17.08.2013 Views

Generalizing the Bardos-LeRoux-Nédélec boundary condition for ...

Generalizing the Bardos-LeRoux-Nédélec boundary condition for ...

Generalizing the Bardos-LeRoux-Nédélec boundary condition for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The problem BLN <strong>condition</strong> & Alternatives Effective BC graph Definition Uniqueness Definition Bis Existence & Convergence of Approximations<br />

...Uniqueness, comparison, L 1 contraction.<br />

For <strong>the</strong> proof, by <strong>the</strong> Kruzhkov’s doubling of variables argument<br />

applied “inside Ω” one deduces <strong>the</strong> “local Kato inequality”<br />

<br />

(u−û) + <br />

(t)ξ ≤ (u0−û0) + t<br />

ξ(0, ·) + q + (u, û) · ∇ξ<br />

Ω<br />

Ω<br />

0<br />

Ω<br />

<strong>for</strong> all ξ ∈ D([0, t] × Ω).<br />

Take <strong>for</strong> ξ ∈ D(R × RN ) truncation-near-<strong>the</strong>-<strong>boundary</strong> functions ξh.<br />

We “pay” <strong>for</strong> this truncation with a new term which is “dissipative”.<br />

Indeed,<br />

t<br />

(∗)<br />

as h ↓ 0,<br />

0<br />

q<br />

Ω<br />

+ t<br />

(u, û) · ∇ξh −→ −<br />

0<br />

γwq<br />

∂Ω<br />

+ t<br />

(u, û)<br />

= − q + (γu, γû) ≤ ??? 0,<br />

0<br />

∂Ω

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!