17.08.2013 Views

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

A <strong>particle</strong>-<strong>in</strong>-<strong>Burgers</strong> <strong>mo<strong>de</strong>l</strong>: <strong>theory</strong> <strong>and</strong><br />

<strong>numerics</strong><br />

B. Andreianov 1<br />

jo<strong>in</strong>t work with<br />

F. Lagoutière (Orsay), N. Segu<strong>in</strong> (Paris VI) <strong>and</strong> T. Takahashi (Nancy)<br />

1 <strong>Laboratoire</strong> <strong>de</strong> Mathématiques CNRS UMR6623<br />

Université <strong>de</strong> Franche-Comté<br />

Besançon, France<br />

September, 2011 — Ed<strong>in</strong>burgh<br />

Hyperbolic Conservation Laws<br />

<strong>and</strong> Related Analysis with Applications


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Plan of the talk<br />

1 Mo<strong>de</strong>l <strong>and</strong> motivation<br />

2 Auxiliary steps<br />

3 Ma<strong>in</strong> Results<br />

4 The frozen <strong>particle</strong> case: coupl<strong>in</strong>g<br />

5 The frozen <strong>particle</strong> case: <strong>de</strong>f<strong>in</strong>ition, uniqueness<br />

6 The frozen <strong>particle</strong> case: <strong>numerics</strong> <strong>and</strong> existence<br />

7 The coupled problem


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

MODEL AND<br />

MOTIVATION


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Mo<strong>de</strong>l <strong>and</strong> motivation...<br />

D’Alembert paradox : a solid immersed <strong>in</strong> an <strong>in</strong>viscid fluid is not<br />

submitted to any resultant force ; <strong>in</strong> other words, birds (<strong>and</strong> planes...)<br />

could not fly with a <strong>mo<strong>de</strong>l</strong> where viscosity is neglected ! Yet, <strong>in</strong>viscid<br />

(hyperbolic !) <strong>mo<strong>de</strong>l</strong>s are ok for some fluids...<br />

Answer 1 to the d’Alembert paradox: use viscous <strong>mo<strong>de</strong>l</strong>s of<br />

fluid-solid <strong>in</strong>teraction (see e.g. M. Hillairet , for a recent review).<br />

Answer 2 (when the Reynolds number is large): it is reasonable to<br />

neglect the viscous effects <strong>in</strong> the <strong>mo<strong>de</strong>l</strong> that governs the fluid ;<br />

but we have to conserve <strong>in</strong>formation from the vanish<strong>in</strong>g viscosity<br />

<strong>in</strong> a DRAG FORCE .<br />

The drag force takes the form of a source term which takes <strong>in</strong>to<br />

account the difference between the velocity of the fluid <strong>and</strong> the<br />

velocity of the solid.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Mo<strong>de</strong>l <strong>and</strong> motivation...<br />

D’Alembert paradox : a solid immersed <strong>in</strong> an <strong>in</strong>viscid fluid is not<br />

submitted to any resultant force ; <strong>in</strong> other words, birds (<strong>and</strong> planes...)<br />

could not fly with a <strong>mo<strong>de</strong>l</strong> where viscosity is neglected ! Yet, <strong>in</strong>viscid<br />

(hyperbolic !) <strong>mo<strong>de</strong>l</strong>s are ok for some fluids...<br />

Answer 1 to the d’Alembert paradox: use viscous <strong>mo<strong>de</strong>l</strong>s of<br />

fluid-solid <strong>in</strong>teraction (see e.g. M. Hillairet , for a recent review).<br />

Answer 2 (when the Reynolds number is large): it is reasonable to<br />

neglect the viscous effects <strong>in</strong> the <strong>mo<strong>de</strong>l</strong> that governs the fluid ;<br />

but we have to conserve <strong>in</strong>formation from the vanish<strong>in</strong>g viscosity<br />

<strong>in</strong> a DRAG FORCE .<br />

The drag force takes the form of a source term which takes <strong>in</strong>to<br />

account the difference between the velocity of the fluid <strong>and</strong> the<br />

velocity of the solid.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Mo<strong>de</strong>l <strong>and</strong> motivation...<br />

D’Alembert paradox : a solid immersed <strong>in</strong> an <strong>in</strong>viscid fluid is not<br />

submitted to any resultant force ; <strong>in</strong> other words, birds (<strong>and</strong> planes...)<br />

could not fly with a <strong>mo<strong>de</strong>l</strong> where viscosity is neglected ! Yet, <strong>in</strong>viscid<br />

(hyperbolic !) <strong>mo<strong>de</strong>l</strong>s are ok for some fluids...<br />

Answer 1 to the d’Alembert paradox: use viscous <strong>mo<strong>de</strong>l</strong>s of<br />

fluid-solid <strong>in</strong>teraction (see e.g. M. Hillairet , for a recent review).<br />

Answer 2 (when the Reynolds number is large): it is reasonable to<br />

neglect the viscous effects <strong>in</strong> the <strong>mo<strong>de</strong>l</strong> that governs the fluid ;<br />

but we have to conserve <strong>in</strong>formation from the vanish<strong>in</strong>g viscosity<br />

<strong>in</strong> a DRAG FORCE .<br />

The drag force takes the form of a source term which takes <strong>in</strong>to<br />

account the difference between the velocity of the fluid <strong>and</strong> the<br />

velocity of the solid.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Mo<strong>de</strong>l <strong>and</strong> motivation...<br />

D’Alembert paradox : a solid immersed <strong>in</strong> an <strong>in</strong>viscid fluid is not<br />

submitted to any resultant force ; <strong>in</strong> other words, birds (<strong>and</strong> planes...)<br />

could not fly with a <strong>mo<strong>de</strong>l</strong> where viscosity is neglected ! Yet, <strong>in</strong>viscid<br />

(hyperbolic !) <strong>mo<strong>de</strong>l</strong>s are ok for some fluids...<br />

Answer 1 to the d’Alembert paradox: use viscous <strong>mo<strong>de</strong>l</strong>s of<br />

fluid-solid <strong>in</strong>teraction (see e.g. M. Hillairet , for a recent review).<br />

Answer 2 (when the Reynolds number is large): it is reasonable to<br />

neglect the viscous effects <strong>in</strong> the <strong>mo<strong>de</strong>l</strong> that governs the fluid ;<br />

but we have to conserve <strong>in</strong>formation from the vanish<strong>in</strong>g viscosity<br />

<strong>in</strong> a DRAG FORCE .<br />

The drag force takes the form of a source term which takes <strong>in</strong>to<br />

account the difference between the velocity of the fluid <strong>and</strong> the<br />

velocity of the solid.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Mo<strong>de</strong>l <strong>and</strong> motivation...<br />

The 1D case : the Lagoutière-Segu<strong>in</strong>-Takahashi <strong>mo<strong>de</strong>l</strong> for the<br />

<strong>in</strong>teraction, via a drag force, of a po<strong>in</strong>t <strong>particle</strong> with a <strong>Burgers</strong> fluid<br />

writes<br />

∂tu +∂x(u 2 /2) = λ D(h ′ (t)−u) δ0(x − h(t)),<br />

here<br />

mh ′′ (t) = λ D(u(t, h(t)) − h ′ (t)).<br />

• u, the velocity of the fluid, is unknown<br />

• h, the position of the solid <strong>particle</strong>, is unknown<br />

(then h ′ <strong>and</strong> h ′′ respectively <strong>de</strong>note its velocity <strong>and</strong> acceleration);<br />

• the parameters are λ (the drag coefficient) <strong>and</strong> m (the mass of the<br />

solid <strong>particle</strong>); both are positive.<br />

• the function D which <strong>in</strong>tervenes <strong>in</strong> the drag force is an <strong>in</strong>creas<strong>in</strong>g<br />

odd function.<br />

Actually, we will suppose that<br />

either D(v) = v (the l<strong>in</strong>ear case)<br />

or D(v) = v|v| (the quadratic case).


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Mo<strong>de</strong>l <strong>and</strong> motivation...<br />

The 1D case : the Lagoutière-Segu<strong>in</strong>-Takahashi <strong>mo<strong>de</strong>l</strong> for the<br />

<strong>in</strong>teraction, via a drag force, of a po<strong>in</strong>t <strong>particle</strong> with a <strong>Burgers</strong> fluid<br />

writes<br />

∂tu +∂x(u 2 /2) = λ D(h ′ (t)−u) δ0(x − h(t)),<br />

here<br />

mh ′′ (t) = λ D(u(t, h(t)) − h ′ (t)).<br />

• u, the velocity of the fluid, is unknown<br />

• h, the position of the solid <strong>particle</strong>, is unknown<br />

(then h ′ <strong>and</strong> h ′′ respectively <strong>de</strong>note its velocity <strong>and</strong> acceleration);<br />

• the parameters are λ (the drag coefficient) <strong>and</strong> m (the mass of the<br />

solid <strong>particle</strong>); both are positive.<br />

• the function D which <strong>in</strong>tervenes <strong>in</strong> the drag force is an <strong>in</strong>creas<strong>in</strong>g<br />

odd function.<br />

Actually, we will suppose that<br />

either D(v) = v (the l<strong>in</strong>ear case)<br />

or D(v) = v|v| (the quadratic case).


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Mo<strong>de</strong>l <strong>and</strong> motivation...<br />

The 1D case : the Lagoutière-Segu<strong>in</strong>-Takahashi <strong>mo<strong>de</strong>l</strong> for the<br />

<strong>in</strong>teraction, via a drag force, of a po<strong>in</strong>t <strong>particle</strong> with a <strong>Burgers</strong> fluid<br />

writes<br />

∂tu +∂x(u 2 /2) = λ D(h ′ (t)−u) δ0(x − h(t)),<br />

here<br />

mh ′′ (t) = λ D(u(t, h(t)) − h ′ (t)).<br />

• u, the velocity of the fluid, is unknown<br />

• h, the position of the solid <strong>particle</strong>, is unknown<br />

(then h ′ <strong>and</strong> h ′′ respectively <strong>de</strong>note its velocity <strong>and</strong> acceleration);<br />

• the parameters are λ (the drag coefficient) <strong>and</strong> m (the mass of the<br />

solid <strong>particle</strong>); both are positive.<br />

• the function D which <strong>in</strong>tervenes <strong>in</strong> the drag force is an <strong>in</strong>creas<strong>in</strong>g<br />

odd function.<br />

Actually, we will suppose that<br />

either D(v) = v (the l<strong>in</strong>ear case)<br />

or D(v) = v|v| (the quadratic case).


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

AUXILIARY STEPS


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong>...<br />

Our study of the above coupled problem <strong>in</strong>clu<strong>de</strong>s two auxiliary steps,<br />

that are of <strong>in</strong>terest on their own. The first step is<br />

<br />

∂tu(t, x)+∂x(u 2 /2)(t, x) = −λ u(t, x) δ0(x), t > 0, x ∈ R,<br />

u(0, x) = u0(x), x ∈ R,<br />

i.e., the <strong>particle</strong> is <strong>de</strong>coupled from the fluid <strong>and</strong> fixed at zero.<br />

Difficulty 1 : the source term has to be carefully <strong>de</strong>f<strong>in</strong>ed. In<strong>de</strong>ed, u<br />

can be discont<strong>in</strong>uous (<strong>and</strong> <strong>in</strong> fact, typically u IS DISCONTINUOUS at<br />

the <strong>particle</strong> location ).<br />

To give an <strong>in</strong>terpretation of the source term, the LeRoux<br />

approximation was studied <strong>in</strong> <strong>de</strong>tail by Lagoutière, Segu<strong>in</strong>,<br />

Takahashi: δ0 = ∂xH (H: the Heavysi<strong>de</strong> function) is replaced by<br />

∂xHε, a smoothed version. This permits to un<strong>de</strong>rst<strong>and</strong> what goes on<br />

at the <strong>in</strong>terface.<br />

The second step is to take h(·) a given path, still <strong>de</strong>coupled from the<br />

fluid, <strong>and</strong> to solve the <strong>Burgers</strong> equation with s<strong>in</strong>gular source term<br />

located at x = h(t). We’ll see that as soon as the first step is well<br />

un<strong>de</strong>rstood, the second one is easy.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong>...<br />

Our study of the above coupled problem <strong>in</strong>clu<strong>de</strong>s two auxiliary steps,<br />

that are of <strong>in</strong>terest on their own. The first step is<br />

<br />

∂tu(t, x)+∂x(u 2 /2)(t, x) = −λ u(t, x) δ0(x), t > 0, x ∈ R,<br />

u(0, x) = u0(x), x ∈ R,<br />

i.e., the <strong>particle</strong> is <strong>de</strong>coupled from the fluid <strong>and</strong> fixed at zero.<br />

Difficulty 1 : the source term has to be carefully <strong>de</strong>f<strong>in</strong>ed. In<strong>de</strong>ed, u<br />

can be discont<strong>in</strong>uous (<strong>and</strong> <strong>in</strong> fact, typically u IS DISCONTINUOUS at<br />

the <strong>particle</strong> location ).<br />

To give an <strong>in</strong>terpretation of the source term, the LeRoux<br />

approximation was studied <strong>in</strong> <strong>de</strong>tail by Lagoutière, Segu<strong>in</strong>,<br />

Takahashi: δ0 = ∂xH (H: the Heavysi<strong>de</strong> function) is replaced by<br />

∂xHε, a smoothed version. This permits to un<strong>de</strong>rst<strong>and</strong> what goes on<br />

at the <strong>in</strong>terface.<br />

The second step is to take h(·) a given path, still <strong>de</strong>coupled from the<br />

fluid, <strong>and</strong> to solve the <strong>Burgers</strong> equation with s<strong>in</strong>gular source term<br />

located at x = h(t). We’ll see that as soon as the first step is well<br />

un<strong>de</strong>rstood, the second one is easy.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong>...<br />

Our study of the above coupled problem <strong>in</strong>clu<strong>de</strong>s two auxiliary steps,<br />

that are of <strong>in</strong>terest on their own. The first step is<br />

<br />

∂tu(t, x)+∂x(u 2 /2)(t, x) = −λ u(t, x) δ0(x), t > 0, x ∈ R,<br />

u(0, x) = u0(x), x ∈ R,<br />

i.e., the <strong>particle</strong> is <strong>de</strong>coupled from the fluid <strong>and</strong> fixed at zero.<br />

Difficulty 1 : the source term has to be carefully <strong>de</strong>f<strong>in</strong>ed. In<strong>de</strong>ed, u<br />

can be discont<strong>in</strong>uous (<strong>and</strong> <strong>in</strong> fact, typically u IS DISCONTINUOUS at<br />

the <strong>particle</strong> location ).<br />

To give an <strong>in</strong>terpretation of the source term, the LeRoux<br />

approximation was studied <strong>in</strong> <strong>de</strong>tail by Lagoutière, Segu<strong>in</strong>,<br />

Takahashi: δ0 = ∂xH (H: the Heavysi<strong>de</strong> function) is replaced by<br />

∂xHε, a smoothed version. This permits to un<strong>de</strong>rst<strong>and</strong> what goes on<br />

at the <strong>in</strong>terface.<br />

The second step is to take h(·) a given path, still <strong>de</strong>coupled from the<br />

fluid, <strong>and</strong> to solve the <strong>Burgers</strong> equation with s<strong>in</strong>gular source term<br />

located at x = h(t). We’ll see that as soon as the first step is well<br />

un<strong>de</strong>rstood, the second one is easy.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong>...<br />

Our study of the above coupled problem <strong>in</strong>clu<strong>de</strong>s two auxiliary steps,<br />

that are of <strong>in</strong>terest on their own. The first step is<br />

<br />

∂tu(t, x)+∂x(u 2 /2)(t, x) = −λ u(t, x) δ0(x), t > 0, x ∈ R,<br />

u(0, x) = u0(x), x ∈ R,<br />

i.e., the <strong>particle</strong> is <strong>de</strong>coupled from the fluid <strong>and</strong> fixed at zero.<br />

Difficulty 1 : the source term has to be carefully <strong>de</strong>f<strong>in</strong>ed. In<strong>de</strong>ed, u<br />

can be discont<strong>in</strong>uous (<strong>and</strong> <strong>in</strong> fact, typically u IS DISCONTINUOUS at<br />

the <strong>particle</strong> location ).<br />

To give an <strong>in</strong>terpretation of the source term, the LeRoux<br />

approximation was studied <strong>in</strong> <strong>de</strong>tail by Lagoutière, Segu<strong>in</strong>,<br />

Takahashi: δ0 = ∂xH (H: the Heavysi<strong>de</strong> function) is replaced by<br />

∂xHε, a smoothed version. This permits to un<strong>de</strong>rst<strong>and</strong> what goes on<br />

at the <strong>in</strong>terface.<br />

The second step is to take h(·) a given path, still <strong>de</strong>coupled from the<br />

fluid, <strong>and</strong> to solve the <strong>Burgers</strong> equation with s<strong>in</strong>gular source term<br />

located at x = h(t). We’ll see that as soon as the first step is well<br />

un<strong>de</strong>rstood, the second one is easy.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong>...<br />

Our study of the above coupled problem <strong>in</strong>clu<strong>de</strong>s two auxiliary steps,<br />

that are of <strong>in</strong>terest on their own. The first step is<br />

<br />

∂tu(t, x)+∂x(u 2 /2)(t, x) = −λ u(t, x) δ0(x), t > 0, x ∈ R,<br />

u(0, x) = u0(x), x ∈ R,<br />

i.e., the <strong>particle</strong> is <strong>de</strong>coupled from the fluid <strong>and</strong> fixed at zero.<br />

Difficulty 1 : the source term has to be carefully <strong>de</strong>f<strong>in</strong>ed. In<strong>de</strong>ed, u<br />

can be discont<strong>in</strong>uous (<strong>and</strong> <strong>in</strong> fact, typically u IS DISCONTINUOUS at<br />

the <strong>particle</strong> location ).<br />

To give an <strong>in</strong>terpretation of the source term, the LeRoux<br />

approximation was studied <strong>in</strong> <strong>de</strong>tail by Lagoutière, Segu<strong>in</strong>,<br />

Takahashi: δ0 = ∂xH (H: the Heavysi<strong>de</strong> function) is replaced by<br />

∂xHε, a smoothed version. This permits to un<strong>de</strong>rst<strong>and</strong> what goes on<br />

at the <strong>in</strong>terface.<br />

The second step is to take h(·) a given path, still <strong>de</strong>coupled from the<br />

fluid, <strong>and</strong> to solve the <strong>Burgers</strong> equation with s<strong>in</strong>gular source term<br />

located at x = h(t). We’ll see that as soon as the first step is well<br />

un<strong>de</strong>rstood, the second one is easy.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong>...<br />

Our study of the above coupled problem <strong>in</strong>clu<strong>de</strong>s two auxiliary steps,<br />

that are of <strong>in</strong>terest on their own. The first step is<br />

<br />

∂tu(t, x)+∂x(u 2 /2)(t, x) = −λ u(t, x) δ0(x), t > 0, x ∈ R,<br />

u(0, x) = u0(x), x ∈ R,<br />

i.e., the <strong>particle</strong> is <strong>de</strong>coupled from the fluid <strong>and</strong> fixed at zero.<br />

Difficulty 1 : the source term has to be carefully <strong>de</strong>f<strong>in</strong>ed. In<strong>de</strong>ed, u<br />

can be discont<strong>in</strong>uous (<strong>and</strong> <strong>in</strong> fact, typically u IS DISCONTINUOUS at<br />

the <strong>particle</strong> location ).<br />

To give an <strong>in</strong>terpretation of the source term, the LeRoux<br />

approximation was studied <strong>in</strong> <strong>de</strong>tail by Lagoutière, Segu<strong>in</strong>,<br />

Takahashi: δ0 = ∂xH (H: the Heavysi<strong>de</strong> function) is replaced by<br />

∂xHε, a smoothed version. This permits to un<strong>de</strong>rst<strong>and</strong> what goes on<br />

at the <strong>in</strong>terface.<br />

The second step is to take h(·) a given path, still <strong>de</strong>coupled from the<br />

fluid, <strong>and</strong> to solve the <strong>Burgers</strong> equation with s<strong>in</strong>gular source term<br />

located at x = h(t). We’ll see that as soon as the first step is well<br />

un<strong>de</strong>rstood, the second one is easy.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong><br />

Other way around, we should un<strong>de</strong>rst<strong>and</strong> how to evolve the <strong>particle</strong><br />

location given the fluid state at time t. Recall the equation (ODE) for<br />

the <strong>particle</strong>:<br />

mh ′′ (t) = λ (u(t, h(t)) − h ′ (t)).<br />

Recall that u(t,·) has a jump at x = h(t)...<br />

Difficulty 2 : un<strong>de</strong>rst<strong>and</strong> the equation <strong>in</strong> the Carathéodory sense ? In<br />

the Filippov sense ?? We will see that a nice mathematical <strong>and</strong><br />

physical <strong>in</strong>terpretation is possible:<br />

• the <strong>particle</strong> is driven by the lack of mass conservation <strong>in</strong> the<br />

equation for u ; or, equivalently, the total quantity of movement<br />

<br />

R u(t,·)+mh′ (t) is conserved.<br />

• the ODE for h can be written <strong>in</strong> a weak form that <strong>in</strong>volves the values<br />

of u(t,·) on R (which is more "robust")<br />

With these auxiliary steps well un<strong>de</strong>rstood, we can<br />

• th<strong>in</strong>k of the appropriate <strong>de</strong>f<strong>in</strong>ition of solution<br />

• use fixed-po<strong>in</strong>t arguments to guarantee existence<br />

• use time splitt<strong>in</strong>g algorithms (evolve the PDE <strong>and</strong> the ODE<br />

alternatively) for existence (constructive) <strong>and</strong> efficient <strong>numerics</strong>.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong><br />

Other way around, we should un<strong>de</strong>rst<strong>and</strong> how to evolve the <strong>particle</strong><br />

location given the fluid state at time t. Recall the equation (ODE) for<br />

the <strong>particle</strong>:<br />

mh ′′ (t) = λ (u(t, h(t)) − h ′ (t)).<br />

Recall that u(t,·) has a jump at x = h(t)...<br />

Difficulty 2 : un<strong>de</strong>rst<strong>and</strong> the equation <strong>in</strong> the Carathéodory sense ? In<br />

the Filippov sense ?? We will see that a nice mathematical <strong>and</strong><br />

physical <strong>in</strong>terpretation is possible:<br />

• the <strong>particle</strong> is driven by the lack of mass conservation <strong>in</strong> the<br />

equation for u ; or, equivalently, the total quantity of movement<br />

<br />

R u(t,·)+mh′ (t) is conserved.<br />

• the ODE for h can be written <strong>in</strong> a weak form that <strong>in</strong>volves the values<br />

of u(t,·) on R (which is more "robust")<br />

With these auxiliary steps well un<strong>de</strong>rstood, we can<br />

• th<strong>in</strong>k of the appropriate <strong>de</strong>f<strong>in</strong>ition of solution<br />

• use fixed-po<strong>in</strong>t arguments to guarantee existence<br />

• use time splitt<strong>in</strong>g algorithms (evolve the PDE <strong>and</strong> the ODE<br />

alternatively) for existence (constructive) <strong>and</strong> efficient <strong>numerics</strong>.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong><br />

Other way around, we should un<strong>de</strong>rst<strong>and</strong> how to evolve the <strong>particle</strong><br />

location given the fluid state at time t. Recall the equation (ODE) for<br />

the <strong>particle</strong>:<br />

mh ′′ (t) = λ (u(t, h(t)) − h ′ (t)).<br />

Recall that u(t,·) has a jump at x = h(t)...<br />

Difficulty 2 : un<strong>de</strong>rst<strong>and</strong> the equation <strong>in</strong> the Carathéodory sense ? In<br />

the Filippov sense ?? We will see that a nice mathematical <strong>and</strong><br />

physical <strong>in</strong>terpretation is possible:<br />

• the <strong>particle</strong> is driven by the lack of mass conservation <strong>in</strong> the<br />

equation for u ; or, equivalently, the total quantity of movement<br />

<br />

R u(t,·)+mh′ (t) is conserved.<br />

• the ODE for h can be written <strong>in</strong> a weak form that <strong>in</strong>volves the values<br />

of u(t,·) on R (which is more "robust")<br />

With these auxiliary steps well un<strong>de</strong>rstood, we can<br />

• th<strong>in</strong>k of the appropriate <strong>de</strong>f<strong>in</strong>ition of solution<br />

• use fixed-po<strong>in</strong>t arguments to guarantee existence<br />

• use time splitt<strong>in</strong>g algorithms (evolve the PDE <strong>and</strong> the ODE<br />

alternatively) for existence (constructive) <strong>and</strong> efficient <strong>numerics</strong>.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong><br />

Other way around, we should un<strong>de</strong>rst<strong>and</strong> how to evolve the <strong>particle</strong><br />

location given the fluid state at time t. Recall the equation (ODE) for<br />

the <strong>particle</strong>:<br />

mh ′′ (t) = λ (u(t, h(t)) − h ′ (t)).<br />

Recall that u(t,·) has a jump at x = h(t)...<br />

Difficulty 2 : un<strong>de</strong>rst<strong>and</strong> the equation <strong>in</strong> the Carathéodory sense ? In<br />

the Filippov sense ?? We will see that a nice mathematical <strong>and</strong><br />

physical <strong>in</strong>terpretation is possible:<br />

• the <strong>particle</strong> is driven by the lack of mass conservation <strong>in</strong> the<br />

equation for u ; or, equivalently, the total quantity of movement<br />

<br />

R u(t,·)+mh′ (t) is conserved.<br />

• the ODE for h can be written <strong>in</strong> a weak form that <strong>in</strong>volves the values<br />

of u(t,·) on R (which is more "robust")<br />

With these auxiliary steps well un<strong>de</strong>rstood, we can<br />

• th<strong>in</strong>k of the appropriate <strong>de</strong>f<strong>in</strong>ition of solution<br />

• use fixed-po<strong>in</strong>t arguments to guarantee existence<br />

• use time splitt<strong>in</strong>g algorithms (evolve the PDE <strong>and</strong> the ODE<br />

alternatively) for existence (constructive) <strong>and</strong> efficient <strong>numerics</strong>.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong><br />

Other way around, we should un<strong>de</strong>rst<strong>and</strong> how to evolve the <strong>particle</strong><br />

location given the fluid state at time t. Recall the equation (ODE) for<br />

the <strong>particle</strong>:<br />

mh ′′ (t) = λ (u(t, h(t)) − h ′ (t)).<br />

Recall that u(t,·) has a jump at x = h(t)...<br />

Difficulty 2 : un<strong>de</strong>rst<strong>and</strong> the equation <strong>in</strong> the Carathéodory sense ? In<br />

the Filippov sense ?? We will see that a nice mathematical <strong>and</strong><br />

physical <strong>in</strong>terpretation is possible:<br />

• the <strong>particle</strong> is driven by the lack of mass conservation <strong>in</strong> the<br />

equation for u ; or, equivalently, the total quantity of movement<br />

<br />

R u(t,·)+mh′ (t) is conserved.<br />

• the ODE for h can be written <strong>in</strong> a weak form that <strong>in</strong>volves the values<br />

of u(t,·) on R (which is more "robust")<br />

With these auxiliary steps well un<strong>de</strong>rstood, we can<br />

• th<strong>in</strong>k of the appropriate <strong>de</strong>f<strong>in</strong>ition of solution<br />

• use fixed-po<strong>in</strong>t arguments to guarantee existence<br />

• use time splitt<strong>in</strong>g algorithms (evolve the PDE <strong>and</strong> the ODE<br />

alternatively) for existence (constructive) <strong>and</strong> efficient <strong>numerics</strong>.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Auxiliary steps to approach the full <strong>mo<strong>de</strong>l</strong><br />

Other way around, we should un<strong>de</strong>rst<strong>and</strong> how to evolve the <strong>particle</strong><br />

location given the fluid state at time t. Recall the equation (ODE) for<br />

the <strong>particle</strong>:<br />

mh ′′ (t) = λ (u(t, h(t)) − h ′ (t)).<br />

Recall that u(t,·) has a jump at x = h(t)...<br />

Difficulty 2 : un<strong>de</strong>rst<strong>and</strong> the equation <strong>in</strong> the Carathéodory sense ? In<br />

the Filippov sense ?? We will see that a nice mathematical <strong>and</strong><br />

physical <strong>in</strong>terpretation is possible:<br />

• the <strong>particle</strong> is driven by the lack of mass conservation <strong>in</strong> the<br />

equation for u ; or, equivalently, the total quantity of movement<br />

<br />

R u(t,·)+mh′ (t) is conserved.<br />

• the ODE for h can be written <strong>in</strong> a weak form that <strong>in</strong>volves the values<br />

of u(t,·) on R (which is more "robust")<br />

With these auxiliary steps well un<strong>de</strong>rstood, we can<br />

• th<strong>in</strong>k of the appropriate <strong>de</strong>f<strong>in</strong>ition of solution<br />

• use fixed-po<strong>in</strong>t arguments to guarantee existence<br />

• use time splitt<strong>in</strong>g algorithms (evolve the PDE <strong>and</strong> the ODE<br />

alternatively) for existence (constructive) <strong>and</strong> efficient <strong>numerics</strong>.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

MAIN RESULTS


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Ma<strong>in</strong> results: Auxiliary Problem 1 is well posed<br />

For the <strong>Burgers</strong>-with-Dirac-at-zero <strong>mo<strong>de</strong>l</strong> , we apply the mach<strong>in</strong>ery<br />

<strong>de</strong>veloped for conservation laws with discont<strong>in</strong>uous flux (adapted<br />

entropies, Baiti,Jenssen <strong>and</strong> Audusse,Perthame ; revisited <strong>and</strong><br />

generalized recently by BA., Karlsen, Risebro us<strong>in</strong>g the notion of<br />

admissibility germ ). The outcome is:<br />

– <strong>de</strong>f<strong>in</strong>ition(s) of entropy solutions<br />

– uniqueness, cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce (L 1 , L 1 loc<br />

<strong>de</strong>pen<strong>de</strong>nce) exactly as <strong>in</strong> the Kruzhkov <strong>theory</strong><br />

In addition, we f<strong>in</strong>d<br />

with doma<strong>in</strong> of<br />

– a priori L ∞ bounds <strong>and</strong> (more <strong>de</strong>licate) variation bounds<br />

– a strik<strong>in</strong>gly simple numerical method (monotone consistent f<strong>in</strong>ite<br />

volume scheme with a trick at the <strong>in</strong>terface )<br />

– convergence of the numerical scheme, existence .<br />

NB: the Riemann solver at the <strong>in</strong>terface was already <strong>de</strong>scribed by<br />

Lagoutière, Segu<strong>in</strong>, Takahashi , so a Godunov scheme could be<br />

constructed; but we seek to avoid us<strong>in</strong>g the Riemann solver because<br />

it is <strong>in</strong>tricate.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Ma<strong>in</strong> results: Auxiliary Problem 1 is well posed<br />

For the <strong>Burgers</strong>-with-Dirac-at-zero <strong>mo<strong>de</strong>l</strong> , we apply the mach<strong>in</strong>ery<br />

<strong>de</strong>veloped for conservation laws with discont<strong>in</strong>uous flux (adapted<br />

entropies, Baiti,Jenssen <strong>and</strong> Audusse,Perthame ; revisited <strong>and</strong><br />

generalized recently by BA., Karlsen, Risebro us<strong>in</strong>g the notion of<br />

admissibility germ ). The outcome is:<br />

– <strong>de</strong>f<strong>in</strong>ition(s) of entropy solutions<br />

– uniqueness, cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce (L 1 , L 1 loc<br />

<strong>de</strong>pen<strong>de</strong>nce) exactly as <strong>in</strong> the Kruzhkov <strong>theory</strong><br />

In addition, we f<strong>in</strong>d<br />

with doma<strong>in</strong> of<br />

– a priori L ∞ bounds <strong>and</strong> (more <strong>de</strong>licate) variation bounds<br />

– a strik<strong>in</strong>gly simple numerical method (monotone consistent f<strong>in</strong>ite<br />

volume scheme with a trick at the <strong>in</strong>terface )<br />

– convergence of the numerical scheme, existence .<br />

NB: the Riemann solver at the <strong>in</strong>terface was already <strong>de</strong>scribed by<br />

Lagoutière, Segu<strong>in</strong>, Takahashi , so a Godunov scheme could be<br />

constructed; but we seek to avoid us<strong>in</strong>g the Riemann solver because<br />

it is <strong>in</strong>tricate.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Ma<strong>in</strong> results: Auxiliary Problem 1 is well posed<br />

For the <strong>Burgers</strong>-with-Dirac-at-zero <strong>mo<strong>de</strong>l</strong> , we apply the mach<strong>in</strong>ery<br />

<strong>de</strong>veloped for conservation laws with discont<strong>in</strong>uous flux (adapted<br />

entropies, Baiti,Jenssen <strong>and</strong> Audusse,Perthame ; revisited <strong>and</strong><br />

generalized recently by BA., Karlsen, Risebro us<strong>in</strong>g the notion of<br />

admissibility germ ). The outcome is:<br />

– <strong>de</strong>f<strong>in</strong>ition(s) of entropy solutions<br />

– uniqueness, cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce (L 1 , L 1 loc<br />

<strong>de</strong>pen<strong>de</strong>nce) exactly as <strong>in</strong> the Kruzhkov <strong>theory</strong><br />

In addition, we f<strong>in</strong>d<br />

with doma<strong>in</strong> of<br />

– a priori L ∞ bounds <strong>and</strong> (more <strong>de</strong>licate) variation bounds<br />

– a strik<strong>in</strong>gly simple numerical method (monotone consistent f<strong>in</strong>ite<br />

volume scheme with a trick at the <strong>in</strong>terface )<br />

– convergence of the numerical scheme, existence .<br />

NB: the Riemann solver at the <strong>in</strong>terface was already <strong>de</strong>scribed by<br />

Lagoutière, Segu<strong>in</strong>, Takahashi , so a Godunov scheme could be<br />

constructed; but we seek to avoid us<strong>in</strong>g the Riemann solver because<br />

it is <strong>in</strong>tricate.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Ma<strong>in</strong> results: Auxiliary Problem 1 is well posed<br />

For the <strong>Burgers</strong>-with-Dirac-at-zero <strong>mo<strong>de</strong>l</strong> , we apply the mach<strong>in</strong>ery<br />

<strong>de</strong>veloped for conservation laws with discont<strong>in</strong>uous flux (adapted<br />

entropies, Baiti,Jenssen <strong>and</strong> Audusse,Perthame ; revisited <strong>and</strong><br />

generalized recently by BA., Karlsen, Risebro us<strong>in</strong>g the notion of<br />

admissibility germ ). The outcome is:<br />

– <strong>de</strong>f<strong>in</strong>ition(s) of entropy solutions<br />

– uniqueness, cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce (L 1 , L 1 loc<br />

<strong>de</strong>pen<strong>de</strong>nce) exactly as <strong>in</strong> the Kruzhkov <strong>theory</strong><br />

In addition, we f<strong>in</strong>d<br />

with doma<strong>in</strong> of<br />

– a priori L ∞ bounds <strong>and</strong> (more <strong>de</strong>licate) variation bounds<br />

– a strik<strong>in</strong>gly simple numerical method (monotone consistent f<strong>in</strong>ite<br />

volume scheme with a trick at the <strong>in</strong>terface )<br />

– convergence of the numerical scheme, existence .<br />

NB: the Riemann solver at the <strong>in</strong>terface was already <strong>de</strong>scribed by<br />

Lagoutière, Segu<strong>in</strong>, Takahashi , so a Godunov scheme could be<br />

constructed; but we seek to avoid us<strong>in</strong>g the Riemann solver because<br />

it is <strong>in</strong>tricate.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Ma<strong>in</strong> results: : Auxiliary Problem 2 <strong>and</strong> the full problem<br />

Then for the <strong>Burgers</strong>-driven-by-<strong>particle</strong> <strong>mo<strong>de</strong>l</strong> (with x = h(t) GIVEN<br />

path of the <strong>particle</strong>) we <strong>de</strong>duce well-posedness rather easily.<br />

It is observed that the case of straight path, h(t) = Vt with V = const,<br />

reduces to the Dirac-at-zero <strong>mo<strong>de</strong>l</strong> by the simultaneous change of<br />

u − V <strong>in</strong>to u <strong>and</strong> of x − Vt <strong>in</strong>to x. Thus, noth<strong>in</strong>g new for h(t) = Vt.<br />

Then any (W 2,∞ ) path h(·) is approximated by piecewise aff<strong>in</strong>e paths;<br />

existence is established by passage to the limit. Uniqueness is<br />

straightforward from the <strong>de</strong>f<strong>in</strong>ition of solution.<br />

For the coupled <strong>mo<strong>de</strong>l</strong> with data u0 <strong>and</strong> h(0) = 0, h ′ (0) = v0, we get<br />

– existence, for L ∞ data u0<br />

– existence, uniqueness, cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce for BV solutions ,<br />

for BV data u0.<br />

We construct a time-explicit Glimm-type scheme where <strong>particle</strong><br />

position is updated via splitt<strong>in</strong>g; we get numerical results that agree<br />

with the physical phenomena that are expected for the <strong>mo<strong>de</strong>l</strong> .


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Ma<strong>in</strong> results: : Auxiliary Problem 2 <strong>and</strong> the full problem<br />

Then for the <strong>Burgers</strong>-driven-by-<strong>particle</strong> <strong>mo<strong>de</strong>l</strong> (with x = h(t) GIVEN<br />

path of the <strong>particle</strong>) we <strong>de</strong>duce well-posedness rather easily.<br />

It is observed that the case of straight path, h(t) = Vt with V = const,<br />

reduces to the Dirac-at-zero <strong>mo<strong>de</strong>l</strong> by the simultaneous change of<br />

u − V <strong>in</strong>to u <strong>and</strong> of x − Vt <strong>in</strong>to x. Thus, noth<strong>in</strong>g new for h(t) = Vt.<br />

Then any (W 2,∞ ) path h(·) is approximated by piecewise aff<strong>in</strong>e paths;<br />

existence is established by passage to the limit. Uniqueness is<br />

straightforward from the <strong>de</strong>f<strong>in</strong>ition of solution.<br />

For the coupled <strong>mo<strong>de</strong>l</strong> with data u0 <strong>and</strong> h(0) = 0, h ′ (0) = v0, we get<br />

– existence, for L ∞ data u0<br />

– existence, uniqueness, cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce for BV solutions ,<br />

for BV data u0.<br />

We construct a time-explicit Glimm-type scheme where <strong>particle</strong><br />

position is updated via splitt<strong>in</strong>g; we get numerical results that agree<br />

with the physical phenomena that are expected for the <strong>mo<strong>de</strong>l</strong> .


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Ma<strong>in</strong> results: : Auxiliary Problem 2 <strong>and</strong> the full problem<br />

Then for the <strong>Burgers</strong>-driven-by-<strong>particle</strong> <strong>mo<strong>de</strong>l</strong> (with x = h(t) GIVEN<br />

path of the <strong>particle</strong>) we <strong>de</strong>duce well-posedness rather easily.<br />

It is observed that the case of straight path, h(t) = Vt with V = const,<br />

reduces to the Dirac-at-zero <strong>mo<strong>de</strong>l</strong> by the simultaneous change of<br />

u − V <strong>in</strong>to u <strong>and</strong> of x − Vt <strong>in</strong>to x. Thus, noth<strong>in</strong>g new for h(t) = Vt.<br />

Then any (W 2,∞ ) path h(·) is approximated by piecewise aff<strong>in</strong>e paths;<br />

existence is established by passage to the limit. Uniqueness is<br />

straightforward from the <strong>de</strong>f<strong>in</strong>ition of solution.<br />

For the coupled <strong>mo<strong>de</strong>l</strong> with data u0 <strong>and</strong> h(0) = 0, h ′ (0) = v0, we get<br />

– existence, for L ∞ data u0<br />

– existence, uniqueness, cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce for BV solutions ,<br />

for BV data u0.<br />

We construct a time-explicit Glimm-type scheme where <strong>particle</strong><br />

position is updated via splitt<strong>in</strong>g; we get numerical results that agree<br />

with the physical phenomena that are expected for the <strong>mo<strong>de</strong>l</strong> .


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Ma<strong>in</strong> results: : Auxiliary Problem 2 <strong>and</strong> the full problem<br />

Then for the <strong>Burgers</strong>-driven-by-<strong>particle</strong> <strong>mo<strong>de</strong>l</strong> (with x = h(t) GIVEN<br />

path of the <strong>particle</strong>) we <strong>de</strong>duce well-posedness rather easily.<br />

It is observed that the case of straight path, h(t) = Vt with V = const,<br />

reduces to the Dirac-at-zero <strong>mo<strong>de</strong>l</strong> by the simultaneous change of<br />

u − V <strong>in</strong>to u <strong>and</strong> of x − Vt <strong>in</strong>to x. Thus, noth<strong>in</strong>g new for h(t) = Vt.<br />

Then any (W 2,∞ ) path h(·) is approximated by piecewise aff<strong>in</strong>e paths;<br />

existence is established by passage to the limit. Uniqueness is<br />

straightforward from the <strong>de</strong>f<strong>in</strong>ition of solution.<br />

For the coupled <strong>mo<strong>de</strong>l</strong> with data u0 <strong>and</strong> h(0) = 0, h ′ (0) = v0, we get<br />

– existence, for L ∞ data u0<br />

– existence, uniqueness, cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce for BV solutions ,<br />

for BV data u0.<br />

We construct a time-explicit Glimm-type scheme where <strong>particle</strong><br />

position is updated via splitt<strong>in</strong>g; we get numerical results that agree<br />

with the physical phenomena that are expected for the <strong>mo<strong>de</strong>l</strong> .


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Ma<strong>in</strong> results: : Auxiliary Problem 2 <strong>and</strong> the full problem<br />

Then for the <strong>Burgers</strong>-driven-by-<strong>particle</strong> <strong>mo<strong>de</strong>l</strong> (with x = h(t) GIVEN<br />

path of the <strong>particle</strong>) we <strong>de</strong>duce well-posedness rather easily.<br />

It is observed that the case of straight path, h(t) = Vt with V = const,<br />

reduces to the Dirac-at-zero <strong>mo<strong>de</strong>l</strong> by the simultaneous change of<br />

u − V <strong>in</strong>to u <strong>and</strong> of x − Vt <strong>in</strong>to x. Thus, noth<strong>in</strong>g new for h(t) = Vt.<br />

Then any (W 2,∞ ) path h(·) is approximated by piecewise aff<strong>in</strong>e paths;<br />

existence is established by passage to the limit. Uniqueness is<br />

straightforward from the <strong>de</strong>f<strong>in</strong>ition of solution.<br />

For the coupled <strong>mo<strong>de</strong>l</strong> with data u0 <strong>and</strong> h(0) = 0, h ′ (0) = v0, we get<br />

– existence, for L ∞ data u0<br />

– existence, uniqueness, cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce for BV solutions ,<br />

for BV data u0.<br />

We construct a time-explicit Glimm-type scheme where <strong>particle</strong><br />

position is updated via splitt<strong>in</strong>g; we get numerical results that agree<br />

with the physical phenomena that are expected for the <strong>mo<strong>de</strong>l</strong> .


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

FROZEN PARTICLE<br />

(DIRAC-AT-ZERO DRAG TERM):<br />

UNDERSTANDING THE COUPLING


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g...<br />

The admissibility at the <strong>in</strong>terface<br />

{x = 0} of the solution<br />

is governed by the germ Gλ<br />

(term<strong>in</strong>ology related to the one<br />

of BA, Karlsen, Risebro ):<br />

Def<strong>in</strong>ition<br />

The admissibility germ Gλ ⊂ R2 (or germ, for short) associated with<br />

the <strong>particle</strong>-at-zero problem is the union Gλ = G 1 λ ∪ G 2 λ ∪ G 3 λ , where<br />

= {(a, a−λ), a ∈ R}.<br />

G 1 λ<br />

G 2 λ<br />

= [0,λ]×[−λ, 0].<br />

(0, 0)<br />

G 3 λ = {(a, b) ∈ (R+ ×R− )\G 2 λ , −λ a+b λ}.<br />

NB: the partition of Gλ <strong>in</strong>to the three parts is dictated by the<br />

subsequent analysis, <strong>and</strong> by profiles study of LST .<br />

G 2 λ<br />

−λ<br />

u+<br />

λ<br />

G 1 λ<br />

G 3 λ<br />

u−


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g...<br />

The admissibility at the <strong>in</strong>terface<br />

{x = 0} of the solution<br />

is governed by the germ Gλ<br />

(term<strong>in</strong>ology related to the one<br />

of BA, Karlsen, Risebro ):<br />

Def<strong>in</strong>ition<br />

The admissibility germ Gλ ⊂ R2 (or germ, for short) associated with<br />

the <strong>particle</strong>-at-zero problem is the union Gλ = G 1 λ ∪ G 2 λ ∪ G 3 λ , where<br />

= {(a, a−λ), a ∈ R}.<br />

G 1 λ<br />

G 2 λ<br />

= [0,λ]×[−λ, 0].<br />

(0, 0)<br />

G 3 λ = {(a, b) ∈ (R+ ×R− )\G 2 λ , −λ a+b λ}.<br />

NB: the partition of Gλ <strong>in</strong>to the three parts is dictated by the<br />

subsequent analysis, <strong>and</strong> by profiles study of LST .<br />

G 2 λ<br />

−λ<br />

u+<br />

λ<br />

G 1 λ<br />

G 3 λ<br />

u−


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g...<br />

Expla<strong>in</strong>ation : the <strong>Burgers</strong> equation with Dirac-at-zero drag term is<br />

equivalent to ∂tu +∂x(u 2 /2) = −λu∂xH.<br />

We <strong>in</strong>troduce Hε ∈ C 1 (R) a non-<strong>de</strong>creas<strong>in</strong>g function such that Hε(x) = H(x)<br />

when |x| ε. S<strong>in</strong>ce we are <strong>in</strong>terested <strong>in</strong> un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the behavior of the<br />

solution through the stationary <strong>in</strong>terface{x = 0}, we can study only<br />

stationary solutions. We then obta<strong>in</strong> the regularized equation for<br />

Uε(x) = u(t, x) <strong>in</strong> the strip −ε < x < ε:<br />

(U 2 ε/2) ′ (x)+λUε(x)∂xHε(x) = 0.<br />

Proposition (Lagoutière, Segu<strong>in</strong>, Takahashi ’08)<br />

In<strong>de</strong>pen<strong>de</strong>ntly from the choice of Hε, there exists a solution to the above<br />

ODE with Uε(−ε) = c− <strong>and</strong> Uε(+ε) = c+ if <strong>and</strong> only if (c−, c+) ∈ Gλ.<br />

The <strong>mo<strong>de</strong>l</strong>l<strong>in</strong>g assumption we make is the follow<strong>in</strong>g :<br />

the traces γ−u <strong>and</strong> γ+u at {x = 0} of a solution u of the <strong>Burgers</strong> equation on<br />

R + ×(R\{0}) are compatible if <strong>and</strong> only if there exists a solution to above<br />

ODE such that Uε(−ε) = γ−u, Uε(ε) = γ+u.<br />

Thus the germ Gλ is the set of couples(γ−u,γ+u) of possible traces at<br />

{x = 0} (for a.e. t > 0) of the admissible solutions.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g...<br />

Expla<strong>in</strong>ation : the <strong>Burgers</strong> equation with Dirac-at-zero drag term is<br />

equivalent to ∂tu +∂x(u 2 /2) = −λu∂xH.<br />

We <strong>in</strong>troduce Hε ∈ C 1 (R) a non-<strong>de</strong>creas<strong>in</strong>g function such that Hε(x) = H(x)<br />

when |x| ε. S<strong>in</strong>ce we are <strong>in</strong>terested <strong>in</strong> un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the behavior of the<br />

solution through the stationary <strong>in</strong>terface{x = 0}, we can study only<br />

stationary solutions. We then obta<strong>in</strong> the regularized equation for<br />

Uε(x) = u(t, x) <strong>in</strong> the strip −ε < x < ε:<br />

(U 2 ε/2) ′ (x)+λUε(x)∂xHε(x) = 0.<br />

Proposition (Lagoutière, Segu<strong>in</strong>, Takahashi ’08)<br />

In<strong>de</strong>pen<strong>de</strong>ntly from the choice of Hε, there exists a solution to the above<br />

ODE with Uε(−ε) = c− <strong>and</strong> Uε(+ε) = c+ if <strong>and</strong> only if (c−, c+) ∈ Gλ.<br />

The <strong>mo<strong>de</strong>l</strong>l<strong>in</strong>g assumption we make is the follow<strong>in</strong>g :<br />

the traces γ−u <strong>and</strong> γ+u at {x = 0} of a solution u of the <strong>Burgers</strong> equation on<br />

R + ×(R\{0}) are compatible if <strong>and</strong> only if there exists a solution to above<br />

ODE such that Uε(−ε) = γ−u, Uε(ε) = γ+u.<br />

Thus the germ Gλ is the set of couples(γ−u,γ+u) of possible traces at<br />

{x = 0} (for a.e. t > 0) of the admissible solutions.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g...<br />

Expla<strong>in</strong>ation : the <strong>Burgers</strong> equation with Dirac-at-zero drag term is<br />

equivalent to ∂tu +∂x(u 2 /2) = −λu∂xH.<br />

We <strong>in</strong>troduce Hε ∈ C 1 (R) a non-<strong>de</strong>creas<strong>in</strong>g function such that Hε(x) = H(x)<br />

when |x| ε. S<strong>in</strong>ce we are <strong>in</strong>terested <strong>in</strong> un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the behavior of the<br />

solution through the stationary <strong>in</strong>terface{x = 0}, we can study only<br />

stationary solutions. We then obta<strong>in</strong> the regularized equation for<br />

Uε(x) = u(t, x) <strong>in</strong> the strip −ε < x < ε:<br />

(U 2 ε/2) ′ (x)+λUε(x)∂xHε(x) = 0.<br />

Proposition (Lagoutière, Segu<strong>in</strong>, Takahashi ’08)<br />

In<strong>de</strong>pen<strong>de</strong>ntly from the choice of Hε, there exists a solution to the above<br />

ODE with Uε(−ε) = c− <strong>and</strong> Uε(+ε) = c+ if <strong>and</strong> only if (c−, c+) ∈ Gλ.<br />

The <strong>mo<strong>de</strong>l</strong>l<strong>in</strong>g assumption we make is the follow<strong>in</strong>g :<br />

the traces γ−u <strong>and</strong> γ+u at {x = 0} of a solution u of the <strong>Burgers</strong> equation on<br />

R + ×(R\{0}) are compatible if <strong>and</strong> only if there exists a solution to above<br />

ODE such that Uε(−ε) = γ−u, Uε(ε) = γ+u.<br />

Thus the germ Gλ is the set of couples(γ−u,γ+u) of possible traces at<br />

{x = 0} (for a.e. t > 0) of the admissible solutions.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g...<br />

Expla<strong>in</strong>ation : the <strong>Burgers</strong> equation with Dirac-at-zero drag term is<br />

equivalent to ∂tu +∂x(u 2 /2) = −λu∂xH.<br />

We <strong>in</strong>troduce Hε ∈ C 1 (R) a non-<strong>de</strong>creas<strong>in</strong>g function such that Hε(x) = H(x)<br />

when |x| ε. S<strong>in</strong>ce we are <strong>in</strong>terested <strong>in</strong> un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the behavior of the<br />

solution through the stationary <strong>in</strong>terface{x = 0}, we can study only<br />

stationary solutions. We then obta<strong>in</strong> the regularized equation for<br />

Uε(x) = u(t, x) <strong>in</strong> the strip −ε < x < ε:<br />

(U 2 ε/2) ′ (x)+λUε(x)∂xHε(x) = 0.<br />

Proposition (Lagoutière, Segu<strong>in</strong>, Takahashi ’08)<br />

In<strong>de</strong>pen<strong>de</strong>ntly from the choice of Hε, there exists a solution to the above<br />

ODE with Uε(−ε) = c− <strong>and</strong> Uε(+ε) = c+ if <strong>and</strong> only if (c−, c+) ∈ Gλ.<br />

The <strong>mo<strong>de</strong>l</strong>l<strong>in</strong>g assumption we make is the follow<strong>in</strong>g :<br />

the traces γ−u <strong>and</strong> γ+u at {x = 0} of a solution u of the <strong>Burgers</strong> equation on<br />

R + ×(R\{0}) are compatible if <strong>and</strong> only if there exists a solution to above<br />

ODE such that Uε(−ε) = γ−u, Uε(ε) = γ+u.<br />

Thus the germ Gλ is the set of couples(γ−u,γ+u) of possible traces at<br />

{x = 0} (for a.e. t > 0) of the admissible solutions.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g...<br />

Expla<strong>in</strong>ation : the <strong>Burgers</strong> equation with Dirac-at-zero drag term is<br />

equivalent to ∂tu +∂x(u 2 /2) = −λu∂xH.<br />

We <strong>in</strong>troduce Hε ∈ C 1 (R) a non-<strong>de</strong>creas<strong>in</strong>g function such that Hε(x) = H(x)<br />

when |x| ε. S<strong>in</strong>ce we are <strong>in</strong>terested <strong>in</strong> un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the behavior of the<br />

solution through the stationary <strong>in</strong>terface{x = 0}, we can study only<br />

stationary solutions. We then obta<strong>in</strong> the regularized equation for<br />

Uε(x) = u(t, x) <strong>in</strong> the strip −ε < x < ε:<br />

(U 2 ε/2) ′ (x)+λUε(x)∂xHε(x) = 0.<br />

Proposition (Lagoutière, Segu<strong>in</strong>, Takahashi ’08)<br />

In<strong>de</strong>pen<strong>de</strong>ntly from the choice of Hε, there exists a solution to the above<br />

ODE with Uε(−ε) = c− <strong>and</strong> Uε(+ε) = c+ if <strong>and</strong> only if (c−, c+) ∈ Gλ.<br />

The <strong>mo<strong>de</strong>l</strong>l<strong>in</strong>g assumption we make is the follow<strong>in</strong>g :<br />

the traces γ−u <strong>and</strong> γ+u at {x = 0} of a solution u of the <strong>Burgers</strong> equation on<br />

R + ×(R\{0}) are compatible if <strong>and</strong> only if there exists a solution to above<br />

ODE such that Uε(−ε) = γ−u, Uε(ε) = γ+u.<br />

Thus the germ Gλ is the set of couples(γ−u,γ+u) of possible traces at<br />

{x = 0} (for a.e. t > 0) of the admissible solutions.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g...<br />

Now, the dissipativity properties of the <strong>in</strong>terface coupl<strong>in</strong>g are enco<strong>de</strong>d <strong>in</strong> the<br />

germ Gλ. In<strong>de</strong>ed, <strong>de</strong>f<strong>in</strong>e Ξ: R 2 ×R 2 ↦→ R by<br />

Ξ ± ((u−, u+),(v−, v+)) = Φ ± (u−, v−)−Φ ± (u+, v+)<br />

where Φ ± are the so-called semi-Kruzhkov entropy fluxes for <strong>Burgers</strong> eqn:<br />

Φ ± (u, v) = sgn ± (u − v)(u 2 − v 2 )/2.<br />

Splitt<strong>in</strong>g the germ Gλ <strong>in</strong>to three subsets, we have<br />

Proposition (dissipativity <strong>and</strong> maximality of Gλ)<br />

The follow<strong>in</strong>g properties hold:<br />

(i) (dissipativity) ∀(u−, u+),(v−, v+) ∈ Gλ,<br />

Ξ ± ((u−, u+),(v−, v+)) 0.<br />

(ii) (maximality + ...) If a pair (u−, u+) ∈ R 2 verifies:<br />

∀(v−, v+) ∈ G 1 λ ∪ G 2 λ Ξ((u−, u+),(v−, v+)) 0,<br />

then (u−, u+) ∈ Gλ.<br />

One can prove the proposition directly, by a tedious case study... but...


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g...<br />

Now, the dissipativity properties of the <strong>in</strong>terface coupl<strong>in</strong>g are enco<strong>de</strong>d <strong>in</strong> the<br />

germ Gλ. In<strong>de</strong>ed, <strong>de</strong>f<strong>in</strong>e Ξ: R 2 ×R 2 ↦→ R by<br />

Ξ ± ((u−, u+),(v−, v+)) = Φ ± (u−, v−)−Φ ± (u+, v+)<br />

where Φ ± are the so-called semi-Kruzhkov entropy fluxes for <strong>Burgers</strong> eqn:<br />

Φ ± (u, v) = sgn ± (u − v)(u 2 − v 2 )/2.<br />

Splitt<strong>in</strong>g the germ Gλ <strong>in</strong>to three subsets, we have<br />

Proposition (dissipativity <strong>and</strong> maximality of Gλ)<br />

The follow<strong>in</strong>g properties hold:<br />

(i) (dissipativity) ∀(u−, u+),(v−, v+) ∈ Gλ,<br />

Ξ ± ((u−, u+),(v−, v+)) 0.<br />

(ii) (maximality + ...) If a pair (u−, u+) ∈ R 2 verifies:<br />

∀(v−, v+) ∈ G 1 λ ∪ G 2 λ Ξ((u−, u+),(v−, v+)) 0,<br />

then (u−, u+) ∈ Gλ.<br />

One can prove the proposition directly, by a tedious case study... but...


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g...<br />

Now, the dissipativity properties of the <strong>in</strong>terface coupl<strong>in</strong>g are enco<strong>de</strong>d <strong>in</strong> the<br />

germ Gλ. In<strong>de</strong>ed, <strong>de</strong>f<strong>in</strong>e Ξ: R 2 ×R 2 ↦→ R by<br />

Ξ ± ((u−, u+),(v−, v+)) = Φ ± (u−, v−)−Φ ± (u+, v+)<br />

where Φ ± are the so-called semi-Kruzhkov entropy fluxes for <strong>Burgers</strong> eqn:<br />

Φ ± (u, v) = sgn ± (u − v)(u 2 − v 2 )/2.<br />

Splitt<strong>in</strong>g the germ Gλ <strong>in</strong>to three subsets, we have<br />

Proposition (dissipativity <strong>and</strong> maximality of Gλ)<br />

The follow<strong>in</strong>g properties hold:<br />

(i) (dissipativity) ∀(u−, u+),(v−, v+) ∈ Gλ,<br />

Ξ ± ((u−, u+),(v−, v+)) 0.<br />

(ii) (maximality + ...) If a pair (u−, u+) ∈ R 2 verifies:<br />

∀(v−, v+) ∈ G 1 λ ∪ G 2 λ Ξ((u−, u+),(v−, v+)) 0,<br />

then (u−, u+) ∈ Gλ.<br />

One can prove the proposition directly, by a tedious case study... but...


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g...<br />

Now, the dissipativity properties of the <strong>in</strong>terface coupl<strong>in</strong>g are enco<strong>de</strong>d <strong>in</strong> the<br />

germ Gλ. In<strong>de</strong>ed, <strong>de</strong>f<strong>in</strong>e Ξ: R 2 ×R 2 ↦→ R by<br />

Ξ ± ((u−, u+),(v−, v+)) = Φ ± (u−, v−)−Φ ± (u+, v+)<br />

where Φ ± are the so-called semi-Kruzhkov entropy fluxes for <strong>Burgers</strong> eqn:<br />

Φ ± (u, v) = sgn ± (u − v)(u 2 − v 2 )/2.<br />

Splitt<strong>in</strong>g the germ Gλ <strong>in</strong>to three subsets, we have<br />

Proposition (dissipativity <strong>and</strong> maximality of Gλ)<br />

The follow<strong>in</strong>g properties hold:<br />

(i) (dissipativity) ∀(u−, u+),(v−, v+) ∈ Gλ,<br />

Ξ ± ((u−, u+),(v−, v+)) 0.<br />

(ii) (maximality + ...) If a pair (u−, u+) ∈ R 2 verifies:<br />

∀(v−, v+) ∈ G 1 λ ∪ G 2 λ Ξ((u−, u+),(v−, v+)) 0,<br />

then (u−, u+) ∈ Gλ.<br />

One can prove the proposition directly, by a tedious case study... but...


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g.<br />

A “better” (<strong>in</strong>direct) proof comes from the general <strong>theory</strong> from AKR .<br />

First, property (i) is actually equivalent to the “Kato <strong>in</strong>equality” (⇔<br />

L 1 -dissipativity)<br />

<br />

+ + <br />

− (u−v) ∂tϕ+Φ (u, v)∂xϕ 0 ∀ϕ ∈ D(Q), ϕ 0.<br />

R +<br />

R<br />

for the solutions<br />

u(t, x) := u−1l{x0}, v(t, x) := v−1l{x0}<br />

of our equation; <strong>and</strong> the Kato <strong>in</strong>equality comes by passage to the limit from<br />

the LeRoux approximation case :<br />

<br />

ε ε + ε ε + + ε ε<br />

λ(u −v ) (∂xHε)ϕ−(u −v ) ∂tϕ−Φ (u , v )∂xϕ 0.<br />

R +<br />

R<br />

Further, property (ii) means that “G 1 λ ∪ G 2 λ is a <strong>de</strong>f<strong>in</strong>ite germ of which Gλ is the<br />

unique maximal extension”. This follows (with some work) from the fact that<br />

Gλ is a complete germ (⇔ the germ allows to solve every Riemann problem).


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g.<br />

A “better” (<strong>in</strong>direct) proof comes from the general <strong>theory</strong> from AKR .<br />

First, property (i) is actually equivalent to the “Kato <strong>in</strong>equality” (⇔<br />

L 1 -dissipativity)<br />

<br />

+ + <br />

− (u−v) ∂tϕ+Φ (u, v)∂xϕ 0 ∀ϕ ∈ D(Q), ϕ 0.<br />

R +<br />

R<br />

for the solutions<br />

u(t, x) := u−1l{x0}, v(t, x) := v−1l{x0}<br />

of our equation; <strong>and</strong> the Kato <strong>in</strong>equality comes by passage to the limit from<br />

the LeRoux approximation case :<br />

<br />

ε ε + ε ε + + ε ε<br />

λ(u −v ) (∂xHε)ϕ−(u −v ) ∂tϕ−Φ (u , v )∂xϕ 0.<br />

R +<br />

R<br />

Further, property (ii) means that “G 1 λ ∪ G 2 λ is a <strong>de</strong>f<strong>in</strong>ite germ of which Gλ is the<br />

unique maximal extension”. This follows (with some work) from the fact that<br />

Gλ is a complete germ (⇔ the germ allows to solve every Riemann problem).


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g the coupl<strong>in</strong>g.<br />

A “better” (<strong>in</strong>direct) proof comes from the general <strong>theory</strong> from AKR .<br />

First, property (i) is actually equivalent to the “Kato <strong>in</strong>equality” (⇔<br />

L 1 -dissipativity)<br />

<br />

+ + <br />

− (u−v) ∂tϕ+Φ (u, v)∂xϕ 0 ∀ϕ ∈ D(Q), ϕ 0.<br />

R +<br />

R<br />

for the solutions<br />

u(t, x) := u−1l{x0}, v(t, x) := v−1l{x0}<br />

of our equation; <strong>and</strong> the Kato <strong>in</strong>equality comes by passage to the limit from<br />

the LeRoux approximation case :<br />

<br />

ε ε + ε ε + + ε ε<br />

λ(u −v ) (∂xHε)ϕ−(u −v ) ∂tϕ−Φ (u , v )∂xϕ 0.<br />

R +<br />

R<br />

Further, property (ii) means that “G 1 λ ∪ G 2 λ is a <strong>de</strong>f<strong>in</strong>ite germ of which Gλ is the<br />

unique maximal extension”. This follows (with some work) from the fact that<br />

Gλ is a complete germ (⇔ the germ allows to solve every Riemann problem).


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

FROZEN PARTICLE<br />

(DIRAC-AT-ZERO DRAG TERM):<br />

DEFINITION, UNIQUENESS


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Frozen <strong>particle</strong>: <strong>de</strong>f<strong>in</strong>ition(s)...<br />

First, let us <strong>de</strong>scribe some elementary solutions of this problem:<br />

these are the stationary piecewise constant functions c:<br />

<br />

c− if x < 0,<br />

c(t, x) = c−1l {x0} = (c−, c+) ∈ Gλ.<br />

c+ if x > 0,<br />

They play the role of the constants <strong>in</strong> the st<strong>and</strong>ard Kruzhkov entropy<br />

formulation. With the i<strong>de</strong>a of adapted Kruzhkov entropies , we set up<br />

Def<strong>in</strong>ition (entropy solution)<br />

Let u0 ∈ L ∞ (R). A function u ∈ L ∞ (R + ×R) is said to be an entropy<br />

solution of the “<strong>particle</strong>-at-zero” problem if for all function c <strong>de</strong>f<strong>in</strong>ed<br />

above with (c−, c+) ∈ Gλ ,<br />

∀ϕ ∈ C ∞<br />

c (R + ×R), ϕ 0<br />

<br />

R +<br />

<br />

R<br />

[|u − c(x)| ∂tϕ+Φ(u, c(x)) ∂xϕ] dx dt<br />

<br />

+ |u0 − c(x)| ϕ(0, x) dx 0.<br />

R


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: <strong>de</strong>f<strong>in</strong>ition(s)...<br />

Let us provi<strong>de</strong> alternative characterizations of entropy solutions:<br />

Proposition (equivalent <strong>de</strong>f<strong>in</strong>itions)<br />

A function u ∈ L ∞ (R + ×R) is an entropy solution if <strong>and</strong> only if it satisfies any<br />

of the follow<strong>in</strong>g assertions:<br />

A. The function u verifies the adapted entropy <strong>in</strong>equalities with<br />

(c−, c+) ∈ G 1 λ ∪ G 2 λ.<br />

B. The function u verifies the Kruzhkov entropy <strong>in</strong>equalities for all<br />

nonnegative test function ϕ ∈ C ∞ c (R + ×R) such that ϕ|x=0 = 0,<br />

moreover,<br />

for a. e. t > 0 ((γ−u)(t), (γ+u)(t)) ∈ Gλ.<br />

D. There exists C = C(λ,u∞, c±) such that the function u verifies<br />

∀ϕ ∈ C ∞ c (R + <br />

×R), ϕ 0<br />

R +<br />

<br />

[|u−c(x)|∂tϕ+Φ(u, c(x))∂xϕ] dx dt<br />

R<br />

<br />

+ |u0 − c(x)| ϕ(0, x) dx −C(ϕ)dist<br />

R<br />

(c−, c+), Gλ)<br />

for all (c−, c+) ∈ R×R.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: <strong>de</strong>f<strong>in</strong>ition(s)...<br />

Let us provi<strong>de</strong> alternative characterizations of entropy solutions:<br />

Proposition (equivalent <strong>de</strong>f<strong>in</strong>itions)<br />

A function u ∈ L ∞ (R + ×R) is an entropy solution if <strong>and</strong> only if it satisfies any<br />

of the follow<strong>in</strong>g assertions:<br />

A. The function u verifies the adapted entropy <strong>in</strong>equalities with<br />

(c−, c+) ∈ G 1 λ ∪ G 2 λ.<br />

B. The function u verifies the Kruzhkov entropy <strong>in</strong>equalities for all<br />

nonnegative test function ϕ ∈ C ∞ c (R + ×R) such that ϕ|x=0 = 0,<br />

moreover,<br />

for a. e. t > 0 ((γ−u)(t), (γ+u)(t)) ∈ Gλ.<br />

D. There exists C = C(λ,u∞, c±) such that the function u verifies<br />

∀ϕ ∈ C ∞ c (R + <br />

×R), ϕ 0<br />

R +<br />

<br />

[|u−c(x)|∂tϕ+Φ(u, c(x))∂xϕ] dx dt<br />

R<br />

<br />

+ |u0 − c(x)| ϕ(0, x) dx −C(ϕ)dist<br />

R<br />

(c−, c+), Gλ)<br />

for all (c−, c+) ∈ R×R.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: <strong>de</strong>f<strong>in</strong>ition(s)...<br />

Let us provi<strong>de</strong> alternative characterizations of entropy solutions:<br />

Proposition (equivalent <strong>de</strong>f<strong>in</strong>itions)<br />

A function u ∈ L ∞ (R + ×R) is an entropy solution if <strong>and</strong> only if it satisfies any<br />

of the follow<strong>in</strong>g assertions:<br />

A. The function u verifies the adapted entropy <strong>in</strong>equalities with<br />

(c−, c+) ∈ G 1 λ ∪ G 2 λ.<br />

B. The function u verifies the Kruzhkov entropy <strong>in</strong>equalities for all<br />

nonnegative test function ϕ ∈ C ∞ c (R + ×R) such that ϕ|x=0 = 0,<br />

moreover,<br />

for a. e. t > 0 ((γ−u)(t), (γ+u)(t)) ∈ Gλ.<br />

D. There exists C = C(λ,u∞, c±) such that the function u verifies<br />

∀ϕ ∈ C ∞ c (R + <br />

×R), ϕ 0<br />

R +<br />

<br />

[|u−c(x)|∂tϕ+Φ(u, c(x))∂xϕ] dx dt<br />

R<br />

<br />

+ |u0 − c(x)| ϕ(0, x) dx −C(ϕ)dist<br />

R<br />

(c−, c+), Gλ)<br />

for all (c−, c+) ∈ R×R.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: <strong>de</strong>f<strong>in</strong>ition(s)...<br />

Let us provi<strong>de</strong> alternative characterizations of entropy solutions:<br />

Proposition (equivalent <strong>de</strong>f<strong>in</strong>itions)<br />

A function u ∈ L ∞ (R + ×R) is an entropy solution if <strong>and</strong> only if it satisfies any<br />

of the follow<strong>in</strong>g assertions:<br />

A. The function u verifies the adapted entropy <strong>in</strong>equalities with<br />

(c−, c+) ∈ G 1 λ ∪ G 2 λ.<br />

B. The function u verifies the Kruzhkov entropy <strong>in</strong>equalities for all<br />

nonnegative test function ϕ ∈ C ∞ c (R + ×R) such that ϕ|x=0 = 0,<br />

moreover,<br />

for a. e. t > 0 ((γ−u)(t), (γ+u)(t)) ∈ Gλ.<br />

D. There exists C = C(λ,u∞, c±) such that the function u verifies<br />

∀ϕ ∈ C ∞ c (R + <br />

×R), ϕ 0<br />

R +<br />

<br />

[|u−c(x)|∂tϕ+Φ(u, c(x))∂xϕ] dx dt<br />

R<br />

<br />

+ |u0 − c(x)| ϕ(0, x) dx −C(ϕ)dist<br />

R<br />

(c−, c+), Gλ)<br />

for all (c−, c+) ∈ R×R.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: uniqueness, comparison, L 1 contraction.<br />

Theorem (L 1 contraction+comparison, analogous to Kruzhkov <strong>theory</strong>)<br />

Let u0 <strong>and</strong> v0 be two <strong>in</strong>itial data <strong>in</strong> L ∞ (R) <strong>and</strong> let u <strong>and</strong> v be the associated<br />

entropy solutions. Then for all R > 0,<br />

for a.e. t > 0<br />

R<br />

R<br />

(u − v) + (t, x) dx <br />

R+Lt<br />

(u0 − v0)<br />

−R−Lt<br />

+ (x) dx<br />

where L = max{u∞,v∞}. Consequently, if (u0 − v0) + ∈ L 1 (R), we have<br />

<br />

for a.e. t > 0 (u − v)<br />

R<br />

+ <br />

(t, x) dx (u0 − v0)<br />

R<br />

+ (x) dx.<br />

In particular, for all u0 ∈ L ∞ (R), there exists at most one solution <strong>and</strong> the map<br />

S(t) : u0 ↦→ u(t,·) on its doma<strong>in</strong> is an or<strong>de</strong>r-preserv<strong>in</strong>g L 1 contraction.<br />

The proof is straightforward us<strong>in</strong>g<br />

– the Kato <strong>in</strong>equality away from the <strong>in</strong>terface (st<strong>and</strong>ard Kruzhkov)<br />

– the characterization B. (“with traces” ) of entropy solutions<br />

– <strong>and</strong> the dissipativity of Gλ .


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: uniqueness, comparison, L 1 contraction.<br />

Theorem (L 1 contraction+comparison, analogous to Kruzhkov <strong>theory</strong>)<br />

Let u0 <strong>and</strong> v0 be two <strong>in</strong>itial data <strong>in</strong> L ∞ (R) <strong>and</strong> let u <strong>and</strong> v be the associated<br />

entropy solutions. Then for all R > 0,<br />

for a.e. t > 0<br />

R<br />

R<br />

(u − v) + (t, x) dx <br />

R+Lt<br />

(u0 − v0)<br />

−R−Lt<br />

+ (x) dx<br />

where L = max{u∞,v∞}. Consequently, if (u0 − v0) + ∈ L 1 (R), we have<br />

<br />

for a.e. t > 0 (u − v)<br />

R<br />

+ <br />

(t, x) dx (u0 − v0)<br />

R<br />

+ (x) dx.<br />

In particular, for all u0 ∈ L ∞ (R), there exists at most one solution <strong>and</strong> the map<br />

S(t) : u0 ↦→ u(t,·) on its doma<strong>in</strong> is an or<strong>de</strong>r-preserv<strong>in</strong>g L 1 contraction.<br />

The proof is straightforward us<strong>in</strong>g<br />

– the Kato <strong>in</strong>equality away from the <strong>in</strong>terface (st<strong>and</strong>ard Kruzhkov)<br />

– the characterization B. (“with traces” ) of entropy solutions<br />

– <strong>and</strong> the dissipativity of Gλ .


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: uniqueness, comparison, L 1 contraction.<br />

Theorem (L 1 contraction+comparison, analogous to Kruzhkov <strong>theory</strong>)<br />

Let u0 <strong>and</strong> v0 be two <strong>in</strong>itial data <strong>in</strong> L ∞ (R) <strong>and</strong> let u <strong>and</strong> v be the associated<br />

entropy solutions. Then for all R > 0,<br />

for a.e. t > 0<br />

R<br />

R<br />

(u − v) + (t, x) dx <br />

R+Lt<br />

(u0 − v0)<br />

−R−Lt<br />

+ (x) dx<br />

where L = max{u∞,v∞}. Consequently, if (u0 − v0) + ∈ L 1 (R), we have<br />

<br />

for a.e. t > 0 (u − v)<br />

R<br />

+ <br />

(t, x) dx (u0 − v0)<br />

R<br />

+ (x) dx.<br />

In particular, for all u0 ∈ L ∞ (R), there exists at most one solution <strong>and</strong> the map<br />

S(t) : u0 ↦→ u(t,·) on its doma<strong>in</strong> is an or<strong>de</strong>r-preserv<strong>in</strong>g L 1 contraction.<br />

The proof is straightforward us<strong>in</strong>g<br />

– the Kato <strong>in</strong>equality away from the <strong>in</strong>terface (st<strong>and</strong>ard Kruzhkov)<br />

– the characterization B. (“with traces” ) of entropy solutions<br />

– <strong>and</strong> the dissipativity of Gλ .


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: uniqueness, comparison, L 1 contraction.<br />

Theorem (L 1 contraction+comparison, analogous to Kruzhkov <strong>theory</strong>)<br />

Let u0 <strong>and</strong> v0 be two <strong>in</strong>itial data <strong>in</strong> L ∞ (R) <strong>and</strong> let u <strong>and</strong> v be the associated<br />

entropy solutions. Then for all R > 0,<br />

for a.e. t > 0<br />

R<br />

R<br />

(u − v) + (t, x) dx <br />

R+Lt<br />

(u0 − v0)<br />

−R−Lt<br />

+ (x) dx<br />

where L = max{u∞,v∞}. Consequently, if (u0 − v0) + ∈ L 1 (R), we have<br />

<br />

for a.e. t > 0 (u − v)<br />

R<br />

+ <br />

(t, x) dx (u0 − v0)<br />

R<br />

+ (x) dx.<br />

In particular, for all u0 ∈ L ∞ (R), there exists at most one solution <strong>and</strong> the map<br />

S(t) : u0 ↦→ u(t,·) on its doma<strong>in</strong> is an or<strong>de</strong>r-preserv<strong>in</strong>g L 1 contraction.<br />

The proof is straightforward us<strong>in</strong>g<br />

– the Kato <strong>in</strong>equality away from the <strong>in</strong>terface (st<strong>and</strong>ard Kruzhkov)<br />

– the characterization B. (“with traces” ) of entropy solutions<br />

– <strong>and</strong> the dissipativity of Gλ .


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: uniqueness, comparison, L 1 contraction.<br />

Theorem (L 1 contraction+comparison, analogous to Kruzhkov <strong>theory</strong>)<br />

Let u0 <strong>and</strong> v0 be two <strong>in</strong>itial data <strong>in</strong> L ∞ (R) <strong>and</strong> let u <strong>and</strong> v be the associated<br />

entropy solutions. Then for all R > 0,<br />

for a.e. t > 0<br />

R<br />

R<br />

(u − v) + (t, x) dx <br />

R+Lt<br />

(u0 − v0)<br />

−R−Lt<br />

+ (x) dx<br />

where L = max{u∞,v∞}. Consequently, if (u0 − v0) + ∈ L 1 (R), we have<br />

<br />

for a.e. t > 0 (u − v)<br />

R<br />

+ <br />

(t, x) dx (u0 − v0)<br />

R<br />

+ (x) dx.<br />

In particular, for all u0 ∈ L ∞ (R), there exists at most one solution <strong>and</strong> the map<br />

S(t) : u0 ↦→ u(t,·) on its doma<strong>in</strong> is an or<strong>de</strong>r-preserv<strong>in</strong>g L 1 contraction.<br />

The proof is straightforward us<strong>in</strong>g<br />

– the Kato <strong>in</strong>equality away from the <strong>in</strong>terface (st<strong>and</strong>ard Kruzhkov)<br />

– the characterization B. (“with traces” ) of entropy solutions<br />

– <strong>and</strong> the dissipativity of Gλ .


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: uniqueness, comparison, L 1 contraction.<br />

Theorem (L 1 contraction+comparison, analogous to Kruzhkov <strong>theory</strong>)<br />

Let u0 <strong>and</strong> v0 be two <strong>in</strong>itial data <strong>in</strong> L ∞ (R) <strong>and</strong> let u <strong>and</strong> v be the associated<br />

entropy solutions. Then for all R > 0,<br />

for a.e. t > 0<br />

R<br />

R<br />

(u − v) + (t, x) dx <br />

R+Lt<br />

(u0 − v0)<br />

−R−Lt<br />

+ (x) dx<br />

where L = max{u∞,v∞}. Consequently, if (u0 − v0) + ∈ L 1 (R), we have<br />

<br />

for a.e. t > 0 (u − v)<br />

R<br />

+ <br />

(t, x) dx (u0 − v0)<br />

R<br />

+ (x) dx.<br />

In particular, for all u0 ∈ L ∞ (R), there exists at most one solution <strong>and</strong> the map<br />

S(t) : u0 ↦→ u(t,·) on its doma<strong>in</strong> is an or<strong>de</strong>r-preserv<strong>in</strong>g L 1 contraction.<br />

The proof is straightforward us<strong>in</strong>g<br />

– the Kato <strong>in</strong>equality away from the <strong>in</strong>terface (st<strong>and</strong>ard Kruzhkov)<br />

– the characterization B. (“with traces” ) of entropy solutions<br />

– <strong>and</strong> the dissipativity of Gλ .


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

FROZEN PARTICLE<br />

(DIRAC-AT-ZERO DRAG TERM):<br />

NUMERICAL SCHEME AND EXISTENCE


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Frozen <strong>particle</strong>: a f<strong>in</strong>ite volume scheme...<br />

We use a well-balanced f<strong>in</strong>ite volume scheme , preserv<strong>in</strong>g exactly<br />

(some of) the stationary sols u(t, x) := u−1l {x0}.<br />

Usual schemes are <strong>de</strong>term<strong>in</strong>ed by a numerical flux g(·,·) :<br />

– g locally Lipschitz;<br />

– g(u, u) = u2<br />

2 (consistency );<br />

– g(·, b) is ր, g(a,·) is ց (monotonicity ).<br />

We only modify g(·,·) at the <strong>in</strong>terface x = 0 (between x0 <strong>and</strong> x1):<br />

g −<br />

λ<br />

(a, b) = g(a, b + λ) <strong>and</strong> g+<br />

λ (a, b) = g( a − λ,b).<br />

I<strong>de</strong>a : g ±<br />

λ “only see” the G 1 λ part of the germ !<br />

Then the scheme writes<br />

∀i = 0, 1 u n+1<br />

i = u n i<br />

i = 0 : u n+1<br />

0 = un 0<br />

i = 1 : u n+1<br />

1<br />

Numerical solution:<br />

u∆(t, x) = <br />

n∈N<br />

− ∆t<br />

∆x (g(un i , un i+1 )−g(un i−1 , un i ));<br />

∆t − ∆x (g− λ (un 0 , un 1 )−g(un −1 , un 0 ));<br />

= un 1 − ∆t<br />

∆x (g(un 1, u n 2)−g +<br />

λ (un 0, u n 1)).<br />

<br />

i∈Z un i 1l (n∆t,(n+1)∆t)(t) 1l (xi−1/2,x i+1/2)(x).


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Frozen <strong>particle</strong>: a f<strong>in</strong>ite volume scheme...<br />

We use a well-balanced f<strong>in</strong>ite volume scheme , preserv<strong>in</strong>g exactly<br />

(some of) the stationary sols u(t, x) := u−1l {x0}.<br />

Usual schemes are <strong>de</strong>term<strong>in</strong>ed by a numerical flux g(·,·) :<br />

– g locally Lipschitz;<br />

– g(u, u) = u2<br />

2 (consistency );<br />

– g(·, b) is ր, g(a,·) is ց (monotonicity ).<br />

We only modify g(·,·) at the <strong>in</strong>terface x = 0 (between x0 <strong>and</strong> x1):<br />

g −<br />

λ<br />

(a, b) = g(a, b + λ) <strong>and</strong> g+<br />

λ (a, b) = g( a − λ,b).<br />

I<strong>de</strong>a : g ±<br />

λ “only see” the G 1 λ part of the germ !<br />

Then the scheme writes<br />

∀i = 0, 1 u n+1<br />

i = u n i<br />

i = 0 : u n+1<br />

0 = un 0<br />

i = 1 : u n+1<br />

1<br />

Numerical solution:<br />

u∆(t, x) = <br />

n∈N<br />

− ∆t<br />

∆x (g(un i , un i+1 )−g(un i−1 , un i ));<br />

∆t − ∆x (g− λ (un 0 , un 1 )−g(un −1 , un 0 ));<br />

= un 1 − ∆t<br />

∆x (g(un 1, u n 2)−g +<br />

λ (un 0, u n 1)).<br />

<br />

i∈Z un i 1l (n∆t,(n+1)∆t)(t) 1l (xi−1/2,x i+1/2)(x).


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Frozen <strong>particle</strong>: a f<strong>in</strong>ite volume scheme...<br />

We use a well-balanced f<strong>in</strong>ite volume scheme , preserv<strong>in</strong>g exactly<br />

(some of) the stationary sols u(t, x) := u−1l {x0}.<br />

Usual schemes are <strong>de</strong>term<strong>in</strong>ed by a numerical flux g(·,·) :<br />

– g locally Lipschitz;<br />

– g(u, u) = u2<br />

2 (consistency );<br />

– g(·, b) is ր, g(a,·) is ց (monotonicity ).<br />

We only modify g(·,·) at the <strong>in</strong>terface x = 0 (between x0 <strong>and</strong> x1):<br />

g −<br />

λ<br />

(a, b) = g(a, b + λ) <strong>and</strong> g+<br />

λ (a, b) = g( a − λ,b).<br />

I<strong>de</strong>a : g ±<br />

λ “only see” the G 1 λ part of the germ !<br />

Then the scheme writes<br />

∀i = 0, 1 u n+1<br />

i = u n i<br />

i = 0 : u n+1<br />

0 = un 0<br />

i = 1 : u n+1<br />

1<br />

Numerical solution:<br />

u∆(t, x) = <br />

n∈N<br />

− ∆t<br />

∆x (g(un i , un i+1 )−g(un i−1 , un i ));<br />

∆t − ∆x (g− λ (un 0 , un 1 )−g(un −1 , un 0 ));<br />

= un 1 − ∆t<br />

∆x (g(un 1, u n 2)−g +<br />

λ (un 0, u n 1)).<br />

<br />

i∈Z un i 1l (n∆t,(n+1)∆t)(t) 1l (xi−1/2,x i+1/2)(x).


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Frozen <strong>particle</strong>: a f<strong>in</strong>ite volume scheme...<br />

We use a well-balanced f<strong>in</strong>ite volume scheme , preserv<strong>in</strong>g exactly<br />

(some of) the stationary sols u(t, x) := u−1l {x0}.<br />

Usual schemes are <strong>de</strong>term<strong>in</strong>ed by a numerical flux g(·,·) :<br />

– g locally Lipschitz;<br />

– g(u, u) = u2<br />

2 (consistency );<br />

– g(·, b) is ր, g(a,·) is ց (monotonicity ).<br />

We only modify g(·,·) at the <strong>in</strong>terface x = 0 (between x0 <strong>and</strong> x1):<br />

g −<br />

λ<br />

(a, b) = g(a, b + λ) <strong>and</strong> g+<br />

λ (a, b) = g( a − λ,b).<br />

I<strong>de</strong>a : g ±<br />

λ “only see” the G 1 λ part of the germ !<br />

Then the scheme writes<br />

∀i = 0, 1 u n+1<br />

i = u n i<br />

i = 0 : u n+1<br />

0 = un 0<br />

i = 1 : u n+1<br />

1<br />

Numerical solution:<br />

u∆(t, x) = <br />

n∈N<br />

− ∆t<br />

∆x (g(un i , un i+1 )−g(un i−1 , un i ));<br />

∆t − ∆x (g− λ (un 0 , un 1 )−g(un −1 , un 0 ));<br />

= un 1 − ∆t<br />

∆x (g(un 1, u n 2)−g +<br />

λ (un 0, u n 1)).<br />

<br />

i∈Z un i 1l (n∆t,(n+1)∆t)(t) 1l (xi−1/2,x i+1/2)(x).


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Frozen <strong>particle</strong>: a f<strong>in</strong>ite volume scheme...<br />

We use a well-balanced f<strong>in</strong>ite volume scheme , preserv<strong>in</strong>g exactly<br />

(some of) the stationary sols u(t, x) := u−1l {x0}.<br />

Usual schemes are <strong>de</strong>term<strong>in</strong>ed by a numerical flux g(·,·) :<br />

– g locally Lipschitz;<br />

– g(u, u) = u2<br />

2 (consistency );<br />

– g(·, b) is ր, g(a,·) is ց (monotonicity ).<br />

We only modify g(·,·) at the <strong>in</strong>terface x = 0 (between x0 <strong>and</strong> x1):<br />

g −<br />

λ<br />

(a, b) = g(a, b + λ) <strong>and</strong> g+<br />

λ (a, b) = g( a − λ,b).<br />

I<strong>de</strong>a : g ±<br />

λ “only see” the G 1 λ part of the germ !<br />

Then the scheme writes<br />

∀i = 0, 1 u n+1<br />

i = u n i<br />

i = 0 : u n+1<br />

0 = un 0<br />

i = 1 : u n+1<br />

1<br />

Numerical solution:<br />

u∆(t, x) = <br />

n∈N<br />

− ∆t<br />

∆x (g(un i , un i+1 )−g(un i−1 , un i ));<br />

∆t − ∆x (g− λ (un 0 , un 1 )−g(un −1 , un 0 ));<br />

= un 1 − ∆t<br />

∆x (g(un 1, u n 2)−g +<br />

λ (un 0, u n 1)).<br />

<br />

i∈Z un i 1l (n∆t,(n+1)∆t)(t) 1l (xi−1/2,x i+1/2)(x).


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Properties of the scheme...<br />

Un<strong>de</strong>r the CFL condition: 2M∆t ∆x, (M be<strong>in</strong>g the Lipschitz constant of<br />

the numerical flux g on the ad hoc <strong>in</strong>terval of values of (u n i )n,i, the scheme<br />

writes<br />

∀i ∈ Z u n+1<br />

i = Hi(u n i−1, u n i , u n i+1),<br />

where functions Hi are monotoneր <strong>in</strong> each of the three arguments.<br />

NB: s<strong>in</strong>ce · ↦→ ·±λ are ր functions, monotonicity OK also for i = 0, 1.<br />

Lemma (L ∞ bound — choice of M <strong>in</strong> the CFL condition)<br />

Un<strong>de</strong>r the CFL condition, the scheme satisfies for all n ∈ N, i ∈ Z<br />

m<strong>in</strong>{ess <strong>in</strong>f<br />

R − u0 −λ, ess <strong>in</strong>f<br />

R + u0} u n i max{ess sup<br />

Proposition (the scheme is (partially) well-balanced)<br />

R −<br />

u0, ess sup<br />

R +<br />

u0 +λ}.<br />

(i) The <strong>in</strong>itial datum v0(·) = c(·) = c−1l{x0},<br />

(c−, c+) ∈ G 1 λ, is exactly preserved <strong>in</strong> the evolution by the scheme .<br />

(ii) Let v∆ be the solution of the numerical scheme with<br />

the <strong>in</strong>itial datum v0(·) = c(·) = c−1l{x0},<br />

(c−, c+) ∈ G 2 λ. Then v∆ converge to c <strong>in</strong> L 1 loc(R + ×R) as ∆x → 0.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Properties of the scheme...<br />

Un<strong>de</strong>r the CFL condition: 2M∆t ∆x, (M be<strong>in</strong>g the Lipschitz constant of<br />

the numerical flux g on the ad hoc <strong>in</strong>terval of values of (u n i )n,i, the scheme<br />

writes<br />

∀i ∈ Z u n+1<br />

i = Hi(u n i−1, u n i , u n i+1),<br />

where functions Hi are monotoneր <strong>in</strong> each of the three arguments.<br />

NB: s<strong>in</strong>ce · ↦→ ·±λ are ր functions, monotonicity OK also for i = 0, 1.<br />

Lemma (L ∞ bound — choice of M <strong>in</strong> the CFL condition)<br />

Un<strong>de</strong>r the CFL condition, the scheme satisfies for all n ∈ N, i ∈ Z<br />

m<strong>in</strong>{ess <strong>in</strong>f<br />

R − u0 −λ, ess <strong>in</strong>f<br />

R + u0} u n i max{ess sup<br />

Proposition (the scheme is (partially) well-balanced)<br />

R −<br />

u0, ess sup<br />

R +<br />

u0 +λ}.<br />

(i) The <strong>in</strong>itial datum v0(·) = c(·) = c−1l{x0},<br />

(c−, c+) ∈ G 1 λ, is exactly preserved <strong>in</strong> the evolution by the scheme .<br />

(ii) Let v∆ be the solution of the numerical scheme with<br />

the <strong>in</strong>itial datum v0(·) = c(·) = c−1l{x0},<br />

(c−, c+) ∈ G 2 λ. Then v∆ converge to c <strong>in</strong> L 1 loc(R + ×R) as ∆x → 0.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Properties of the scheme...<br />

Un<strong>de</strong>r the CFL condition: 2M∆t ∆x, (M be<strong>in</strong>g the Lipschitz constant of<br />

the numerical flux g on the ad hoc <strong>in</strong>terval of values of (u n i )n,i, the scheme<br />

writes<br />

∀i ∈ Z u n+1<br />

i = Hi(u n i−1, u n i , u n i+1),<br />

where functions Hi are monotoneր <strong>in</strong> each of the three arguments.<br />

NB: s<strong>in</strong>ce · ↦→ ·±λ are ր functions, monotonicity OK also for i = 0, 1.<br />

Lemma (L ∞ bound — choice of M <strong>in</strong> the CFL condition)<br />

Un<strong>de</strong>r the CFL condition, the scheme satisfies for all n ∈ N, i ∈ Z<br />

m<strong>in</strong>{ess <strong>in</strong>f<br />

R − u0 −λ, ess <strong>in</strong>f<br />

R + u0} u n i max{ess sup<br />

Proposition (the scheme is (partially) well-balanced)<br />

R −<br />

u0, ess sup<br />

R +<br />

u0 +λ}.<br />

(i) The <strong>in</strong>itial datum v0(·) = c(·) = c−1l{x0},<br />

(c−, c+) ∈ G 1 λ, is exactly preserved <strong>in</strong> the evolution by the scheme .<br />

(ii) Let v∆ be the solution of the numerical scheme with<br />

the <strong>in</strong>itial datum v0(·) = c(·) = c−1l{x0},<br />

(c−, c+) ∈ G 2 λ. Then v∆ converge to c <strong>in</strong> L 1 loc(R + ×R) as ∆x → 0.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Properties of the scheme...<br />

Un<strong>de</strong>r the CFL condition: 2M∆t ∆x, (M be<strong>in</strong>g the Lipschitz constant of<br />

the numerical flux g on the ad hoc <strong>in</strong>terval of values of (u n i )n,i, the scheme<br />

writes<br />

∀i ∈ Z u n+1<br />

i = Hi(u n i−1, u n i , u n i+1),<br />

where functions Hi are monotoneր <strong>in</strong> each of the three arguments.<br />

NB: s<strong>in</strong>ce · ↦→ ·±λ are ր functions, monotonicity OK also for i = 0, 1.<br />

Lemma (L ∞ bound — choice of M <strong>in</strong> the CFL condition)<br />

Un<strong>de</strong>r the CFL condition, the scheme satisfies for all n ∈ N, i ∈ Z<br />

m<strong>in</strong>{ess <strong>in</strong>f<br />

R − u0 −λ, ess <strong>in</strong>f<br />

R + u0} u n i max{ess sup<br />

Proposition (the scheme is (partially) well-balanced)<br />

R −<br />

u0, ess sup<br />

R +<br />

u0 +λ}.<br />

(i) The <strong>in</strong>itial datum v0(·) = c(·) = c−1l{x0},<br />

(c−, c+) ∈ G 1 λ, is exactly preserved <strong>in</strong> the evolution by the scheme .<br />

(ii) Let v∆ be the solution of the numerical scheme with<br />

the <strong>in</strong>itial datum v0(·) = c(·) = c−1l{x0},<br />

(c−, c+) ∈ G 2 λ. Then v∆ converge to c <strong>in</strong> L 1 loc(R + ×R) as ∆x → 0.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Properties of the scheme...<br />

In what follows, we need a technical hypothesis (dissipativity at x = 0):<br />

(H) ∂a(∂ag(a, b)+∂bg(a, b)) 0, ∂b(∂ag(a, b)+∂bg(a, b)) 0;<br />

Lemma ( BVloc bound, Bürger, García, Karlsen, Towers )<br />

Let T > 0 <strong>and</strong> A > 0. Assume that u0 ∈ BV(R) <strong>and</strong> ∆x is small enough.<br />

Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), we have<br />

u∆(·,·)BV([0,T]×R\(−A,A)) 1<br />

Const(T,u0L ∞,u0BV(R),λ).<br />

A<br />

– estimate <strong>in</strong> BV(0, T; L 1 (R)) (i.e., time BV estimate <strong>in</strong> the mean ) from<br />

translation <strong>in</strong>variance + contraction (use Cr<strong>and</strong>all-Tartar lemma + (H))<br />

– mean-value theorem: for some r ∈ (0, A), u(·,±r)BV(0,T) const/A<br />

– look at our solution as solution to a Cauchy-Dirichlet problem<br />

with BV <strong>in</strong>itial <strong>and</strong> boundary data.<br />

Proposition (approximate Kato <strong>in</strong>equality)<br />

Let u∆, v∆ be solutions of the scheme. Let ϕ ∈ D([0, T)×R), ϕ 0. Then<br />

<br />

− (u∆−v∆) + ∂tϕ+Φ + (u∆, v∆)∂xϕ Rem(∆x,ϕ).<br />

R +<br />

R<br />

Arguments: monotonicity of the scheme, consistency , the BVloc <strong>in</strong> space<br />

bound


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Properties of the scheme...<br />

In what follows, we need a technical hypothesis (dissipativity at x = 0):<br />

(H) ∂a(∂ag(a, b)+∂bg(a, b)) 0, ∂b(∂ag(a, b)+∂bg(a, b)) 0;<br />

Lemma ( BVloc bound, Bürger, García, Karlsen, Towers )<br />

Let T > 0 <strong>and</strong> A > 0. Assume that u0 ∈ BV(R) <strong>and</strong> ∆x is small enough.<br />

Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), we have<br />

u∆(·,·)BV([0,T]×R\(−A,A)) 1<br />

Const(T,u0L ∞,u0BV(R),λ).<br />

A<br />

– estimate <strong>in</strong> BV(0, T; L 1 (R)) (i.e., time BV estimate <strong>in</strong> the mean ) from<br />

translation <strong>in</strong>variance + contraction (use Cr<strong>and</strong>all-Tartar lemma + (H))<br />

– mean-value theorem: for some r ∈ (0, A), u(·,±r)BV(0,T) const/A<br />

– look at our solution as solution to a Cauchy-Dirichlet problem<br />

with BV <strong>in</strong>itial <strong>and</strong> boundary data.<br />

Proposition (approximate Kato <strong>in</strong>equality)<br />

Let u∆, v∆ be solutions of the scheme. Let ϕ ∈ D([0, T)×R), ϕ 0. Then<br />

<br />

− (u∆−v∆) + ∂tϕ+Φ + (u∆, v∆)∂xϕ Rem(∆x,ϕ).<br />

R +<br />

R<br />

Arguments: monotonicity of the scheme, consistency , the BVloc <strong>in</strong> space<br />

bound


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Properties of the scheme...<br />

In what follows, we need a technical hypothesis (dissipativity at x = 0):<br />

(H) ∂a(∂ag(a, b)+∂bg(a, b)) 0, ∂b(∂ag(a, b)+∂bg(a, b)) 0;<br />

Lemma ( BVloc bound, Bürger, García, Karlsen, Towers )<br />

Let T > 0 <strong>and</strong> A > 0. Assume that u0 ∈ BV(R) <strong>and</strong> ∆x is small enough.<br />

Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), we have<br />

u∆(·,·)BV([0,T]×R\(−A,A)) 1<br />

Const(T,u0L ∞,u0BV(R),λ).<br />

A<br />

– estimate <strong>in</strong> BV(0, T; L 1 (R)) (i.e., time BV estimate <strong>in</strong> the mean ) from<br />

translation <strong>in</strong>variance + contraction (use Cr<strong>and</strong>all-Tartar lemma + (H))<br />

– mean-value theorem: for some r ∈ (0, A), u(·,±r)BV(0,T) const/A<br />

– look at our solution as solution to a Cauchy-Dirichlet problem<br />

with BV <strong>in</strong>itial <strong>and</strong> boundary data.<br />

Proposition (approximate Kato <strong>in</strong>equality)<br />

Let u∆, v∆ be solutions of the scheme. Let ϕ ∈ D([0, T)×R), ϕ 0. Then<br />

<br />

− (u∆−v∆) + ∂tϕ+Φ + (u∆, v∆)∂xϕ Rem(∆x,ϕ).<br />

R +<br />

R<br />

Arguments: monotonicity of the scheme, consistency , the BVloc <strong>in</strong> space<br />

bound


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Properties of the scheme...<br />

In what follows, we need a technical hypothesis (dissipativity at x = 0):<br />

(H) ∂a(∂ag(a, b)+∂bg(a, b)) 0, ∂b(∂ag(a, b)+∂bg(a, b)) 0;<br />

Lemma ( BVloc bound, Bürger, García, Karlsen, Towers )<br />

Let T > 0 <strong>and</strong> A > 0. Assume that u0 ∈ BV(R) <strong>and</strong> ∆x is small enough.<br />

Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), we have<br />

u∆(·,·)BV([0,T]×R\(−A,A)) 1<br />

Const(T,u0L ∞,u0BV(R),λ).<br />

A<br />

– estimate <strong>in</strong> BV(0, T; L 1 (R)) (i.e., time BV estimate <strong>in</strong> the mean ) from<br />

translation <strong>in</strong>variance + contraction (use Cr<strong>and</strong>all-Tartar lemma + (H))<br />

– mean-value theorem: for some r ∈ (0, A), u(·,±r)BV(0,T) const/A<br />

– look at our solution as solution to a Cauchy-Dirichlet problem<br />

with BV <strong>in</strong>itial <strong>and</strong> boundary data.<br />

Proposition (approximate Kato <strong>in</strong>equality)<br />

Let u∆, v∆ be solutions of the scheme. Let ϕ ∈ D([0, T)×R), ϕ 0. Then<br />

<br />

− (u∆−v∆) + ∂tϕ+Φ + (u∆, v∆)∂xϕ Rem(∆x,ϕ).<br />

R +<br />

R<br />

Arguments: monotonicity of the scheme, consistency , the BVloc <strong>in</strong> space<br />

bound


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Properties of the scheme...<br />

In what follows, we need a technical hypothesis (dissipativity at x = 0):<br />

(H) ∂a(∂ag(a, b)+∂bg(a, b)) 0, ∂b(∂ag(a, b)+∂bg(a, b)) 0;<br />

Lemma ( BVloc bound, Bürger, García, Karlsen, Towers )<br />

Let T > 0 <strong>and</strong> A > 0. Assume that u0 ∈ BV(R) <strong>and</strong> ∆x is small enough.<br />

Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), we have<br />

u∆(·,·)BV([0,T]×R\(−A,A)) 1<br />

Const(T,u0L ∞,u0BV(R),λ).<br />

A<br />

– estimate <strong>in</strong> BV(0, T; L 1 (R)) (i.e., time BV estimate <strong>in</strong> the mean ) from<br />

translation <strong>in</strong>variance + contraction (use Cr<strong>and</strong>all-Tartar lemma + (H))<br />

– mean-value theorem: for some r ∈ (0, A), u(·,±r)BV(0,T) const/A<br />

– look at our solution as solution to a Cauchy-Dirichlet problem<br />

with BV <strong>in</strong>itial <strong>and</strong> boundary data.<br />

Proposition (approximate Kato <strong>in</strong>equality)<br />

Let u∆, v∆ be solutions of the scheme. Let ϕ ∈ D([0, T)×R), ϕ 0. Then<br />

<br />

− (u∆−v∆) + ∂tϕ+Φ + (u∆, v∆)∂xϕ Rem(∆x,ϕ).<br />

R +<br />

R<br />

Arguments: monotonicity of the scheme, consistency , the BVloc <strong>in</strong> space<br />

bound


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Properties of the scheme...<br />

In what follows, we need a technical hypothesis (dissipativity at x = 0):<br />

(H) ∂a(∂ag(a, b)+∂bg(a, b)) 0, ∂b(∂ag(a, b)+∂bg(a, b)) 0;<br />

Lemma ( BVloc bound, Bürger, García, Karlsen, Towers )<br />

Let T > 0 <strong>and</strong> A > 0. Assume that u0 ∈ BV(R) <strong>and</strong> ∆x is small enough.<br />

Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), we have<br />

u∆(·,·)BV([0,T]×R\(−A,A)) 1<br />

Const(T,u0L ∞,u0BV(R),λ).<br />

A<br />

– estimate <strong>in</strong> BV(0, T; L 1 (R)) (i.e., time BV estimate <strong>in</strong> the mean ) from<br />

translation <strong>in</strong>variance + contraction (use Cr<strong>and</strong>all-Tartar lemma + (H))<br />

– mean-value theorem: for some r ∈ (0, A), u(·,±r)BV(0,T) const/A<br />

– look at our solution as solution to a Cauchy-Dirichlet problem<br />

with BV <strong>in</strong>itial <strong>and</strong> boundary data.<br />

Proposition (approximate Kato <strong>in</strong>equality)<br />

Let u∆, v∆ be solutions of the scheme. Let ϕ ∈ D([0, T)×R), ϕ 0. Then<br />

<br />

− (u∆−v∆) + ∂tϕ+Φ + (u∆, v∆)∂xϕ Rem(∆x,ϕ).<br />

R +<br />

R<br />

Arguments: monotonicity of the scheme, consistency , the BVloc <strong>in</strong> space<br />

bound


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Convergence; existence of entropy solutions.<br />

Theorem (convergence of the scheme; existence of solutions)<br />

Assume u0 ∈ L ∞ (R). Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), the<br />

numerical scheme converges <strong>in</strong> L 1 loc(R + ×R) to the unique entropy solution to<br />

“<strong>Burgers</strong> with <strong>particle</strong>-at-zero” problem when ∆x tends to 0.<br />

In particular, the problem is well-posed , for L ∞ data <strong>and</strong> L 1 loc topology.<br />

Proof.<br />

• First assume that u0 ∈ BV(R).<br />

– BVloc bounds yield compactness: we get u an accumulation po<strong>in</strong>t of (u∆)∆ ;<br />

– well-balance property for (c−, c+) ∈ G 1 λ ∪ G 2 λ yields enough explicit<br />

stationary solutions v∆ to the scheme (at least, at the limit ∆x → 0);<br />

– us<strong>in</strong>g the approximate Kato <strong>in</strong>equalities on u∆ <strong>and</strong> the above special<br />

solutions v∆, at the limit we get Kato <strong>in</strong>equalities...<br />

but, these are precisely the adapted entropy <strong>in</strong>equalities !!<br />

– then u is (the unique) entropy solution (use caract. A. of entropy sols).<br />

• For the general case u0 ∈ L ∞ (R) , localize us<strong>in</strong>g f<strong>in</strong>ite speed of<br />

propagation; approximate u0 by BV(R)∩L 1 (R) functions(u n 0)n Use discrete<br />

L 1 contraction <strong>and</strong> the result of the BV case.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Convergence; existence of entropy solutions.<br />

Theorem (convergence of the scheme; existence of solutions)<br />

Assume u0 ∈ L ∞ (R). Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), the<br />

numerical scheme converges <strong>in</strong> L 1 loc(R + ×R) to the unique entropy solution to<br />

“<strong>Burgers</strong> with <strong>particle</strong>-at-zero” problem when ∆x tends to 0.<br />

In particular, the problem is well-posed , for L ∞ data <strong>and</strong> L 1 loc topology.<br />

Proof.<br />

• First assume that u0 ∈ BV(R).<br />

– BVloc bounds yield compactness: we get u an accumulation po<strong>in</strong>t of (u∆)∆ ;<br />

– well-balance property for (c−, c+) ∈ G 1 λ ∪ G 2 λ yields enough explicit<br />

stationary solutions v∆ to the scheme (at least, at the limit ∆x → 0);<br />

– us<strong>in</strong>g the approximate Kato <strong>in</strong>equalities on u∆ <strong>and</strong> the above special<br />

solutions v∆, at the limit we get Kato <strong>in</strong>equalities...<br />

but, these are precisely the adapted entropy <strong>in</strong>equalities !!<br />

– then u is (the unique) entropy solution (use caract. A. of entropy sols).<br />

• For the general case u0 ∈ L ∞ (R) , localize us<strong>in</strong>g f<strong>in</strong>ite speed of<br />

propagation; approximate u0 by BV(R)∩L 1 (R) functions(u n 0)n Use discrete<br />

L 1 contraction <strong>and</strong> the result of the BV case.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Convergence; existence of entropy solutions.<br />

Theorem (convergence of the scheme; existence of solutions)<br />

Assume u0 ∈ L ∞ (R). Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), the<br />

numerical scheme converges <strong>in</strong> L 1 loc(R + ×R) to the unique entropy solution to<br />

“<strong>Burgers</strong> with <strong>particle</strong>-at-zero” problem when ∆x tends to 0.<br />

In particular, the problem is well-posed , for L ∞ data <strong>and</strong> L 1 loc topology.<br />

Proof.<br />

• First assume that u0 ∈ BV(R).<br />

– BVloc bounds yield compactness: we get u an accumulation po<strong>in</strong>t of (u∆)∆ ;<br />

– well-balance property for (c−, c+) ∈ G 1 λ ∪ G 2 λ yields enough explicit<br />

stationary solutions v∆ to the scheme (at least, at the limit ∆x → 0);<br />

– us<strong>in</strong>g the approximate Kato <strong>in</strong>equalities on u∆ <strong>and</strong> the above special<br />

solutions v∆, at the limit we get Kato <strong>in</strong>equalities...<br />

but, these are precisely the adapted entropy <strong>in</strong>equalities !!<br />

– then u is (the unique) entropy solution (use caract. A. of entropy sols).<br />

• For the general case u0 ∈ L ∞ (R) , localize us<strong>in</strong>g f<strong>in</strong>ite speed of<br />

propagation; approximate u0 by BV(R)∩L 1 (R) functions(u n 0)n Use discrete<br />

L 1 contraction <strong>and</strong> the result of the BV case.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Convergence; existence of entropy solutions.<br />

Theorem (convergence of the scheme; existence of solutions)<br />

Assume u0 ∈ L ∞ (R). Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), the<br />

numerical scheme converges <strong>in</strong> L 1 loc(R + ×R) to the unique entropy solution to<br />

“<strong>Burgers</strong> with <strong>particle</strong>-at-zero” problem when ∆x tends to 0.<br />

In particular, the problem is well-posed , for L ∞ data <strong>and</strong> L 1 loc topology.<br />

Proof.<br />

• First assume that u0 ∈ BV(R).<br />

– BVloc bounds yield compactness: we get u an accumulation po<strong>in</strong>t of (u∆)∆ ;<br />

– well-balance property for (c−, c+) ∈ G 1 λ ∪ G 2 λ yields enough explicit<br />

stationary solutions v∆ to the scheme (at least, at the limit ∆x → 0);<br />

– us<strong>in</strong>g the approximate Kato <strong>in</strong>equalities on u∆ <strong>and</strong> the above special<br />

solutions v∆, at the limit we get Kato <strong>in</strong>equalities...<br />

but, these are precisely the adapted entropy <strong>in</strong>equalities !!<br />

– then u is (the unique) entropy solution (use caract. A. of entropy sols).<br />

• For the general case u0 ∈ L ∞ (R) , localize us<strong>in</strong>g f<strong>in</strong>ite speed of<br />

propagation; approximate u0 by BV(R)∩L 1 (R) functions(u n 0)n Use discrete<br />

L 1 contraction <strong>and</strong> the result of the BV case.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Convergence; existence of entropy solutions.<br />

Theorem (convergence of the scheme; existence of solutions)<br />

Assume u0 ∈ L ∞ (R). Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), the<br />

numerical scheme converges <strong>in</strong> L 1 loc(R + ×R) to the unique entropy solution to<br />

“<strong>Burgers</strong> with <strong>particle</strong>-at-zero” problem when ∆x tends to 0.<br />

In particular, the problem is well-posed , for L ∞ data <strong>and</strong> L 1 loc topology.<br />

Proof.<br />

• First assume that u0 ∈ BV(R).<br />

– BVloc bounds yield compactness: we get u an accumulation po<strong>in</strong>t of (u∆)∆ ;<br />

– well-balance property for (c−, c+) ∈ G 1 λ ∪ G 2 λ yields enough explicit<br />

stationary solutions v∆ to the scheme (at least, at the limit ∆x → 0);<br />

– us<strong>in</strong>g the approximate Kato <strong>in</strong>equalities on u∆ <strong>and</strong> the above special<br />

solutions v∆, at the limit we get Kato <strong>in</strong>equalities...<br />

but, these are precisely the adapted entropy <strong>in</strong>equalities !!<br />

– then u is (the unique) entropy solution (use caract. A. of entropy sols).<br />

• For the general case u0 ∈ L ∞ (R) , localize us<strong>in</strong>g f<strong>in</strong>ite speed of<br />

propagation; approximate u0 by BV(R)∩L 1 (R) functions(u n 0)n Use discrete<br />

L 1 contraction <strong>and</strong> the result of the BV case.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Convergence; existence of entropy solutions.<br />

Theorem (convergence of the scheme; existence of solutions)<br />

Assume u0 ∈ L ∞ (R). Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), the<br />

numerical scheme converges <strong>in</strong> L 1 loc(R + ×R) to the unique entropy solution to<br />

“<strong>Burgers</strong> with <strong>particle</strong>-at-zero” problem when ∆x tends to 0.<br />

In particular, the problem is well-posed , for L ∞ data <strong>and</strong> L 1 loc topology.<br />

Proof.<br />

• First assume that u0 ∈ BV(R).<br />

– BVloc bounds yield compactness: we get u an accumulation po<strong>in</strong>t of (u∆)∆ ;<br />

– well-balance property for (c−, c+) ∈ G 1 λ ∪ G 2 λ yields enough explicit<br />

stationary solutions v∆ to the scheme (at least, at the limit ∆x → 0);<br />

– us<strong>in</strong>g the approximate Kato <strong>in</strong>equalities on u∆ <strong>and</strong> the above special<br />

solutions v∆, at the limit we get Kato <strong>in</strong>equalities...<br />

but, these are precisely the adapted entropy <strong>in</strong>equalities !!<br />

– then u is (the unique) entropy solution (use caract. A. of entropy sols).<br />

• For the general case u0 ∈ L ∞ (R) , localize us<strong>in</strong>g f<strong>in</strong>ite speed of<br />

propagation; approximate u0 by BV(R)∩L 1 (R) functions(u n 0)n Use discrete<br />

L 1 contraction <strong>and</strong> the result of the BV case.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Convergence; existence of entropy solutions.<br />

Theorem (convergence of the scheme; existence of solutions)<br />

Assume u0 ∈ L ∞ (R). Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), the<br />

numerical scheme converges <strong>in</strong> L 1 loc(R + ×R) to the unique entropy solution to<br />

“<strong>Burgers</strong> with <strong>particle</strong>-at-zero” problem when ∆x tends to 0.<br />

In particular, the problem is well-posed , for L ∞ data <strong>and</strong> L 1 loc topology.<br />

Proof.<br />

• First assume that u0 ∈ BV(R).<br />

– BVloc bounds yield compactness: we get u an accumulation po<strong>in</strong>t of (u∆)∆ ;<br />

– well-balance property for (c−, c+) ∈ G 1 λ ∪ G 2 λ yields enough explicit<br />

stationary solutions v∆ to the scheme (at least, at the limit ∆x → 0);<br />

– us<strong>in</strong>g the approximate Kato <strong>in</strong>equalities on u∆ <strong>and</strong> the above special<br />

solutions v∆, at the limit we get Kato <strong>in</strong>equalities...<br />

but, these are precisely the adapted entropy <strong>in</strong>equalities !!<br />

– then u is (the unique) entropy solution (use caract. A. of entropy sols).<br />

• For the general case u0 ∈ L ∞ (R) , localize us<strong>in</strong>g f<strong>in</strong>ite speed of<br />

propagation; approximate u0 by BV(R)∩L 1 (R) functions(u n 0)n Use discrete<br />

L 1 contraction <strong>and</strong> the result of the BV case.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Convergence; existence of entropy solutions.<br />

Theorem (convergence of the scheme; existence of solutions)<br />

Assume u0 ∈ L ∞ (R). Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), the<br />

numerical scheme converges <strong>in</strong> L 1 loc(R + ×R) to the unique entropy solution to<br />

“<strong>Burgers</strong> with <strong>particle</strong>-at-zero” problem when ∆x tends to 0.<br />

In particular, the problem is well-posed , for L ∞ data <strong>and</strong> L 1 loc topology.<br />

Proof.<br />

• First assume that u0 ∈ BV(R).<br />

– BVloc bounds yield compactness: we get u an accumulation po<strong>in</strong>t of (u∆)∆ ;<br />

– well-balance property for (c−, c+) ∈ G 1 λ ∪ G 2 λ yields enough explicit<br />

stationary solutions v∆ to the scheme (at least, at the limit ∆x → 0);<br />

– us<strong>in</strong>g the approximate Kato <strong>in</strong>equalities on u∆ <strong>and</strong> the above special<br />

solutions v∆, at the limit we get Kato <strong>in</strong>equalities...<br />

but, these are precisely the adapted entropy <strong>in</strong>equalities !!<br />

– then u is (the unique) entropy solution (use caract. A. of entropy sols).<br />

• For the general case u0 ∈ L ∞ (R) , localize us<strong>in</strong>g f<strong>in</strong>ite speed of<br />

propagation; approximate u0 by BV(R)∩L 1 (R) functions(u n 0)n Use discrete<br />

L 1 contraction <strong>and</strong> the result of the BV case.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Convergence; existence of entropy solutions.<br />

Theorem (convergence of the scheme; existence of solutions)<br />

Assume u0 ∈ L ∞ (R). Then, un<strong>de</strong>r the CFL condition <strong>and</strong> assumption (H), the<br />

numerical scheme converges <strong>in</strong> L 1 loc(R + ×R) to the unique entropy solution to<br />

“<strong>Burgers</strong> with <strong>particle</strong>-at-zero” problem when ∆x tends to 0.<br />

In particular, the problem is well-posed , for L ∞ data <strong>and</strong> L 1 loc topology.<br />

Proof.<br />

• First assume that u0 ∈ BV(R).<br />

– BVloc bounds yield compactness: we get u an accumulation po<strong>in</strong>t of (u∆)∆ ;<br />

– well-balance property for (c−, c+) ∈ G 1 λ ∪ G 2 λ yields enough explicit<br />

stationary solutions v∆ to the scheme (at least, at the limit ∆x → 0);<br />

– us<strong>in</strong>g the approximate Kato <strong>in</strong>equalities on u∆ <strong>and</strong> the above special<br />

solutions v∆, at the limit we get Kato <strong>in</strong>equalities...<br />

but, these are precisely the adapted entropy <strong>in</strong>equalities !!<br />

– then u is (the unique) entropy solution (use caract. A. of entropy sols).<br />

• For the general case u0 ∈ L ∞ (R) , localize us<strong>in</strong>g f<strong>in</strong>ite speed of<br />

propagation; approximate u0 by BV(R)∩L 1 (R) functions(u n 0)n Use discrete<br />

L 1 contraction <strong>and</strong> the result of the BV case.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

COUPLED PROBLEM


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): existence, uniqueness<br />

Theorem (well-posedness for mov<strong>in</strong>g but <strong>de</strong>coupled <strong>particle</strong>)<br />

Given h(·) a C 1 path, there exists a unique entropy solution to the <strong>Burgers</strong><br />

equation with s<strong>in</strong>gular drag term −λ(u − h ′ (t))δ0(x − h(t)); (localized) L 1<br />

contraction property holds.<br />

Def<strong>in</strong>ition :<br />

– the germ Gλ changes <strong>in</strong>to (h ′ (t), h ′ (t))+Gλ;<br />

– versions B. (“with traces”) <strong>and</strong> D. (“adapted entropy <strong>in</strong>equalities with<br />

rema<strong>in</strong><strong>de</strong>r term”) permit to <strong>de</strong>f<strong>in</strong>e entropy solutions.<br />

Arguments :<br />

– for uniqueness, comparison, L 1 contraction: same technique;<br />

– for existence: use characterization D. (it is stable by passage to the limit!) ;<br />

– approximate h(·) by a family (hn)n of piecewise aff<strong>in</strong>e paths<br />

– construction of solutions for “<strong>particle</strong> at hn” is straightforward: h ′ n be<strong>in</strong>g<br />

piecewise constant, one changes variables to reduce to the “drag<br />

force-at-zero” case. Procedure restarted at each time where h ′ n jumps.<br />

– because h ′ n → h ′ , the associated germs converge; thus we pass to the limit<br />

<strong>in</strong> characterization D..


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): existence, uniqueness<br />

Theorem (well-posedness for mov<strong>in</strong>g but <strong>de</strong>coupled <strong>particle</strong>)<br />

Given h(·) a C 1 path, there exists a unique entropy solution to the <strong>Burgers</strong><br />

equation with s<strong>in</strong>gular drag term −λ(u − h ′ (t))δ0(x − h(t)); (localized) L 1<br />

contraction property holds.<br />

Def<strong>in</strong>ition :<br />

– the germ Gλ changes <strong>in</strong>to (h ′ (t), h ′ (t))+Gλ;<br />

– versions B. (“with traces”) <strong>and</strong> D. (“adapted entropy <strong>in</strong>equalities with<br />

rema<strong>in</strong><strong>de</strong>r term”) permit to <strong>de</strong>f<strong>in</strong>e entropy solutions.<br />

Arguments :<br />

– for uniqueness, comparison, L 1 contraction: same technique;<br />

– for existence: use characterization D. (it is stable by passage to the limit!) ;<br />

– approximate h(·) by a family (hn)n of piecewise aff<strong>in</strong>e paths<br />

– construction of solutions for “<strong>particle</strong> at hn” is straightforward: h ′ n be<strong>in</strong>g<br />

piecewise constant, one changes variables to reduce to the “drag<br />

force-at-zero” case. Procedure restarted at each time where h ′ n jumps.<br />

– because h ′ n → h ′ , the associated germs converge; thus we pass to the limit<br />

<strong>in</strong> characterization D..


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): existence, uniqueness<br />

Theorem (well-posedness for mov<strong>in</strong>g but <strong>de</strong>coupled <strong>particle</strong>)<br />

Given h(·) a C 1 path, there exists a unique entropy solution to the <strong>Burgers</strong><br />

equation with s<strong>in</strong>gular drag term −λ(u − h ′ (t))δ0(x − h(t)); (localized) L 1<br />

contraction property holds.<br />

Def<strong>in</strong>ition :<br />

– the germ Gλ changes <strong>in</strong>to (h ′ (t), h ′ (t))+Gλ;<br />

– versions B. (“with traces”) <strong>and</strong> D. (“adapted entropy <strong>in</strong>equalities with<br />

rema<strong>in</strong><strong>de</strong>r term”) permit to <strong>de</strong>f<strong>in</strong>e entropy solutions.<br />

Arguments :<br />

– for uniqueness, comparison, L 1 contraction: same technique;<br />

– for existence: use characterization D. (it is stable by passage to the limit!) ;<br />

– approximate h(·) by a family (hn)n of piecewise aff<strong>in</strong>e paths<br />

– construction of solutions for “<strong>particle</strong> at hn” is straightforward: h ′ n be<strong>in</strong>g<br />

piecewise constant, one changes variables to reduce to the “drag<br />

force-at-zero” case. Procedure restarted at each time where h ′ n jumps.<br />

– because h ′ n → h ′ , the associated germs converge; thus we pass to the limit<br />

<strong>in</strong> characterization D..


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): existence, uniqueness<br />

Theorem (well-posedness for mov<strong>in</strong>g but <strong>de</strong>coupled <strong>particle</strong>)<br />

Given h(·) a C 1 path, there exists a unique entropy solution to the <strong>Burgers</strong><br />

equation with s<strong>in</strong>gular drag term −λ(u − h ′ (t))δ0(x − h(t)); (localized) L 1<br />

contraction property holds.<br />

Def<strong>in</strong>ition :<br />

– the germ Gλ changes <strong>in</strong>to (h ′ (t), h ′ (t))+Gλ;<br />

– versions B. (“with traces”) <strong>and</strong> D. (“adapted entropy <strong>in</strong>equalities with<br />

rema<strong>in</strong><strong>de</strong>r term”) permit to <strong>de</strong>f<strong>in</strong>e entropy solutions.<br />

Arguments :<br />

– for uniqueness, comparison, L 1 contraction: same technique;<br />

– for existence: use characterization D. (it is stable by passage to the limit!) ;<br />

– approximate h(·) by a family (hn)n of piecewise aff<strong>in</strong>e paths<br />

– construction of solutions for “<strong>particle</strong> at hn” is straightforward: h ′ n be<strong>in</strong>g<br />

piecewise constant, one changes variables to reduce to the “drag<br />

force-at-zero” case. Procedure restarted at each time where h ′ n jumps.<br />

– because h ′ n → h ′ , the associated germs converge; thus we pass to the limit<br />

<strong>in</strong> characterization D..


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): existence, uniqueness<br />

Theorem (well-posedness for mov<strong>in</strong>g but <strong>de</strong>coupled <strong>particle</strong>)<br />

Given h(·) a C 1 path, there exists a unique entropy solution to the <strong>Burgers</strong><br />

equation with s<strong>in</strong>gular drag term −λ(u − h ′ (t))δ0(x − h(t)); (localized) L 1<br />

contraction property holds.<br />

Def<strong>in</strong>ition :<br />

– the germ Gλ changes <strong>in</strong>to (h ′ (t), h ′ (t))+Gλ;<br />

– versions B. (“with traces”) <strong>and</strong> D. (“adapted entropy <strong>in</strong>equalities with<br />

rema<strong>in</strong><strong>de</strong>r term”) permit to <strong>de</strong>f<strong>in</strong>e entropy solutions.<br />

Arguments :<br />

– for uniqueness, comparison, L 1 contraction: same technique;<br />

– for existence: use characterization D. (it is stable by passage to the limit!) ;<br />

– approximate h(·) by a family (hn)n of piecewise aff<strong>in</strong>e paths<br />

– construction of solutions for “<strong>particle</strong> at hn” is straightforward: h ′ n be<strong>in</strong>g<br />

piecewise constant, one changes variables to reduce to the “drag<br />

force-at-zero” case. Procedure restarted at each time where h ′ n jumps.<br />

– because h ′ n → h ′ , the associated germs converge; thus we pass to the limit<br />

<strong>in</strong> characterization D..


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): existence, uniqueness<br />

Theorem (well-posedness for mov<strong>in</strong>g but <strong>de</strong>coupled <strong>particle</strong>)<br />

Given h(·) a C 1 path, there exists a unique entropy solution to the <strong>Burgers</strong><br />

equation with s<strong>in</strong>gular drag term −λ(u − h ′ (t))δ0(x − h(t)); (localized) L 1<br />

contraction property holds.<br />

Def<strong>in</strong>ition :<br />

– the germ Gλ changes <strong>in</strong>to (h ′ (t), h ′ (t))+Gλ;<br />

– versions B. (“with traces”) <strong>and</strong> D. (“adapted entropy <strong>in</strong>equalities with<br />

rema<strong>in</strong><strong>de</strong>r term”) permit to <strong>de</strong>f<strong>in</strong>e entropy solutions.<br />

Arguments :<br />

– for uniqueness, comparison, L 1 contraction: same technique;<br />

– for existence: use characterization D. (it is stable by passage to the limit!) ;<br />

– approximate h(·) by a family (hn)n of piecewise aff<strong>in</strong>e paths<br />

– construction of solutions for “<strong>particle</strong> at hn” is straightforward: h ′ n be<strong>in</strong>g<br />

piecewise constant, one changes variables to reduce to the “drag<br />

force-at-zero” case. Procedure restarted at each time where h ′ n jumps.<br />

– because h ′ n → h ′ , the associated germs converge; thus we pass to the limit<br />

<strong>in</strong> characterization D..


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): existence, uniqueness<br />

Theorem (well-posedness for mov<strong>in</strong>g but <strong>de</strong>coupled <strong>particle</strong>)<br />

Given h(·) a C 1 path, there exists a unique entropy solution to the <strong>Burgers</strong><br />

equation with s<strong>in</strong>gular drag term −λ(u − h ′ (t))δ0(x − h(t)); (localized) L 1<br />

contraction property holds.<br />

Def<strong>in</strong>ition :<br />

– the germ Gλ changes <strong>in</strong>to (h ′ (t), h ′ (t))+Gλ;<br />

– versions B. (“with traces”) <strong>and</strong> D. (“adapted entropy <strong>in</strong>equalities with<br />

rema<strong>in</strong><strong>de</strong>r term”) permit to <strong>de</strong>f<strong>in</strong>e entropy solutions.<br />

Arguments :<br />

– for uniqueness, comparison, L 1 contraction: same technique;<br />

– for existence: use characterization D. (it is stable by passage to the limit!) ;<br />

– approximate h(·) by a family (hn)n of piecewise aff<strong>in</strong>e paths<br />

– construction of solutions for “<strong>particle</strong> at hn” is straightforward: h ′ n be<strong>in</strong>g<br />

piecewise constant, one changes variables to reduce to the “drag<br />

force-at-zero” case. Procedure restarted at each time where h ′ n jumps.<br />

– because h ′ n → h ′ , the associated germs converge; thus we pass to the limit<br />

<strong>in</strong> characterization D..


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce en h(·)<br />

Uniqueness proof for the coupled problem relies on a Gronwall <strong>in</strong>equality,<br />

which <strong>in</strong> turn relies on a Lipschitz <strong>de</strong>pen<strong>de</strong>nce estimate for the map<br />

h(·) ↦→ u(·,·) .<br />

Theorem (<strong>de</strong>pen<strong>de</strong>nce of u on the path h(·))<br />

Assume u, û are entropy solutions correspond<strong>in</strong>g to the <strong>particle</strong>s located at<br />

h(·), ˆ h(·), respectively, with h(0) = 0 = ˆ h(0) <strong>and</strong> same <strong>in</strong>itial datum u0.<br />

Assume û ∈ L ∞ (0, T; BV(R)). Then for a.e. t ∈ (0, T),<br />

t<br />

u(t,·)−û(t,·) L1 (R) C(u∞,û∞,ûBV,λ) |h<br />

0<br />

′ (s)− ˆ h ′ (s)| ds.<br />

Arguments:<br />

– change of variables y = x − h(t), resp. x − h ′ (t). Two eqns, both with<br />

s<strong>in</strong>gularity at zero, come out, with different fluxes of the k<strong>in</strong>d u ↦→ u2<br />

2 − h′ (t)u.<br />

– use the techniques of <strong>de</strong>pen<strong>de</strong>nce of entropy solutions on the flux function<br />

(BV regularity nee<strong>de</strong>d!): Kuznetsov, Bouchut-Perthame, Karlsen-Risebro... :<br />

the C 1 norm of the difference of the fluxes pops up, which yields |h ′ − ˆ h ′ |<br />

– use Lipschitz <strong>de</strong>pen<strong>de</strong>nce of the germ on h ′ to <strong>de</strong>scribe additional (small)<br />

“non-dissipation” term com<strong>in</strong>g from the <strong>in</strong>terface.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce en h(·)<br />

Uniqueness proof for the coupled problem relies on a Gronwall <strong>in</strong>equality,<br />

which <strong>in</strong> turn relies on a Lipschitz <strong>de</strong>pen<strong>de</strong>nce estimate for the map<br />

h(·) ↦→ u(·,·) .<br />

Theorem (<strong>de</strong>pen<strong>de</strong>nce of u on the path h(·))<br />

Assume u, û are entropy solutions correspond<strong>in</strong>g to the <strong>particle</strong>s located at<br />

h(·), ˆ h(·), respectively, with h(0) = 0 = ˆ h(0) <strong>and</strong> same <strong>in</strong>itial datum u0.<br />

Assume û ∈ L ∞ (0, T; BV(R)). Then for a.e. t ∈ (0, T),<br />

t<br />

u(t,·)−û(t,·) L1 (R) C(u∞,û∞,ûBV,λ) |h<br />

0<br />

′ (s)− ˆ h ′ (s)| ds.<br />

Arguments:<br />

– change of variables y = x − h(t), resp. x − h ′ (t). Two eqns, both with<br />

s<strong>in</strong>gularity at zero, come out, with different fluxes of the k<strong>in</strong>d u ↦→ u2<br />

2 − h′ (t)u.<br />

– use the techniques of <strong>de</strong>pen<strong>de</strong>nce of entropy solutions on the flux function<br />

(BV regularity nee<strong>de</strong>d!): Kuznetsov, Bouchut-Perthame, Karlsen-Risebro... :<br />

the C 1 norm of the difference of the fluxes pops up, which yields |h ′ − ˆ h ′ |<br />

– use Lipschitz <strong>de</strong>pen<strong>de</strong>nce of the germ on h ′ to <strong>de</strong>scribe additional (small)<br />

“non-dissipation” term com<strong>in</strong>g from the <strong>in</strong>terface.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce en h(·)<br />

Uniqueness proof for the coupled problem relies on a Gronwall <strong>in</strong>equality,<br />

which <strong>in</strong> turn relies on a Lipschitz <strong>de</strong>pen<strong>de</strong>nce estimate for the map<br />

h(·) ↦→ u(·,·) .<br />

Theorem (<strong>de</strong>pen<strong>de</strong>nce of u on the path h(·))<br />

Assume u, û are entropy solutions correspond<strong>in</strong>g to the <strong>particle</strong>s located at<br />

h(·), ˆ h(·), respectively, with h(0) = 0 = ˆ h(0) <strong>and</strong> same <strong>in</strong>itial datum u0.<br />

Assume û ∈ L ∞ (0, T; BV(R)). Then for a.e. t ∈ (0, T),<br />

t<br />

u(t,·)−û(t,·) L1 (R) C(u∞,û∞,ûBV,λ) |h<br />

0<br />

′ (s)− ˆ h ′ (s)| ds.<br />

Arguments:<br />

– change of variables y = x − h(t), resp. x − h ′ (t). Two eqns, both with<br />

s<strong>in</strong>gularity at zero, come out, with different fluxes of the k<strong>in</strong>d u ↦→ u2<br />

2 − h′ (t)u.<br />

– use the techniques of <strong>de</strong>pen<strong>de</strong>nce of entropy solutions on the flux function<br />

(BV regularity nee<strong>de</strong>d!): Kuznetsov, Bouchut-Perthame, Karlsen-Risebro... :<br />

the C 1 norm of the difference of the fluxes pops up, which yields |h ′ − ˆ h ′ |<br />

– use Lipschitz <strong>de</strong>pen<strong>de</strong>nce of the germ on h ′ to <strong>de</strong>scribe additional (small)<br />

“non-dissipation” term com<strong>in</strong>g from the <strong>in</strong>terface.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce en h(·)<br />

Uniqueness proof for the coupled problem relies on a Gronwall <strong>in</strong>equality,<br />

which <strong>in</strong> turn relies on a Lipschitz <strong>de</strong>pen<strong>de</strong>nce estimate for the map<br />

h(·) ↦→ u(·,·) .<br />

Theorem (<strong>de</strong>pen<strong>de</strong>nce of u on the path h(·))<br />

Assume u, û are entropy solutions correspond<strong>in</strong>g to the <strong>particle</strong>s located at<br />

h(·), ˆ h(·), respectively, with h(0) = 0 = ˆ h(0) <strong>and</strong> same <strong>in</strong>itial datum u0.<br />

Assume û ∈ L ∞ (0, T; BV(R)). Then for a.e. t ∈ (0, T),<br />

t<br />

u(t,·)−û(t,·) L1 (R) C(u∞,û∞,ûBV,λ) |h<br />

0<br />

′ (s)− ˆ h ′ (s)| ds.<br />

Arguments:<br />

– change of variables y = x − h(t), resp. x − h ′ (t). Two eqns, both with<br />

s<strong>in</strong>gularity at zero, come out, with different fluxes of the k<strong>in</strong>d u ↦→ u2<br />

2 − h′ (t)u.<br />

– use the techniques of <strong>de</strong>pen<strong>de</strong>nce of entropy solutions on the flux function<br />

(BV regularity nee<strong>de</strong>d!): Kuznetsov, Bouchut-Perthame, Karlsen-Risebro... :<br />

the C 1 norm of the difference of the fluxes pops up, which yields |h ′ − ˆ h ′ |<br />

– use Lipschitz <strong>de</strong>pen<strong>de</strong>nce of the germ on h ′ to <strong>de</strong>scribe additional (small)<br />

“non-dissipation” term com<strong>in</strong>g from the <strong>in</strong>terface.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce en h(·), L ∞ <strong>and</strong> BV stability<br />

Proposition (BV estimate)<br />

The solution constructed for the h = 0 case obeys<br />

u(t,·)BV(R) ց for all t > 0<br />

(at t = 0 the variation may <strong>in</strong>crease by a const. <strong>de</strong>pend<strong>in</strong>g on u0∞,Gλ).<br />

The solution constructed for the fixed-h(·) case obeys the BV estimate<br />

u(t,·)BV(R) u0BV(R) + const(λ,u0∞)+2<br />

t<br />

0<br />

|h ′′ (s)| ds.<br />

Argument: (re)-construct solutions by wave-front track<strong>in</strong>g algorithm<br />

(Dafermos, Hol<strong>de</strong>n-Risebro, Bressan et al. ) (better control of <strong>in</strong>teractions).<br />

Lemma (L ∞ bounds)<br />

We get a uniform L ∞ bound on ad hoc sequences of h ′ (·) <strong>and</strong> u(·,·).<br />

To be precise: if we look at solutions to the coupled problem, we get<br />

max{u∞,h ′ ∞} max{u0∞,|h ′ (0)|}.<br />

For solutions appear<strong>in</strong>g <strong>in</strong> the fixed-po<strong>in</strong>t or splitt<strong>in</strong>g arguments, we get<br />

somewhat weaker bounds.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce en h(·), L ∞ <strong>and</strong> BV stability<br />

Proposition (BV estimate)<br />

The solution constructed for the h = 0 case obeys<br />

u(t,·)BV(R) ց for all t > 0<br />

(at t = 0 the variation may <strong>in</strong>crease by a const. <strong>de</strong>pend<strong>in</strong>g on u0∞,Gλ).<br />

The solution constructed for the fixed-h(·) case obeys the BV estimate<br />

u(t,·)BV(R) u0BV(R) + const(λ,u0∞)+2<br />

t<br />

0<br />

|h ′′ (s)| ds.<br />

Argument: (re)-construct solutions by wave-front track<strong>in</strong>g algorithm<br />

(Dafermos, Hol<strong>de</strong>n-Risebro, Bressan et al. ) (better control of <strong>in</strong>teractions).<br />

Lemma (L ∞ bounds)<br />

We get a uniform L ∞ bound on ad hoc sequences of h ′ (·) <strong>and</strong> u(·,·).<br />

To be precise: if we look at solutions to the coupled problem, we get<br />

max{u∞,h ′ ∞} max{u0∞,|h ′ (0)|}.<br />

For solutions appear<strong>in</strong>g <strong>in</strong> the fixed-po<strong>in</strong>t or splitt<strong>in</strong>g arguments, we get<br />

somewhat weaker bounds.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case h = h(t): cont<strong>in</strong>uous <strong>de</strong>pen<strong>de</strong>nce en h(·), L ∞ <strong>and</strong> BV stability<br />

Proposition (BV estimate)<br />

The solution constructed for the h = 0 case obeys<br />

u(t,·)BV(R) ց for all t > 0<br />

(at t = 0 the variation may <strong>in</strong>crease by a const. <strong>de</strong>pend<strong>in</strong>g on u0∞,Gλ).<br />

The solution constructed for the fixed-h(·) case obeys the BV estimate<br />

u(t,·)BV(R) u0BV(R) + const(λ,u0∞)+2<br />

t<br />

0<br />

|h ′′ (s)| ds.<br />

Argument: (re)-construct solutions by wave-front track<strong>in</strong>g algorithm<br />

(Dafermos, Hol<strong>de</strong>n-Risebro, Bressan et al. ) (better control of <strong>in</strong>teractions).<br />

Lemma (L ∞ bounds)<br />

We get a uniform L ∞ bound on ad hoc sequences of h ′ (·) <strong>and</strong> u(·,·).<br />

To be precise: if we look at solutions to the coupled problem, we get<br />

max{u∞,h ′ ∞} max{u0∞,|h ′ (0)|}.<br />

For solutions appear<strong>in</strong>g <strong>in</strong> the fixed-po<strong>in</strong>t or splitt<strong>in</strong>g arguments, we get<br />

somewhat weaker bounds.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case of u frozen: evolv<strong>in</strong>g h = h(·)<br />

Proposition (<strong>mo<strong>de</strong>l</strong>l<strong>in</strong>g/“traces” <strong>in</strong>terpretation of the ODE on h(·) )<br />

For every drag force, the ODE <strong>in</strong> the coupled problem writes<br />

mh ′′ <br />

(t) =<br />

−<br />

<br />

(u−) 2 /2−h ′ (t)u−<br />

<br />

(u+) 2 /2−h ′ (t)u+<br />

Notice that the right-h<strong>and</strong> si<strong>de</strong> above is expressed as the difference of the<br />

normal components of the 2D-field (u, u 2 /2) on the curve {x = h(t)} from<br />

the left <strong>and</strong> from the right . Comb<strong>in</strong><strong>in</strong>g this observation with the Green-Gauss<br />

formula, we get the follow<strong>in</strong>g weak formulation of the ODE:<br />

Lemma (second <strong>in</strong>terpretation of the ODE on h(·) )<br />

Let u be a weak solution of the PDE on {x = h(t)}; let h ∈ W 2,∞ (0, T). Then<br />

h(·) verifies the ODE if <strong>and</strong> only if for all ξ ∈ D([0, T)), for all ψ ∈ D(R) such<br />

that ψ ≡ 1 on the set {x ∈ R : ∃t ∈ [0, T] such that h(t) = x}, there holds<br />

T<br />

−m h<br />

0<br />

′ (t)ξ ′ (t)dt = mh ′ T <br />

(0)ξ(0)+ uψξt +<br />

0 R<br />

u2<br />

2 ξψx<br />

<br />

+ u0ψξ(0).<br />

R<br />

<br />

.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Case of u frozen: evolv<strong>in</strong>g h = h(·)<br />

Proposition (<strong>mo<strong>de</strong>l</strong>l<strong>in</strong>g/“traces” <strong>in</strong>terpretation of the ODE on h(·) )<br />

For every drag force, the ODE <strong>in</strong> the coupled problem writes<br />

mh ′′ <br />

(t) =<br />

−<br />

<br />

(u−) 2 /2−h ′ (t)u−<br />

<br />

(u+) 2 /2−h ′ (t)u+<br />

Notice that the right-h<strong>and</strong> si<strong>de</strong> above is expressed as the difference of the<br />

normal components of the 2D-field (u, u 2 /2) on the curve {x = h(t)} from<br />

the left <strong>and</strong> from the right . Comb<strong>in</strong><strong>in</strong>g this observation with the Green-Gauss<br />

formula, we get the follow<strong>in</strong>g weak formulation of the ODE:<br />

Lemma (second <strong>in</strong>terpretation of the ODE on h(·) )<br />

Let u be a weak solution of the PDE on {x = h(t)}; let h ∈ W 2,∞ (0, T). Then<br />

h(·) verifies the ODE if <strong>and</strong> only if for all ξ ∈ D([0, T)), for all ψ ∈ D(R) such<br />

that ψ ≡ 1 on the set {x ∈ R : ∃t ∈ [0, T] such that h(t) = x}, there holds<br />

T<br />

−m h<br />

0<br />

′ (t)ξ ′ (t)dt = mh ′ T <br />

(0)ξ(0)+ uψξt +<br />

0 R<br />

u2<br />

2 ξψx<br />

<br />

+ u0ψξ(0).<br />

R<br />

<br />

.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Coupled problem: existence, uniqueness of BV solutions / existence of<br />

L ∞ solutions<br />

The above <strong>in</strong>gredients can be used <strong>in</strong> several ways:<br />

– In a fixed-po<strong>in</strong>t argument h(·) ↦→ u(·,·) ↦→ h(·)<br />

(compactness: work <strong>in</strong> C 1 ([0, T]), exploit a W 2,∞ (0, T) bound on h(·) )<br />

– In a time splitt<strong>in</strong>g algorithm (alternatively evolv<strong>in</strong>g u <strong>and</strong> h on small time<br />

<strong>in</strong>tervals):<br />

· u updated from h us<strong>in</strong>g the <strong>theory</strong> of entropy solutions for h frozen;<br />

· h updated from u us<strong>in</strong>g the above weak formulation of the ODE.<br />

– In a numerical scheme (same time splitt<strong>in</strong>g + approximation <strong>in</strong> space of the<br />

conservation law); an <strong>in</strong>terest<strong>in</strong>g possibility is the r<strong>and</strong>om-choice algorithm<br />

(Glimm ), <strong>in</strong> or<strong>de</strong>r not to adapt the space mesh<strong>in</strong>g to the <strong>particle</strong> location.<br />

Theorem (Ma<strong>in</strong> result)<br />

For all BV datum u0 <strong>and</strong> given h(0), h ′ (0), there exists a unique entropy<br />

solution to the coupled problem.<br />

For all L ∞ datum u0 <strong>and</strong> given h(0), h ′ (0), there exists an entropy solution to<br />

the coupled problem.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Coupled problem: existence, uniqueness of BV solutions / existence of<br />

L ∞ solutions<br />

The above <strong>in</strong>gredients can be used <strong>in</strong> several ways:<br />

– In a fixed-po<strong>in</strong>t argument h(·) ↦→ u(·,·) ↦→ h(·)<br />

(compactness: work <strong>in</strong> C 1 ([0, T]), exploit a W 2,∞ (0, T) bound on h(·) )<br />

– In a time splitt<strong>in</strong>g algorithm (alternatively evolv<strong>in</strong>g u <strong>and</strong> h on small time<br />

<strong>in</strong>tervals):<br />

· u updated from h us<strong>in</strong>g the <strong>theory</strong> of entropy solutions for h frozen;<br />

· h updated from u us<strong>in</strong>g the above weak formulation of the ODE.<br />

– In a numerical scheme (same time splitt<strong>in</strong>g + approximation <strong>in</strong> space of the<br />

conservation law); an <strong>in</strong>terest<strong>in</strong>g possibility is the r<strong>and</strong>om-choice algorithm<br />

(Glimm ), <strong>in</strong> or<strong>de</strong>r not to adapt the space mesh<strong>in</strong>g to the <strong>particle</strong> location.<br />

Theorem (Ma<strong>in</strong> result)<br />

For all BV datum u0 <strong>and</strong> given h(0), h ′ (0), there exists a unique entropy<br />

solution to the coupled problem.<br />

For all L ∞ datum u0 <strong>and</strong> given h(0), h ′ (0), there exists an entropy solution to<br />

the coupled problem.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Coupled problem: existence, uniqueness of BV solutions / existence of<br />

L ∞ solutions<br />

The above <strong>in</strong>gredients can be used <strong>in</strong> several ways:<br />

– In a fixed-po<strong>in</strong>t argument h(·) ↦→ u(·,·) ↦→ h(·)<br />

(compactness: work <strong>in</strong> C 1 ([0, T]), exploit a W 2,∞ (0, T) bound on h(·) )<br />

– In a time splitt<strong>in</strong>g algorithm (alternatively evolv<strong>in</strong>g u <strong>and</strong> h on small time<br />

<strong>in</strong>tervals):<br />

· u updated from h us<strong>in</strong>g the <strong>theory</strong> of entropy solutions for h frozen;<br />

· h updated from u us<strong>in</strong>g the above weak formulation of the ODE.<br />

– In a numerical scheme (same time splitt<strong>in</strong>g + approximation <strong>in</strong> space of the<br />

conservation law); an <strong>in</strong>terest<strong>in</strong>g possibility is the r<strong>and</strong>om-choice algorithm<br />

(Glimm ), <strong>in</strong> or<strong>de</strong>r not to adapt the space mesh<strong>in</strong>g to the <strong>particle</strong> location.<br />

Theorem (Ma<strong>in</strong> result)<br />

For all BV datum u0 <strong>and</strong> given h(0), h ′ (0), there exists a unique entropy<br />

solution to the coupled problem.<br />

For all L ∞ datum u0 <strong>and</strong> given h(0), h ′ (0), there exists an entropy solution to<br />

the coupled problem.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Coupled problem: existence, uniqueness of BV solutions / existence of<br />

L ∞ solutions<br />

The above <strong>in</strong>gredients can be used <strong>in</strong> several ways:<br />

– In a fixed-po<strong>in</strong>t argument h(·) ↦→ u(·,·) ↦→ h(·)<br />

(compactness: work <strong>in</strong> C 1 ([0, T]), exploit a W 2,∞ (0, T) bound on h(·) )<br />

– In a time splitt<strong>in</strong>g algorithm (alternatively evolv<strong>in</strong>g u <strong>and</strong> h on small time<br />

<strong>in</strong>tervals):<br />

· u updated from h us<strong>in</strong>g the <strong>theory</strong> of entropy solutions for h frozen;<br />

· h updated from u us<strong>in</strong>g the above weak formulation of the ODE.<br />

– In a numerical scheme (same time splitt<strong>in</strong>g + approximation <strong>in</strong> space of the<br />

conservation law); an <strong>in</strong>terest<strong>in</strong>g possibility is the r<strong>and</strong>om-choice algorithm<br />

(Glimm ), <strong>in</strong> or<strong>de</strong>r not to adapt the space mesh<strong>in</strong>g to the <strong>particle</strong> location.<br />

Theorem (Ma<strong>in</strong> result)<br />

For all BV datum u0 <strong>and</strong> given h(0), h ′ (0), there exists a unique entropy<br />

solution to the coupled problem.<br />

For all L ∞ datum u0 <strong>and</strong> given h(0), h ′ (0), there exists an entropy solution to<br />

the coupled problem.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Coupled problem: existence, uniqueness of BV solutions / existence of<br />

L ∞ solutions<br />

The above <strong>in</strong>gredients can be used <strong>in</strong> several ways:<br />

– In a fixed-po<strong>in</strong>t argument h(·) ↦→ u(·,·) ↦→ h(·)<br />

(compactness: work <strong>in</strong> C 1 ([0, T]), exploit a W 2,∞ (0, T) bound on h(·) )<br />

– In a time splitt<strong>in</strong>g algorithm (alternatively evolv<strong>in</strong>g u <strong>and</strong> h on small time<br />

<strong>in</strong>tervals):<br />

· u updated from h us<strong>in</strong>g the <strong>theory</strong> of entropy solutions for h frozen;<br />

· h updated from u us<strong>in</strong>g the above weak formulation of the ODE.<br />

– In a numerical scheme (same time splitt<strong>in</strong>g + approximation <strong>in</strong> space of the<br />

conservation law); an <strong>in</strong>terest<strong>in</strong>g possibility is the r<strong>and</strong>om-choice algorithm<br />

(Glimm ), <strong>in</strong> or<strong>de</strong>r not to adapt the space mesh<strong>in</strong>g to the <strong>particle</strong> location.<br />

Theorem (Ma<strong>in</strong> result)<br />

For all BV datum u0 <strong>and</strong> given h(0), h ′ (0), there exists a unique entropy<br />

solution to the coupled problem.<br />

For all L ∞ datum u0 <strong>and</strong> given h(0), h ′ (0), there exists an entropy solution to<br />

the coupled problem.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Coupled problem: a well-balanced r<strong>and</strong>om-choice numerical scheme<br />

t<br />

t n+1<br />

t n<br />

x<br />

g0(u n In−1, u n In )<br />

u n+1<br />

In<br />

u n uIn n In<br />

ũ n+1<br />

In<br />

h n + v n ∆t<br />

h n + y<br />

gv n(un In ,ϕ− α(u n In+1))<br />

xIn−1/2 h n = xIn+1/2<br />

gv n(ϕ+ α(u n In ), un In+1)<br />

u n+1<br />

In+1<br />

u n In+1<br />

ũ n+1<br />

In+1<br />

g0(u n In , un In+1)<br />

h n+1<br />

xIn+3/2<br />

Figure: Representation of the algorithm based on the well-balanced scheme.


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Numerics: draft<strong>in</strong>g-kiss<strong>in</strong>g-tumbl<strong>in</strong>g<br />

t<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Particle 1<br />

Particle 2<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

x<br />

Figure: Trajectories of two <strong>particle</strong>s


Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Thx !!!<br />

THANK YOU !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!