br />

•Main Engine 14D30<br />

•19.62 kN<br />

•Impulse Adj. Thrusters 11D48 (x4)<br />

•396 N<br />

•Attitude Control 17D58E (x12)<br />

•13.3 N<br />

•Restartable (8x)<br />

Proton<br />

Proton <strong>Launch</strong> System Mission Planner’s Guide, LKEB-9812-1990


•SMAD Table 18.2 Pg 727<br />

Proton-- Proton--Statistics<br />

Statistics<br />

•Relaibility: 0.931 (216 / 232)<br />

•<strong>Launch</strong>es since failure: 41<br />

•Avg Downtime 4 Months<br />

•Cost per kg to LEO $4302<br />

http://www.futron.com/pdf/Futron<strong>Launch</strong>Cos<br />

tWP.pdf


•SMAD Table 18.2 Pg 727<br />

Proton-- Proton--Statistics<br />

Statistics<br />

•Relaibility: 0.931 (216 / 232)<br />

•<strong>Launch</strong>es since failure: 41<br />

•Avg Downtime 4 Months


Energia<br />

http://www.russianspaceweb.com/energia.html


•Payloads mounted laterally<br />

Energia<br />

•As shown: 6.7m diameter, 30m length<br />

•Compare to Delta IV heavy w / 5m fairing:<br />

•1.8m diameter, 4.8m length<br />

•Delta Payload fairing shown inset in<br />

Energia fairing.<br />

Payload to LEO 88,000-100,000 kg<br />

http://www.energia.ru/english/energia/launchers/vehicle_energia.html


•Engines – Stage 0<br />

•RD-170 Strap-On (x4)<br />

•LOX / Kerosene<br />

•Vacuum thrust: 7.9 MN / engine<br />

•Empty Weight: 35,000kg<br />

•Gross Mass: 355,000 kg<br />

•Isp: 337sec<br />

Energia<br />

•Currently on use in the Zenit-2 & 3SL<br />

•Currently marketed by P&W in US<br />

•RD-180 on Atlas V is derivative<br />

http://www.astronautix.com/lvs/energia.htm


•Engines – Stage 1<br />

•RD-0120 (x4)<br />

•LOX / H2<br />

•Vacuum thrust: 7.8 MN /engine<br />

•Empty Weight: 85,000kg<br />

•Gross Mass: 905,000 kg<br />

•Isp: 453sec<br />

•Equivalent to SSME<br />

Energia<br />

•Possibly superior to SSME in<br />

nozzle design & Turbopump<br />

arangement<br />

•Not currently in use. Mothballed at Baikonur<br />

http://www.astronautix.com/lvs/energia.htm


•Engines – Stage 2 (EUS)<br />

•RD-0120 (x1)<br />

•LOX / H2<br />

•Vacuum thrust: 1.96 MN<br />

•Empty Weight: 7,000kg<br />

•Gross Mass: 77,000 kg<br />

•Isp: 455sec<br />

Energia<br />

•This stage has never flown <strong>and</strong> would be<br />

integrated into payload container.<br />

http://www.astronautix.com/lvs/energia.htm


Number <strong>of</strong> <strong>Launch</strong>es<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Energia Vs. Proton<br />

Proton Energia<br />

'90 DRM<br />

'92 DRM<br />

'99 DRM<br />

'99 Chem A-B


Energia Advantages<br />

International partnership<br />

could lower US cost.<br />

Several boosters <strong>and</strong><br />

tooling currently in<br />

existence<br />

Possible political &<br />

public perception benefits


Energia Problems<br />

Current launch facilities<br />

are located in the medium<br />

latitudes<br />

Optimal Orbits limited to<br />

51°, 65° <strong>and</strong> 97°, due to<br />

downrange restrictions.<br />

Would ISS experience be<br />

duplicated?<br />

Is it politically possible?<br />

Third stage never flown &<br />

could not use NTP


Medium Lift <strong>Launch</strong> Vehicles


Ariane IV


Used to launch satellites<br />

to GTO<br />

113 successful launches<br />

Ideal for launching<br />

communication <strong>and</strong><br />

Earth observation<br />

satellites<br />

First launched in 1988<br />

Last flight in 2003<br />

No longer in production


<strong>Launch</strong> Vehicle<br />

42L<br />

44LP<br />

44L<br />

40<br />

42P<br />

44P<br />

Payload<br />

Lift<strong>of</strong>f Mass<br />

(kg)<br />

362,000<br />

420,000<br />

470,000<br />

245,000<br />

320,000<br />

335,000<br />

Payload Mass<br />

(kg)<br />

3,480<br />

4,220<br />

4,730<br />

2,100<br />

2,930<br />

3,460


Ariane V<br />

Most powerful <strong>of</strong> the Ariane series<br />

Used to launch satellites for<br />

communication, Earth observation, <strong>and</strong><br />

scientific research<br />

First launched in 1997<br />

First commercial launch in 1999<br />

Can be used for launches to geostationary<br />

orbit, medium- <strong>and</strong> low-Earth orbits, <strong>and</strong><br />

to other planets


Upgrades from Ariane IV<br />

New version <strong>of</strong> the Vulcan main engine<br />

Improved solid boosters with increased<br />

propellant load<br />

Improved upper stage<br />

Main stage propellant tanks changed<br />

Payload mass <strong>of</strong> 5,970 kg


DELTA II medium launch vehicles:<br />

Expendable launch vehicle (ELV),<br />

used only once<br />

Three-stage vehicle<br />

At lift <strong>of</strong>f, rocket weighs 285,228 kg<br />

(628820pounds)<br />

payload delivery<br />

– 891-2142 kg (1965-4723 lb) to<br />

geosynchronous transfer orbit<br />

(GTO)<br />

– 2.7-6.0 tons (5934- 13, 281 lb) to<br />

Low earth orbit (LEO)<br />

cost: $45-50 million<br />

reliability: 98% since 1989<br />

http://www.boeing.com/defense-space/space/delta/delta2/delta2.htm


STAGE I:<br />

powered by the Boeing Rocketdyne RS-27A engine<br />

RS-27A Delta<br />

Type: Liquid<br />

Propellant/Pumpfed<br />

Propellants: LOX/RP-1 -<br />

Thrust: (Sea Level):<br />

(Altitude):<br />

Specific<br />

Impulse:<br />

(Sea Level):<br />

(Altitude):<br />

Run Duration: 265 sec -<br />

Mixture Ratio<br />

(O/F):<br />

Chamber<br />

Pressure:<br />

2.245:1<br />

700 psia<br />

Area Ratio: 12:1 -<br />

Weight: 2,528 lb -<br />

Dimensions: 149 in. long<br />

67 in. dia<br />

-<br />

200,000<br />

lb<br />

237,000<br />

lb<br />

255 sec<br />

302 sec<br />

-<br />

-<br />

-<br />

http://www.boeing.com/defense-space/space/propul/delta.html


STAGE I (cont):<br />

Alliant Techsystems' solid rocket strap-on GEMs for<br />

added boost<br />

1016mm (40 in) diameter<br />

fueled with 12,000kg (26,400lbs)<br />

<strong>of</strong> hydroxyl-terminated polybutad<br />

each provides average thrust –<br />

498,000 N (112,000 lbs)<br />

9 GEMs: 6 GEMs are ignited at lift<strong>of</strong>f<br />

<strong>and</strong> the other 3 when airborne<br />

http://marsrovers.jpl.nasa.gov/mission/launch_srm.html


STAGE I : (cont) http://marsrovers.jpl.nasa.gov/mission/launch_stage1.html


STAGE II:<br />

powered: by an Aerojet AJ10-118K engine<br />

Engine statistics<br />

Propellants Aerozine 50/N2O4<br />

Thrust in Vacuum 9753 lb<br />

Isp in vacuum(s) 320.5 s<br />

Mixture Ratio 1.9:1<br />

Weight 275 lb<br />

Chamber Pressure 130 psia<br />

Expansion Ratio 65:1<br />

Engine Cycle Pressure Fed<br />

http://roger.ecn.purdue.edu/~propulsi/propulsion/rockets/liquids/aj10-118k.html


STAGE II : (cont) • 44,000 Newtons (9750 lb) thrust<br />

• restartable <strong>and</strong> fires twice<br />

1) brings spacecraft into low earth<br />

orbit…rocket <strong>and</strong> spacecraft orbits earth until arriving at the<br />

right spot to depart for mars<br />

2) at the correct angle, engine refires – allowing for velocity<br />

<strong>and</strong> correct alignment<br />

http://marsrovers.jpl.nasa.gov/mission/launch_stage2.html


STAGE III:<br />

• provides velocity change to leave earth orbit<br />

• Thiokol Star-48B solid rocket - boosts the speed from<br />

19500 mph to 25000 mph, allowing the spacecraft to escape<br />

orbit<br />

• 66,000 N thrust<br />

• Burns for 90 seconds, using 2020 kilograms <strong>of</strong> propellant<br />

(ammonium perchlorate <strong>and</strong> aluminum)<br />

http://marsrovers.jpl.nasa.gov/mission/launch_stage3.html


ATLAS II<br />

2 types<br />

IIA <strong>and</strong> IIAS<br />

Thrust 2,812kg to 3,719kg GTO<br />

main engine- Rocketdyne MA-5A (2,180kg)<br />

(no restarts)<br />

strap-on – four Castor IVA solid rocket booster (498 kN)<br />

fires two at a time<br />

fuel- liquid oxygen <strong>and</strong> RP-1 (kerosene)<br />

Atlas II family is operating at 100% Mission Success, delivering over 40 satellites to their<br />

proper orbits in the past 6 years


Has a booster <strong>and</strong> a sustainer system:<br />

Both takes LOX <strong>and</strong> RP-1<br />

Booster:<br />

thrust = 1,906 kN<br />

specific impulse = 265s<br />

oxygen fuel ratio = 2.25:1<br />

MA-5A MA 5A<br />

Sustainer<br />

thrust = 268,620 N<br />

specific impulse = 220s<br />

oxygen fuel ratio = 2.27:1<br />

After 175 s, the MA-5 booster engine is shut down<br />

<strong>and</strong> jettisoned.<br />

The sustainer MA-5 engine burns 280 seconds<br />

after lift-<strong>of</strong>f.


ATLAS III<br />

Introducted in 2003<br />

Has IIIA <strong>and</strong> IIIB<br />

thrust 4,500kg GTO<br />

Improvements:<br />

uses RD-180 engine, liquid oxygen <strong>and</strong> kerosene<br />

Russian designed


CZ-2C CZ 2C<br />

Medium <strong>Launch</strong> Vehicle<br />

LEO Payload = 2,268-11,340 2,268 11,340 kg


Stage 1.1x CZ-2C CZ 2C-1<br />

Engine: YF-20A<br />

Gross Mass: 153,000 kg<br />

Empty Mass: 10,000 kg<br />

Thrust(vac): 336,000 kgf<br />

Isp: 291 sec.<br />

Isp(sea level): 261 sec<br />

Burn time: n/a<br />

Diameter: 3.35 m<br />

Span: 6 m<br />

Length: 20.52 m<br />

Propellants: N 2O 4/UDMH


YF-20A YF 20A<br />

Designer: Beijing Wan Yuan<br />

Industry Corp.<br />

Used on stages: CZ-2C-1, CZ-<br />

3-1, FB-1-1.<br />

Used on launch vehicles: CZ-<br />

2A, CZ-2C, CZ-2E(A), CZ-3,<br />

FB-1.<br />

Propellants: N 2O 4/UDMH<br />

Thrust(vac): 76,500 kgf.<br />

Thrust(vac): 750.20 kN.<br />

Isp: 289 sec.<br />

Isp (sea level): 259 sec.<br />

Burn time: 132 sec.<br />

Diameter: 0.84 m.<br />

Chambers: 1.<br />

Chamber Pressure: 71.00 bar.<br />

Area Ratio: 10.00.<br />

Thrust to Weight Ratio: 0.00.<br />

Country: China.<br />

Status: In Production.<br />

First Flight: 1972.<br />

Last Flight: 1998.<br />

Flown: 176.


Engine: YF-20A YF 20A


Stage 2.1x CZ-2C CZ 2C-2<br />

Engine: YF-22A/23A<br />

Gross Mass: 39,000 kg<br />

Empty Mass: 4,000 kg<br />

Thrust(vac): 77,700 kgf<br />

Isp: 295 sec.<br />

Isp(sea level): 270 sec<br />

Burn time: 130<br />

Diameter: 3.35 m<br />

Span: 3.35 m<br />

Length: 7.50 m<br />

Propellants: N 2O 4/UDMH


YF-22A/23A<br />

YF 22A/23A<br />

Designer: Beijing Wan Yuan<br />

Industry Corp.<br />

Used on stages: CZ-2C-2, CZ-<br />

3-2.<br />

Used on launch vehicles: CZ-<br />

2C, CZ-3.<br />

Propellants: N 2 O 4 /UDMH<br />

Thrust(vac): 77,700 kgf.<br />

Thrust(vac): 762.00 kN.<br />

Isp: 295 sec.<br />

Isp (sea level): 270 sec.<br />

Burn time: 130 sec.<br />

Diameter: 3.35 m.<br />

Chambers: 1.<br />

Chamber Pressure: 71.00 bar.<br />

Area Ratio: 10.00.<br />

Country: China.<br />

Status: In Production.<br />

First Flight: 1975.<br />

Last Flight: 1998.<br />

Flown: 32.


CZ-2C CZ 2C Performance<br />

LEO Payload: 2,500 kg<br />

Orbit: 200 km orbit at 52 degrees<br />

Payload: 2,200 kg<br />

Orbit: 90 degree inclination orbital trajectory<br />

Lift<strong>of</strong>f Thrust: 302,000 kgf<br />

Lift<strong>of</strong>f Thrust: 2,960.00 kN<br />

Total Mass: 192,000 kg<br />

Core Diameter: 3.35 m<br />

Total Length: 35.15 m<br />

<strong>Launch</strong> Price$: 25.00 million. In 1999 price dollars


Current Mars Mission<br />

Delta II launch vehicle<br />

– Orbital accuracy <strong>and</strong> reliability<br />

– multiple launch windows in the same day<br />

– 98% success since 1989 in 110 launches<br />

– 100% success since 1997 in 55 launches<br />

total height: 125.75 feet<br />

payload fairing -- is 2. 9 meters<br />

to accommodate the GPS satellite<br />

511,190 pounds<br />

Thrust at lift-<strong>of</strong>f: 100,270 pounds<br />

http://marsrovers.jpl.nasa.gov/mission/launch_payload.html


Rocket Engines<br />

Previously discussed in<br />

launch; can be used also in the<br />

vacuum <strong>of</strong> space


EADS Space Transportation


Types <strong>of</strong> Rocket <strong>Propulsion</strong><br />

Type Uses Advantages Disadvantages<br />

Solid fuel<br />

chemical<br />

propulsion<br />

Liquid fuel<br />

chemical<br />

propulsion<br />

main<br />

booster<br />

main<br />

booster,<br />

small control<br />

Cold-gas<br />

chemical<br />

propulsion small control<br />

Ion<br />

in space<br />

booster<br />

simple, reliable, few<br />

moving parts, lots <strong>of</strong><br />

thrust not restartable<br />

restartable,<br />

controllable, lots <strong>of</strong><br />

thrust complex<br />

restartable,<br />

controllable low thrust<br />

restartable,<br />

controllable, high<br />

specific impulse complex


Advantages:<br />

Simplicity<br />

Low cost<br />

Safety<br />

Solid Fuel Rockets<br />

Disadvantages:<br />

Thrust cannot be<br />

controlled.<br />

Once ignited, the<br />

engine cannot be<br />

stopped or restarted.


Liquid Propellant Rocket<br />

Robert Goddard created the first<br />

liquid propellant rocket engine<br />

using gasoline <strong>and</strong> liquid oxygen<br />

Engines in space shuttles uses<br />

Liquid hydrogen <strong>and</strong> liquid<br />

oxygen<br />

Saturn Vs’ use kerosene <strong>and</strong> liquid<br />

oxygen


Nontraditional Types <strong>of</strong><br />

<strong>Propulsion</strong> Systems<br />

Nuclear Thermal <strong>Propulsion</strong><br />

Nuclear Electric <strong>Propulsion</strong><br />

Solar Sails<br />

Fusion Energy<br />

Antimatter Technology


Advantages <strong>of</strong> Nuclear<br />

<strong>Propulsion</strong><br />

Chemical or Aerobrake systems have reached their<br />

limits.<br />

Nuclear is cheaper, <strong>and</strong> unrestricted in scope.<br />

Nuclear <strong>Propulsion</strong> is safer <strong>and</strong> faster.<br />

Reduce time by 60-70% to reach Mars.<br />

Sunlight intensity is too weak for solar electric<br />

propulsion <strong>and</strong> solar sails.<br />

Fusion, laser sails, <strong>and</strong> antimatter propulsion is too<br />

far in the future.


Nuclear Thermal <strong>Propulsion</strong><br />

NTP propellant is heated by a nuclear<br />

reactor <strong>and</strong> uses a gas like hydrogen as the<br />

propellant.<br />

Specific impulse(Isp) <strong>of</strong> 900-1000 sec.<br />

Provide changes in velocity that are two or<br />

more times greater than chemical rockets,<br />

with the capability to deliver thous<strong>and</strong>s <strong>of</strong><br />

pounds <strong>of</strong> thrusts in dem<strong>and</strong>.


Nuclear Electric <strong>Propulsion</strong><br />

Heat from an on-board nuclear<br />

reactor is converted to<br />

electrical power. An electric<br />

thruster then accelerates ions<br />

or a plasma to a very high<br />

velocity.<br />

Specific Impulse <strong>of</strong> 3200<br />

seconds.<br />

Thrust <strong>of</strong> ion engine is tiny,<br />

with only 92mN. NTP must<br />

operate continuously for years<br />

to reach a useful velocity.


Specific Impulse<br />

Thrust <strong>of</strong> engine<br />

Ability to<br />

l<strong>and</strong>/take<strong>of</strong>f<br />

Advantages<br />

NTP vs NEP<br />

NTP<br />

900-1000 sec<br />

1 hr to reach<br />

useful velocity<br />

Able to l<strong>and</strong> <strong>and</strong><br />

take<strong>of</strong>f<br />

Fast mission<br />

times<br />

NEP<br />

3200 sec<br />

Years to reach<br />

useful velocity<br />

Due to too little<br />

thrust, not<br />

possible.<br />

Travel for long<br />

periods <strong>of</strong> time to<br />

distant stars


More advantages <strong>of</strong> NTP<br />

Able to process <strong>and</strong> replenish liquid H2 propellant<br />

for the NTP engine by utilizing the surface<br />

deposits <strong>of</strong> water ice for energy<br />

Collect actual samples <strong>of</strong> the planet <strong>and</strong> return to<br />

earth.<br />

NTP spacecrafts could probe into Mar’s surface<br />

<strong>and</strong> explore the subsurface ocean.<br />

Unlimited flight lasting for months or years by<br />

modifying the NTP engine to be a nuclear ramjet


Time, Cost, <strong>and</strong> Risks<br />

NEP must be reliable <strong>and</strong> fault-free in terms<br />

<strong>of</strong> traveling in space for years while NTP’s<br />

travel time is in a matter <strong>of</strong> hours.<br />

Already a strong NTP technology base.<br />

NTP requires less operational testing time.<br />

Demonstration <strong>of</strong> the propulsion system<br />

reliability without long-term testing will<br />

risk mission failure.


Solar Sails


Concept <strong>of</strong> Solar Sails<br />

Continuous force exerted by sunlight<br />

A large, ultrathin mirror<br />

A separate launch vehicle


Advantages<br />

Solar sails will set new speed<br />

records for spacecraft <strong>and</strong> will<br />

enable us to travel beyond our<br />

solar system.<br />

Best bet for long distance travel<br />

used by NASA


Fusion <strong>Propulsion</strong><br />

Millions <strong>of</strong> nuclear reaction take place<br />

inside the sun’s core.<br />

Fusion reaction occus when two atoms<br />

<strong>of</strong> hydrogen collide to create a larger<br />

helium-4 atom, which releases energy.<br />

Fusion can only occur in super-heated<br />

environments <strong>and</strong> responsible for 85%<br />

<strong>of</strong> sun’s energy.<br />

Background<br />

Process:<br />

Two proton combine to form a<br />

deuterium atom, a positron <strong>and</strong><br />

a neutrino.<br />

A proton <strong>and</strong> a deuterium atom<br />

combine to form a helium-3<br />

atom(two protons with a<br />

neutron) <strong>and</strong> a gamma ray.<br />

Two helium-3 atoms combine<br />

to form a helium-4(two protons<br />

<strong>and</strong> two neutrons) <strong>and</strong> two<br />

protons.


Flying on Fusion <strong>Propulsion</strong><br />

A fusion drive could have<br />

an Isp <strong>of</strong> 300x greater than<br />

conventional rocket<br />

engines(130,000 sec).<br />

Hydrogen is the main<br />

source <strong>of</strong> propellant, due<br />

to the fact that hydrogen is<br />

present in the atmosphere<br />

<strong>of</strong> many planets<br />

Longer thrust


Antimatter Spacecraft<br />

Imagine instead <strong>of</strong> 11 months, we<br />

could get to mars in a month…


What is Antimatter<br />

Paul Dirac deduced that E=mc² states that the mass could be negative as well<br />

as positive.<br />

Positrons - Electrons with a positive instead <strong>of</strong> negative charge.<br />

Discovered by Carl Anderson in 1932, positrons were the first evidence<br />

that antimatter existed.<br />

Anti-protons - Protons that have a negative instead <strong>of</strong> positive charge.<br />

In 1955, researchers at the Berkeley Bevatron produced an antiproton.<br />

Anti-atoms - Pairing together positrons <strong>and</strong> antiprotons, scientists at<br />

CERN, the European Organization for Nuclear Research, created the<br />

first anti-atom. Nine anti-hydrogen atoms were created, each lasting<br />

only 40 nanoseconds. As <strong>of</strong> 1998, CERN researchers were pushing the<br />

production <strong>of</strong> anti-hydrogen atoms to 2,000 per hour.


CONCLUSION


Any Questions<br />

?


REFERENCES<br />

Wertz, James R., <strong>and</strong> Wiley J. Larson. Space Mission Analysis <strong>and</strong><br />

Design III. El Segundo: Microcosm, 1999.<br />

Clark, Arthur C., The Promise <strong>of</strong> Space. New York: Harper & Row,<br />

1968.<br />

Pratt & Whitney. Pratt & Whitney. 15 June, 2004. <br />

Boeing.com. Boeing Space <strong>and</strong> Defense. 15 June, 2004.<br />

<br />

Mars Rovers. NASA <strong>and</strong> JPL. 15 June, 2004.<br />

<br />

Mars Academy. Mars Academy.


References:<br />

- Boeing’s <strong>of</strong>ficial DELTA site<br />

- http://www.boeing.com/defense-space/space/delta/flash.html<br />

- - Online space news site<br />

- http://spaceflightnow.com/delta/delta4/<br />

- - Article comparing DELTA 4 vs. ALTAS 5<br />

- http://www.spacetoday.org/Rockets/Delta4_Atlas5.html<br />

- Argument for using DELTAs over other systems<br />

- http://guardian.911review.org/OtherThreads/delta.htm<br />

- -space news about DELTA mission<br />

- http://www.spacedaily.com/news/delta4-02d.html<br />

- -Lockheed Martin’s ALTAS info<br />

- http://www.ast.lmco.com/launch_atlas.shtml<br />

- -comparison <strong>of</strong> different vehicles (good cost info)<br />

- http://www.futron.com/pdf/isufin.pdf<br />

- -rocket science <strong>of</strong> Earthlings (informative)<br />

- http://web.wt.net/~markgoll/rse0.htm<br />

- -how rocket engines work<br />

- http://science.howstuffworks.com/rocket.htm<br />

- -Lockheed Martin’s TITAN<br />

- http://www.ast.lmco.com/launch_titanIVfacts.shtml<br />

- -DELTA 4 news (12/10/03)<br />

- http://www.boeing.com/news/releases/2003/q4/nr_031210s.html


References<br />

Futron. “Space Transportation Costs:<br />

Trends in Price Per Pound to Orbit 1990-<br />

2000.” Futron Corporation. 6 September<br />

2002

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!