17.08.2013 Views

ReOss® Powder - Intra-Lock

ReOss® Powder - Intra-Lock

ReOss® Powder - Intra-Lock

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ReOss ® <strong>Powder</strong><br />

Indication<br />

ReOss ® is indicated for use in filling and/or augmenting intraoral/maxillofacial osseous defects; such as infrabony/intrabony<br />

periodontal osseous defects, furcation defects, alveolar ridge osseous defects, tooth extraction sites and in sinus elevation<br />

procedures.<br />

Sub-Micron HA Particles<br />

can begin to be seen permeating the<br />

PGLA Matrix at 50,000x.<br />

Red highlights are used here<br />

as visual aid.<br />

SEM Image of ReOss ® Biocomposite<br />

300x Showing Internal Structure<br />

of an Individual Granule<br />

<strong>ReOss®</strong> Sub-Micron HA Infused Synthetic Biomaterial<br />

<strong>ReOss®</strong> has a multi-pore three-dimensional architecture that<br />

creates an environment for new bone growth. The scaffold<br />

also provides a hospitable adhesive substrate that serves as a<br />

strong physical support for the infusion and growth of bone<br />

cells. The entire structure is an intricate, highly interconnected<br />

matrix with enhanced hydrophilic properties. Through a<br />

HA<br />

HA<br />

HA<br />

HA<br />

SEM Image of ReOss ® Biocomposite<br />

10,000x Showing Porous Nature<br />

of the PLGA Matrix<br />

patented process utilizing barosynthesis, the biomaterial’s<br />

highly porous, synthetic polymer foam is permeated with<br />

osteoconductive sub-micron sized particles of HA. ReOss’s<br />

bone-like foam scaffold, osteoconductivity, and increased<br />

hydrophilic surface provide an environment for the<br />

stimulation of bone regeneration.<br />

Technical Properties<br />

ReOss<br />

<strong>ReOss®</strong><br />

Bone<br />

Bone<br />

Growth<br />

Growth<br />

Initiator<br />

Initiator<br />

is a<br />

is<br />

high<br />

a high<br />

purity<br />

purity<br />

biocomposite<br />

biocomposite<br />

which<br />

which<br />

is synthesized<br />

is synthesized<br />

utilizing<br />

utilizing<br />

a special<br />

a special<br />

process<br />

process<br />

involving<br />

involving<br />

high<br />

high<br />

pressure pressure formation. formation.<br />

Typical Composition<br />

Purity<br />

Porosity<br />

Pore Size<br />

Particle Size Size<br />

Resorption Time Time<br />

50% Hydroxyapatite (Ca ( Ca10(PO4)6 10(PO4) 6(OH) (OH)2) 2)<br />

50% Poly(lactide-co-glycolide)<br />

< 70 %<br />

Macropores = 15-300 150- 300 microns<br />

Micropores < ≤10 10 microns<br />

300-750 500 -1000 Microns microns<br />

From 6 to 12 Months<br />

Available Configurations Catalogue No. No. Volume<br />

Reference List<br />

<strong>ReOss®</strong> ReOss<strong>Powder</strong>: <strong>Powder</strong>:<br />

<strong>ReOss®</strong> ReOssPutty: Putty:<br />

ReOss <strong>ReOss®</strong> Injectable Gel:<br />

1. 1. Poly Poly (lactide-co-glycolide)/hydroxyapatite (lactide-co-glycolide)/hydroxyapatite composite composite scaffolds for bone tissue tissue engineering. engineering. Kim Kimet et<br />

al.<br />

al.<br />

Biomaterials<br />

Biomaterials<br />

27(2006)<br />

27(2006)<br />

1399-1409.<br />

1399-1409.<br />

2. A poly (lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.<br />

2. A poly (lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.<br />

Kim et al. Journal of Biomedical Research Part A Vol 80A Issue 1, pp 206-215.<br />

Kim et al. Journal of Biomedical Research Part A Vol 80A Issue 1, pp 206-215.<br />

3. Comparison of Osteogenic Potential Between Apatite-Coated Poly (lactide-co-glycolide)/Hydroxy<br />

apatite 3. Comparison Particulates of Osteogenic and Bio-Oss. Potential Kim et Between al. Dental Apatite-Coated Materials Journal Poly 2008; (lactide-co-glycolide)/Hydroxy-<br />

27(3): 368-375.<br />

4.<br />

apatite<br />

Peripheral<br />

Particulates<br />

nerve regeneration<br />

and Bio-Oss.<br />

within<br />

Kim et al.<br />

an<br />

Dental<br />

asymmetrically<br />

Materials<br />

porous<br />

Journal<br />

PLGA/<br />

2008;<br />

Pluronic<br />

27(3): 368-375.<br />

F127 nerve guide<br />

conduit. 4. Peripheral Oh et nerve al. Biomaterials regeneration 29(2008) within 1601-1609<br />

an asymmetrically porous PLGA/ Pluronic F127 nerve guide<br />

5. conduit. Sterilization, Oh ettoxicity, al. Biomaterials biocompatibility 29(2008) 1601-1609 and clinical applications of polylactic acid/polyglycolic acid<br />

copolymers.<br />

5. Sterilization,<br />

Athanasiou<br />

toxicity, biocompatibility<br />

et al. Biomaterials<br />

and<br />

17<br />

clinical<br />

(1996)<br />

applications<br />

93-102<br />

of polylactic acid/polyglycolic acid<br />

6. copolymers. In vitro biocompatibility Athanasiou et of al. bioresorbable Biomaterials 17 polymers: (1996) 93-102 poly(L-lactide) and poly(lactide-co-glycolide).<br />

A. Ignatius, L. E. Claes Biomaterials, Volume 17, Issue 8, 1996, Pages 831-839<br />

6. In vitro biocompatibility of bioresorbable polymers: poly(L-lactide) and poly(lactide-co-glycolide).<br />

A. Ignatius, L. E. Claes Biomaterials, Volume 17, Issue 8, 1996, Pages 831-839<br />

RP-1 0.5cc 0.5 cc<br />

RP-3 RP-3<br />

1cc 1cc<br />

RP-2 0.5cc 0.5 cc<br />

RP-4 RP-4<br />

1cc1<br />

cc<br />

RG-1 0.5cc 0.5 cc<br />

RG-2 RG-2<br />

1cc1<br />

cc<br />

Color coded<br />

container caps<br />

for easier<br />

product recognition<br />

••••••<br />

SUB-MICRON HA INFUSED SYNTHETIC BIOMATERIAL<br />

7. 7. Biodegradation Biodegradation and and biocompatibility biocompatibility of of PLA PLA and and PLGA PLGA microspheres. James M. Anderson, Matthew Matthew S. S.<br />

Shiva<br />

Shiva<br />

Advanced<br />

Advanced<br />

Drug<br />

Drug<br />

Delivery<br />

Delivery<br />

Reviews<br />

Reviews<br />

Volume<br />

Volume<br />

28,<br />

28,<br />

Issue<br />

Issue<br />

1,<br />

1,<br />

13<br />

13<br />

October<br />

October<br />

1997,<br />

1997,<br />

Pages<br />

Pages<br />

5-24<br />

5-24<br />

8. Resorbability of bone substitute biomaterials by human osteoclasts. Schilling et al. Biomaterials,<br />

8. Resorbability of bone substitute biomaterials by human osteoclasts. Schilling et al. Biomaterials,<br />

Volume 25, Issue 18, Aug 2004, pp 3963-3972.<br />

Volume 25, Issue 18, Aug 2004, pp 3963-3972.<br />

9. The biodegradation of hydroxyapatite bone graft substitutes in vivo. Rumpel et al. Folia Morphology<br />

9. Volume The biodegradation 65, No 1, pp 43-48 of hydroxyapatite bone graft substitutes in vivo. Rumpel et al. Folia Morphology<br />

Volume<br />

10. Biocompatibility<br />

65, No 1, pp 43-48<br />

of Scaffold Components and Human Bone Fetal Cells. Montjovent et al. European<br />

10. Cells Biocompatibility and Material Vol.5. of Scaffold Suppl. Components 2,2003 p.79 and Human Bone Fetal Cells. Montjovent et al. European<br />

Cells 11. Biodegradable and Material Vol.5. and Suppl. bioactive 2,2003 porous p.79polymer/inorganic<br />

composite scaffolds for bone tissue<br />

11.<br />

engineering.<br />

Biodegradable<br />

Rezwan<br />

and<br />

et<br />

bioactive<br />

al. Biomaterials<br />

porous polymer/inorganic<br />

27(2006) 3413-3431<br />

composite scaffolds for bone tissue<br />

engineering. 12. Physico/Chemical Rezwan et characterization, al. Biomaterials 27(2006) in vitro and 3413-3431 in vivo evaluation of <strong>ReOss®</strong> and Synthograft<br />

particulate grafting materials. Coimbra et al.<br />

12. Physico/Chemical characterization, in vitro and in vivo evaluation of ReOss and Synthograft<br />

particulate grafting materials. Coimbra et al.


Barosynthesized BioComposite<br />

• 100% Synthetic<br />

• Osteo Adhesive Topography<br />

• Strong 3-D Scaffold<br />

• Osteoconductive<br />

• Enhanced Hydrophilicity<br />

<strong>ReOss®</strong> is hydrophilic and configured as a multi-pore three-dimensional scaffold engineered to integrate with the<br />

physiochemical state of bone tissue.<br />

Overview of <strong>ReOss®</strong>: A Resorbable Bone-like Biocomposite PLGA/HA:<br />

Poly (lactic-co-glycolic) acid / Hydroxyapatite<br />

<strong>ReOss®</strong> is a composite biomaterial comprised of two phases - a PLGA biodegradable polymer and a bioceramic. The polymer<br />

provides a structurally stable, porous and biocompatible 5,6,7 three-dimensional matrix to which biological fluids can penetrate,<br />

and cells can adhere.The HA bioceramic, due to its chemical and structural similarity to the mineral phase of native bone, allows<br />

the biocomposite to create a bond with the living host bone. 2,11<br />

Sub-Micron-HA Particles<br />

In order to improve the bioactivity of the ceramic phase, <strong>ReOss®</strong> utilizes Sub-Micron-sized particulate Hydroxyapatite (HA).<br />

This particulate size HA shows improved osteointegration and faster degradation times over larger particulate HA, which<br />

can impede bone growth because of its slow biodegradation. 1,2 Sub-Micron-sized HA also has been reported to augment<br />

protein adsorption and cell adhesion, further improving the ability for bone to regenerate. 2<br />

Multi-pore Resorbable Structure<br />

The porosity of the polymer matrix of <strong>ReOss®</strong> also provides an excellent environment to aid in stimulating bone regeneration.<br />

Through a patented process involving high-pressure formation of the polymer matrix, <strong>ReOss®</strong> is replete with both macro and<br />

micropores. The micropores allow biological fluids and small molecules, which aid in cell growth to perfuse the matrix,<br />

enveloping and sustaining the osteogenic cells that attach to the macropores of the scaffolds. As the cells begin to grow and<br />

develop, both phases of the biocomposite degrade, leaving behind a stable, natural bone matrix. 7,8,9<br />

Osteodynamics<br />

Several studies have shown that biodegradable polymer/bioceramic composites can improve bone regeneration as<br />

compared with conventional composites by optimizing controlled resorption, osteogenesis and osteointegration. 1,2,11 By<br />

controlling the parameters which determine the characteristics of resorption and osteoinductivity, <strong>ReOss®</strong> provides a superior<br />

vector for the stimulation of new bone growth.<br />

GLOBAL HEADQUARTERS<br />

6560 West Rogers Circle, Bldg. 24<br />

Boca Raton, Florida 33487 USA<br />

GLOBAL Tel: 877-330-0338<br />

HEADQUARTERS<br />

www.intra-lock.com • info@intra-lock.com<br />

6560 West Rogers Circle, Bldg. 24 • Boca Raton, Florida 33487 USA<br />

Tel: 877-330-0338<br />

www.intra-lock.com • info@intra-lock.com<br />

<strong>Intra</strong>-<strong>Lock</strong><br />

<strong>Intra</strong>-<strong>Lock</strong>® is registered trademark of <strong>Intra</strong>-<strong>Lock</strong>® International, Inc.<br />

U.S. & Foreign Patents Pending.<br />

® and ReOss ® are registered trademarks of <strong>Intra</strong>-<strong>Lock</strong> ® International, Inc.<br />

U.S. & Foreign Patents Pending.<br />

GLOBAL HEADQUARTERS<br />

6560 West Rogers Circle, Bldg. 24 • Boca Raton, Florida 33487 USA<br />

Tel: 877-330-0338<br />

www.intra-lock.com • info@intra-lock.com<br />

<strong>Intra</strong>-<strong>Lock</strong>® is registered trademark of <strong>Intra</strong>-<strong>Lock</strong>® International, Inc.<br />

U.S. & Foreign Patents Pending.<br />

CE 0499 0499 • EC • Rep: EC Rep: <strong>Intra</strong>-<strong>Lock</strong> System Europa, Spa., Srl., I-84100 Salerno • • © © Copyright 2008, 2009, <strong>Intra</strong>-<strong>Lock</strong>® <strong>Intra</strong>-<strong>Lock</strong> System International • S4EN-08-10CE<br />

0499 • EC Rep: <strong>Intra</strong>-<strong>Lock</strong> System Europa, Spa., I-84100 Salerno • © Copyright 2008, <strong>Intra</strong>-<strong>Lock</strong>® System International • S4EN-08-10<br />

® CE<br />

System International • S4EN-09-07<br />

SUB-MICRON HA INFUSED SYNTHETIC BIOMATERIAL

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!