15.08.2013 Views

Structures / Thermal Group

Structures / Thermal Group

Structures / Thermal Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Structures</strong>/Environmental<br />

Protection Team<br />

Keiichi Narumi<br />

Ben Hochman<br />

Christian Hirschen<br />

Raymond Chow<br />

Jennifer Stothers<br />

Vivek Chetty<br />

Scott Wong


Overview of Our Task<br />

Structural Expectation<br />

1. Space<br />

2. Re-entry Re entry<br />

3. Landing on Mars<br />

Past Structural Failure<br />

<strong>Thermal</strong>/Radiation Control on Board<br />

<strong>Thermal</strong>/Structural Protection Against Re- Re<br />

Entry/Environment<br />

Comparison of Each Option of Structural<br />

and Landing Materials


Environment in Space and on Mars<br />

Why do we have to take the environmental conditions into account?<br />

Constraints for thermal and radiation shielding and the requirements<br />

for the materials which have to be used (e.g. entry in atmosphere<br />

causes high temperatures)<br />

Determine the life cycle of all the equipment (e.g. radiation causes<br />

malfunction)<br />

Temperature limits for spacecraft electronics (e.g. batteries<br />

from 5 to 20 deg C)<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


1. <strong>Thermal</strong> Conditions<br />

•in Space<br />

Environment in Space and on Mars<br />

– Space is more or less a vacuum except the constituents of the<br />

exosphere hydrogen and helium in very low densities<br />

– Temperature depends mainly on whether you are exposed or not to<br />

sunlight and how far you are away from the sun<br />

– The coldest temperature is 3K, this is the temperature of the cosmic<br />

microwave background radiation (CMB), so without any other heat<br />

sources, gas will come in equilibrium with the CMB<br />

– There is not one temperature for the space, but it is very<br />

variable<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


Environment in Space and on Mars<br />

Earth Atmosphere<br />

http://liftoff.msfc.nasa.gov/academy/space/atmosphere.html<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


1. <strong>Thermal</strong> Conditions<br />

• on Mars<br />

Environment in Space and on Mars<br />

– The six most common components of the atmosphere are :<br />

•Carbon Dioxide (CO2): 95.32%<br />

•Nitrogen (N2): 2.7%<br />

•Argon (Ar): 1.6%<br />

•Oxygen (O2): 0.13%<br />

•Water (H2O): 0.03%<br />

•Neon (Ne): 0.00025 %<br />

– Martian air contains only about 1/1,000 as much water as our air<br />

Enough to condense out and form clouds and local patches of<br />

morning fog<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


1. <strong>Thermal</strong> Conditions<br />

• on Mars<br />

Environment in Space and on Mars<br />

– The average recorded temperature on Mars is -63° C (-81° F) with a<br />

maximum temperature of 20° C (68° F) and a minimum of -140° C (-220° F)<br />

– During entry into the Martian atmosphere the temperature can reach values<br />

up to 2000 deg C, even though the density is much smaller than on earth<br />

– For the different mars missions the pressure varied between 6 and 11<br />

millibars, which is around 1/1000 of the earth pressure<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


Environment in Space and on Mars<br />

http://www.dfg.de/raumtransportsysteme/rueckkehr_2.html<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


Environment in Space and on Mars<br />

Mars Statistics<br />

Mass (kg) 6.42E+23<br />

Mass (Earth = 1) 1.07E-01<br />

Equatorial radius (km) 3,397.20<br />

Equatorial radius (Earth = 1) 5.33E-01<br />

Mean density (gm/cm^3) 3.94<br />

Mean distance from the Sun (km) 227,940,000<br />

Mean distance from the Sun (Earth = 1) 1.5237<br />

Rotational period (hours) 24.6229<br />

Rotational period (days) 1.025957<br />

Orbital period (days) 686.98<br />

Mean orbital velocity (km/sec) 24.13<br />

Orbital eccentricity 0.0934<br />

Tilt of axis (degrees) 25.19<br />

Orbital inclination (degrees) 1.85<br />

Equatorial escape velocity (km/sec) 5.02<br />

V isual geometric albedo 0.15<br />

Magnitude (Vo) -2.01<br />

Minimum surface temperature -140°C<br />

Mean surface temperature -63°C<br />

Maximum surface temperature 20°C<br />

Atmospheric pressure (bars) 0.007<br />

www.solarviews.com/eng/mars.htm<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


Environment in Space and on Mars<br />

Martian Atmosphere<br />

http://abenteuer-universum.vol4u.de/mars.html<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


Environment in Space and on Mars<br />

Temperature Limits<br />

• Spacecraft electronics from around 0 to 40 deg C<br />

• Batteries from 0 to 15 deg C<br />

• Silicon Solar Cells from -100 to 100 deg C<br />

• Structure from -45 to 65 deg C<br />

• <strong>Structures</strong> supporting equipments with extremely accurate appointing<br />

requirements are limited to +/- 0.5 deg C variation<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


2. Radiation<br />

Environment in Space and on Mars<br />

• Three different types of radiation<br />

– SPE: Solar Particle Elements<br />

– GCR: Galactic Cosmic Ray<br />

– Trapped Radiation<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


Environment in Space and on Mars<br />

– SPE: Solar Particle Elements<br />

• Produced by the acceleration of solar plasma by strong electromotive<br />

forces and produced by acceleration across the transition shock<br />

boundary of propagating coronal mass ejecta<br />

• Occur in association with solar flare<br />

• Are rapid increases in the flux of energetic particles (~1 MeV to above<br />

1GeV), lasting from several hours to several days<br />

• Degrade solar panels, increase background noise and cause illnesses<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


Environment in Space and on Mars<br />

– GCR: Galactic Cosmic Ray<br />

• GCR: galactic origin<br />

• A single particle can cause a malfunction in common electronic<br />

components → single event phenomena (SEP)<br />

• Can also generate background noise<br />

• Create spurious which masquerade as real signals<br />

• No full understanding of the physical interaction of GCR with shielding<br />

and body tissues available yet<br />

→ large impact on costs<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


Environment in Space and on Mars<br />

– Trapped Radiation (Van Allen radiation belts)<br />

• In this case particles are trapped within the confines of the geomagnetic<br />

field<br />

• The trapped radiations consist mainly of protons and electrons reaching<br />

maximum intensity at an altitude 3600km followed by a minimum at<br />

7000 and a second very broad maximum at 10000km<br />

• Having energies greater than 30keV<br />

• The accumulation of these radiation events can cause permanent damage to<br />

individual detectors, electronic devices, solar arrays and sensors<br />

<strong>Structures</strong> and environmental Protection against <strong>Thermal</strong>/Radiation in Transit and on Ground


<strong>Thermal</strong> Environment<br />

Direct Sunlight<br />

Radiation<br />

Sunlight Reflected<br />

by Planets (albedo ( albedo)<br />

Infrared (IR)<br />

Radiation Emitted<br />

from a Planet’s Planet s<br />

Atmosphere or<br />

Surface<br />

Surface http://www-istp.gsfc.nasa.gov/istp/outreach/images/Solar/Events/skylab.jpg


<strong>Thermal</strong> Control<br />

Heat Emitted as IR Radiation from the<br />

Spacecraft must be Balanced with the<br />

Heat Dissipated by Internal Components<br />

and Heat Absorbed from the Environment


Custom Tailored<br />

A generic thermal control system would be<br />

heavy and expensive<br />

It is most practical to design a thermal<br />

control system for the specific needs of<br />

the mission while taking into account the<br />

worst case (hot & cold) of the<br />

environment as well as the allowable<br />

temperatures of the components and<br />

cargo.


Direct Solar Radiation<br />

Between planets,<br />

external heat<br />

comes from direct<br />

sunlight which falls<br />

off as the square of<br />

the distance to the<br />

sun.<br />

Solar constant:<br />

-Venus Venus 2700W/m 2<br />

-Saturn Saturn 15W/m 2


Heat Transfer Issues<br />

As the density of the spacecraft increases<br />

not all components can be mounted<br />

directly to a thermal control system and<br />

must be stored internally<br />

Heat transfer systems such as heat pipes<br />

must be used for internally mounted cargo


The Hot & Cold of Space<br />

Components such as batteries require<br />

small variations in temperatures (0 to<br />

15°C) 15<br />

Solar Panels can withstand much larger<br />

variations in temperature (-150 ( 150 to 110°C) 110<br />

Fuel tanks and lines must remain above<br />

freezing (15 to 40°C)<br />

40


Cryogenic Cooling<br />

IR detectors often require continuous<br />

extreme cold (125 K and below)<br />

Expendable fluids or gasses can be<br />

used as stored cryogens to absorb<br />

heat but are difficult to store due to<br />

volume constraints of the spacecraft<br />

Refrigeration systems require large<br />

amount of electrical power


Heat Balance<br />

Careful heat balance estimations must be<br />

made and although a wealth of<br />

information is available for earth orbiting<br />

spacecraft, much less is known for<br />

interplanetary missions<br />

For much longer missions, nuclear power<br />

supplies could be used and the waste heat<br />

distributed around the spacecraft


Structural Failure<br />

Example: Columbia-February Columbia February 1, 2003<br />

-One One large piece and at least two smaller pieces of<br />

insulating foam separated from the External Tank left<br />

bipod ramp area.<br />

-Later Later analysis showed that the larger piece struck<br />

Columbia on the underside of the wing, around<br />

Reinforced Carbon-Carbon Carbon Carbon panels 5 through 9.<br />

-The The foam piece was approximately 21 to 27 inches<br />

long and 12 to 18 inches wide, tumbling at a<br />

minimum of 18 times per second and 416 to 473<br />

mph at time of impact.<br />

Columbia Accident Investigation Board


Structural Design Philosophy and<br />

Criteria<br />

Launch loads are affected by<br />

acoustics<br />

acoustics<br />

engine vibrations<br />

air turbulence<br />

gusts


-Use Use a design-allowable design allowable strength for the selected<br />

material that we expect 99% of all specimens will<br />

equal or exceed.<br />

-From From available environmental data, derive a design<br />

limit load equal to the mean value plus three<br />

standard deviations.<br />

-Multiply Multiply the design limit load by a factor of safety,<br />

and then show that the stress level at this load does<br />

not exceed the corresponding allowable strength.<br />

-Test Test the structure to verify design integrity and/or<br />

workmanship, to correlate analytical models, and to<br />

protect against human errors.


Terms<br />

Load Factor<br />

Limit Load<br />

(or design limit load)<br />

Allowable Load or<br />

Stress<br />

Factor of Safety, FS<br />

Design Load<br />

Design Stress<br />

Margin of Safety,<br />

MS<br />

A multiple of weight on Earth, representing the<br />

force of inertia that resists acceleration.<br />

The maximum load expected during the mission<br />

or for a given event, at a specified or selected<br />

statistical probability (typically 99% for<br />

expendable launch vehicles and 99.87% for<br />

launches with humans aboard).<br />

The highest load or stress a structure or material<br />

can withstand without failure, based on statistical<br />

probability (usually 99%; i.e., only 1% chance the<br />

actual strength is less than the allowable).<br />

A factor applied to the limit load to obtain the<br />

design load for the purpose of decreasing the<br />

chance of failure.<br />

Limit load multiplied by the yield or ultimate<br />

factor of safety; this value must be no greater than<br />

the corresponding allowable load.<br />

Predicted stress caused by the design load; this<br />

value must not exceed the corresponding<br />

allowable stress.<br />

A measure of reserve strength:<br />

design criteria<br />

Definition<br />

Allowableload<br />

(or stress)<br />

MS =<br />

−1<br />

≥ 0<br />

Design load (or stress)<br />

to satisfy<br />

Table 11-53. Terms and Criteria Used in Strength Analysis


4. No structural test<br />

Options<br />

1. Ultimate test of dedicated qualification article (1.25 x limit)<br />

2. Proof test of all flight structure (1.1 x limit)<br />

3. Proof test of one flight unit of a fleet (1.25 x limit)<br />

Design Factors of<br />

Safety<br />

Yield<br />

1.0<br />

1.1<br />

1.25<br />

1.6<br />

Ultimate<br />

1.25<br />

1.25<br />

1.4<br />

2.0<br />

Table 11-54. Typical Test Options and Factors of Safety for Missions without Humans Aboard.


Preliminary Sizing of Structural Members<br />

Stiffness<br />

Finite element model<br />

Stiffness<br />

Strength<br />

Statically determinate structure - Free-body Free body diagrams<br />

Statically indeterminate structure – Finite element<br />

analysis<br />

Strength<br />

Weight<br />

Compare a component’s component s weight with its allocation<br />

Best design ≠ lightest design<br />

Weight


History of Failed Mars Missions<br />

Marsnik 1 & 2 – 10/10/60 and 10/14/60<br />

Its launch vehicle did not produce enough thrust to put the probe probe<br />

into the<br />

proper trajectory for Mars, and it fell back to Earth. Marsnik 2 was<br />

identical to Marsnik 1. The third stage of its rocket also failed failed<br />

during<br />

launch four days later.<br />

Sputnik 29 – 10/24/62<br />

Sputnik 29 failed to reach Earth orbit and broke apart when the Molnya<br />

rocket's fourth-stage fourth stage engine failed.<br />

Mars 1 – 11/1/62<br />

Mars 1’s 1 s signal was lost about half way through the journey on March 21, 21,<br />

1963.<br />

Sputnik 31 – 11/4/62<br />

Sputnik 31 reached Earth orbit but failed while firing the rocket rocket<br />

motor that<br />

would have put it on a trajectory for Mars.<br />

Mariner 8 – 5/8/71<br />

The main Centaur engine ignited 265 seconds after launch but the upper<br />

stage began to oscillate in pitch and tumble out of control.


Mars 2 – 5 /19/71<br />

The landers were released from the orbiter four and a half hours<br />

before the spacecraft entered Martian orbit on 11/27/1971.<br />

Lander was destroyed on impact.<br />

Mars 4-7 4 7 – 7/21/73 to 8/9/73<br />

A decision had been made two years prior to launch to replace the the<br />

gold components in the transistors with aluminum in order to save save<br />

Soviet gold resources. Mars 4 flew past Mars. Mars 5 lasted a<br />

few days. Mars 6 crashed and burned due to fast impact. Mars 7<br />

missed the planet.<br />

Phobos 1-2 1 2 – 7/7/88, 7/12/88<br />

Phobos 1: Battery died because it lost the ability to point its solar<br />

arrays toward the sun.<br />

Phobos 2: Turn antenna away from Earth to point the camera<br />

toward Phobos. Never turn back around.<br />

Mars Observer – 9/25/92<br />

Ruptured tubing in the propulsion system caused Mars Observer<br />

to spin out of control.<br />

Mars 96 – 11/16/96<br />

A failure during the second ignition of the Proton rocket’s rocket s upper<br />

stage sent the spacecraft down into the Pacific Ocean.


Nozomi – 7/4/98<br />

Might be in orbit around the Sun (could be crashing into Spirit any<br />

minute).<br />

Mars Climate Orbiter – 12/11/98<br />

“The The failed translation of English units into metric units in a<br />

segment of ground-based, ground based, navigation-related navigation related mission software.”<br />

software.<br />

Mars Polar Lander/Deep Space 2 – 1/3/99<br />

“…the “…the<br />

most probable cause of the failure (of MPL) was the<br />

generation of spurious signals when the lander legs were deployed deployed<br />

during descent. The spurious signals gave a false indication that that<br />

the spacecraft had landed, resulting in a premature shutdown of<br />

the engines and the destruction of the lander when it crashed on<br />

Mars.”<br />

Mars.


<strong>Thermal</strong> Control Components<br />

Passive Control:<br />

• Surface Finishes<br />

• Insulation<br />

• Radiators<br />

Active Control:<br />

• Heaters & Thermostats<br />

• <strong>Thermal</strong> Louvers<br />

• Heat Pipes


<strong>Thermal</strong> Control Components:<br />

Surface Finishes<br />

Select radiative properties of spacecraft surface to<br />

achieve an energy balance:<br />

Qenvironment environment + ∑Qinternal internal = Qre-radiated re radiated<br />

Two primary surface properties:<br />

- solar absorptivity,<br />

absorptivity,<br />

α<br />

- IR emissivity,<br />

emissivity,<br />

ε<br />

Surface coatings can be combined for desired average α<br />

and ε.<br />

Example: for a sphere located 1 AU from Sun (1367<br />

W/m 2 )<br />

Z93 white: white:<br />

where α/ε=0.17/0.92, =0.17/0.92, we find T=-90 T= 90°C<br />

Z306 black: black:<br />

where α/ε=0.92/0.89, =0.92/0.89, we find T=8°C T=8


<strong>Thermal</strong> Control Components: Surface Finishes:<br />

α<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Solar Absorptivity (α)<br />

Of typical spacecraft surface finish categories<br />

Optical<br />

Solar<br />

Reflectors<br />

White<br />

Paints<br />

Black<br />

Paints<br />

Aluminized<br />

Kapton<br />

Surface Finishes<br />

Metallic Anodized Al


<strong>Thermal</strong> Control Components: Surface Finishes:<br />

ε<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Optical<br />

Solar<br />

Reflectors<br />

IR Emissivity (ε)<br />

Of typical spacecraft surface finish categories<br />

White<br />

Paints<br />

Black<br />

Paints<br />

Aluminized<br />

Kapton<br />

Surface Finishes<br />

Metallic Anodized Al


<strong>Thermal</strong> Control Components:<br />

Multilayer Insulation (MLI)<br />

and single layer radiation shields<br />

Most common type of thermal control elements<br />

Prevents excessive heat loss or heating by environment or<br />

other spacecraft components<br />

Provides radiation protection<br />

MLI blankets<br />

• typically protect internal propellant tanks and lines, solid<br />

rocket motors, cryogenic dewars, dewars,<br />

& much more<br />

• not effective in the presence of a gas, must add foam, batt or<br />

aerogel<br />

• sensitive to mechanical compression and edge effects and can<br />

easily decrease from one to two orders of magnitude from its<br />

ideal value even when the MLI is kept under high vacuum<br />

condition<br />

Single layer radiation shields<br />

• Lesser degree of insulation<br />

• Lighter<br />

http://www.nasatech.com/Briefs/Sept03/KSC12092.HTML


<strong>Thermal</strong> Control Components: Insulation<br />

Typical MLI Composition<br />

SMAD III; Fig 11-17A, pg. 437


<strong>Thermal</strong> Control Components:<br />

Radiators<br />

Most spacecraft waste heat is rejected to space<br />

by radiators<br />

Rejects heat by IR radiation from surfaces<br />

(between 100 and 350 W)<br />

Heat rejection or heat radiating capability<br />

increases exponentially with temperature<br />

Can vary from weighing nothing to 12kg/m 2<br />

Types of finishes mostly used are quartz mirrors,<br />

silvered or aluminized teflon & white paint


<strong>Thermal</strong> Control Components:<br />

Heaters & Thermostats<br />

Heaters:<br />

Patch heater<br />

• Resistor between two flexible insulators (Kapton ( Kapton)<br />

• Redundancy required<br />

• Can be made into custom shapes<br />

Cartridge heater<br />

• Heats blocks of material or high temperature components<br />

(hydrazine-thruster (hydrazine thruster catalyst beds)<br />

• Wound resistor enclosed in metallic casing<br />

SMAD III; Fig 11-19, pg. 440


<strong>Thermal</strong> Control Components:<br />

Thermostats:<br />

Heaters & Thermostats<br />

Mechanical thermostat<br />

• Typically used for a heater that is<br />

activated only for special events or is on<br />

all the time<br />

• Fairly reliable but many used (up to<br />

several hundred)<br />

• Large dead band, >4°C >4<br />

Solid state controller (w/ temp. sensor)<br />

• Electronic device= higher reliability and<br />

life expectancy<br />

• Tight dead bands,


<strong>Thermal</strong> Control Components:<br />

Adjusts exposure of a<br />

component (radiator) to<br />

space or to other<br />

components<br />

Fully open, it allows the<br />

rejection of six times as<br />

much heat if fully closed<br />

No power required<br />

Useful when internal<br />

power dissipation varies<br />

widely<br />

Strong conductive path<br />

between actuator and<br />

radiator<br />

Louvers<br />

“Venetian Venetian-blind blind” type<br />

SMAD III; Fig 11-21, pg. 442


<strong>Thermal</strong> Control Components:<br />

Heat Pipes<br />

Wick envelope design transfers heat from one<br />

end to the other<br />

Extruded grooves enable this:<br />

• Trapezoidal<br />

Easier to make<br />

• Re-entrant<br />

Re<br />

Better capillary<br />

action<br />

Trapezoidal<br />

Easier to make<br />

entrant<br />

Better capillary<br />

SMAD III; Fig 11-22A&B, pg. 445


Application of <strong>Thermal</strong> Control Components:<br />

The NASA Rover<br />

<strong>Thermal</strong> blankets<br />

Heat pump and piping capable of<br />

transporting 150 watts of rover waste<br />

heat into space<br />

Radioisotope Heater Units (RHUs ( RHUs) )<br />

generate heat through decay of a low-<br />

grade isotope<br />

Electrical heaters<br />

Thermostatically controlled heaters<br />

Uses a Freon-like Freon like fluid for cooling


<strong>Thermal</strong> Protection during<br />

Reentry<br />

Types of <strong>Thermal</strong><br />

Insulation/Protection:<br />

1. Reinforced Carbon-Carbon<br />

2. Ceramic Tiles<br />

3. Insulation Blankets<br />

4. Ablative Materials<br />

http://tps.arc.nasa.gov


Reinforced Carbon-Carbon<br />

Carbon Carbon<br />

Used in regions where heat load ><br />

68W/cm 2 (stagnation regions) and<br />

temperature


Ceramic Tiles<br />

http://tps.arc.nasa.gov<br />

• High Temperature Reusable Surface<br />

Insulation<br />

Used in regions where heat load is < 68W/cm 2<br />

and temperature < 1500K<br />

Lightweight Ceramic Tile<br />

Cheaper than RCC<br />

Difficult to install<br />

Nomex used as stress isolation<br />

http://tps.arc.nasa.gov<br />

• Fibrous Refractory Composite Insulation<br />

Used in regions where heat load is < 68W/cm 2<br />

<br />

and temperature < 900K<br />

Easier to produce than HRSI<br />

Denser material than HRSI, comes in two grades<br />

Difficult to install


Advanced Flexible Reusable<br />

Surface Insulation Blankets<br />

Used to replace Ceramic Tiles in regions<br />

where lower heating occurs<br />

• Effective up at temperatures < 1050K<br />

• Easier to produce but has lower<br />

durability than tiles<br />

• Decrease in weight and easy to install<br />

• Also available in two grades<br />

http://tps.arc.nasa.gov


Ablative Materials<br />

Used in regions where heat load<br />

>100W/m 2<br />

Material chars and flakes or melts off<br />

• Avcoat 5026-39 5026 39<br />

• Used in Apollo Missions to shield the Command<br />

Service Module<br />

• Dense Material (ρ=1650 ( =1650 kg/m 3 )<br />

http://www.spaceaholic.com/avcoat_heatshield_full.jpg


Ablative Materials<br />

• PICA (Phenolic<br />

Impregnated Carbon<br />

Ablator)<br />

• Used on the Stardust Probe<br />

(ETA Jan 2006)<br />

• Lightweight Material (ρ=240 ( =240<br />

kg/m 3 )<br />

http://stardust.jpl.nasa.gov/photo/SC.jpg


Example of Ablation<br />

Galileo Probe entering Jupiter’s Jupiter s Atmosphere (December 1995)<br />

http://www.centennialofflight.gov/essay/Evolution_of_Technology/advanced_reentry/Tech20G3.htm


Past <strong>Structures</strong><br />

Best structure is blunt body<br />

Greater amount of friction<br />

• Decelerates the most in upper atmosphere<br />

• Easier to reduce speed to zero for landing<br />

Causes detached shock<br />

• Lower skin temperature<br />

• High temperature is further away from body


Radiation Shielding<br />

Use of Multi Layer Insulation Blankets to<br />

cut radiation exposure for payloads<br />

Effective radiation shield must have high<br />

Hydrogen atom content, helps<br />

disperse/absorb radiation<br />

• Aluminum used in the past as this was<br />

integrated into structure<br />

• Reinforced polyethylene being researched by<br />

NASA (Fiber used to produce bricks for<br />

radiation shields)


Radiation shield for computers<br />

The Radiation Shield is a software protection<br />

system for personal computers in Space running<br />

Microsoft Windows NT (made by ESA ESTEC)<br />

The radiation present in Space environment may<br />

generate parity error in parity protected memory;<br />

alternatively it can cause system faults or<br />

application errors.<br />

The Radiation Shield software is designed to<br />

handle all these errors for any running application<br />

thereby allowing it to continue or gracefully<br />

degrade, without losing significant user data.<br />

http://www.estec.esa.nl/wmwww/EME/laptops/ntradshld/index.htm


<strong>Thermal</strong> Material Cost Comparison<br />

Cost (Dollar/m^2)<br />

1.40E+05<br />

1.20E+05<br />

1.00E+05<br />

8.00E+04<br />

6.00E+04<br />

4.00E+04<br />

2.00E+04<br />

0.00E+00<br />

RCC<br />

<strong>Thermal</strong> Material Costs<br />

AFRSI<br />

HRSI<br />

AFRSI LI-900<br />

2200<br />

Material<br />

HRSI<br />

LI-2200<br />

Nomex FRSI 12<br />

RCC AFRSI AFRSI-2200 HRSI LI-900 HRSI LI-2200 Nomex FRSI-12


<strong>Thermal</strong> Material Density Comparison<br />

Density (kg/m^3)<br />

1.80E+03<br />

1.60E+03<br />

1.40E+03<br />

1.20E+03<br />

1.00E+03<br />

8.00E+02<br />

6.00E+02<br />

4.00E+02<br />

2.00E+02<br />

0.00E+00<br />

RCC<br />

AFRSI<br />

<strong>Thermal</strong> Material Density<br />

AFRSI<br />

2200<br />

HRSI<br />

LI-900<br />

HRSI<br />

LI-2200<br />

Purchase Cost<br />

Material<br />

Nomex<br />

FRSI 12<br />

Graphite<br />

Epoxy<br />

RCC AFRSI AFRSI-2200 HRSI LI-900 HRSI LI-2200 Nomex FRSI-12 Graphite Epoxy


Temperature (K)<br />

<strong>Thermal</strong> Material Max Temperature Limit Comparison<br />

2.50E+03<br />

2.00E+03<br />

1.50E+03<br />

1.00E+03<br />

5.00E+02<br />

0.00E+00<br />

RCC<br />

AFRSI<br />

<strong>Thermal</strong> Material Max Temperature<br />

AFRSI<br />

2200<br />

HRSI<br />

LI-900<br />

Material<br />

HRSI<br />

LI-2200<br />

Nomex<br />

FRSI 12<br />

RCC AFRSI AFRSI-2200 HRSI LI-900 HRSI LI-2200 Nomex FRSI-12 Graphite Epoxy<br />

Graphite<br />

Epoxy


<strong>Thermal</strong> Material Installation Time Comparison<br />

Installation Time (s/m^2)<br />

4.00E+06<br />

3.50E+06<br />

3.00E+06<br />

2.50E+06<br />

2.00E+06<br />

1.50E+06<br />

1.00E+06<br />

5.00E+05<br />

0.00E+00<br />

<strong>Thermal</strong> Material Installation Time<br />

RCC AFRSI AFRSI<br />

2200<br />

HRSI<br />

LI-900<br />

HRSI<br />

LI-2200<br />

Nomex<br />

FRSI 12<br />

RCC AFRSI AFRSI-2200 HRSI LI-900 HRSI LI-2200 Nomex FRSI-12


Density (kg/m^3)<br />

5.00E+03<br />

4.50E+03<br />

4.00E+03<br />

3.50E+03<br />

3.00E+03<br />

2.50E+03<br />

2.00E+03<br />

1.50E+03<br />

1.00E+03<br />

5.00E+02<br />

0.00E+00<br />

Structural Material Density Comparison<br />

Aluminum<br />

2024<br />

Structural Material Density<br />

Aluminum<br />

2219<br />

Material<br />

Titanium<br />

Al 2024-T8XX<br />

AL 2219-T8XX<br />

Titanium


Tensile Strength (Pa)<br />

Structural Material Tensile Strength Comparison<br />

1.20E+09<br />

1.00E+09<br />

8.00E+08<br />

6.00E+08<br />

4.00E+08<br />

2.00E+08<br />

0.00E+00<br />

Aluminum<br />

2024<br />

Structural Material Tensile Strength<br />

Aluminum<br />

2219<br />

Material<br />

Al 2024-T8XX Al 2219-T8XX Titanium Duplex Annealed<br />

Titanium


Comprehensive <strong>Thermal</strong> Material Table<br />

Units RCC HRSI LI-900 HRSI LI-2200 Normex FRSI-12 AFRSI AFRSI-2200Epoxy<br />

Purchase Cost $/m^2 1.29E+05 1.23E+04 1.25E+04 1.72E+03 1.25E+04 3.55E+03 1.25E+04<br />

Installation Time s/m^2 3.72E+05 3.53E+06 3.53E+06 2.13E+04 3.53E+06 2.36E+05 3.53E+06<br />

Inspection/Repair Time per Flight s/m^2 5.43E+03 8.14E+04 8.14E+04 3.49E+03 8.14E+04 3.72E+04 8.14E+04<br />

Replacement Fraction per Flight - 1.30E-03 2.50E-03 2.50E-03 2.80E-02 2.50E-03 1.80E-02 2.50E-03<br />

Reuse Flight Limit (# of Flights) - 3.30E-01 1.00E+02 1.00E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+02<br />

Density kg/m^3 1.58E+03 1.44E+02 3.52E+02 8.65E+01 1.92E+02 9.61E+01 3.52E+02 1.58E+03<br />

<strong>Thermal</strong> Conductivity (Thru-the-thickness) W/m-K 4 4.76E-02 7.44E-02 4.06E-02 5.30E-02 3.29E-02 7.44E-02 0.6<br />

<strong>Thermal</strong> Conductivity (In plane) W/m-K 6 6.75E-02 0.1 7.96E-02 0.1 3<br />

Specific Heat J/kg-K 7.12E+02 6.28E+02 6.28E+02 1.31E+03 7.12E+02 7.41E+02 6.28E+02 8.33E+02<br />

Single Use Temperature Limit K 2.03E+03 1.76E+03 1.81E+03 6.44E+02 1.81E+03 1.09E+03 1.81E+03 5.89E+02<br />

Emissivity 0.78 8.80E-01 9.00E-01 8.00E-01 9.20E-01 8.70E-01 9.00E-01<br />

Multiple Use Temprature Limit K 1.92E+03 1.59E-03 1.64E+03 5.06E+02 1.64E+03 9.22E+02 1.64E+03<br />

Tensile Strength (Thru-the-thickness) Pa 1.65E+05 5.03E+05 1.58E+05 5.03E+05<br />

Tensile Strength (In-Plane) Pa 4.69E+05 1.25E+06 1.77E+06 1.25E+06<br />

Tensile Modulus (Thru-the-thickness) Pa 4.83E+07 1.86E+08 6.89E+07 1.86E+08<br />

Tensile Modulus (In Plane) Pa 1.72E+08 5.52E+08 3.45E+08 5.52E+08<br />

Compressive Strength (Thru-the-thickness) Pa 1.93E+05 8.96E+05 9.11E+05 8.96E+05<br />

Compressive Strength (In-Plane) Pa 4.83E+05 1.59E+06 1.83E+06 1.59E+06<br />

Coefficient of <strong>Thermal</strong> Expansion (In-Plane) 1/K 1.31E-06 4.05E-07 4.83E-07 1.30E-06 4.83E-07<br />

Dielectric Constant - 1.13E+00 1.30E+00 1.20E+00 1.30E+00<br />

Loss Tangent - 4.00E-04 1.60E-03 9.00E-04 1.60E-03


Comprehensive Structural Material Table<br />

Units Alum. 2024 Alum. 2219 Titanium<br />

Purchase Cost $/m^2<br />

Installation Time s/m^2<br />

Inspection/Repair Time per Flight s/m^2<br />

Replacement Fraction per Flight -<br />

Reuse Flight Limit (# of Flights) -<br />

Density kg/m^3 2.80E+03 2.81E+03 4.50E+03<br />

<strong>Thermal</strong> Conductivity (Thru-the-thickness) W/m-K 1.45E+02 1.19E+02 2.19E+01<br />

<strong>Thermal</strong> Conductivity (In plane) W/m-K<br />

Specific Heat J/kg-K 8.16E+02 8.62E+02 5.22E+02<br />

Single Use Temperature Limit<br />

Emissivity<br />

K 4.50E+02 4.50E+02 1.95E+03<br />

Multiple Use Temprature Limit K<br />

Tensile Strength (Thru-the-thickness) Pa 4.55E+08 4.55E+08 1.11E+09<br />

Tensile Strength (In-Plane) Pa 4.00E+08 3.50E+08<br />

Tensile Modulus (Thru-the-thickness) Pa<br />

Tensile Modulus (In Plane) Pa<br />

Compressive Strength (Thru-the-thickness) Pa<br />

Compressive Strength (In-Plane) Pa<br />

Coefficient of <strong>Thermal</strong> Expansion (In-Plane) 1/K<br />

Dielectric Constant -<br />

Loss Tangent -


Airbags<br />

http://cmex.arc.nasa.gov/CMEX/data/catalog/MarsSurveyorRover2003/ParachuteAirbagsLanding.html<br />

Vectran M Vectran HS<br />

LCP Fiber LCP Fiber<br />

Density kg/m3 1400 1400<br />

Moisture Absorption at Equilibirum Max (%) 0.1 0.1<br />

Tensile Strength Ultimate Mpa 1110 3025<br />

Elongation at Break % 2 3.5<br />

Tensile Modulus GPa 52.4 68.6<br />

Dielectric Constant 3.3 3.3<br />

Melting Point K 549 603


Parachutes<br />

http:// marsrovers.jpl.nasa.gov/mission/parachute2.html<br />

Made of polyester and nylon<br />

Bridle is made out of Kevlar<br />

In case of Exploration Rover, the parachute<br />

resisted approximately 80,100~84,600 N of<br />

force; parachutes were inflated at Mach 6 and<br />

decreased the velocity to Mach 2<br />

Size and materials depend on atmospheric<br />

density, velocity, parachute drag area and<br />

mass


Conclusion<br />

Structural design depends on weight<br />

and structural stiffness over a wide<br />

range of temperatures<br />

Learn from the past; Select best<br />

materials to accommodate needs<br />

Major factors in choosing materials<br />

Cost, Installation Time, Working<br />

Temperature, Strength


http://www.mse.berkeley.edu/classes/matsci102/F01reports/tiles.pdf<br />

http://www.mse.berkeley.edu/classes/matsci102/F01reports/tiles.pdf<br />

http://spaceflight.nasa.gov/shuttle/reference/shutref/orbiter/tps/hrcitiles.html<br />

http://spaceflight.nasa.gov/shuttle/reference/shutref/orbiter/tps/hrcitiles.html<br />

http://www-pao.ksc.nasa.gov/kscpao/nasafact/tps.htm<br />

http://www pao.ksc.nasa.gov/kscpao/nasafact/tps.htm<br />

http://er6s1.eng.ohio-state.edu/mse/mse205/lectures/chapter20/chap20.pdf<br />

http://er6s1.eng.ohio state.edu/mse/mse205/lectures/chapter20/chap20.pdf<br />

http://www.eng.iastate.edu/explorer/topics/spacecoat/HRSI.htm<br />

http://science.ksc.nasa.gov/shuttle/technology/sts-newsref/stsref<br />

http://science.ksc.nasa.gov/shuttle/technology/sts newsref/stsref-toc.html#sts_ov<br />

toc.html#sts_ov<br />

http://science.ksc.nasa.gov/shuttle/technology/sts-newsref/sts_sys.html<br />

http://science.ksc.nasa.gov/shuttle/technology/sts newsref/sts_sys.html<br />

http://www.floridatoday.com/columbia/columbiastory2A45646A.htm<br />

http://www.kc4cop.bizland.com/shuttle_tiles_1.htm<br />

http://www.tc.cornell.edu/Research/CMI/RLVsource/tps.html<br />

http://science.ksc.nasa.gov/shuttle/technology/sts-newsref/sts_coord.html#sts<br />

http://science.ksc.nasa.gov/shuttle/technology/sts newsref/sts_coord.html#sts-wing wing<br />

http://science.ksc.nasa.gov/shuttle/technology/sts-newsref/sts<br />

http://science.ksc.nasa.gov/shuttle/technology/sts newsref/sts-rcs.html#sts<br />

rcs.html#sts-rcs rcs-heaters heaters<br />

http://marsrovers.jpl.nasa.gov/mission/spacecraft_edl_aeroshell.html<br />

http://marsrovers.jpl.nasa.gov/mission/spacecraft_edl_aeroshell. html<br />

http://www.matweb.com/search/SpecificMaterial.asp?bassnum=MA2240<br />

http://www.matweb.com/search/SpecificMaterialPrint.asp?bassnum=CREADE021<br />

http://www.matweb.com/search/SpecificMaterialPrint.asp?bassnum=CREADE021<br />

http://www.matweb.com/search/SpecificMaterialPrint.asp?bassnum=PCELAN00<br />

http://www.matweb.com/search/SpecificMaterialPrint.asp?bassnum=PCELAN00<br />

http://www.matweb.com/search/SpecificMaterialPrint.asp?bassnum=PCELAN01<br />

http://www.matweb.com/search/SpecificMaterialPrint.asp?bassnum=PCELAN01<br />

http://www.matweb.com/search/SpecificMaterialPrint.asp?bassnum=PHEH32<br />

http://www.matweb.com/search/SpecificMaterialPrint.asp?bassnum=PHEH32<br />

http://tpsx.arc.nasa.gov<br />

http://www.cnn.com/interactive/space/0308/earth.mars/frameset.exclude.html<br />

http://www.cnn.com/interactive/space/0308/earth.mars/frameset.exclude.html<br />

http://www.popsci.com/popsci/aviation/article/0,12543,0459759-1,00.htmlcmex<br />

http://www.popsci.com/popsci/aviation/article/0,12543,0459759 1,00.htmlcmex-www.arc.asa.gov/CMEX/index.htmlmars.tv/missions.html<br />

www.arc.asa.gov/CMEX/index.htmlmars.tv/missions.html<br />

http://www.floridatoday.com/news/space/stories/2003b/121403marsside.htm<br />

http://www.floridatoday.com/news/space/stories/2003b/121403marsside.htm<br />

http://spaceflightnow.com/mars/mera/031231mer.html<br />

http://www.polaris.iastate.edu/EveningStar/Unit7/unit7_sub2.htm<br />

http://www.nasa.gov/columbia/caib/PDFS/VOL1/PART01.PDF<br />

http://calspace.ucsd.edu/Mars99/docs/library/mars_exploration/robotic_missions/orbiters/older_missions15.html<br />

http://calspace.ucsd.edu/Mars99/docs/library/mars_exploration/robotic_missions/orbiters/older_missions15.html<br />

http://athena.cornell.edu/mars_facts/past_missions_70s.html<br />

http://www.bbc.co.uk/science/space/exploration/missiontimeline/mars2.shtml<br />

http://www.bbc.co.uk/science/space/exploration/missiontimeline/mars2.shtml<br />

http://athena.cornell.edu/mars_facts/past_missions_80s.html<br />

http://athena.cornell.edu/mars_facts/past_missions_90s.html<br />

http://www.solarviews.com/eng/mars.htm<br />

http:// www.solarviews.com/eng/mars.htm<br />

http://www.marssociety.at/ballon5.html<br />

http://www.luke.com/marsgeo/volcanic5.html<br />

http://abenteuer-universum.vol4u.de/mars.html<br />

http://abenteuer universum.vol4u.de/mars.html<br />

Text: mars surface ionizing radiation environment: need for validation. validation.<br />

J.W. Wilson, etc<br />

http://vojager.cet.edu/iss/techcheck3/radiation.html<br />

Text: materials for shielding astronauts from the hazards of space space<br />

radiation. J.W. Wilson etc.<br />

Textbook: Space Mission Analysis and Design<br />

http://liftoff.msfc.nasa.gov/academy/space/atmosphere.html<br />

http://www.madsci.org/posts/archives/dec97/880000587.As.r.html<br />

http://www.dfg.de/raumtransportsysteme/rueckkehr_1.html<br />

http://marsrovers.jpl.nasa.gov/mission/spacecraft_edl_parachute.html<br />

http://marsrovers.jpl.nasa.gov/mission/spacecraft_edl_parachute. html<br />

http://marsrovers.jpl.nasa.gov/mission/spacecraft_edl_airbags.html<br />

http://marsrovers.jpl.nasa.gov/mission/spacecraft_edl_airbags.html<br />

Text: NASA Facts Orbiter <strong>Thermal</strong> Protection System<br />

http://www.e-composites.com/commonFiles/engineering_material_properties.asp<br />

http://www.e composites.com/commonFiles/engineering_material_properties.asp<br />

http://www.corrosion-doctors/matselect/cost.htm<br />

http://www.corrosion doctors/matselect/cost.htm<br />

http://www.physics.purdue.edu/cmsfpixs/mechanics/panel_support/materials/aluminum<br />

http://www.physics.purdue.edu/cmsfpixs/mechanics/panel_support/materials/aluminum-alloy<br />

alloy<br />

http://www.lowden-metals.co.uk/funnace/cfrc.html<br />

http://www.lowden metals.co.uk/funnace/cfrc.html<br />

http://nova.stanford.edu/projects/mod/late.html<br />

http:// nova.stanford.edu/projects/mod/late.html<br />

http://slate.msn.com/id/2093779/<br />

http://www.badastronomy.com/phpBB/viewtopic.php?t<br />

http:// www.badastronomy.com/phpBB/viewtopic.php?t=9535 =9535<br />

http://eto.msfc.nasa.gov/challenge.html#tps<br />

http://lasp.colorado.edu/snoe/lib/sc_struct.html<br />

http://www.aa.washington.edu/research/isru/ares/ares.htm<br />

http:// www.aa.washington.edu/research/isru/ares/ares.htm<br />

http://www.centennialofflight.gov<br />

http:// www.centennialofflight.gov/ /<br />

http://esapub.esrin.esa.it/bulletin/bullet87/paroli87.htm<br />

http://www.matweb.com<br />

http://www.dfg.de/raumtransportsysteme/rueckkehr_2.html<br />

http://www.nasatech.com/Briefs/Sept03/KSC12092.HTML<br />

http://www.estec.esa.nl/wmwww/EME/laptops/ntradshld/index.htm<br />

Phil Herlth, a NASA employee<br />

References


Thank You

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!