24.08.2013 Views

Effect of Large Shear Deformation on Rail Steels and Pure Metals

Effect of Large Shear Deformation on Rail Steels and Pure Metals

Effect of Large Shear Deformation on Rail Steels and Pure Metals

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leoben<br />

Doctoral Thesis<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Large</str<strong>on</strong>g> <str<strong>on</strong>g>Shear</str<strong>on</strong>g> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

<strong>on</strong> <strong>Rail</strong> <strong>Steels</strong> <strong>and</strong> <strong>Pure</strong> <strong>Metals</strong><br />

Florian Wetscher<br />

Leoben, March 2006


March 2 th , 2006<br />

This doctoral thesis was typeset by the use <str<strong>on</strong>g>of</str<strong>on</strong>g> KOMA-Script <strong>and</strong> L ATEX 2ε.<br />

The template was modified by Dr. Weinh<strong>and</strong>l <strong>and</strong> Dr. Vorhauer.<br />

Copyright ©2006 by Florian Wetscher<br />

For informati<strong>on</strong>, address:<br />

Erich-Schmid-Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science <str<strong>on</strong>g>of</str<strong>on</strong>g> the Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences,<br />

Christian Doppler Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Local Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> Fracture,<br />

Jahnstrasse 12, 8700 Leoben, Austria.<br />

Homepage: http://www.oeaw.ac.at/esi


ASTRID, LÄTITIA


Ich erkläre an Eides statt, dass ich die hier<br />

vorliegende Arbeit selbstständig verfasst<br />

habe, und nur die hier angegebene Literatur<br />

verwendet habe.<br />

Erklärung<br />

Leoben, März 2006<br />

V


Danksagung<br />

Die hier vorliegende Arbeit wurde im Rahmen meiner Tätigkeit als wissenschaftlicher Angestellter<br />

des Erich-Schmid Instituts für Materialwissenschaften der Österreichischen Akademie der<br />

Wissenschaften in den Jahren 2002 bis 2006 erstellt.<br />

Bedanken möchte ich mich vor allem bei meinem Betreuer, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr. Reinhard Pippan für<br />

den hervorragenden wissenschaftlichen Rückhalt und das in mich gesetzte Vertrauen. Dem<br />

leider inzwischen verstorbenen Herrn Em. Univ. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. DDr. Hein-Peter Stüwe danke ich für<br />

viele anregende Diskussi<strong>on</strong>en, die immer wieder geholfen haben, einen neuen Blickwinkel auf<br />

die Ergebnisse zu bekommen. Mein Dank gilt auch unserem neuen Direktor, Univ. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr.<br />

Gerhard Dehm, der mir mehrere Aufenthalte am Max Plank Institut in Stuttgart ermöglicht<br />

hat, um wichtige Messungen durchführen zu können.<br />

Bes<strong>on</strong>ders bedanken möchte ich mich noch bei unseren Kooperati<strong>on</strong>spartner aus der Industrie,<br />

Herrn Dr. Peter Pointer und Herrn DI Richard Stock v<strong>on</strong> der voestAlpine Schienen GmbH für<br />

die hervorragende Zusammenarbeit und die Bereitschaft, in grundlegende Forschung zu investieren.<br />

Zu bes<strong>on</strong>deren Dank bin ich auch den Herren Günther Aschauer und Franz Hubner v<strong>on</strong><br />

unserer Werkstatt verpflichtet. Ob Proben oder spezielle Vorrichtungen gefertigt werden sollten,<br />

immer wurden die Arbeiten schnell und sorgfältig durchgeführt. Für die hervorragende<br />

Mithilfe bei zahlreichen Experimenten und der Weiterentwicklung verschiedenster Vorrichtung<br />

gilt mein Dank Herrn Ing. Hannes Schlager. Sein Einfallsreichtum und Engagement<br />

dabei sind bes<strong>on</strong>ders hervorzuheben.<br />

Mein bes<strong>on</strong>derer Dank gilt natürlich auch den Damen v<strong>on</strong> der Metallographie, Frau Edeltraud<br />

Haberz und Frau Gabriele Moser. Diese schafften mit großem Erfolg, meine nicht st<strong>and</strong>ardmäßigen<br />

Proben regelmäßig und pünklich zu den Messungen zu präparieren. Man glaubt<br />

kaum, wie widerspenstig sich feinstkörnige Materialien einer Präparati<strong>on</strong> zu entziehen versuchen!<br />

Den folgenden Herren danke ich für die Unterstützung bei verschiedensten technischen<br />

Problemen und Aufgabenstellungen: Herwig Felber, Gerald Reiter, Jörg Thomas, und Fritz<br />

Mitter.<br />

Ohne Frau Marianne Fliesser, der Seele des Hauses, und Frau Doris Schrutt hätten viele<br />

administrative Arbeiten sicherlich um vieles länger gedauert, danke auch dafür!<br />

Für die Bereitschaft, mir bei vor allem bei wissenschaftlichen aber auch nichtwissenschaftlichen<br />

Fragen zu helfen, bedanke ich mich bei Christian Motz, Ottmar Kolednik, Werner Prantl,<br />

Balder Ortner, Herbert Weinh<strong>and</strong>l, Jozef Keckes und Thomas Schöberl.<br />

Ich bedanke mich auch bei allen ehemaligen und aktuellen Bürokollegen, die mir ein angenehmes<br />

Arbeiten ermöglicht haben, bes<strong>on</strong>ders bei Gernot Trattnig und Jaroslav Zenisek.<br />

Mein bes<strong>on</strong>derer Dank gilt Andreas Vorhauer, v<strong>on</strong> dem ich viel über SPD gelernt habe. Die<br />

VII


Zusammenarbeit mit ihm war immer ausgezeichnet.<br />

Bedanken muss ich mich auch bei allen student’schen Hilfskräften, die für mich kleinere<br />

und größere Arbeiten verrichtet haben: Beate Wagner, Christoph Kammerh<str<strong>on</strong>g>of</str<strong>on</strong>g>er und Peter<br />

Jessner. Ganz bes<strong>on</strong>ders ist aber die Hilfe v<strong>on</strong> Ant<strong>on</strong> Hohenwarter herauszustreichen, der<br />

immer höchst engagiert und verlässlich bei der Sache war.<br />

Allen weiteren Mitarbeitern, Dissertanten, Diplomanten und Werksstudenten danke ich für<br />

das angenhme Arbeitsklima und die freundliche Aufnahme.<br />

Meiner Familie, bes<strong>on</strong>ders aber meiner Frau Astrid danke ich für den Rückhalt, die Unterstützung<br />

und das Verständnis für meine Arbeit. Mein Dank geht auch an meine Tochter<br />

Lätitia, die mich mit ihrem s<strong>on</strong>nigen Gemüt immer wieder auf neue Gedanken bringt.<br />

VIII


Summary<br />

The investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> large shear deformati<strong>on</strong>s <strong>on</strong> rail steels is <str<strong>on</strong>g>of</str<strong>on</strong>g> great technical<br />

importance. On the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rails a deformati<strong>on</strong> layer evolves, that str<strong>on</strong>gly influences the<br />

further performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the rail. Therefore it is necessary to know fundamental properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the deformed microstructure to develope tools (simulati<strong>on</strong>s, modells) for optimizing service<br />

intervalls or for a purposefully designing <str<strong>on</strong>g>of</str<strong>on</strong>g> new materials.<br />

The deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> materials to very large strains under high hydrostatic pressure is possible<br />

mainly because in the last fifteen year many methods <str<strong>on</strong>g>of</str<strong>on</strong>g> severe plastic deformati<strong>on</strong> were<br />

invented. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this work is to deform model materials as well as the technical used<br />

rail steels by these methods <str<strong>on</strong>g>of</str<strong>on</strong>g> severe plastic deformati<strong>on</strong> under c<strong>on</strong>trolled c<strong>on</strong>diti<strong>on</strong>s. The<br />

changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure <strong>and</strong> the resulting changes in the mechanical properties where<br />

determined with this samples by applying various methods.<br />

It can be seen that there are markedly differences in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure<br />

between the pure metalls <strong>and</strong> the multiphase steels. In all pure metalls a similar behaviour can<br />

be observed: At the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong> by torsi<strong>on</strong> under high pressure a quick fragmentati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the large grains can be seen. This fragmentati<strong>on</strong> is finished at a certain strain, that<br />

is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the material <strong>and</strong> the crystall structure. If the sample is deformed to even higher<br />

strains, no further refinement occures. When the microstructure is depicted in the directi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the torsi<strong>on</strong> axis, an equiaxed structure is present. The microstructure in radial directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the sample c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> el<strong>on</strong>gated elements, that have a certain angle between the length axis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the elements <strong>and</strong> the shear directi<strong>on</strong>. The microstructure that develops during a cyclic form <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

high pressure torsi<strong>on</strong> is very similar. But it turned out that the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements<br />

after the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> is str<strong>on</strong>gly determined by the strain per cycle. The smaller this<br />

strain increment is, the larger is the resulting microstructure. Also the developement <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

missorientati<strong>on</strong> between the elements as well as the character <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundaries between them<br />

is markedly influence by the deformati<strong>on</strong> mode. Due to this fragmentati<strong>on</strong> <strong>and</strong> grain refinement,<br />

an enourmous increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strength is present, both in m<strong>on</strong>ot<strong>on</strong>ic <strong>and</strong> in<br />

cyclic experiments. Again, the increase in strength is largest for the m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong>,<br />

the smallest increase in the strength was measured for the smallest applied strains per deformati<strong>on</strong><br />

step.<br />

In c<strong>on</strong>tradicti<strong>on</strong> to pure metalls, the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure in steels is mainly<br />

influence by the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbides. Coarse cementite lamellae are severely deformed<br />

<strong>and</strong> fragmented, the fragments algin parallel to the shear plane. If the lamellae are finer, they<br />

are more easily to deform without fragmentati<strong>on</strong>. A markedly fragmentati<strong>on</strong> <strong>and</strong> alignment<br />

can <strong>on</strong>ly be observed after larger strains. The very fine carbides <str<strong>on</strong>g>of</str<strong>on</strong>g> the bainitic steel are hardly<br />

deformed at the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong> <strong>and</strong> just align accoring to the actual shear angle.<br />

Just as in pure metals, also in steels the microstructure resulting from cyclic deformati<strong>on</strong> is<br />

str<strong>on</strong>gly influenced by the strain increment. When this strain increment is small, a very high<br />

total strain is necessary to fragment the lamellae <strong>and</strong> align the fragments. At higher strains per<br />

deformati<strong>on</strong> step, similar microstructurs as after m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong> are observed. Due<br />

to the high shear, also a markedly decrease both in lamellae spacing down to some 10 nm as<br />

well as in the lamellae thickness down to 1-2 nm occurs. After strains <str<strong>on</strong>g>of</str<strong>on</strong>g> ≈ 800% in all steels<br />

IX


a very fine lamellar structure parallel to the shear plane is present. Indicati<strong>on</strong>s from X-ray<br />

investigati<strong>on</strong> suggest that a dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong> from the carbide has occured. This could<br />

be verified by measuring the electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the ir<strong>on</strong> for different strains.<br />

The distinctive decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae spacing <strong>and</strong> the alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae naturally<br />

leads to a change in the mechanical properties. Due to the str<strong>on</strong>g anisotropy in the microstructure,<br />

also a str<strong>on</strong>g anisotropy in the mechanical properties is present. In the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

aligned lamellar structure a distinctive increase in the mechanical strength can be measured<br />

(tensile strength <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 3 GPa). The strength normal to this prefered directi<strong>on</strong> is also<br />

increased, but much lower than the strength in the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the aligned lamellae. The mechanical<br />

strength, the fracture toughness <strong>and</strong> the fatigue crack propagati<strong>on</strong> speed for different<br />

directi<strong>on</strong>s <strong>and</strong> different strains was determined.<br />

X


Kurzfassung<br />

Die Untersuchung der Auswirkung v<strong>on</strong> hohen Scherverformunge auf Schienenstähle ist<br />

v<strong>on</strong> großer technischer Bedeutung. Auf der Oberfläche v<strong>on</strong> Schienen entstehen Verformungsschichten,<br />

die das weitere Verhalten der Schiene wesentlich beeinflussen. Nur wenn grundlegende<br />

Eigenschaften des verformten Gefüge bekannt sind, können Werkzeuge (Simulati<strong>on</strong>en,<br />

Modelle) entwickelt werden, um etwa die Serviceintervalle für die Schienen zu optimieren<br />

oder gezielt Werkst<str<strong>on</strong>g>of</str<strong>on</strong>g>fdesign betreiben zu können.<br />

Das Aufbringen hoher Scherverformungen ist vor allem durch die in den letzten etwa fünfzehn<br />

Jahren entwickelten Methoden der Hochverformung unter hohem hydrostatischen Druck möglich.<br />

Ziel dieser Arbeit ist es, mit Hilfe der Methoden der Hochverformung Modellwerkst<str<strong>on</strong>g>of</str<strong>on</strong>g>fe und<br />

die technisch genutzten Schienestähle bis zu genau definierten Scherungen zu verformen. An<br />

diesen verformten Proben soll die Mikrostrukturentwicklung und die damit einhergehenden<br />

Eigenschaftsänderungen untersucht werden.<br />

Dabei zeigt sich, dass wesentliche Unterschiede in der Strukturentwicklung zwischen Reinmetallen<br />

und den mehrphasigen Stählen bestehen. Bei allen Reinmetallen ist ein ähnliches<br />

Verhalten zu beobachten: Zu Beginn der Verformung durch Torsi<strong>on</strong> unter hohem Druck erfolgt<br />

eine relativ rasche Fragmentierung der großen Körner, die bei Erreichen einer werkst<str<strong>on</strong>g>of</str<strong>on</strong>g>f- und<br />

kristallstrukturabhängigen Scherung scheinbar abgeschlossen ist. Verformt man die Proben zu<br />

noch höheren Scherungen, erfolgt keine weitere Kornfeinung. Bei Betrachtung der Struktur<br />

in Torsi<strong>on</strong>srichtung erscheint diese gleichachsig, in radialer Richtung aber sind die Elemente<br />

länglich, mit einem bestimmten Winkel zwischen der Längsachse und der Scherebene. Die<br />

Mikrostruktur, die durch eine zyklische Form der Hochdrucktorsi<strong>on</strong> eingestellt wird, ist sehr<br />

ähnlich. Es zeigt sich aber, dass die Größe der Strukturelemente, die nach Erreichen der<br />

Sättigung vorliegt, sehr stark v<strong>on</strong> der Verformung pro Zyklus abhängt. Je kleiner diese Verformung<br />

pro Verformungsschritt ist, desto größer ist die entstehende Mikrostruktur. Auch<br />

die Ent-wicklung der Missorientierung sowie der Charakter der Grenzen zwischen Strukturelementen<br />

wird vom Verformungsmodus stark beeinflusst. Durch diese Fragmentierung<br />

und die Kornfeinung kommt es auch zu einem enormen Anstieg in der mechanischen Festigkeit,<br />

sowohl bei m<strong>on</strong>ot<strong>on</strong> als auch bei zyklisch verformten Proben. Wieder ist der Anstieg<br />

bei m<strong>on</strong>ot<strong>on</strong> verformten Proben am größten, die kleinsten Festigkeitssteigerungen werden bei<br />

den kleinsten Verformungen pro Verformungsschritt gemessen.<br />

Im Gegensatz zu den Reinmetallen ist die Strukturentwicklung bei den Stählen vor allem<br />

durch das Verhalten der Karbide bestimmt. Grobe Zementitlamellen werden verformt und<br />

aufgebrochen, die Bruchstücke richten sich parallel zur Scherebene aus. Sind die Lamellen<br />

feiner, lassen sie sich leichter verformen, ohne zu zerbrechen. Eine ausgeprägte Ausrichtung<br />

und Fragmentierung findet erst bei höheren Verformungen statt. Die sehr feinen Karbide<br />

des bainitischen Stahls werden anfangs kaum verformt und richten sich gemäß des aktuellen<br />

Scherwinkels aus. Durch die hoher Scherung kommt es auch zu einer Verringerung des Lamellenabst<strong>and</strong>es<br />

auf wenige 10 nm sowie der Lamellendicke auf 1-2 nm. Nach Verformungen v<strong>on</strong><br />

≈ 800% liegt in allen Stählen eine sehr feinlamellare Struktur fast exakt parallel zur Scherrichtung<br />

vor. Hinweise aus Röntgenuntersuchungen, die auf eine Auflösung der Karbide schließen<br />

lassen, k<strong>on</strong>nten durch Messung der elektr<strong>on</strong>ischen Struktur des Eisens bei verschiedenen Ver-<br />

XI


formungsgraden bestätigt werden. Ähnlich wie bei den Reinmetallen ist auch die durch zyklische<br />

Verformung entstehende Mikrostruktur v<strong>on</strong> Schienenstählen stark v<strong>on</strong> der Verformung<br />

pro Zyklus abhängig. Ist diese klein, so gibt es vorwiegend eine Fragmentierung der Karbide,<br />

die sich anschließend ausrichten. Bei einer hohen Verformung pro Verformungsschritt ist die<br />

Strukur sehr änlich der Struktur nach m<strong>on</strong>ot<strong>on</strong>er Verformung.<br />

Die ausgeprägte Abnahme der Lamellenabstände und die Ausrichtung der Lamellen führt<br />

natürlich auch zu einer Änderung der mechanischen Eigenschaften. Aufgrund der Anisotropie<br />

der Mikrostrukur gibt es auch eine starke Anisotropie in den mechanischen Eigenschaften.<br />

In Richtung dieser ausgerichteten Lamellenstruktur kommt es zu einer starken Festigkeitszunahme<br />

(Zugfestigkeiten v<strong>on</strong> über 3 GPa). Die Festigkeit normal zu dieser Vorzugsrichtung<br />

steigt zwar auch an, der Anstieg ist aber geringer als der Anstieg der Festigkeit in Richtung<br />

der ausgerichteten Lamellenstruktur. Die mechanische Festigkeit, die Bruchzähigkeit und<br />

das Ermüdungsrißwachstum wurden für unterschiedliche Richtungen und für unterschiedliche<br />

Verformungsgrade bestimmt.<br />

XII


Sobald jem<strong>and</strong> in einer Sache Meister geworden ist,<br />

sollte er in einer neuen Sache Schüler werden<br />

Gerhard Hauptmann<br />

XIII


XIV


C<strong>on</strong>tents<br />

1 Introducti<strong>on</strong> 1<br />

1.1 Motivati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

2 Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> 5<br />

2.1 High Pressure Torsi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

2.1.1 Cyclic High Pressure Torsi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . 7<br />

2.2 Equal Channel Angular Pressing . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

3 Results <strong>and</strong> Discussi<strong>on</strong> 11<br />

3.1 Structural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Model Materials during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> . 11<br />

3.1.1 High Pressure Torsi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

3.1.2 Cyclic High Pressure Torsi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . 13<br />

3.2 Structural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> . . . . 16<br />

3.2.1 High Pressure Torsi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

3.2.2 Cyclic High Pressure Toris<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . 21<br />

3.2.3 Microstructure after additi<strong>on</strong>al heat treatment . . . . . . . . . . . . . 23<br />

3.3 Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

3.3.1 In-situ Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the Torque . . . . . . . . . . . . . . . . . . . 26<br />

3.3.2 Tensile Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

3.3.3 Microhardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

3.3.4 Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

3.3.5 Fatigue Crack Progagati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . 32<br />

4 C<strong>on</strong>clusi<strong>on</strong>s 35<br />

5 List <str<strong>on</strong>g>of</str<strong>on</strong>g> appended papers 41<br />

A Structural Refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Alloyed <strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

A–1<br />

A.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–3<br />

A.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–3<br />

A.2.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–3<br />

A.2.2 Microstructural investigati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . A–3<br />

A.2.3 Microhardness Measurements . . . . . . . . . . . . . . . . . . . . . A–4<br />

A.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–4<br />

XV


C<strong>on</strong>tents<br />

A.3.1 Microstructural evoluti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . A–4<br />

A.3.2 Microhardness <strong>and</strong> microstructural features . . . . . . . . . . . . . . A–6<br />

A.4 Discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–6<br />

A.5 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–8<br />

B Structural Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> Severely Plastic Deformed <strong>Rail</strong> Steel B–1<br />

B.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–3<br />

B.2 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–3<br />

B.3 Results <strong>and</strong> Discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–4<br />

B.3.1 X-Ray investigati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . B–4<br />

B.3.2 TEM-investigati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . B–6<br />

B.4 C<strong>on</strong>clusi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–9<br />

C Strain Hardening during High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> C–1<br />

C.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–3<br />

C.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–3<br />

C.2.1 Test equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–3<br />

C.2.2 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–3<br />

C.2.3 Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque curves . . . . . . . . . . . . . . . . . . . . C–4<br />

C.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–5<br />

C.3.1 Torque versus number <str<strong>on</strong>g>of</str<strong>on</strong>g> turns . . . . . . . . . . . . . . . . . . . . . C–5<br />

C.3.2 Tensile tests <strong>and</strong> microhardness measurements . . . . . . . . . . . . C–6<br />

C.3.3 Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–6<br />

C.4 Discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–6<br />

C.5 C<strong>on</strong>clusi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–8<br />

D Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface layers: the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path D–1<br />

D.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–3<br />

D.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–3<br />

D.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–5<br />

D.3.1 M<strong>on</strong>ot<strong>on</strong>ic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . . . . D–5<br />

D.3.2 Cyclic deformati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . D–5<br />

D.3.3 <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a surface due to fricti<strong>on</strong> . . . . . . . . . . . . . . . . D–6<br />

D.3.4 Microhardness measurements . . . . . . . . . . . . . . . . . . . . . D–7<br />

D.4 Discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–8<br />

D.4.1 Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–8<br />

D.4.2 Microhardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–11<br />

D.4.3 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–11<br />

E High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong> E–1<br />

E.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–3<br />

E.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–3<br />

E.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–4<br />

E.3.1 Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–4<br />

XVI


C<strong>on</strong>tents<br />

E.3.2 Mechanical strengths . . . . . . . . . . . . . . . . . . . . . . . . . . E–7<br />

E.4 Discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–7<br />

E.5 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–8<br />

F TEM Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Structural Evoluti<strong>on</strong> in a Pearlitic Steel Deformed<br />

by High Pressure Torsi<strong>on</strong> F–1<br />

F.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–3<br />

F.2 Experimental Details <strong>and</strong> Material . . . . . . . . . . . . . . . . . . . . . . . F–3<br />

F.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–4<br />

F.3.1 Microstructure <strong>and</strong> Elemental Maps . . . . . . . . . . . . . . . . . . F–4<br />

F.3.2 ELNES Measurements . . . . . . . . . . . . . . . . . . . . . . . . . F–5<br />

F.4 Discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–5<br />

F.5 C<strong>on</strong>clusi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–10<br />

F.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–11<br />

F.6.1 Fitting <str<strong>on</strong>g>of</str<strong>on</strong>g> the EELS-spectra . . . . . . . . . . . . . . . . . . . . . . F–11<br />

F.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–12<br />

G Fracture Processes in Severe Plastic Deformed <strong>Rail</strong> <strong>Steels</strong> G–1<br />

G.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–1<br />

G.2 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–3<br />

G.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–3<br />

G.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–4<br />

G.4.1 Microstructure <strong>and</strong> crack path . . . . . . . . . . . . . . . . . . . . . G–4<br />

G.4.2 Fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . G–5<br />

G.4.3 Fracture surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–5<br />

G.5 Discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–7<br />

G.5.1 Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–7<br />

G.5.2 Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–9<br />

G.6 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–10<br />

H Cyclic High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nickel <strong>and</strong> Armco Ir<strong>on</strong> H–1<br />

H.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–3<br />

H.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–3<br />

H.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–4<br />

H.3.1 Flow stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–4<br />

H.3.2 Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–5<br />

H.4 Discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–12<br />

H.4.1 Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . . . H–12<br />

H.4.2 Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–14<br />

H.5 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–15<br />

XVII


C<strong>on</strong>tents<br />

I Structural Evoluti<strong>on</strong> during Cyclic Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> I–1<br />

I.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3<br />

I.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3<br />

I.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3<br />

I.4 Discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–7<br />

I.5 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–9<br />

XVIII


1.1 Motivati<strong>on</strong><br />

1<br />

Introducti<strong>on</strong><br />

Today, the dem<strong>and</strong>s <strong>on</strong> rails are higher than ever: Increasing axle loads, increasing train speeds<br />

as well as increasing traffic add up to an enormous exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> the material. This inevitable<br />

leads to the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a severely deformed surface layer. 1–5 In this layer, cracks are nucleated<br />

<strong>and</strong> may grow, 6–9 an extreme result from this shear deformati<strong>on</strong> is the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a so-called white etching layer (WEL), 7, 10, 11 a feature <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure that is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten observed<br />

where there is slip between surfaces. 12–19 WEL are very hard <strong>and</strong> brittle <strong>and</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

Figure 1.1: (a) optical micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> a WEL <strong>on</strong> a rail (350 LHT) after service (b) SEM micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> an area that<br />

is white in an optical micrograph after etching.<br />

1<br />

1


1<br />

1 Introducti<strong>on</strong><br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> cracks, too. Figure 1.1 depicts two micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the gauge corner <str<strong>on</strong>g>of</str<strong>on</strong>g> a rail after<br />

service. The deformati<strong>on</strong> layer with cracks inside is well pr<strong>on</strong>ounced <strong>and</strong> also a WEL can be<br />

seen. Generally it is assumed that if the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> crack growth is larger than the wear rate, these<br />

cracks can grow to a critical length <strong>and</strong> result in spalling damage or transverse rail fracture as<br />

can be seen in Figure 1.2 ∗ . This becomes especially important for the modern rail steels, that<br />

are much more wear restistant, but also have a somewhat lower fracture toughness. Therefore,<br />

Figure 1.2: Damages <str<strong>on</strong>g>of</str<strong>on</strong>g> rail tracks. (a) Head check cracking <strong>on</strong> the gauge corner (b) Transverse rail cracking from<br />

a head check crack. (c) Spalling damage <strong>on</strong> the gauge corner in a curve track.<br />

it is <str<strong>on</strong>g>of</str<strong>on</strong>g> utmost importance to be able to predict the occurrence <strong>and</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> cracks for different<br />

rail steels <strong>and</strong> different loading c<strong>on</strong>diti<strong>on</strong>s. One possibility to do this are field tests20 or tests<br />

<strong>on</strong> a testing rig for rails. These tests are very time c<strong>on</strong>suming <strong>and</strong> cost-intensive. Hence, great<br />

affords are made to simulate the rail-wheel c<strong>on</strong>tacts in order to be able to study the influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different geometries or to develop tools to predict the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> critical cracks.<br />

8, 21–23<br />

At the moment such calculati<strong>on</strong>s suffer especially from two shortcomings: Firstly, there exists<br />

almost no fundamental knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructural changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the material due to large<br />

shear deformati<strong>on</strong>. Sec<strong>on</strong>dly, virtually nothing is known about the mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this deformed material as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear deformati<strong>on</strong>, especially in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> fracture<br />

toughness <strong>and</strong> anisotropy.<br />

2<br />

∗ taken from a presentati<strong>on</strong> held by J<strong>on</strong>as Rinsberg at the CHARMEC Meeting, 14.-18.01.2004, Leoben


1.2 Objectives<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this work is to underst<strong>and</strong> the processes occurring in pearlitic <strong>and</strong> bainitic steels<br />

used as rail steels during severe plastic shear deformati<strong>on</strong> <strong>and</strong> to relate these to the resulting<br />

changes in the mechanical properties. Together with steels, the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> pure metals shall<br />

be investigated in order to gain fundamental insight in the processes during severe plastic<br />

deformati<strong>on</strong>. The investigated materials comprise the coarse-pearlitic steel 900A, the finepearlitic<br />

steel 350 LHT (or HSH-S), the bainitic steel Dobain 430, pure ir<strong>on</strong>, pure nickel <strong>and</strong><br />

pure copper. Figure 1.3 depicts the initial microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the investigated rail steels. The<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the investigated steels is given in Table 1.1.<br />

C Si Mn Cr Pmax Smax<br />

900A 0,76 0,35 1,0 0,014 0,017 0,04<br />

350 LHT 0,78 0,46 1,18 0,23 0,012 0,015<br />

Dobain 430 0,70-0,82 0,4-1,0 0,7-1,1 0,4-0,7 0,02 0,02<br />

Table 1.1: Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the used materials<br />

In the last years, in the scientific field <str<strong>on</strong>g>of</str<strong>on</strong>g> severe plastic deformati<strong>on</strong> many methods were<br />

developed to severely plastically deform samples to strains not reachable with c<strong>on</strong>venti<strong>on</strong>al<br />

processes, see for example the proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the many c<strong>on</strong>ferences held in this area. 24–26<br />

In the present work, some <str<strong>on</strong>g>of</str<strong>on</strong>g> this methods are applied to the investigated materials to produce<br />

specimens with a defined deformati<strong>on</strong> for further investigati<strong>on</strong>s. With samples produced<br />

by High Pressure Torsi<strong>on</strong> (HPT), the microstructural evoluti<strong>on</strong> <strong>and</strong> the mechanical strength<br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>ot<strong>on</strong>ic shear strain are determined. In order to evaluate the influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cyclic severe plastic deformati<strong>on</strong> a new method <str<strong>on</strong>g>of</str<strong>on</strong>g> SPD, Cyclic High Pressure Torsi<strong>on</strong><br />

(CHPT), was developed <strong>and</strong> applied to different materials. Investigati<strong>on</strong> methods for characterizing<br />

the microstructure comprised scanning electr<strong>on</strong> microscopy (SEM) using sec<strong>on</strong>dary<br />

(SE) electr<strong>on</strong>s or backscattered electr<strong>on</strong>s (BSE) for depicting or obtaining orientati<strong>on</strong> image<br />

maps (OIM), transmissi<strong>on</strong> electr<strong>on</strong> microscopy (TEM), analytical transmissi<strong>on</strong> electr<strong>on</strong> microscopy,<br />

i<strong>on</strong> microscopy <strong>and</strong> different X-ray diffracti<strong>on</strong> techniques. The mechanical strength<br />

was determined by means <str<strong>on</strong>g>of</str<strong>on</strong>g> microhardness, in-situ measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque <strong>and</strong> subsize<br />

tensile tests. To determine the fracture toughness <strong>and</strong> the crack growth properties, samples <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the rail steel 900A were deformed by Equal Channel Angular Pressing (ECAP) using Route A.<br />

With these samples, also the resulting anisotropy (in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> fracture toughness, crack growth<br />

<strong>and</strong> mechanical strength) was studied. To investigate the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> WEL, combinati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> severe plastic deformati<strong>on</strong> <strong>and</strong> different heat treatments were performed for the rail steel<br />

900A.<br />

3<br />

1


1<br />

1 Introducti<strong>on</strong><br />

Figure 1.3: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial microstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> investigated materials (a) 900A, SEM, (b) 350 LHT,<br />

SEM, (c) Dobain 430, SEM <strong>and</strong> (d) Armco Ir<strong>on</strong> by means <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> microscopy.<br />

4


2<br />

Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

In the following secti<strong>on</strong>s, the SPD-methods used in this work will be described shortly. Of<br />

course, beside these methods, a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> further techniques exist, for instance accumulative<br />

roll b<strong>on</strong>ding, 27–29 cyclic extrusi<strong>on</strong> compressi<strong>on</strong>, 30, 31 c<strong>on</strong>tinuous equal channel angular<br />

pressing, 32 torsi<strong>on</strong> extrusi<strong>on</strong>33 or cyclic channel die compressi<strong>on</strong>. 34, 35<br />

2.1 High Pressure Torsi<strong>on</strong><br />

To quickly produce samples with a known, very large strain, High Pressure Torsi<strong>on</strong> (HPT) is<br />

the easiest method. Numerous papers prove the capability <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT to achieve ultra-fine grained<br />

material. 36–40 For this method, a coin-shaped samples is pressed between two anvils under a<br />

high hydrostatic pressure (The maximum pressure is ≈ 7.5GP a for our tool). During the<br />

build-up <str<strong>on</strong>g>of</str<strong>on</strong>g> the pressure, the sample is pressed into the cavities in the anvil. In this process, a<br />

burr is formed at the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample. Then <strong>on</strong>e anvil is rotated with respect to the other<br />

anvil, the rotati<strong>on</strong> speed can be varied over a large range. This leads to a deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

sample by almost simple shear. The burr prevents a c<strong>on</strong>tact between the two anvils <strong>and</strong> upholds<br />

the hydrostatic pressure. Due to the high pressure, in most metals the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cracks is<br />

suppressed, therefore it is possible to apply very high strains without failure <str<strong>on</strong>g>of</str<strong>on</strong>g> the material.<br />

Another functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the high pressure is to supply enough fricti<strong>on</strong> to prevent the occurrence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> slip. To support this mechanism, both the anvils <strong>and</strong> the sample are s<strong>and</strong>blasted before the<br />

experiment. To be sure whether the experiment is useful or not, in most cases two checks are<br />

made: Firstly, a line is drawn <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample. After the experiment, these lines<br />

are still visible <strong>and</strong> are rotated with respect to the other according the number <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the anvils if no slip has occurred. Sec<strong>on</strong>dly, the torque during the experiment is measured<br />

by means <str<strong>on</strong>g>of</str<strong>on</strong>g> strain gauges. In a valid experiment, the torque is a m<strong>on</strong>ot<strong>on</strong>ic functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strain/time. If the torque suddenly decreases markedly, this indicates that slip or a formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fatal cracks inside the sample is present. The reached shear strain γ is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the twist<br />

5<br />

2


2<br />

2 Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

angle φ, the radius r (<str<strong>on</strong>g>of</str<strong>on</strong>g> the site <str<strong>on</strong>g>of</str<strong>on</strong>g> investigati<strong>on</strong>, not the sample radius) <strong>and</strong> the thickness t. γ<br />

can be calculated according to Equati<strong>on</strong> 2.1.<br />

γ = φr<br />

t<br />

(2.1)<br />

This strain can be expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> an equivalent v<strong>on</strong> Mises strain by dividing the shear<br />

strain by √ 3 as it was shown by Stüwe. 41 The equivalent v<strong>on</strong> Mises strain ɛeq as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> turns n is then given by Equati<strong>on</strong> 2.2.<br />

ɛeq = 2πrn<br />

t √ 3<br />

(2.2)<br />

A photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the used tool can be seen in Figure 2.1, for a sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT<br />

seen, e.g. Paper C - Paper E.<br />

Figure 2.1: Photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the used HPT facility.<br />

A detailed analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong> <strong>and</strong> the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> this tool is<br />

given by Vorhauer <strong>and</strong> Pippan. 42 In the existing HPT facility it is also possible to vary the temperature<br />

between -196°C (liquid nitrogen) <strong>and</strong> ≈ 450°to study the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the processing<br />

temperature. The processing parameters used for this work are given in the corresp<strong>on</strong>ding papers.<br />

Since the deformati<strong>on</strong> by HPT is similar to a pure torsi<strong>on</strong>al deformati<strong>on</strong>, it is important to<br />

be aware that the microstructure may be different in different directi<strong>on</strong>s. To avoid ambiguity,<br />

the investigated directi<strong>on</strong> should always be indicated. A simple way is to define the directi<strong>on</strong>s<br />

in respect <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample according to Figure 2.2.<br />

6


2.2 Equal Channel Angular Pressing<br />

Figure 2.2: Definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample directi<strong>on</strong>s for microstructural investigati<strong>on</strong>s<br />

2.1.1 Cyclic High Pressure Torsi<strong>on</strong><br />

In order to study the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> large cyclic plastic strains, the existing HPT facility has been<br />

enhanced to allow for a cyclic mode. Of course, this can be combined with all the other<br />

possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> the equipment, e.g. torque measurement, variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>and</strong> variati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the strain rate. The strain per cycle ∆ɛ (calculated according to Equati<strong>on</strong> 2.3, equivalent to<br />

Equati<strong>on</strong> 2.2) can be varied almost without limits. For the current work, the strain increment<br />

∆ɛ was varied between 0.25 <strong>and</strong> 4. The total equivalent strain can be calculated according to<br />

Equati<strong>on</strong> 2.4, where N is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles.<br />

∆ɛeq = 2πrn<br />

t √ 3<br />

(2.3)<br />

ɛeq,total = N∆ɛ (2.4)<br />

This method is a useful tool to easily study the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path <strong>and</strong> the strain<br />

per cycle <strong>on</strong> the material. It could be shown that cyclic deformati<strong>on</strong> c<strong>on</strong>siderably influences<br />

the deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbides in pearlitic steels. The results from these investigati<strong>on</strong>s where<br />

published in Paper D <strong>and</strong> E. With Paper H, for the first time a detailed study <str<strong>on</strong>g>of</str<strong>on</strong>g> the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure <strong>and</strong> the mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> pure metals deformed by CHPT was<br />

d<strong>on</strong>e <strong>and</strong> the results where compared to results from HPT. In Paper I, the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> CHPT<br />

deformed material is compared to c<strong>on</strong>venti<strong>on</strong>al fatigue. It can be shown that many features that<br />

are well known in fatigue have similarities with the observed properties in CHPT deformed<br />

materials.<br />

2.2 Equal Channel Angular Pressing<br />

At the moment, the most frequently used method in the severe plastic deformati<strong>on</strong> community<br />

is Equal Channel Angular Pressing (ECAP). 43–46 For the present work, ECAP was used to obtain<br />

deformed samples large enough to machine compact tensi<strong>on</strong> (CT) specimens to measure<br />

7<br />

2


2<br />

2 Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

fracture toughness <strong>and</strong> fatigue crack growth. In ECAP, a sample with a round or square cross<br />

secti<strong>on</strong> is pressed through two intersecting channels that are tilted by a intersecti<strong>on</strong> angle Φ by<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> a plunger. The intersecti<strong>on</strong> angle lies in most cases between 90°<strong>and</strong> 150°, in some<br />

tools the corner is rounded introducing a gap angle Ψ. For such a tool, the strain per pass can<br />

be calculated 47 according to Equati<strong>on</strong> 3:<br />

ɛ = 1<br />

<br />

Φ<br />

√ 2 cot<br />

3 2<br />

<br />

Ψ<br />

Φ<br />

+ + Ψcosec<br />

2<br />

2<br />

<br />

Ψ<br />

+<br />

2<br />

(2.5)<br />

If there is no radius at the gap (ψ = 0), Equati<strong>on</strong> 2.5 simplifies to Equati<strong>on</strong> 2.6, the strain<br />

per pass is therefore <strong>on</strong>ly a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the intersecti<strong>on</strong> angle Φ.<br />

ɛ = 2<br />

√ 3 cot Φ<br />

2<br />

(2.6)<br />

Figure 2.3: Photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the used ECAP tool. Inside the channel, a halfway deformed sample <str<strong>on</strong>g>of</str<strong>on</strong>g> 900A can be<br />

seen.<br />

A photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> our tool can be seen in Figure 2.3, for a sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP<br />

see, e.g. Paper G. In c<strong>on</strong>tradicti<strong>on</strong> to the c<strong>on</strong>tinuous HPT, ECAP is a stepwise process, that<br />

allows to apply different deformati<strong>on</strong> paths. There exist four possible routes (at least, when<br />

8


2.2 Equal Channel Angular Pressing<br />

<strong>on</strong>ly rotati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 90°are c<strong>on</strong>sidered), depending <strong>on</strong> how the sample is inserted in the tool. In<br />

Route A, the sample is inserted exactly in the same way, there is no rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample.<br />

Although the shear in each pass occurs <strong>on</strong> different shear planes, the overall effect is that <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

m<strong>on</strong>ot<strong>on</strong>ic shear in the l<strong>on</strong>gitudinal directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample. In Route C, the sample is rotated<br />

by 180°after each pass. This leads to a shear <strong>on</strong> the same shear plane in each pass, but with<br />

alternating shear directi<strong>on</strong>s. This can be c<strong>on</strong>sidered as a cyclic shear deformati<strong>on</strong>. In Route<br />

B, the rotati<strong>on</strong> is <strong>on</strong>ly 90°, <strong>and</strong> therefore there exist two subgroups, Route BA <strong>and</strong> Route BC,<br />

depending <strong>on</strong> whether in the next pass the rotati<strong>on</strong> is d<strong>on</strong>e in the same directi<strong>on</strong> or not. 48<br />

Our tool has a intersecti<strong>on</strong> angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 120°<strong>and</strong> a cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 x 10 mm. The pressing<br />

speed is ≈ 1mm/sec, therefore almost no increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the temperature during the deformati<strong>on</strong><br />

occurs. In order to minimize the fricti<strong>on</strong> <strong>and</strong> to prevent fusing <str<strong>on</strong>g>of</str<strong>on</strong>g> the tool <strong>and</strong> the sample, the<br />

tool was coated with TiN. With this c<strong>on</strong>figurati<strong>on</strong> it is possible to even deform pearlitic steels<br />

at room temperature.<br />

9<br />

2


2<br />

10


3<br />

Results <strong>and</strong> Discussi<strong>on</strong><br />

In the following chapter, the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the various investigati<strong>on</strong>s shall <strong>on</strong>ly be summarized. A<br />

more detailed discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> most <str<strong>on</strong>g>of</str<strong>on</strong>g> the results can be found in the appended papers.<br />

3.1 Structural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Model Materials during Severe<br />

Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

3.1.1 High Pressure Torsi<strong>on</strong><br />

When pure metals are deformed by methods <str<strong>on</strong>g>of</str<strong>on</strong>g> severe plastic deformati<strong>on</strong>, a saturati<strong>on</strong> in the<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure size can be seen when the strain reachs a certain value. The reas<strong>on</strong><br />

for this saturati<strong>on</strong> in structure refinement is not clear at the moment, explanati<strong>on</strong>s given for<br />

this in the literature are a kind <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic recrystallisati<strong>on</strong> 36 or changes in the deformati<strong>on</strong><br />

mechanisms 49 due to smaller grain sizes.<br />

Figure 3.1 dem<strong>on</strong>strates the structural refinement in pure ir<strong>on</strong>. The micrographs are taken<br />

in axial directi<strong>on</strong>. It can be seen that the higher the strain ɛeq was, the smaller <strong>and</strong> the more<br />

equiaxed the structure becomes. After strain between 16 <strong>and</strong> 32 (for Armco ir<strong>on</strong>) no further<br />

refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure can be observed. The microstructure c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> equiaxed structural<br />

elements with a size <str<strong>on</strong>g>of</str<strong>on</strong>g> ≈ 200 − 300nm with blurred boundaries. It has to be noted that<br />

the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> pure metals after HPT is not a pure grain structure (at least, when the HPT<br />

experiment is carried out at room temperature <strong>and</strong> the homologue temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the material<br />

is low), although a large fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundaries between the structural elements are high<br />

angle boundaries.<br />

The microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel deformed by HPT in radial directi<strong>on</strong> is depicted in Figure 3.2.<br />

In this directi<strong>on</strong>, no equiaxed elements are formed. Instead, el<strong>on</strong>gated elements can be seen.<br />

At quite small strains, the angle between the length axis <str<strong>on</strong>g>of</str<strong>on</strong>g> these elements <strong>and</strong> the normal to<br />

the shear plane is in good agreement to the shear angle. When the strain gets higher, this angle<br />

11<br />

3


3<br />

3 Results <strong>and</strong> Discussi<strong>on</strong><br />

Figure 3.1: SEM micrographs (BSE) <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT-deformed Armco ir<strong>on</strong> in axial directi<strong>on</strong> (a) ɛeq = 2, (b) ɛeq = 4, (c)<br />

ɛeq = 8 <strong>and</strong> (d) ɛeq = 32.<br />

should almost be 90°. But this is not observed, giving rise to the assumpti<strong>on</strong> that new elements<br />

are c<strong>on</strong>tiniously created by a process similar to dynamic recrystallisati<strong>on</strong> 50<br />

In Figure 3.3 the structure size <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel as well as the missorientati<strong>on</strong> distributi<strong>on</strong> as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain is presented. This structure size was calculated from OIM maps using<br />

5°missorientati<strong>on</strong> as a criterium to define a grain. In the OIM images, the process <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong><br />

<strong>and</strong> structure refinement can be seen. At the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong>, the grains<br />

are quickly subdivided into subgrains, after strains ≥ 4, the original grains are no l<strong>on</strong>ger recognizable.<br />

It can be seen that the higher the strain gets, the more similar the missorientati<strong>on</strong><br />

distributi<strong>on</strong> becomes to the r<strong>and</strong>om Mackenzie distributi<strong>on</strong>. The results found in this study for<br />

nickel <strong>and</strong> Armco ir<strong>on</strong> are comparable to published results for other pure metals 36<br />

12


3.1 Structural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Model Materials during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Figure 3.2: Orientati<strong>on</strong> image maps <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT-deformed nickel in radial directi<strong>on</strong> (a) ɛeq = 0.5, (b) ɛeq = 1, (c)<br />

ɛeq = 2 <strong>and</strong> (d) ɛeq = 4.<br />

3.1.2 Cyclic High Pressure Torsi<strong>on</strong><br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure in CHPT is very similar to HPT. But as can be seen<br />

in Figure 3.4 for nickel depicted in tangential directi<strong>on</strong>, the minimum structure size str<strong>on</strong>gly<br />

depends <strong>on</strong> the strain per cycle ∆ɛ. The smaller this strain increment is, the larger is the<br />

structure size after saturati<strong>on</strong>. The <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> is also a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the applied ∆ɛ, the<br />

13<br />

3


3<br />

3 Results <strong>and</strong> Discussi<strong>on</strong><br />

Figure 3.3: (a) The structure size <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel after deformati<strong>on</strong> by high pressure torsi<strong>on</strong> (b) missorientati<strong>on</strong> angle<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel after deformati<strong>on</strong> by high pressure torsi<strong>on</strong> to different strains.<br />

lower this value is, the lower is the total equivalent strain necessary for this <strong>on</strong>set.<br />

Experiments with a larger ∆ɛ than 4 were not performed because there is almost no difference<br />

between the structure size after HPT <strong>and</strong> CHPT with a ∆ɛ = 4. In radial directi<strong>on</strong>,<br />

the same el<strong>on</strong>gated elements as in HPT are visible. Here also after large ɛeq,total, the angle<br />

between the length axis <str<strong>on</strong>g>of</str<strong>on</strong>g> the el<strong>on</strong>gated elements <strong>and</strong> the normal <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear plane is in good<br />

agreement with the shear angle corresp<strong>on</strong>ding to the strain increment. It is interesting to notice<br />

that many features that are well known for c<strong>on</strong>venti<strong>on</strong>al fatigue are also present in these CHPT<br />

deformed samples. A detailed descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the processes <strong>and</strong> a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the results for<br />

HPT with other areas are given in Papers H <strong>and</strong> I.<br />

14


3.1 Structural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Model Materials during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Figure 3.4: SEM micrographs (BSE) <str<strong>on</strong>g>of</str<strong>on</strong>g> CHPT-deformed nickel in tangential directi<strong>on</strong>, ɛeq,total = 64, (a) ∆ɛ =<br />

0.5, (b) ∆ɛ = 1, (c) ∆ɛ = 2 <strong>and</strong> (d) ∆ɛ = 4.<br />

15<br />

3


3<br />

3 Results <strong>and</strong> Discussi<strong>on</strong><br />

3.2 Structural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong> during Severe Plastic<br />

<str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

3.2.1 High Pressure Torsi<strong>on</strong><br />

As it was shown for pure metals, the structure size in these materials is decreased very fast<br />

until a saturati<strong>on</strong> in the structure size is reached. The microstructure in saturati<strong>on</strong> is then<br />

c<strong>on</strong>trolled by an equilibrium between grain refinement <strong>and</strong> a kind <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic recrystallisati<strong>on</strong>.<br />

In c<strong>on</strong>tradicti<strong>on</strong> to this, the dominating mechanism during HPT <str<strong>on</strong>g>of</str<strong>on</strong>g> pearlitic <strong>and</strong> bainitic steels<br />

is the deformati<strong>on</strong> <strong>and</strong> the alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae. Figure 3.5 <strong>and</strong> Figure 3.6<br />

depict the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the rail steel 900A after HPT as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain in radial<br />

<strong>and</strong> tangential directi<strong>on</strong>.<br />

Figure 3.5: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT-deformed 900A in radial directi<strong>on</strong> (a) ɛeq = 2, (b) ɛeq = 4, (c) ɛeq = 8<br />

<strong>and</strong> (d) ɛeq = 16.<br />

It can be seen that after a deformati<strong>on</strong> to strains <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 1 the cementite lamellae are no<br />

l<strong>on</strong>ger straight, they begin to bend <strong>and</strong> align parallel to the shear plane. When the strain gets<br />

16


3.2 Structural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Figure 3.6: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT-deformed 900A in tangential directi<strong>on</strong> (a)ɛeq = 2, (b) ɛeq = 4, (c)ɛeq = 8<br />

<strong>and</strong> (d) ɛeq = 16.<br />

higher, the lamellae break up <strong>and</strong> are severely deformed. After strains ≥ 4, the original pearlite<br />

col<strong>on</strong>ies are no l<strong>on</strong>ger recognisable <strong>and</strong> most <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae are fragmented <strong>and</strong> aligned parallel<br />

to the shear plane. Due to a quite homogeneous deformati<strong>on</strong>, the lamellae distance as well<br />

as the lamellae spacing decreases markedly. After strains ≥ 8, SEM micrographs show a very<br />

fine lamellar structure c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> fragments <str<strong>on</strong>g>of</str<strong>on</strong>g> the former cementite lamellae (with a maximum<br />

(length) dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 1 µm) <strong>and</strong> ferrite. The maximum dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

ferrite structural elements in axial directi<strong>on</strong> is limited by the lamellae (fragment) spacing, as<br />

can be seen in Figure 3.7. The size <str<strong>on</strong>g>of</str<strong>on</strong>g> the elements normal to this directi<strong>on</strong> is approximately 2<br />

- 5 times larger. Almost the same behavior was observed for the sec<strong>on</strong>d investigated pearlitic<br />

rail steel, 350 LHT, after HPT deformati<strong>on</strong> to large strains. The difference between these two<br />

steels is mainly the lamellae spacing (≈ 300nm for 900A <strong>and</strong> ≈ 100nm for 350 LHT) <strong>and</strong> the<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> the pearlite col<strong>on</strong>ies. The microstructure after HPT deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the rail steel 350<br />

LHT is depicted in Figure 3.8. From comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the SEM-micrographs it can be seen that<br />

the significantly thinner cementite lamellae <strong>and</strong> the smaller col<strong>on</strong>y size <str<strong>on</strong>g>of</str<strong>on</strong>g> the steel 350 LHT<br />

17<br />

3


3<br />

3 Results <strong>and</strong> Discussi<strong>on</strong><br />

Figure 3.7: I<strong>on</strong> microscopy micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT-deformed 900A in tangential directi<strong>on</strong> (a) ɛeq = 1, (b) ɛeq = 4.<br />

are more easily deformed without fragmentati<strong>on</strong> than the thick lamellae <str<strong>on</strong>g>of</str<strong>on</strong>g> the steel 900A.<br />

Due to this differences, especially at quite low strains (≈ smaller than 4), the alignment <strong>and</strong><br />

the fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae is much less pr<strong>on</strong>ounced. Only after deformati<strong>on</strong>s larger<br />

than 4, a markedly alignment can be observed. Figure 3.8d shows that at higher deformati<strong>on</strong><br />

the fragmentati<strong>on</strong> is now very pr<strong>on</strong>ounced <strong>and</strong> again, the fragments are mostly aligned parallel<br />

to the shear directi<strong>on</strong>.<br />

In many areas, the structure after large shear strains is to fine to be clearly resolved by<br />

SEM. Therefore, electr<strong>on</strong> transparent areas where made by means <str<strong>on</strong>g>of</str<strong>on</strong>g> a Focused I<strong>on</strong> Beam<br />

Workstati<strong>on</strong> (FIB), for details see Paper B <strong>and</strong> Paper F.<br />

TEM-investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformed steels 900A <strong>and</strong> 350LHT revealed that the lamellae<br />

spacing was markedly decreased, in some areas to 20 nm or even less, see Figure 3.9. Together<br />

with this, the lamellae thickness was also decreased from ≈ 20nm to ≈ 2nm. Dark<br />

field images <strong>and</strong> selected area diffracti<strong>on</strong> (SAD) pattern c<strong>on</strong>firmed that the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferritic phase is governed by the lamellae distance <strong>and</strong> also that most boundaries<br />

are large angle boundaries, see Figure 3.10. In order to determine a possible dissoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cementite due to severe plastic deformati<strong>on</strong>, a detailed study <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the cementite lamellae in the steel 900A was performed. By means <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> energy-loss it<br />

can be shown that after a deformati<strong>on</strong> by HPT to strain <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 8, the carb<strong>on</strong> rich areas in the<br />

material do no l<strong>on</strong>ger have the electr<strong>on</strong>ic fingerprint <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite as measured by electr<strong>on</strong><br />

energy-loss spectroscopy (EEL) in the undeformed microstructure. The results from various<br />

measurements in the undeformed material as well as the measured EEL spectra are presented<br />

in Figure 3.11a - c. The changes in the properties due to deformati<strong>on</strong> can be seen in Figure<br />

3.11d, where the measurements in deformed samples are compared to the results from the<br />

initial microstructure. It can be seen that the area ratio between the Fe-L2 <strong>and</strong> the Fe-L3 peak<br />

ratio is significantly different for the ferritic matrix <strong>and</strong> cementite in the undeformed sample.<br />

Also in the sample deformed to ɛeq = 2, this difference is observable. In the highest deformed<br />

ratio were near the value for cementite,<br />

sample for this study (ɛeq = 2), no values <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fe- L3<br />

L2<br />

18


3.2 Structural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Figure 3.8: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT-deformed 350 LHT in tangential directi<strong>on</strong> (a) ɛeq = 1, (b) ɛeq = 2, (c)<br />

ɛeq = 4 <strong>and</strong> (d) ɛeq = 8.<br />

for details see Paper F.<br />

The deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bainitic rail steel Dobain 430 is mainly c<strong>on</strong>trolled by the fine carbides<br />

present in the initial microstructure. Due to their small size, they are not so severely<br />

deformed as the cementite lamellae in the pearlitic steels, they just align according to the<br />

shear angle when viewed in radial directi<strong>on</strong>. This can be seen in Figure 3.12 where SEM micrographs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Dobain 430 for different strains are presented. After a deformati<strong>on</strong> to a strain <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ɛeq = 2, almost no fragmentati<strong>on</strong> <strong>and</strong> <strong>on</strong>ly little deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbides can be observed.<br />

A markedly fragmentati<strong>on</strong> <strong>and</strong> indicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong> from the carbides can<br />

be seen after strains larger than ɛeq = 8. The microstructure viewed in tangential directi<strong>on</strong><br />

after relatively small strains is less affected than in radial directi<strong>on</strong>. After a strain <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 8,<br />

there is no obvious difference in the microstructure when viewed in these two directi<strong>on</strong>s.<br />

The present results are comparable with results from the literature for wire drawing <strong>and</strong><br />

HPT. The process <str<strong>on</strong>g>of</str<strong>on</strong>g> wire drawing is extensively investigated. Embury <strong>and</strong> Fisher 51 <strong>and</strong> Lang-<br />

19<br />

3


3<br />

3 Results <strong>and</strong> Discussi<strong>on</strong><br />

Figure 3.9: TEM bright field micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) initial microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> 900A, (b) HPT deformed 900A, ɛeq = 8<br />

<strong>and</strong> (c) HPT deformed HSH, ɛeq = 8.<br />

Figure 3.10: TEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> (a)HPT deformed HSH, ɛeq = 2, bright field (b) corresp<strong>on</strong>ding dark field<br />

image <strong>and</strong> (c)HPT deformed HSH, ɛeq = 8, dark field.<br />

ford 52, 53 investigated the microstructural evoluti<strong>on</strong> in wire drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> pearlitic steels <strong>and</strong> the<br />

resulting changes in strength. The results presented in these papers are very similar to the<br />

present findings. Also in wire drawing an intensive alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae in the drawing<br />

directi<strong>on</strong> is observed. The main mechanism for the increase in strength was found to be the<br />

decreasing lamellae distance, this was c<strong>on</strong>firmed by many studies, see for instance. 54, 55 Later<br />

investigati<strong>on</strong>s 56–60 revealed that also in drawn pearlitic wires dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cementite can be<br />

observed. Two reas<strong>on</strong>s for this dissoluti<strong>on</strong> are discussed in the literature: Firstly, it is assumed<br />

that the binding energy <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> atom to a dislocati<strong>on</strong> is larger than the binding energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the carb<strong>on</strong> in the carbide. Therefore, carb<strong>on</strong> atoms are dragged out <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbide by crossing<br />

dislocati<strong>on</strong>s. Sec<strong>on</strong>dly, it is assumed that the very fine carbides resulting from this deformati<strong>on</strong><br />

become thermodynamical unstable due to the Gibbs Thoms<strong>on</strong> effect. A comprehensive<br />

discussi<strong>on</strong> about the different mechanisms is given by Gavriljuk. 61 There is even less agree-<br />

20


3.2 Structural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Figure 3.11: (a) Measured EEL spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ferrite <strong>and</strong> carbide in the initial microstructure (b) Fe-L2/L3 area <strong>and</strong><br />

peak high ratio for various measurements in the initial microstructure (c) FWHM for various measurements in<br />

the initial microstructure <strong>and</strong> (d) Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fe-L3/Fe-L2 ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> undeformed <strong>and</strong> deformed samples.<br />

The black lines mark the average values in the initial microstructure, the gray lines mark the highest <strong>and</strong> lowest<br />

observed values in the initial microstructure.<br />

ment about the questi<strong>on</strong>, where the carb<strong>on</strong> is situated after the dissoluti<strong>on</strong>. Ivanisenko et al. 62<br />

<strong>and</strong> Sauvage 63 reported that a dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae can occure after HPT. The<br />

microstructures, the mechanical properties <strong>and</strong> the observed dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbide seem to be<br />

in good agreement with the present finding. Nevertheless it has to be noted that the strains<br />

needed to reach this results are much higher in their investigati<strong>on</strong>s.<br />

3.2.2 Cyclic High Pressure Toris<strong>on</strong><br />

The microstructure resulting from Cyclic High Pressure Torsi<strong>on</strong> is depicted in Figure 3.13.<br />

Similar as in pure metals, also the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the rail steels is str<strong>on</strong>gly influenced by the<br />

strain per cycle. After CHPT with a small ∆ɛ the main feature are severely fragmented carbides<br />

that are aligned parallel to the shear plane. There are no indicati<strong>on</strong>s that something like<br />

a dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong> from the carbides has occured. After CHPT with a large ∆ɛ the microstructure<br />

is quite similar like in a m<strong>on</strong>ot<strong>on</strong>ic deformed sample, but the strains needed for a<br />

21<br />

3


3<br />

3 Results <strong>and</strong> Discussi<strong>on</strong><br />

Figure 3.12: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT-deformed Dobain 430 (a) ɛeq = 1, (b) ɛeq = 2, (c) ɛeq = 4 <strong>and</strong> (d)<br />

ɛeq = 8, all in radial directi<strong>on</strong>, (e) ɛeq = 1, tangential directi<strong>on</strong> <strong>and</strong> (f) ɛeq = 8, tangential directi<strong>on</strong>.<br />

similar microstructure (<strong>and</strong> a similar mechanical strength) are much higher. Already after two<br />

cycles with ∆ɛ = 4 (ɛeq,total = 8) the lamellae are extremely deformed <strong>and</strong> fanfold structures<br />

22


3.2 Structural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

are present. After higher total strains, the lamellae are no l<strong>on</strong>ger clearly recognisable.<br />

Figure 3.13: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> CHPT deformed 900A (a) ∆ɛ = 0.25, ɛeq,total = 8 (b) ∆ɛ = 0.25, ɛeq,total =<br />

32 (c) ∆ɛ = 4, ɛeq,total = 8 <strong>and</strong> (d) ∆ɛ = 4, ɛeq,total = 64.<br />

3.2.3 Microstructure after additi<strong>on</strong>al heat treatment<br />

Deformed samples <str<strong>on</strong>g>of</str<strong>on</strong>g> the three steels (900A with ɛeq = 16, 350 LHT with ɛeq = 8 <strong>and</strong> Dobain<br />

430 with ɛeq = 8) were head treated a different temperatures <strong>and</strong> for different times. As<br />

can be seen in Figure 3.14, <strong>on</strong>ly after temperatures larger than 600°, a markedly change in<br />

the microstructure has occurred. In etched samples round carbides with a size <str<strong>on</strong>g>of</str<strong>on</strong>g> ≈ 10nm are<br />

clearly visible. SEM micrographs using back scatterd electr<strong>on</strong>s reveal that the ferritic matrix is<br />

recrystallized, the grain size grows with increasing temperature <strong>and</strong> increasing heat treatment<br />

time. In order to obtain ultra-short heat treatment times, samples <str<strong>on</strong>g>of</str<strong>on</strong>g> the rail steel 900A were<br />

heated by by a laser pulse. The pulse time was 10 - 50 µs, the temperature (average value,<br />

measured by a spectrometer) was varied between 600 <strong>and</strong> 750 degree. This heat treatment by<br />

a laser pulse resulted in a heat affected z<strong>on</strong>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> which is white in optical microscopy after<br />

23<br />

3


3<br />

3 Results <strong>and</strong> Discussi<strong>on</strong><br />

etching with Nital. The microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> this z<strong>on</strong>e in the SEM has various appearances, that<br />

can also vary depending <strong>on</strong> the distance from the center <str<strong>on</strong>g>of</str<strong>on</strong>g> the z<strong>on</strong>e. Figure 3.14 f shows a<br />

very fine structure that does not look recrystallized, no signs <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong> can be seen. In<br />

other areas, a very fine, martensite-like structure is visible. Microhardness measurements in<br />

the z<strong>on</strong>es showed no significant increase or decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the microhardness compared to the<br />

deformed microstructure. As can be seen in Figure 3.14 e, the microstructure next to the white<br />

etching z<strong>on</strong>e is significantly s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter <strong>and</strong> it c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> recrystallized ferrite <strong>and</strong> carbides. It is<br />

similar to the microstructure after the heat treatment for two sec<strong>on</strong>ds.<br />

The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> WELs were investigated in many studies, see, for instance.<br />

2, 3, 7, 10, 64, 65<br />

Unfortunately, the results are not unambiguous <strong>and</strong> sometimes quite c<strong>on</strong>flictive. Martensite,<br />

nanocrystalline ferrite or the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> special carbides are reported. In a recent study,<br />

Zhang et al. 66 thoroughly investigated a WEL <strong>and</strong> found most <str<strong>on</strong>g>of</str<strong>on</strong>g> the reported kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> microstructure<br />

in the same WEL in different areas. The Vickers hardness presented in their<br />

paper is in the same range as the measured hardness for the HPT deformed steels, see Figure<br />

3.19. They c<strong>on</strong>cluded that all the observed different microstructure lead to the same etching<br />

behaviour. Due to a decrease in the difference in chemical compositi<strong>on</strong>, also the difference<br />

in the chemical potential is decreased. Therefore, these structures are hardly affected by the<br />

etching agent <strong>and</strong> appear white in optical microscope micrographs. Different structures where<br />

also observed in the samples heat treated by a laser impulse for very short times. The sharp<br />

boundary in many WELs indicate that a significant increase in temperature must have occurred,<br />

this increase may be large enough for an austenitisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the material. 67 The process<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> austenitisati<strong>on</strong> may even be enhanced by the deformati<strong>on</strong> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbides <strong>and</strong> the<br />

hydrostatic pressure. 68 The present results show that the deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> steels by HPT leads<br />

to similar hardness like in actual WELs, after additi<strong>on</strong>al heat treatment, many microstructural<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> WELs are also present in the HPT deformed sample. Therefore it can be c<strong>on</strong>cluded<br />

that WELs are formed due to a simultane occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> high (accumulated) shear strains <strong>and</strong><br />

very short heat fluxes that are present due to slip between the rail <strong>and</strong> the wheel. It has to<br />

be noted that an actual WEL is formed during milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles <strong>and</strong> is therefore a dynamic<br />

system. WELs from different rails may have different deformati<strong>on</strong> <strong>and</strong> heat flux histories.<br />

Hence, some microstructural features may be more pr<strong>on</strong>ounced than others. This can explain<br />

the varying results from different studies. The s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter area below the obviously white area in<br />

the laser heat treated HPT samples is not observed in WELs because this regi<strong>on</strong> is c<strong>on</strong>stantly<br />

deformed in a rail.<br />

24


3.2 Structural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Figure 3.14: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT deformed samples, ɛeq = 16, after heat treatment (a) SE-micrograph, 2 sec<strong>on</strong>ds,<br />

700°, (b) BSE-micrograph, 2 sec<strong>on</strong>ds, 700°, (c) BSE-micrograph, 60 sec<strong>on</strong>ds, 700°, (d) BSE-micrograph, 60<br />

sec<strong>on</strong>ds, 600°, (e) optical micrograph showing the heat-affected z<strong>on</strong>e after laser treatment (900A, ɛeq = 16,<br />

710°for 10ms) <strong>and</strong> the influence <strong>on</strong> the hardness <strong>and</strong> (f) BSE-micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat affected z<strong>on</strong>e after laser<br />

treatment.<br />

25<br />

3


3<br />

3 Results <strong>and</strong> Discussi<strong>on</strong><br />

3.3 Mechanical Properties<br />

In order to characterize the changes in the mechanical properties due to the large shear deformati<strong>on</strong>,<br />

various methods were applied either after or during the deformati<strong>on</strong>. In the following<br />

secti<strong>on</strong>, the results <str<strong>on</strong>g>of</str<strong>on</strong>g> these measurements are shortly described.<br />

3.3.1 In-situ Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the Torque<br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> a reliable <strong>and</strong> accurate possibility to measure the torque during deformati<strong>on</strong><br />

42, 69 allowed it to quickly determine changes in the mechanical strength without applying<br />

other methods afterwards. The torque that is measured c<strong>on</strong>tains next to the torque necessary to<br />

deform the sample MD solely a c<strong>on</strong>tributi<strong>on</strong> from the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the burr, MB. From the torque<br />

MD, the shear stress can be calculated according to Equati<strong>on</strong> 3.1:<br />

<br />

Md = 2πτ(r)r 2 dr (3.1)<br />

However, the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the burr is not easily evaluated, the in-situ measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

torque shall <strong>on</strong>ly be used to measure relative changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the strength for different strains, different<br />

materials or different regimes <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> (HPT <strong>and</strong> CHPT). When the experimental<br />

setup is kept c<strong>on</strong>stant (especially the hydrostatic pressure <strong>and</strong> the tool geometry), also MB will<br />

be quite c<strong>on</strong>stant <strong>and</strong> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement are very accurate <strong>and</strong> reproducible. Figure<br />

3.15a shows typical in-situ measured torque curves <str<strong>on</strong>g>of</str<strong>on</strong>g> the investigated pure metals. At the<br />

beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong>, a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intense strain hardening is present until the increase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the strength reachs zero <strong>and</strong> a kind <str<strong>on</strong>g>of</str<strong>on</strong>g> steady state deformati<strong>on</strong> occures. 36 The <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

steady state deformati<strong>on</strong> coincidences with the saturati<strong>on</strong> in the decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure size<br />

<strong>and</strong> can also be seen in the microhardness <strong>and</strong> tensile tests. The strain necessary to reach this<br />

steady state deformati<strong>on</strong> depends <strong>on</strong> the material <strong>and</strong> seems to be influenced by the crystalline<br />

structure (fcc vs. bcc).<br />

26<br />

Figure 3.15: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the in-situ measured torque curves for (a) pure metals <strong>and</strong> (b) rail steels.


3.3 Mechanical Properties<br />

In c<strong>on</strong>tradicti<strong>on</strong> to pure metals, in the rail steels no steady state deformati<strong>on</strong> could be<br />

reached. Figure 3.15b depicts the measured torque curves for the rail steels. It can be seen<br />

that the increase in the strength is highest for Dobain 430, <strong>and</strong> lowest for 900A. When the<br />

measured torques for the steels are compared to the measured torque for the pure metals, the<br />

difference in tensile strength can be estimated (almost 100 percent between Armco ir<strong>on</strong> in<br />

saturati<strong>on</strong> <strong>and</strong> 900A after ɛeq = 16).<br />

The torque measured in CHPT experiments shows the same characteristic as in m<strong>on</strong>ot<strong>on</strong>ic<br />

HPT experiments. For pure metals, the torque saturates after high strains, while in the steels<br />

there is still an increase, although this is much smaller than in the m<strong>on</strong>ot<strong>on</strong>ic HPT. The differences<br />

between CHPT <strong>and</strong> HPT are the levels, at which the torque saturates <strong>and</strong> the necessary<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> strain to reach this steady state deformati<strong>on</strong> (pure metal). The smaller the ∆ɛ was,<br />

the lower is the torque <strong>and</strong> the earlyer (in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> total equivalent strain) the saturati<strong>on</strong> is<br />

reached. A detailed investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these observati<strong>on</strong>s is given in Papers D, H <strong>and</strong> I. Figure<br />

3.16 depicts what happens when HPT <strong>and</strong> CHPT experiments are combined. It can be seen<br />

the the different strength levels (<strong>and</strong> therefore necessarily the microstructures) can at least be<br />

partial c<strong>on</strong>verted into <strong>on</strong>e another. This is especially surprising when a HPT experiment is<br />

performed first, by applying <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclic loading c<strong>on</strong>diti<strong>on</strong>s, the torque decreases almost down to<br />

the level that is reached when <strong>on</strong>ly a cyclic loading (with the same ∆ɛ) is applied. This process<br />

is even repeatable for some times, although it can be seen that it is not totally reversible. This<br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> SPD is at the moment completely unexplored. The first results <str<strong>on</strong>g>of</str<strong>on</strong>g> our experiments will<br />

be published in a forthcoming paper 70<br />

Figure 3.16: in-situ measured torque curves for combined HPT <strong>and</strong> CHPT experiments (a) Armco ir<strong>on</strong>, ∆ɛ = 0.5,<br />

<strong>on</strong>e block → ɛeq,total = 32 <strong>and</strong> (b) nickel, ∆ɛ = 2, <strong>on</strong>e block → ɛeq,total = 32.<br />

3.3.2 Tensile Tests<br />

To obtain absolute values <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strength, specimens for tensile tests were machined<br />

out <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT-samples. 42, 69 From each sample, two specimens are obtained. With this<br />

method, the validity <str<strong>on</strong>g>of</str<strong>on</strong>g> the in-situ torque measurement as well as the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrostatic<br />

pressure was investigated, see Paper C. Figure 3.17 show the tensile strength for the<br />

27<br />

3


3<br />

3 Results <strong>and</strong> Discussi<strong>on</strong><br />

three rail steels as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain. As expected the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the ultimate tensile<br />

strength is similar to the in-situ measured torque (Figure 3.15b). Ultimate tensile strengths<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> more than 1900 MPa were measured in radial directi<strong>on</strong> in respect <str<strong>on</strong>g>of</str<strong>on</strong>g> the HPT-sample after<br />

quite low HPT-deformati<strong>on</strong>. The measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the tensile strength after higher strains did<br />

not give useful results due a formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cracks during the HPT-deformati<strong>on</strong>. But a comparis<strong>on</strong><br />

between the torque <strong>and</strong> the tensile tests allow to estimate the tensile strength to be more<br />

than 3 GPa after a deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq ≥ 16 for 900A <strong>and</strong> ɛeq ≥ 8 for 350 LHT <strong>and</strong> Dobain<br />

430. These values are in good agreement with the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> drawn pearlitic wires in drawing<br />

directi<strong>on</strong>. 51, 52, 60 The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> drawn pearlitic wires in a directi<strong>on</strong> normal to the drawing<br />

directi<strong>on</strong> was never measured, because the diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> wires drawn to such high strains is<br />

markedly smaller than 1 mm.<br />

Figure 3.17: Tensile strength in radial directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rail steels as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the HPT deformati<strong>on</strong>.<br />

Specimens with the same geometry as in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT samples were machined out<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP deformed samples <str<strong>on</strong>g>of</str<strong>on</strong>g> the steel 900A after <strong>on</strong>e <strong>and</strong> three passes. To determine<br />

anisotropy, two different orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples in respect to the ECAP sample were<br />

measured. Figure 3.18 shows the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample directi<strong>on</strong>s <strong>and</strong> the result <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

tensile tests. As can be seen, after <strong>on</strong>e pass the differences in the two directi<strong>on</strong>s are already<br />

present. The tensile strength in samples with the orientati<strong>on</strong> A (parallel to the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the alignment) increases markedly with the number <str<strong>on</strong>g>of</str<strong>on</strong>g> passes <strong>and</strong> is almost identical with the<br />

measured tensile strength after HPT when the samples are deformed to the same strain. In<br />

the samples with orientati<strong>on</strong> B the tensile strength is also increased, but the increase is much<br />

smaller. In Figure 3.18d, typical stress-displacement curves for these samples are presented.<br />

Significant differences in the deformati<strong>on</strong> behaviour in samples with different orientati<strong>on</strong>s are<br />

recognisable. While in samples with orientati<strong>on</strong> B a distinctive el<strong>on</strong>gati<strong>on</strong> can be seen, this<br />

can not be observed in samples with orientati<strong>on</strong> A after three passes.<br />

28


3.3 Mechanical Properties<br />

Figure 3.18: (a) Definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the loading directi<strong>on</strong>s <strong>and</strong> the sample orientati<strong>on</strong>s for tensile tests <strong>and</strong> fracture<br />

mechanic tests (b) SEM micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 900 A after three ECAP passes (c) Results <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tensile tests <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP deformed 900A as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP passes <strong>and</strong> (d) typical stress-crosshead<br />

displacement-curves for the different samples.<br />

3.3.3 Microhardness<br />

Before the development <str<strong>on</strong>g>of</str<strong>on</strong>g> a reliable method to measure the torque during the HPT deformati<strong>on</strong>,<br />

microhardness measurements after the deformati<strong>on</strong> where the quickest <strong>and</strong> most easily<br />

available method the estimate the mechanical strength <strong>and</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten applied in the literature.<br />

39, 71–73 Nevertheless, the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> the microhardness measurement is that it is not<br />

very accurate <strong>and</strong> <strong>on</strong>ly relative values <str<strong>on</strong>g>of</str<strong>on</strong>g> the strength are measurable. In the present work,<br />

this method was mainly used to determine the change <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strength after the heat<br />

treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> deformed samples. Figure 3.19a shows the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the microhardness<br />

29<br />

3


3<br />

3 Results <strong>and</strong> Discussi<strong>on</strong><br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the temperature. It can be seen that already after 400°a little decrease in the<br />

strength is present. After a heat treatment at 600°, the reducti<strong>on</strong> in the strength is almost 50 %<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the increase due to HPT. The microhardness as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the time <str<strong>on</strong>g>of</str<strong>on</strong>g> the head treatment<br />

for the pearlitic rail steels can be seen in Figure 3.19b. After a heat treatment time <str<strong>on</strong>g>of</str<strong>on</strong>g> 60 sec<strong>on</strong>ds,<br />

the microhardness has almost reached the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the undeformed material or is even<br />

less than this value although the microstructures are now quite different.<br />

Figure 3.19: (a) The microhardness <str<strong>on</strong>g>of</str<strong>on</strong>g> 900A (ɛeq = 16) as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat treatment temperature (time =<br />

c<strong>on</strong>stant = 2s) <strong>and</strong> (b) the microhardness <str<strong>on</strong>g>of</str<strong>on</strong>g> 900A (ɛeq = 16) <strong>and</strong> 350 LHT (ɛeq = 8) as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat<br />

treatment time.<br />

3.3.4 Fracture Toughness<br />

Figure 3.20: Fracture toughness <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP deformed 900A as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP passes.<br />

The fracture toughness in two different directi<strong>on</strong>s in respect to the ECAP sample (see Figure<br />

3.18a) as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear strain applied by ECAP was determined. For doing this<br />

30


3.3 Mechanical Properties<br />

Figure 3.21: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) as-received <strong>and</strong> (b - d) ECAP pressed material<br />

with orientati<strong>on</strong> A (b) without side notch, (c) with side notch, (d) with side notch, larger magnificati<strong>on</strong> (crack<br />

propagati<strong>on</strong> directi<strong>on</strong> from bottom to top).<br />

slices with a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 mm were cut form the ECAP sample to machine compact tensi<strong>on</strong><br />

specimens. Figure 3.20 summarizes the results <str<strong>on</strong>g>of</str<strong>on</strong>g> these measurements. In samples with an<br />

orientati<strong>on</strong> A, the crack has to cross the aligned lamellae. After strains larger than 2 (3 ECAP<br />

passes), the crack in suchwise oriented samples is deflected by 90°<strong>and</strong> runs al<strong>on</strong>g the shear<br />

directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ECAP sample. Therefore, the values measured in these samples are just lower<br />

boundaries for the fracture toughness in this directi<strong>on</strong>. In samples with the orientati<strong>on</strong> B, the<br />

crack can propagate parallel to the aligned lamellae, hence the fracture toughness decreases<br />

with the increasing number <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP passes, after three passes <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP (ɛeq = 2), the fracture<br />

toughness has almost decreased by fifty percent. In order to estimate also the fracture<br />

toughness in samples with orientati<strong>on</strong> A after three passes <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP, specimens with a side<br />

notch were machined. In these samples the fracture toughness increases with increasing strain<br />

31<br />

3


3<br />

3 Results <strong>and</strong> Discussi<strong>on</strong><br />

compared to the initial microstructure. That is an unusual behaviour ∗ . In Figure 3.21 the<br />

fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> undeformed <strong>and</strong> deformed samples is presented. The fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the undeformed samples is quite rough <strong>and</strong> is typical for a cleavage-like fracture. In samples<br />

predeformed by three ECAP passes, the fracture surface is quite flat for both sample orientati<strong>on</strong>s.<br />

If the crack is forced to run normal to the loading directi<strong>on</strong> in samples with orientati<strong>on</strong><br />

A due to a side notch, the fracture surface becomes very rough. The crack wants to follow<br />

the aligned microstructure, hence branching <str<strong>on</strong>g>of</str<strong>on</strong>g> the crack can be observed sometimes. This<br />

crack branching may be <strong>on</strong>e reas<strong>on</strong> for the increase in the fracture toughness. The intrinsic<br />

anisotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> the fracture toughness <str<strong>on</strong>g>of</str<strong>on</strong>g> a lamellar microstructure may be a sec<strong>on</strong>d reas<strong>on</strong>. A<br />

detailed descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the processes occurring in the material during fracture is given in Paper<br />

G.<br />

Similar behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> drawn pearlitic wires were observed by Toribio et al. 74–76 They found a<br />

crack deflecti<strong>on</strong> in notched tensile specimens depending <strong>on</strong> the drawing strain.<br />

Figure 3.22: Fatigue crack propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP deformed 900A.<br />

3.3.5 Fatigue Crack Progagati<strong>on</strong><br />

With the same type <str<strong>on</strong>g>of</str<strong>on</strong>g> samples as used for the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fracture toughness, the<br />

fatigue crack propagati<strong>on</strong> rate in different orientati<strong>on</strong>s was measured. The material after a different<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP passes was studied. The experiments were performed with an R-value<br />

(R = Kmin ) <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 to reduce the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> internal stresses generated by the ECAP pro-<br />

Kmax<br />

cess. The actual crack length was measured using a potential drop technique. In c<strong>on</strong>tradicti<strong>on</strong><br />

to the fracture toughness tests, the crack propagates in all samples according to the applied<br />

loading. Figure 3.22 exhibits the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the fatigue crack propagati<strong>on</strong> measurements. It<br />

∗ An increase in strength causes usually a decrease in fracture toughness<br />

32


3.3 Mechanical Properties<br />

can be seen that after <strong>on</strong>e pass, the difference in the fatigue crack propagati<strong>on</strong> rate is quite<br />

small. However, even after <strong>on</strong>e pass it is obviously that an influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample or loading<br />

directi<strong>on</strong> is present. This influence is even more pr<strong>on</strong>ounced after three passes <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP. The<br />

crack propagati<strong>on</strong> rate is quite small when the crack has to cross the aligned lamellae which<br />

are a severe obstacle, see Figure 3.18b. In samples where the crack can propagate mostly<br />

within the ferrite, the crack propagati<strong>on</strong> speed is markedly increased compared to the samples<br />

with <strong>on</strong>e ECAP pass. The fracture surface after the fatigue tests depicted in Figure 3.23. As<br />

expected, the fatigue fracture surface is very smooth in both samples. Nevertheless, significant<br />

differences resulting from the different path <str<strong>on</strong>g>of</str<strong>on</strong>g> the crack through the aligned microstructure<br />

can be seen. The lamellae structure that can be seen in higher magnificati<strong>on</strong> is much finer <strong>and</strong><br />

more pr<strong>on</strong>ounced in samples with orientati<strong>on</strong> A. In samples with orientati<strong>on</strong> B, a wide-spaced<br />

lamellae structure with large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> a very flat surface is present. It seems that in samples<br />

with orientati<strong>on</strong> B the fatigue crack propagates partly by a quasi-cleavage mechanism, which<br />

is resp<strong>on</strong>sible for the significant larger fatigue crack propagati<strong>on</strong> rate.<br />

Figure 3.23: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> 900A, three passes <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP, after fatigue tests (a) <strong>and</strong><br />

(b) sample with orientati<strong>on</strong> A, (c) <strong>and</strong> (d) sample with orientati<strong>on</strong> B.<br />

33<br />

3


3<br />

34


4<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

The methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> were applied to rail steels <strong>and</strong> model material to<br />

study the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> large m<strong>on</strong>ot<strong>on</strong>ic <strong>and</strong> cyclic shear deformati<strong>on</strong> <strong>on</strong> the microstructure <strong>and</strong><br />

the mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> these materials.<br />

High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pure metals leads to a grain refinement until an equilibrium between<br />

the fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large structural elements <strong>and</strong> grain restorati<strong>on</strong> processes leads to a<br />

saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the refinement process. Parallel to the refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure, the mechanical<br />

strength increases until it saturates, too. Ultimate Tensile Strengths <str<strong>on</strong>g>of</str<strong>on</strong>g> ≈ 1500 MPa for pure<br />

ir<strong>on</strong> <strong>and</strong> ≈ 450 - 500 MPa for pure copper were measured after High Pressure Torsi<strong>on</strong>. From<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the in-situ measured torque <str<strong>on</strong>g>of</str<strong>on</strong>g> nickels with ir<strong>on</strong> <strong>and</strong> copper, the ultimate tensile<br />

strength <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel can be estimated to be ≈ 1300 MPa.<br />

A similar grain fragmentati<strong>on</strong> process is present during Cyclic High Pressure Torsi<strong>on</strong>. The<br />

structure size is determined by the strain increment per cycle. The larger the strain per cycle<br />

is, the smaller becomes the structure size <strong>and</strong> the higher becomes the in-situ measured torque<br />

<strong>and</strong> therefore the tensile strength. The total strain necessary to reach the steady-state regime is<br />

larger for m<strong>on</strong>ot<strong>on</strong> High Pressure Torsi<strong>on</strong> <strong>and</strong> decreases with a decreasing strain per cycle.<br />

<str<strong>on</strong>g>Large</str<strong>on</strong>g> shear deformati<strong>on</strong> in pearlitic <strong>and</strong> bainitic steels leads to an alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbides.<br />

Depending <strong>on</strong> the size <strong>and</strong> the thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbides, they are severely deformed,<br />

fragmented <strong>and</strong> even dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite during this process takes place. After an<br />

equivalent shear strain <str<strong>on</strong>g>of</str<strong>on</strong>g> ≈8, in all investigated steels an almost perfectly aligned lamellae<br />

structure parallel to the shear plane can be observed.<br />

During the alignment, both the carbide thickness <strong>and</strong> the lamellae spacing is decreased significantly.<br />

The size <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite phase in directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear plane<br />

normal is determined by the lamellae thickness. This refinement both in the lamellae structure<br />

35<br />

4


4<br />

4 C<strong>on</strong>clusi<strong>on</strong>s<br />

as well as in the structure size <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite lead to an increase in the mechanical strength.<br />

The increase in the mechanical strength perpendicular to this directi<strong>on</strong> is much smaller than<br />

the increase parallel to the aligned structure, where tensile strengths <str<strong>on</strong>g>of</str<strong>on</strong>g> 1900 MPa (for 900A<br />

at ɛeq = 4 were measured. In c<strong>on</strong>tradicti<strong>on</strong> to pure metals, no saturati<strong>on</strong> in the increase in the<br />

mechanical strength could be observed in the investigated strain regime.<br />

The microstructure after Cyclic High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the rail steels is distinctly influenced<br />

by the strain increment per cycle. If this increment is small (≈ smaller than 2) the<br />

carbides are mainly broken up after a larger number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles <strong>and</strong> align very slowly parallel<br />

to the shear directi<strong>on</strong>. At higher strains per cycle, the microstructure is similar in appearance<br />

to the m<strong>on</strong>ot<strong>on</strong>ic deformed samples, but <strong>on</strong>ly after higher total strains. In Cyclic High Pressure<br />

Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rail steels, no saturati<strong>on</strong> in the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the strength could be observed, too,<br />

although the increase is much slower in Cyclic High Pressure Torsi<strong>on</strong> compared to High Pressure<br />

Torsi<strong>on</strong>.<br />

The aligned microstructure after large shear deformati<strong>on</strong>s also influences the mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crack propagati<strong>on</strong>. Both the fracture toughness <strong>and</strong> the fatigue crack propagati<strong>on</strong> are markedly<br />

different in the two investigated sample orientati<strong>on</strong>s. In samples with orientati<strong>on</strong> A, the crack<br />

has to cross the aligned lamellae. This <strong>and</strong> the branching <str<strong>on</strong>g>of</str<strong>on</strong>g> the crack leads to an increase in<br />

the fracture toughness with increasing strain. The opposite occures in samples with orientati<strong>on</strong><br />

B. The crack can propagate al<strong>on</strong>g the aligned microstructure <strong>and</strong> hardly has to cross the str<strong>on</strong>g<br />

cementite lamellae. Therefore, the fracture toughness decreases significantly with increasing<br />

strain. After three passes <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP, the fracture toughness in samples with orientati<strong>on</strong> A is<br />

more than twice as high than in samples with orientati<strong>on</strong> B. The fatigue crack propagati<strong>on</strong> rate<br />

is influenced, too. Here a markedly decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the fatigue propagati<strong>on</strong> speed is measured for<br />

samples with orientati<strong>on</strong> A, while it is increased for samples with orientati<strong>on</strong> B. Again, the<br />

effect is amplified with increasing predeformati<strong>on</strong>.<br />

The affected z<strong>on</strong>e in a High Pressure Torsi<strong>on</strong> deformed steel after a heat treatment with a<br />

Laser for very short times c<strong>on</strong>tain many microstructural features <str<strong>on</strong>g>of</str<strong>on</strong>g> WELs. Therefore, it may<br />

be c<strong>on</strong>cluded that WELs <strong>on</strong> rails are formed when large shear deformati<strong>on</strong>s occure together<br />

with short heat pulses.<br />

36


[1] G. Baumann, H.-J. Fecht, <strong>and</strong> S. Liebelt. Wear, 191:133, 1991.<br />

Bibliography<br />

[2] W. Lojkowski, Y. Millman, S.I. Chugunova, I.V. G<strong>on</strong>charova, M. Djahanbakhsh,<br />

G. Buerkle, <strong>and</strong> H.-J. Fecht. Mater. Sci. Eng.A, 203:209–215, 2001.<br />

[3] A. Pyzalla, L. Wang, E. Wild, <strong>and</strong> T. Wroblewski. Wear, 251:901–907, 2001.<br />

[4] U. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>ss<strong>on</strong> <strong>and</strong> T. Telliskivi. Wear, 254:80–93, 2003.<br />

[5] J.-K. Kim <strong>and</strong> C.-S. Kim. Mater. Sci. Eng.A, 338:191–201, 2002.<br />

[6] G. Baumann, K. Knothe, <strong>and</strong> H. J. Fecht. Nanostructured Materials, 9(1-8):751–754,<br />

1997.<br />

[7] L. Wang, A. Pyzalla, W. Stadlbauer, <strong>and</strong> E. A. Werner. Mater. Sci. Eng.A, 359:31–43,<br />

2003.<br />

[8] J. W. Ringsberg, M. Loo-Morrey, B. L. Josefs<strong>on</strong>, A. Kapoor, <strong>and</strong> J. H. Beyn<strong>on</strong>. Int. J.<br />

Fatigue, 22:205–215, 2003.<br />

[9] J. H. Beyn<strong>on</strong>, A. Kapoor, <strong>and</strong> W. R. Tyfour. Wear, 197:255–265, 1996.<br />

[10] G. Baumann, H. J. Fecht, <strong>and</strong> S. Liebelt. Wear, 191:133–140, 1996.<br />

[11] W. Oesterle, H. Rooch, A. Pyzalla, <strong>and</strong> L. Wang. Mater. Sci. Eng.A, 303:150–157, 2001.<br />

[12] Y. K. Chou <strong>and</strong> H. S<strong>on</strong>g. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Processing Technology, 148:259–268,<br />

2004.<br />

[13] G. Poulach<strong>on</strong>, A. Albert, M. Schluraff, <strong>and</strong> I.S. Jawahir. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Machine<br />

Tools <strong>and</strong> Manufacture, in press, 2005.<br />

[14] J. Rech <strong>and</strong> A. Moisan. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Machine Tools <strong>and</strong> Manufacture,<br />

43:543–550, 2003.<br />

[15] J. Palmers, M. Van Stappen, J. D’Haen, <strong>and</strong> M. D’Olieslaeger. Surface <strong>and</strong> Coatings<br />

Technology, 74-75:162–167, 1995.<br />

[16] O. D. Tasbaz, R. J. K. Wood, M. Browne, H. E. G. Powrie, <strong>and</strong> G. Denuault. Wear,<br />

230:86–97, 1999.<br />

37<br />

BIB


BIB<br />

Bibliography<br />

[17] E. Jisheng <strong>and</strong> D. T. Gawne. Wear, 211:1–8, 1997.<br />

[18] L. Xu, S. Clough, P. Howard, <strong>and</strong> D. Stjohn. Wear, 181-183:112–117, 1995.<br />

[19] O. Barrau, C. Boher, R. Gras, <strong>and</strong> F. Rezai-Aria. Wear, 255:1444–1454, 2003.<br />

[20] R. Heyder <strong>and</strong> G. Girsch. Wear, 258:1014–1021, 2005.<br />

[21] W. Daves <strong>and</strong> F. D. Fischer. Wear, 253:241–246, 2002.<br />

[22] J. W. Ringsberg <strong>and</strong> T. Lindbäck. Int. J. Fatigue, 25:547–558, 2003.<br />

[23] J. W. Ringsberg, B. L. Josefs<strong>on</strong> F. J. Franklin, A. Kapoor, <strong>and</strong> J. C.O. Nielsen. Int. J.<br />

Fatigue, 27:680–694, 2005.<br />

[24] Y. T. Zhu, T. G. Langd<strong>on</strong>, R. S. Mishra, S. L. Semiatin, M. J. Saran, <strong>and</strong> T. C. Lowe,<br />

editors. Ultrafine Grained Materials II. TMS Publicati<strong>on</strong>s, Warrendale, Pennsylvania,<br />

2002.<br />

[25] Y. T. Zhu, T. G. Langd<strong>on</strong>, R. Z. Valiev, S. L. Semiatin, D. H. Shin, <strong>and</strong> T. C. Lowe,<br />

editors. Ultrafine Grained Materials III. TMS Publicati<strong>on</strong>s, Warrendale, Pennsylvania,<br />

2004.<br />

[26] M. J. Zehetbauer <strong>and</strong> R. Z. Valiev, editors. Nanomaterials by Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g>.<br />

J. Wiley, VCH Weinheim (Germany), 2002.<br />

[27] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, <strong>and</strong> R. G. H<strong>on</strong>g. Scripta Mater., 39:1221–<br />

1227, 1998.<br />

[28] N. Tsuji, Y. Saito, H. Utsunomiya, <strong>and</strong> S. Tanigawa. Scripta Mater., 40:795–800, 1999.<br />

[29] I. Salvatori2006. Mater. Sci. Forum, 503-504:311–316, 2006.<br />

[30] H. J. Mcqueen M. Richert <strong>and</strong> J. Richert. Canadian Metallurgical Quarterly, 37:449–<br />

457, 1998.<br />

[31] M. Richert, Q. Liu, <strong>and</strong> N. Hansen. Mater. Sci. Eng.A, 260:275–283, 1999.<br />

[32] J. C. Lee, H. K. Seok, <strong>and</strong> J. Y. Suh. Acta mater., 50:4005–4019, 2002.<br />

[33] S. Mizunuma. Mater. Sci. Forum, 503-504:185–190, 2006.<br />

[34] T. Hebesberger, A. Vorhauer, H. P. Stüwe, <strong>and</strong> R. Pippan. In M. J. Zehetbauer <strong>and</strong> R. Z.<br />

Valiev, editors, Nanomaterials by Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g>, pages 447–452. J. Wiley,<br />

VCH Weinheim (Germany), 2002.<br />

[35] A. Vorhauer <strong>and</strong> R. Pippan. In M. J. Zehetbauer <strong>and</strong> R. Z. Valiev, editors, Nanomaterials<br />

by Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g>, pages 648–653. J. Wiley, VCH Weinheim (Germany),<br />

2003.<br />

38


Bibliography<br />

[36] T. Hebesberger, H. P. Stüwe, A. Vorhauer, F. Wetscher, <strong>and</strong> R. Pippan. Acta Mater.,<br />

53:393–402, 2005.<br />

[37] M. Furukawa, Z. Horita, M. Nemoto, <strong>and</strong> T. G. Langd<strong>on</strong>. Mater. Sci. Eng.A, 324(1-<br />

2):82–89, 2002.<br />

[38] A. P. Zhilyaev, S. Lee, G. V. Nurislamova, R. Z. Valiev, <strong>and</strong> T. G. Langd<strong>on</strong>. Scripta<br />

Mater., 44:2753–2758, 2001.<br />

[39] H. Jiang, Y. T. Zhu, D. P. Butt, I. V. Alex<strong>and</strong>rov, <strong>and</strong> T. C. Lowe. Mater. Sci. Eng.A,<br />

290:128–138, 2000.<br />

[40] A. P. Zhilyaev, G. V. Nurislomova, B. G. Kim, M. D. Baro, J. A. Szpunar, <strong>and</strong> T. G.<br />

Langd<strong>on</strong>. Acta Mater., 51:753–765, 2003.<br />

[41] H. P. Stüwe. In M. J. Zehetbauer <strong>and</strong> R. Z. Valiev, editors, Nanomaterials by Severe<br />

Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g>, pages 55–64. J. Wiley, VCH Weinheim (Germany), 2002.<br />

[42] A. Vorhauer <strong>and</strong> R. Pippan. Scripta Mater., 51:921–925, 2004.<br />

[43] V. M. Segal. Mater. Sci. Eng.A, 271:322–333, 1999.<br />

[44] D. H. Shin, I. Kim, J. Kim, <strong>and</strong> K.-T. Park. Acta Mater., 49:1285–1292, 2001.<br />

[45] L. Dupuy <strong>and</strong> E. F. Rauch. Mat. Sci. Eng.A, 337:241–247, 2002.<br />

[46] M. Kamachi, M. Furukawa, Z. Horita, <strong>and</strong> T. G. Langd<strong>on</strong>. Mater. Sci. Eng.A, 300:1–8,<br />

2002.<br />

[47] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, <strong>and</strong> T. G. Langd<strong>on</strong>. Scripta mater., 35:143–<br />

146, 1996.<br />

[48] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nomoto, <strong>and</strong> T. G. Langd<strong>on</strong>. Mater. Sci. Eng.A,<br />

257:328–332, 1998.<br />

[49] A. Vorhauer. PhD thesis, Leoben, 2005.<br />

[50] H. P. Stüwe. Mater. Sci. Forum, 503-504:175–178, 2006.<br />

[51] J. D. Embury <strong>and</strong> R. M. Fisher. Acta Met., 14:147–159, 1966.<br />

[52] G. Langford. Met. Trans., 1:465–477, 1970.<br />

[53] G. Langford. Met. Trans., 8A:861–875, 1977.<br />

[54] M. Dollar, I. M. Bernstein, <strong>and</strong> A. W. Thomps<strong>on</strong>. Acta Metall., 36:311–320, 1988.<br />

[55] J. Toribio. Mater. Sci. Eng.A, 387-389:227–230, 2004.<br />

[56] H. G. Read, W. T. Reynolds Jr., K. H<strong>on</strong>o, <strong>and</strong> T. Tarui. Scripta Mater., 37:1221–1230,<br />

1997.<br />

39<br />

BIB


4<br />

Bibliography<br />

[57] J. Languillaume, G. Kapelski, <strong>and</strong> B. Baudelet. Materials Letters, 33(3-4):241–245,<br />

1997.<br />

[58] F. Danoix, D. Julien, X. Sauvage, <strong>and</strong> J. Copreaux. Mater. Sci. Eng.A, 250:8–13, 1998.<br />

[59] W. J. Nam, C. M. Bae, S. J. Oh, <strong>and</strong> S.-J. Kw<strong>on</strong>. Scripta Mater., 42:457–463, 2000.<br />

[60] K. H<strong>on</strong>o, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, <strong>and</strong> T. Takahashi. Scripta<br />

Mater., 44:977–983, 2001.<br />

[61] V. G. Gavriljuk. Mater. Sci. Eng.A, 345:81–89, 2002.<br />

[62] Y. Ivanisenko, W. Lojkowski, R. Z. Valiev, <strong>and</strong> H.-J. Fecht. Acta Mater., 51:5555–5570,<br />

2003.<br />

[63] X. Sauvage. Mater. Sci. Forum, 503-504:433–438, 2006.<br />

[64] E. Wild, L. Wang, B. Hasse, T. Wroblewski, G. Goerigk, <strong>and</strong> A. Pyzalla. Wear, 254:876–<br />

883, 2003.<br />

[65] Y. Jirásková, J. Svoboda, O. Schneeweiss, W. Daves, <strong>and</strong> F. D. Fischer. Appl. Surf. Sci.,<br />

239:132–141, 2005.<br />

[66] H. W. Zhang, S. Ohsaki, S. Mitao, M. Ohnuma, <strong>and</strong> K. H<strong>on</strong>o. to be published in Mater.<br />

Sci. Eng.A, 2006.<br />

[67] F. D. Fischer, E. Werner, <strong>and</strong> K. Knothe. Z. Angew. Math. Mech, 81:75–81, 2001.<br />

[68] L. D. Blackburn, L. Kaufman, <strong>and</strong> M. Cohen. Acta Metal., 13:533–541, 1965.<br />

[69] F. Wetscher, A. Vorhauer, R. Stock, <strong>and</strong> R. Pippan. Mater. Sci. Eng.A, 387-389:809–816,<br />

2004.<br />

[70] F. Wetscher <strong>and</strong> R. Pippan. to be submitted, 2006.<br />

[71] R. K. Islamgaliev, W. Buchgraber, Y. R. Kolobov, N. M. Amirkhanov, A. V. Sergueeva,<br />

K. V. Ivanov, <strong>and</strong> G. P. Grabovetskaya. Mater. Sci. Eng.A, 319-321:872–876, 2000.<br />

[72] A. Dubravina, M. J. Zehetbauer, E. Schafler, <strong>and</strong> I. V. Alex<strong>and</strong>rov. Mater. Sci. Eng.A,<br />

387-389:817–821, 2004.<br />

[73] Z. Yang <strong>and</strong> U. Welzel. Materials Letters, 59:3406–3409, 2005.<br />

[74] J. Toribio <strong>and</strong> E. Ovejero. Mater. Sci. Eng.A, 234-236:579, 1997.<br />

[75] J. Toribio <strong>and</strong> J. Ayaso. Int. J. Fracture, 115:L29–L34, 2002.<br />

[76] J. Toribio <strong>and</strong> J. Ayaso. Mater. Sci. Eng.A, 343:265–272, 2003.<br />

40


5<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> appended papers<br />

Paper A<br />

F. Wetscher, A. Vorhauer, R. Stock <strong>and</strong> R. Pippan<br />

Structural Refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Alloyed <strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Materials Science <strong>and</strong> Engineering A387-389 (2004) 809-816<br />

Paper B<br />

F. Wetscher, R. Stock, B. Tian <strong>and</strong> R. Pippan<br />

Structural Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> Severely Plastic Deformed <strong>Rail</strong> Steel<br />

Proceedings: Symposium <str<strong>on</strong>g>of</str<strong>on</strong>g> Ultrafine Grained Materials III, TMS Annual Meeting (2004)<br />

315-320<br />

Paper C<br />

F. Wetscher, A. Vorhauer <strong>and</strong> R. Pippan<br />

Strain Hardening during High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Materials Science <strong>and</strong> Engineering A410-411 (2005) 213-216<br />

Paper D<br />

F. Wetscher, R. Stock <strong>and</strong> R. Pippan<br />

Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Surface Layers: The <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Strain Path<br />

Proceedings: 1 st Vienna C<strong>on</strong>ference Micro- <strong>and</strong> Nano-Technology, Vienna, Austria, (2005)<br />

357-365<br />

Paper E<br />

F. Wetscher, B. Tian, R. Stock <strong>and</strong> R. Pippan<br />

High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong><br />

Materials Science Forum, 503-504 (2006) 455-460<br />

41<br />

5


5<br />

5 List <str<strong>on</strong>g>of</str<strong>on</strong>g> appended papers<br />

Paper F<br />

F. Wetscher, R. Pippan, S. Sturm, F. Kauffmann, C. Scheu <strong>and</strong> G. Dehm<br />

Microstructural Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Pearlitic Steel during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

accepted for publicati<strong>on</strong> in Metallurgical Transacti<strong>on</strong>s A<br />

Paper G<br />

F. Wetscher, R. Stock <strong>and</strong> R. Pippan<br />

Fracture Processes in Severe Plastic Deformed <strong>Rail</strong> <strong>Steels</strong><br />

accepted for publicati<strong>on</strong> in: Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the 16 th European C<strong>on</strong>ference <str<strong>on</strong>g>of</str<strong>on</strong>g> Fracture (2006)<br />

Paper H<br />

F. Wetscher <strong>and</strong> R. Pippan<br />

Cyclic High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nickel <strong>and</strong> Armco Ir<strong>on</strong><br />

submitted for publicati<strong>on</strong> in Philosophical Magazine<br />

Paper I<br />

F. Wetscher <strong>and</strong> R. Pippan<br />

Structural Evoluti<strong>on</strong> during Cyclic Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

accepted for publicati<strong>on</strong> in: Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the 9 th Internati<strong>on</strong>al Fatigue C<strong>on</strong>gress (2006)<br />

42


A<br />

Structural Refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Alloyed<br />

<strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

F. Wetscher 1,2 , A. Vorhauer 1,2 , R. Stock 3 <strong>and</strong> R. Pippan 1,2<br />

1 Erich Schmid Institute for Materials Science, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, A-8700<br />

Leoben, Austria<br />

2 CD-Laboratory for local analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> <strong>and</strong> fracture, Jahnstr. 12, A-8700 Leoben<br />

voestalpine SCHIENEN GMBH, Kerpelystr. 199, A-8700 Leoben, Austria<br />

Abstract<br />

The rail steel S900A <strong>and</strong> Armco-ir<strong>on</strong> have been deformed by severe plastic deformati<strong>on</strong>,<br />

the microstructural evoluti<strong>on</strong> <strong>and</strong> the changes in microhardness have been investigated. In<br />

both materials the deformati<strong>on</strong> leads to a decrease in structure size. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the steel an<br />

alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae parallel to the shear plane <strong>and</strong> a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae spacing<br />

is observed. Lamellae which have been originally not favourably aligned are heavily bent<br />

<strong>and</strong> broken into small fragments. This refinement is also reflected in the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

microhardness.<br />

A–1<br />

A


A<br />

A–2


A.1 Introducti<strong>on</strong><br />

A.1 Introducti<strong>on</strong><br />

Knowledge <strong>on</strong> Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> (SPD) not <strong>on</strong>ly is important for producing nanostructured<br />

materials, but can also be used to solve problems where high deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> material<br />

is involved. An industrial relevant area is the deformati<strong>on</strong> layer <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rails. 1–3 This<br />

regi<strong>on</strong> is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> all phenomena like headcecks, ratcheting, formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> white-etching<br />

layers <strong>and</strong> wear, <strong>and</strong> the underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the features <str<strong>on</strong>g>of</str<strong>on</strong>g> the severely distorted material is<br />

vitally important. By means <str<strong>on</strong>g>of</str<strong>on</strong>g> High Pressure Torsi<strong>on</strong> (HPT) the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> samples with<br />

a reproducible <strong>and</strong> well defined deformati<strong>on</strong> history is possible. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this work is to<br />

gain a better underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite-cementite structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a rail-steel<br />

under a shear deformati<strong>on</strong> <strong>and</strong> at high hydrostatic pressure. To underst<strong>and</strong> the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cementite <strong>on</strong> the refinement for comparis<strong>on</strong> Armco-ir<strong>on</strong> has been deformed <strong>and</strong> analysed in<br />

the same way.<br />

A.2 Experimental<br />

A.2.1 Samples<br />

Two materials have been investigated: Armco-ir<strong>on</strong> <strong>and</strong> the pearlitic rail steel S900A. Samples<br />

have been deformed by HPT, a meanwhile well established method in the SPD community. 4–6<br />

This method simulates both the high hydrostatic pressure <strong>and</strong> the shear deformati<strong>on</strong> as occuring<br />

<strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rails. The grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> the undeformed material in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco-ir<strong>on</strong><br />

was approximately 50µm, the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the pearlite col<strong>on</strong>ies in the rail steel was 10-20µm. The<br />

samples had a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 mm <strong>and</strong> a thickness t <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.7 mm. They were deformed at a pressure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 5 GPa, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> turns n was selected to obtain equivalent strains <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 2, 4, 8,<br />

16 <strong>and</strong> 32 (<strong>on</strong>ly for Armco-ir<strong>on</strong>) at a radius r <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 mm. The equivalent v<strong>on</strong> Mises-strain was<br />

calculated according to the relati<strong>on</strong><br />

εeq = 2πnr<br />

t √ 3<br />

A.2.2 Microstructural investigati<strong>on</strong>s<br />

(A.1)<br />

To investigate the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the steel S900A different cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples<br />

were prepared: (i) A transversal secti<strong>on</strong> with a plane normal SP parallel to the torsi<strong>on</strong> axis<br />

representing the shear plane; (ii) a l<strong>on</strong>gitudinal secti<strong>on</strong> parallel to the torsi<strong>on</strong> axis at the sample<br />

periphery c<strong>on</strong>taining the shear directi<strong>on</strong> SD, with plane normal P, <strong>and</strong> (iii) a l<strong>on</strong>gitudinal<br />

secti<strong>on</strong> c<strong>on</strong>taining the torsi<strong>on</strong> axis <strong>and</strong> the sample centre, with plane normal SD as depicted<br />

in Figure A.1. Three different methods have been used. For a view <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae,<br />

the samples have been grinded, polished <strong>and</strong> etched with picrin acid. Then pictures were<br />

taken using the sec<strong>on</strong>dary electr<strong>on</strong> detector <str<strong>on</strong>g>of</str<strong>on</strong>g> a scanning electr<strong>on</strong> microscope (SEM). For<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite, the samples were grinded <strong>and</strong> alternatingly polished<br />

<strong>and</strong> etched. After a final polishing step the surface was depicted both with a SEM<br />

using a backscatter electr<strong>on</strong> detector (BSE) <strong>and</strong> with a focused i<strong>on</strong> beam workstati<strong>on</strong> LEO<br />

XB1540 (FIB), detecting sec<strong>on</strong>dary electr<strong>on</strong>s induced by the gallium i<strong>on</strong> beam. Grain size<br />

A–3<br />

A


A<br />

A Structural Refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Alloyed <strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

<strong>and</strong> other microstructural parameters are determined by the computer program analySIS from<br />

S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Imagine System.<br />

Figure A.1: Sample preparati<strong>on</strong> for microscopy<br />

A.2.3 Microhardness Measurements<br />

To follow the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical strength, microhardness measurements were performed<br />

at different radii, at least <strong>on</strong>e millimeter away both from the centre <strong>and</strong> from the edge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the sample. At least three indentati<strong>on</strong>s were made for three different loads at each site, the<br />

hardness value being given for a diag<strong>on</strong>al <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 µm.<br />

A.3 Results<br />

A.3.1 Microstructural evoluti<strong>on</strong><br />

For Armco-ir<strong>on</strong>, micrographs were taken at the shear plane (SP). After a deformati<strong>on</strong> to strains<br />

smaller than 4, the original grains are detectable <strong>and</strong> a b<strong>and</strong>ed structure can be observed (Figure<br />

A.2). At larger strains an equiaxed structure becomes visible, most <str<strong>on</strong>g>of</str<strong>on</strong>g> the refinement seems<br />

to be already finished. The same behaviour is visible in the micrographs taken with the FIBworkstati<strong>on</strong>.<br />

In comparis<strong>on</strong> with the BSE-micrographs the structure appears coarser at higher<br />

strains. The most apparent features <str<strong>on</strong>g>of</str<strong>on</strong>g> deformed pearlitic steel are the fragmentati<strong>on</strong> <strong>and</strong> the<br />

alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae. Figure A.3a <strong>and</strong> b are micrographs taken from directi<strong>on</strong><br />

SD, while Figure A.3c shows a view in the directi<strong>on</strong> P. There is no significant difference to notice.<br />

It shows that at a small strain level in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 0-2 (Figure A.3a) the cementite lamellae<br />

are heavily bent <strong>and</strong> partly broken, but the cementite col<strong>on</strong>ies are still recognizable. At higher<br />

strains (Figure A.3b <strong>and</strong> c) it can be clearly seen that some lamellae are aligned parallel to<br />

the shear plane, some are broken into pieces smaller than 1 µm. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this alignment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the favourable oriented lamellae it is quite useless to take micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the plane SP; etched<br />

A–4


A.3 Results<br />

Figure A.2: Micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> severely deformed Armco-ir<strong>on</strong>, (a) BSE, ɛeq = 0, 5 (b) BSE, ɛeq = 4 (c) BSE,<br />

ɛeq = 32 (d) FIB, ɛeq = 32<br />

A–5<br />

[h!]<br />

A


A<br />

A Structural Refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Alloyed <strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

samples show <strong>on</strong>ly a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> flat cementite particles. When following the structural evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the ferrite (Figure A.3d - f), <strong>on</strong>e in principle observes the same behaviour as in Armco-ir<strong>on</strong>,<br />

<strong>on</strong>ly the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements is significantly smaller. A quick decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure<br />

size, <strong>and</strong> a somewhat larger size in the FIB-micrograph compared to the BSE-pictures can<br />

be observed.<br />

A.3.2 Microhardness <strong>and</strong> microstructural features<br />

The deformati<strong>on</strong> leads to a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure for both materials. This implies<br />

an increase in microhardness as it is shown in Figure A.4a. The change <str<strong>on</strong>g>of</str<strong>on</strong>g> the grain size <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Armco-ir<strong>on</strong> <strong>and</strong> the decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the mean cementite lamellae distance can be seen in Figure<br />

A.4b. Due to the heavy fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae, it was not possible to obtain significant<br />

values for the lamellae spacing at larger strains.<br />

A.4 Discussi<strong>on</strong><br />

Armco-ir<strong>on</strong> is a well investigated material <strong>and</strong> the present results are comparable to the results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Valiev et al. 7 After a small strain the original grains with a size <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 µm have vanished,<br />

the new structure appears with a mean size <str<strong>on</strong>g>of</str<strong>on</strong>g> 500nm which decreases slowly to 250 nm. The<br />

difference in the structure size observed with BSE or FIB comes from the different c<strong>on</strong>trast<br />

sources. While in the FIB-workstati<strong>on</strong> the c<strong>on</strong>trast arises from the different penetrati<strong>on</strong> depths<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the gallium i<strong>on</strong>s depending <strong>on</strong> the relative angle between the beam <strong>and</strong> the lattice, 8 the c<strong>on</strong>trast<br />

in BSE micrographs is dominated by both the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> lattice defects, i.e. dislocati<strong>on</strong><br />

walls <strong>and</strong> crystal orientati<strong>on</strong> with a higher sensitivity in respect <str<strong>on</strong>g>of</str<strong>on</strong>g> orientati<strong>on</strong> differences. This<br />

indicates that the misoriented structural elements are subdivided by dislocati<strong>on</strong> walls or small<br />

angle grain boundaries.<br />

<str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pearlitic steel has been studied in various c<strong>on</strong>texts. Toribio et al. 9 <strong>and</strong> W<strong>on</strong><br />

J<strong>on</strong> Nam et al. 10 investigated the pearlite col<strong>on</strong>y evoluti<strong>on</strong> <strong>and</strong> the void initiati<strong>on</strong> during wire<br />

drawing. They reported an alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae al<strong>on</strong>g the drawing axis. Such<br />

an alignment, together with a severe distorti<strong>on</strong> <strong>and</strong> a heavy fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the majority <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the lamellae has also been observed in this study. After a strain <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 almost all remaining<br />

cementite particles are parallel to the surface, i.e. they lay in the shear plane. Shabashov et<br />

al. 11 <strong>and</strong> Ivanisenko et al. 12 report that the cementite lamellae can be totally dissolved during<br />

SPD. This could not be observed in this study; it may be that the deformati<strong>on</strong> reached is too<br />

small. The deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite in the pearlite is dictated by the lamellae spacing. The<br />

structure size after SPD is limited to this distance, so the refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite structure in<br />

the steel occurs faster than in the Armco-ir<strong>on</strong>.<br />

In Armco-ir<strong>on</strong> the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> microhardness markedly changes after small strains. This is<br />

due to the fast fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the grains into subgrains. In c<strong>on</strong>tradicti<strong>on</strong> to this behaviour,<br />

in the rail steel S900A the change is much smaller here (Figure A.4a), the microhardness is<br />

determined mostly by the cementite lamellae distance, which changes quite slow, too (Figure<br />

A.4b).<br />

A–6


A.4 Discussi<strong>on</strong><br />

Figure A.3: Micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> severely deformed rail steel S900A (a) SE-image, etched sample (SD), ɛeq = 1 (b) SE,<br />

etched sample (SD), ɛeq = 8 (c) SE, etched sample (P), ɛeq = 8 (d) BSE (SD), ɛeq = 4 (e) BSE (SD), ɛeq = 16<br />

(f) FIB micrograph (SD) ɛeq = 16<br />

A–7<br />

A


A<br />

A Structural Refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> Low Alloyed <strong>Steels</strong> during Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Figure A.4: (a) Changes in the microhardness <strong>and</strong> (b) Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strain<br />

A.5 C<strong>on</strong>clusi<strong>on</strong>s<br />

A–8<br />

• In Armco-ir<strong>on</strong> the structure size decreases until saturati<strong>on</strong> takes place, after an v<strong>on</strong><br />

Mises-strain <str<strong>on</strong>g>of</str<strong>on</strong>g> 16 most <str<strong>on</strong>g>of</str<strong>on</strong>g> the refinement seems to have finished.<br />

• The deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pearlitic steel is characterized by the rearrangement <strong>and</strong> fragmentati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite, the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite is limited to the<br />

decreasing lamellae spacing.<br />

• The determining factor for the change <str<strong>on</strong>g>of</str<strong>on</strong>g> the microhardness is the change in structure<br />

size in Armco-ir<strong>on</strong> <strong>and</strong> the decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae spacing in the pearlitic steel.


Bibliography to paper A<br />

[1] W. Lojkowski, Y. Millman, S.I. Chugunova, I.V. G<strong>on</strong>charova, M. Djahanbakhsh,<br />

G. Buerkle, <strong>and</strong> H.-J. Fecht. Mater. Sci. Eng.A, 203:209, 2001.<br />

[2] G. Baumann, H.-J. Fecht, <strong>and</strong> S. Liebelt. Wear, 191:133, 1991.<br />

[3] W. Oesterle, H. Rooch, A. Pyzalla, <strong>and</strong> L. Wang. Mater. Sci. Eng.A, 303:150–157, 2001.<br />

[4] R. Z. Valiev, R. K. Islamgaliev, <strong>and</strong> I. V. Alex<strong>and</strong>rov. Prog. Mat. Sci., 45:103, 2000.<br />

[5] A. P. Zhilyaev, G. V. Nurislamova, B.-K. Kim, M. D. Baro, J. A. Szpunar, <strong>and</strong> T. G.<br />

Langd<strong>on</strong>. Acta Mater., 51:753, 2003.<br />

[6] H. Jiang, Y. T. Zhu, D. P. Butt, I. V. Alex<strong>and</strong>rov, <strong>and</strong> T. C. Lowe. Mater. Sci. Eng.A,<br />

290:128, 2000.<br />

[7] R. Z. Valiev, Y. V. Ivanisenko, E. F. Rauch, <strong>and</strong> B. Baudelet. Acta Mater., 44:4702, 1996.<br />

[8] M. W. Phaneuf. micr<strong>on</strong>, 30:277, 1999.<br />

[9] J. Toribio <strong>and</strong> E. Ovejero. Mater. Sci. Eng.A, 234-236:579, 1997.<br />

[10] W. J. Nam <strong>and</strong> C. M. Bae. Mater. Sci. Eng.A, 203:278, 1995.<br />

[11] V. A. Shabashov, L. G. Korshunov amd A. G. Mukoseev, V. V. Sagaradze, A. V. Makarov,<br />

V. P. Pilyugin, S. I. Novikov, <strong>and</strong> N. F. Vildanova. Mater. Sci. Eng.A, 346:196, 2003.<br />

[12] Yu. V. Ivanisenko, R.Z. Valiev, W. Lojkowski, A. Grob, <strong>and</strong> H.-J. Fecht. In Ultrafine<br />

Grained Materials II, pages 47–54. Warrendale (USA), 2000.<br />

A–9<br />

A


A<br />

A–10


B<br />

Structural Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> Severely Plastic<br />

Deformed <strong>Rail</strong> Steel<br />

F. Wetscher 1,2 , R.Stock 3 , B.Tian 1 , <strong>and</strong> R. Pippan 1,2<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Material Erich Schmid Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sciences, Jahnstr. 12 A-8700 Leoben, Austria<br />

2 CD-Laboratory for local analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> <strong>and</strong> fracture, Jahnstr. 12, A-8700 Leoben<br />

3 voestAlpine SCHIENEN GMBH, Kerpelystr. 199, A-8700 Leoben, Austria<br />

Abstract<br />

Severe plastic deformati<strong>on</strong> has been applied to the pearlitic rail steel UIC 900A <strong>and</strong> Armcoir<strong>on</strong>.<br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> the texture <strong>and</strong> the peak broadening has been determined. In both<br />

cases a characteristic shear texture evolves, the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> peak pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles indicates a structural<br />

refinement during the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strain. To assert further the refinement <strong>and</strong> to investigate<br />

the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae, transmissi<strong>on</strong> electr<strong>on</strong> microscope micrographs<br />

were taken. A decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae spacing, a heavy fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae <strong>and</strong><br />

increasing missorientati<strong>on</strong> both in the cementite lamellae <strong>and</strong> the ferrite were observed.<br />

B–1<br />

B


B<br />

B–2


B.1 Introducti<strong>on</strong><br />

B.1 Introducti<strong>on</strong><br />

Due to an increasing exposure in respect to both load <strong>and</strong> frequency the dem<strong>and</strong>s <strong>on</strong> rails<br />

steels are very high. The most critical point during applicati<strong>on</strong> is the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a severely<br />

deformed layer <strong>on</strong> the surface, which is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> most phenomena related to wear <strong>and</strong><br />

rolling c<strong>on</strong>tact fatigue. 1–3 Therefore a better knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> this deformed<br />

material is <str<strong>on</strong>g>of</str<strong>on</strong>g> immense importance, allowing a purposeful enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> the used materials<br />

<strong>and</strong> a better scheduling <str<strong>on</strong>g>of</str<strong>on</strong>g> the maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> the rail tracks. The methods <str<strong>on</strong>g>of</str<strong>on</strong>g> severe plastic<br />

deformati<strong>on</strong> (SPD) have shown not <strong>on</strong>ly to be excellent to produce nanostructured material; 4–6<br />

they can also be a powerful tool to produce highly deformed samples. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> SPDsamples<br />

compared to samples directly obtained from rails is the reproducibility <strong>and</strong> the exact<br />

knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong> history.<br />

B.2 Experimental Procedures<br />

In the present investigati<strong>on</strong> the rail steel UIC 900A <strong>and</strong> Armco-ir<strong>on</strong> have been deformed by<br />

high pressure torsi<strong>on</strong> (HPT), a meanwhile well established procedure. Samples with a diameter<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 8 mm <strong>and</strong> a thickness, t, <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 mm were deformed at a hydrostatic pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 GPa to<br />

equivalent strains <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 2, 4, 8, 16 <strong>and</strong> 32 at a radius, r, <str<strong>on</strong>g>of</str<strong>on</strong>g> 3mm. The equivalent strain, ɛeq, has<br />

been calculated according to Equati<strong>on</strong> B.1, where n is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> revoluti<strong>on</strong>s.<br />

ɛeq = 2πrn<br />

t √ 3<br />

(B.1)<br />

Transmissi<strong>on</strong> electr<strong>on</strong> microscopy (TEM) investigati<strong>on</strong>s were performed for the steel UIC<br />

900A using a Philips CM12 TEM at 120KV. For sample preparati<strong>on</strong> thin slices were cut,<br />

polished to a thickness smaller than 50µm <strong>and</strong> finally an area, thin enough for transmissi<strong>on</strong>,<br />

was prepared using a focused i<strong>on</strong> beam workstati<strong>on</strong> (FIB), as schematically depicted in Figure<br />

B.1.<br />

Figure B.1: Sample preparati<strong>on</strong> for TEM.<br />

For Armco-ir<strong>on</strong>, X-ray analyses were performed <strong>on</strong> a Seifert PTS 3000, using Cr-radiati<strong>on</strong><br />

with a wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.2897 Angstrom. For a determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the texture pole figures were<br />

B–3<br />

B


B<br />

B Structural Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> Severely Plastic Deformed <strong>Rail</strong> Steel<br />

measured, to follow the microstructural changes, peak pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> 2Θ scans were carried<br />

out. On the same equipment, cuts through the pole figure (Psi-scans) were measured for<br />

the steel 900A. 2Θ scans for the steel were made <strong>on</strong> a D8Advance from Bruker AXS, again<br />

using Cr-radiati<strong>on</strong>.<br />

B.3 Results <strong>and</strong> Discussi<strong>on</strong><br />

B.3.1 X-Ray investigati<strong>on</strong>s<br />

Figure B.2: Pole figures <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco-ir<strong>on</strong> (a) ɛeq = 1 (b) ɛeq = 4 (c) <strong>and</strong> (d) ɛeq = 8 (e) <strong>and</strong> (f) ɛeq = 32.<br />

The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the texture <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco-ir<strong>on</strong> <strong>and</strong> the rail steel 900A has been investigated<br />

by measuring pole figures <strong>and</strong> cuts through the pole figure. In the undeformed Armco-ir<strong>on</strong>,<br />

a fibre texture is present, the [100] directi<strong>on</strong> parallel to the rotati<strong>on</strong> axis for the following<br />

SPD-treatment. This texture is already destroyed after small strains. In Figure B.2a-f it can<br />

be seen that the maxima <str<strong>on</strong>g>of</str<strong>on</strong>g> the 〈200〉 peak are changing the positi<strong>on</strong>s during the deformati<strong>on</strong>,<br />

B–4


B.3 Results <strong>and</strong> Discussi<strong>on</strong><br />

after a strain <str<strong>on</strong>g>of</str<strong>on</strong>g> 8, the maxima lie perpendicular to the shear directi<strong>on</strong>, the main maximum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 〈110〉 peak is in the center, a small sec<strong>on</strong>d comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the texture is still visible. At<br />

even higher strains, the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the texture does not change significantly, it is just becoming<br />

sharper. The main comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the texture can thus be described as a (110)[001] texture.<br />

This is a typical shear texture for bcc metals. 7 From the measurements made for the steel<br />

900A, a similar behavior can be assumed when analyzing the Ψ-scans, depicted in Figure<br />

B.3.1. In the undeformed sample, <strong>on</strong>ly a weak texture is present. During deformati<strong>on</strong> two<br />

texture comp<strong>on</strong>ents became visible. At strains larger than ≈4 the main comp<strong>on</strong>ent is clearly<br />

dominant, the sec<strong>on</strong>d comp<strong>on</strong>ent is becoming weaker. This indicates that a (110)〈001〉 texture<br />

evolves in the ferrite <str<strong>on</strong>g>of</str<strong>on</strong>g> the steel. The 2Θ scans <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco-ir<strong>on</strong> (Figure B.3.1a) <strong>and</strong> the steel<br />

900A (Figure B.3.1b) are showing a significant peak broadening. The peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite<br />

in the steel begin to vanish <strong>and</strong> are no l<strong>on</strong>ger recognizable at higher strains. As described later<br />

this is no pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a beginning dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite as it has been reported by various<br />

authors, 8, 9 it is <strong>on</strong>ly an indicati<strong>on</strong> that such a dissoluti<strong>on</strong> may have started. The peaks were<br />

fitted with the Voigt functi<strong>on</strong>, a c<strong>on</strong>voluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Gaussian <strong>and</strong> a Lorentzian functi<strong>on</strong>, using a<br />

commercial fitting program. The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the integral breadths <str<strong>on</strong>g>of</str<strong>on</strong>g> broadened peak pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

is an easily applied single-line method to follow the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallite-size <strong>and</strong> strain, a<br />

well established procedure. 10, 11 In such a single line method it is assumed that the Cauchy<br />

or Lorentzian comp<strong>on</strong>ent is due to the crystallite size, the Gaussian comp<strong>on</strong>ent occurs from<br />

a strain e, which may be used as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong> density. 12, 13 The apparent domain<br />

size D is given by Eq. 2, the strain e can be calculated by Eq. 3.<br />

λ<br />

D =<br />

βL cos Θ<br />

e = βG<br />

4 tan Θ<br />

Figure B.3: psi-Scans <str<strong>on</strong>g>of</str<strong>on</strong>g> 900A.<br />

(B.2)<br />

(B.3)<br />

B–5<br />

B


B<br />

B Structural Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> Severely Plastic Deformed <strong>Rail</strong> Steel<br />

In these equati<strong>on</strong>s λ is the wavelength, βL <strong>and</strong> βG are the Lorentzian <strong>and</strong> Gaussian comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the integral breadth <strong>and</strong> Θ is the angular positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the peak. In this study, <strong>on</strong>ly<br />

qualitative informati<strong>on</strong> will be obtained, no absolute values <str<strong>on</strong>g>of</str<strong>on</strong>g> D <strong>and</strong> e are calculated from<br />

the values <str<strong>on</strong>g>of</str<strong>on</strong>g> βL <strong>and</strong> βG. In the pearlitic steel 900A there are also peaks from the cementite.<br />

Nevertheless the 〈110〉 peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite was fitted disregarding the cementite peaks, this can<br />

be justified by the fact that the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> these peaks is about 100 times smaller than the<br />

intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite peak (note that the y-axis in Figure 4b is logarithmic). Figures B.3.1a<br />

<strong>and</strong> b show a normalized plot <str<strong>on</strong>g>of</str<strong>on</strong>g> domain size D <strong>and</strong> strain e, calculated according to Eq. 2<br />

<strong>and</strong> Eq. 3. For Armco-ir<strong>on</strong>, a fast decrease in the domain size can be observed, until at higher<br />

strains a saturati<strong>on</strong> takes place. In the rail steel, the decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the domain size seems to be<br />

slower, from the present data it can not be c<strong>on</strong>cluded that the refinement is already finished at<br />

ɛeq = 16. In c<strong>on</strong>trast the strain e seems to increase more rapidly in the rail steel. A possible<br />

explanati<strong>on</strong> may be the c<strong>on</strong>current deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite <strong>and</strong> the ferrite matrix, leading<br />

to raised accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>s in the ferrite.<br />

The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure investigated with scanning electr<strong>on</strong> microscopy (SEM)<br />

<strong>and</strong> i<strong>on</strong> microscopy (IM) <strong>and</strong> the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strength is reported in Ref. [14].<br />

The rapid decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> structure size in Armco-ir<strong>on</strong> <strong>and</strong> the slower decrease in the rail steel<br />

900A as it could be followed from the x-ray investigati<strong>on</strong>s is also reflected in an increase in<br />

microhardness <strong>and</strong> a decrease in the structure size observed with SEM <strong>and</strong> IM.<br />

Figure B.4: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> domain size <strong>and</strong> strain as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq for (a) Armco-ir<strong>on</strong> (b) 900A.<br />

B.3.2 TEM-investigati<strong>on</strong>s<br />

TEM-micrographs at different strain levels were taken to study the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite. The arrows indicate the shear directi<strong>on</strong>. Figure 6a shows a TEM micrograph<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an undeformed sample. The lamellae are clearly visible, a sharp boundary between the<br />

ferrite <strong>and</strong> the cementite can be observed. The lamellae spacing is ≈300 nm. After a small<br />

deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 1 (Figure B.3.2b), there is <strong>on</strong>ly a small change in the microstructure,<br />

the lamellae are well defined, the spacing does not changed significantly <strong>and</strong> the selected area<br />

diffracti<strong>on</strong> pattern (SAD) show quite sharp diffracti<strong>on</strong> spots. At higher strains these sharp<br />

spots gradually transform into c<strong>on</strong>centric rings, displaying increasing missorientati<strong>on</strong>s even<br />

in very small volume elements. An alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae has occurred after a strain <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

B–6


Figure B.5: 2Θ scans <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) Armco-ir<strong>on</strong> <strong>and</strong> (b) 900A.<br />

B.3 Results <strong>and</strong> Discussi<strong>on</strong><br />

4, the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae are now parallel to the shear directi<strong>on</strong> (Figure B.3.2c). The<br />

distance between neighboring lamellae has significantly decreased, <strong>and</strong> the boarders are no<br />

l<strong>on</strong>ger sharp. The dark field image reveals that missorientati<strong>on</strong> is present in the cementite too.<br />

At higher strains the lamellae are heavily fragmented, the spacing has further decreased, no<br />

sharp boundaries are present. Small broken particles with lengths smaller than 100nm can be<br />

observed. The change in the c<strong>on</strong>trast <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite <strong>and</strong> the diffuse boundaries could be<br />

explained by a beginning dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae.<br />

However, a complete dissoluti<strong>on</strong> could not be verified, probably the deformati<strong>on</strong> is still<br />

to low. In principle, the observed changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure are in good agreement with<br />

previous scanning electr<strong>on</strong> <strong>and</strong> i<strong>on</strong> microscope investigati<strong>on</strong>s 14 <str<strong>on</strong>g>of</str<strong>on</strong>g> the same material. The<br />

alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae, the decrease in lamellae spacing <strong>and</strong> the fragmentati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae is c<strong>on</strong>firmed by the TEM-investigati<strong>on</strong>s.<br />

B–7<br />

B


B<br />

B Structural Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> Severely Plastic Deformed <strong>Rail</strong> Steel<br />

B–8<br />

Figure B.6: TEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> 900A (a) bright field image, ɛeq = 0, (b) dark field image <strong>and</strong> SAD-pattern, ɛeq = 1,<br />

(c) bright field image, dark field image <strong>and</strong> SAD-pattern, ɛeq = 2 (d) bright field image <strong>and</strong> SAD-pattern, ɛeq = 4,<br />

(e)bright field image <strong>and</strong> SAD pattern, ɛeq = 8, (f) dark field image <str<strong>on</strong>g>of</str<strong>on</strong>g> (e).


B.4 C<strong>on</strong>clusi<strong>on</strong><br />

B.4 C<strong>on</strong>clusi<strong>on</strong><br />

• The texture analysis during severe plastic deformati<strong>on</strong> by HPT in Armco-ir<strong>on</strong> <strong>and</strong> the<br />

pearlitic rail steel 900A indicates that in both cases a (110)[001] texture develops.<br />

• The 2Θ scans <str<strong>on</strong>g>of</str<strong>on</strong>g> the steel 900A reveals a disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite peaks at higher<br />

strains, indicating (at least) a start <str<strong>on</strong>g>of</str<strong>on</strong>g> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite<br />

• Peak pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile analysis dem<strong>on</strong>strates the decreasing structure size <strong>and</strong> an increase in strain<br />

(or dislocati<strong>on</strong> density) in both materials, the behavior is in good agreement with previous<br />

scanning electr<strong>on</strong> microscope investigati<strong>on</strong>s.<br />

• The TEM investigati<strong>on</strong>s c<strong>on</strong>firmed the increasing missorientati<strong>on</strong> even in very small<br />

volume elements, the fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae <strong>and</strong> the alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the fragments<br />

parallel to the shear plane with acceding deformati<strong>on</strong>. The diffuse cementite/ferrite<br />

boundaries at higher strains are a further indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a beginning dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cementite.<br />

B–9<br />

B


B<br />

B–10


Bibliography to paper B<br />

[1] G. Baumann, K. Knothe, <strong>and</strong> H. J. Fecht. Nanostructured Materials, 9:951–954, 1997.<br />

[2] W. Oesterle, H. Rooch, A. Pyzalla, <strong>and</strong> L. Wang. Mater. Sci. Eng.A, 303:150–157, 2001.<br />

[3] L. Wang, A. Pyzalla, W. Stadlbauer, <strong>and</strong> E. A. Werner. Mater. Sci. Eng.A, 359:31–43,<br />

2003.<br />

[4] H. Jiang, Y. T. Zhu, D. P. Butt, I. V. Alex<strong>and</strong>rov, <strong>and</strong> T. C. Lowe. Mater. Sci. Eng.A,<br />

303:128–138, 2000.<br />

[5] A. P. Zhilyaev, G. V. Nurislomova, B. G. Kim, M. D. Baro, J. A. Szpunar, <strong>and</strong> T. G.<br />

Langd<strong>on</strong>. Acta Mater., 51:753–765, 2003.<br />

[6] R. Z. Valiev, R. K. Islamgaliev, <strong>and</strong> I.V. Alex<strong>and</strong>rov. Prog. Mat. Sci., 45:103–189, 2000.<br />

[7] M. Hölscher, D. Raabe, <strong>and</strong> K. Lücke. Acta metall. mater., 42:879–886, 1994.<br />

[8] V.A. Shabashov, L.G. Korshunov, A. G. Mukoseev, V.V. Sagaradze, A.V. Makarov, V.P.<br />

Pilyugin, S.I. Novikov, <strong>and</strong> N.F. Vildanova. Mater. Sci. Eng.A, 346:196–207, 2003.<br />

[9] Yu. V. Ivanisenko, R.Z. Valiev, W. Lojkowski, A. Grob, <strong>and</strong> H.-J. Fecht. In Ultrafine<br />

Grained Materials II, pages 47–54. Warrendale (USA), 2000.<br />

[10] S. Vives, E. Gaffet, <strong>and</strong> C. Meunier. Mater. Sci. Eng. A, 2003, in press.<br />

[11] I.V. Alex<strong>and</strong>rov, K. Zhang, A.R. Kilmametov, K.Lu, <strong>and</strong> R.Z. Valiev. Mater. Sci. Eng.A,<br />

234-236:331–334, 1997.<br />

[12] Th.H. De Keijser, J.I. Langford, E.J. Mittermeijer, <strong>and</strong> A.B.P. Vogels. J. Appl. Cryst.,<br />

15:308–314, 1982.<br />

[13] D. Louer. In Advances in X-Ray Analysis Vol. 37, volume 1994, pages 27–35. Plenum<br />

Press, New York, 1994.<br />

[14] F. Wetscher, A. Vorhauer, R. Stock, <strong>and</strong> R. Pippan. Mater. Sci. Eng. A, 387-389:809–816,<br />

2004.<br />

B–11<br />

B


B<br />

B–12


C<br />

Strain Hardening during High Pressure<br />

Torsi<strong>on</strong> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

F. Wetscher 1,2 , , A. Vorhauer 1,2 <strong>and</strong> R. Pippan 1,2<br />

1 Erich Schmid Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Material Sciences, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Jahnstraße 12,<br />

A-8700 Leoben, Austria<br />

2 Christian Doppler Laboratory for Local Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> Fracture, Jahnstraße<br />

12, A-8700 Leoben, Austria<br />

Abstract<br />

Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> (SPD) has been applied to Armco-Ir<strong>on</strong> <strong>and</strong> Copper by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

High Pressure Torsi<strong>on</strong> (HPT). The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear stress during deformati<strong>on</strong> was measured<br />

under different hydrostatic pressures. By applying a simple model for a strain hardening<br />

the shear stress - shear strain curves are fitted <strong>and</strong> the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrostatic pressure is<br />

studied. These results are compared to microhardness measurements, tensile strength <strong>and</strong> the<br />

microstructural evoluti<strong>on</strong>.<br />

C–1<br />

C


C<br />

C–2


C.1 Introducti<strong>on</strong><br />

C.1 Introducti<strong>on</strong><br />

Recent investigati<strong>on</strong>s 1–3 have shown for various materials deformed by different severe plastic<br />

deformati<strong>on</strong> (SPD) methods like high pressure torsi<strong>on</strong> (HPT) or equal channel angular pressing<br />

(ECAP) a saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both the microstructural refinement <strong>and</strong> the yield strength. The<br />

questi<strong>on</strong> always arises, are these changes already present during the deformati<strong>on</strong> or are they<br />

the result <str<strong>on</strong>g>of</str<strong>on</strong>g> post-deformati<strong>on</strong> recovery or recrystallisati<strong>on</strong>. If there are no changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

developed microstructure after the deformati<strong>on</strong>, then in-situ measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow stress<br />

during the deformati<strong>on</strong> should reflect the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the results from mechanical tests<br />

after the deformati<strong>on</strong>. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is to compare the mechanical behaviour during<br />

<strong>and</strong> after the deformati<strong>on</strong> by HPT. The in-situ measurement permits, furthermore, to estimate<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrostatic pressure <strong>on</strong> the flow stress during HPT.<br />

C.2 Experimental<br />

C.2.1 Test equipment<br />

Figure C.1 shows a sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> our tool. The sample lies inside the cavity, in the gab between the<br />

two anvils a burr is formed during the compressive loading. The torque is measured directly<br />

above the sample <strong>on</strong> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the anvils by means <str<strong>on</strong>g>of</str<strong>on</strong>g> strain gauges. This measured torque M<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque necessary to deform the sample Md plus a torque arising in the area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the burr Mb.<br />

C.2.2 Samples<br />

To investigate the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrostatic pressure <strong>on</strong> flow stress <str<strong>on</strong>g>of</str<strong>on</strong>g> severely plastic deformed<br />

samples during <strong>and</strong> after deformati<strong>on</strong>, Armco ir<strong>on</strong> <strong>and</strong> pure copper have been deformed<br />

by HPT at different hydrostatic pressures at room temperature <strong>and</strong> the torque versus<br />

angle <str<strong>on</strong>g>of</str<strong>on</strong>g> twist have been measured in-situ. The hydrostatic pressure was varied between 800<br />

MPa <strong>and</strong> 7 GPa for copper <strong>and</strong> between 1.6GPa <strong>and</strong> 7 GPa for Armco ir<strong>on</strong>. The shear strain<br />

for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> turns n can be calculated by<br />

γ(r) = 2πrn<br />

t<br />

(C.1)<br />

The samples for HPT had a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 mm <strong>and</strong> a thickness t <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 mm, the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

turns per minute was 0.2. Samples were deformed to strains γ <str<strong>on</strong>g>of</str<strong>on</strong>g> 60, 120 <strong>and</strong> 180 in the case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Armco ir<strong>on</strong> <strong>and</strong> to 220 in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper at a radius r <str<strong>on</strong>g>of</str<strong>on</strong>g> 2mm.<br />

From each <str<strong>on</strong>g>of</str<strong>on</strong>g> these samples, two sub-sized tensile test specimens were produced. The<br />

l<strong>on</strong>gitudinal axis <str<strong>on</strong>g>of</str<strong>on</strong>g> the tensile specimens was situated at a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 mm <str<strong>on</strong>g>of</str<strong>on</strong>g> the HPT sample.<br />

These specimens for tensile tests had a cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.4x0.75 mm <strong>and</strong> a gauge length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2.5 mm. The tensile tests were performed at c<strong>on</strong>stant speed <str<strong>on</strong>g>of</str<strong>on</strong>g> cross head <strong>on</strong> a commercially<br />

available testing device for small specimens at an initial strain rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 -3 s -1 . In additi<strong>on</strong><br />

microhardness measurements <strong>on</strong> all tensile specimens were performed; at least five indents per<br />

sample were made. The microstructure was investigated with a scanning electr<strong>on</strong> microscope<br />

C–3<br />

C


C<br />

C Strain Hardening during High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Figure C.1: Design <str<strong>on</strong>g>of</str<strong>on</strong>g> the HPT tool.<br />

(SEM) LEO 1525 using backscattered electr<strong>on</strong>s. Special care was taken that the samples were<br />

not exposed to elevated temperatures during the machining <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples for tensile tests <strong>and</strong><br />

microscopical analyses to prevent recrystallisati<strong>on</strong>.<br />

C.2.3 Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque curves<br />

To recalculate the stress-strain curves from the measured torque versus angle <str<strong>on</strong>g>of</str<strong>on</strong>g> twist, a simple<br />

model for strain hardening (Equati<strong>on</strong> C.2) as applied in 3, 4 is used.<br />

τ(γ) = τS − (τS − τ0)e −Aγ<br />

(C.2)<br />

In this equati<strong>on</strong> τS is the shear stress in the saturati<strong>on</strong> area, τ0 is the shear stress for γ = 0<br />

<strong>and</strong> A is a c<strong>on</strong>stant describing the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the curve. Such a relati<strong>on</strong> can not describe the<br />

detailed hardening behaviour at relatively small strains, however at large strains it is a useful<br />

approximati<strong>on</strong>. The torque Md for the torsinal deformati<strong>on</strong>5 can be generally written as<br />

<br />

Md =<br />

2πτ(r)r 2 dr (C.3)<br />

Using Equati<strong>on</strong> C.1 <strong>and</strong> Equati<strong>on</strong> C.2, the resulting equati<strong>on</strong> for the torque is given by<br />

<br />

Md =<br />

<br />

2π τS − (τS − τ0)e −Aγ<br />

r 2 dr (C.4)<br />

C–4


C.3 Results<br />

With this equati<strong>on</strong> it is possible to fit the measured torque curves <strong>and</strong> obtain the values for<br />

A, τ0 <strong>and</strong> the most important value for this study τS.<br />

C.3 Results<br />

C.3.1 Torque versus number <str<strong>on</strong>g>of</str<strong>on</strong>g> turns<br />

In Figure C.2a <strong>and</strong> b, the measured torque versus angle <str<strong>on</strong>g>of</str<strong>on</strong>g> twist for copper <strong>and</strong> for Armco-ir<strong>on</strong><br />

for different hydrostatic pressures are shown. In additi<strong>on</strong> the fitted curves are indicated. At the<br />

beginning a pr<strong>on</strong>ounced strain hardening is clearly visible, after a certain number <str<strong>on</strong>g>of</str<strong>on</strong>g> turns a<br />

saturati<strong>on</strong> takes place, somewhat earlier in ir<strong>on</strong> than in copper. The necessary torque to deform<br />

the sample increases with pressure. However, it has to be noted that these curves c<strong>on</strong>tain the<br />

torque for the deformati<strong>on</strong> plus a c<strong>on</strong>tributi<strong>on</strong> from the burr.<br />

Figure C.2: Measured torque versus number <str<strong>on</strong>g>of</str<strong>on</strong>g> turns curves <strong>and</strong> the fitted curves for (a) copper (b) Armco ir<strong>on</strong>.<br />

C–5<br />

C


C<br />

C Strain Hardening during High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

C.3.2 Tensile tests <strong>and</strong> microhardness measurements<br />

Figure C.3 shows the measured tensile tests for copper <strong>and</strong> Armco ir<strong>on</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

hydrostatic pressure for the samples deformed to γ = 220 in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>and</strong> between<br />

γ = 60 <strong>and</strong> γ = 180 in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco ir<strong>on</strong>. For both Armco-ir<strong>on</strong> <strong>and</strong> copper it can<br />

be seen that there is even if <strong>on</strong>ly a very small effect <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure <strong>on</strong> the tensile strength when<br />

the samples were deformed to the saturati<strong>on</strong> regime. The results from the tensile tests are in<br />

good agreement with recently published results 6, 7 when <strong>on</strong>e takes into account that in these<br />

papers the deformati<strong>on</strong> was not high enough to reach a steady state <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strength.<br />

Additi<strong>on</strong>al microhardness tests also revealed no significant deviati<strong>on</strong>s in the microhardness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the samples deformed at different pressures.<br />

Figure C.3: Results <str<strong>on</strong>g>of</str<strong>on</strong>g> the tensile test for copper <strong>and</strong> Armco ir<strong>on</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrostatic pressure.<br />

C.3.3 Microstructure<br />

The micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples were taken in radial directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the HPT sample at a radius<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 3 mm. The shear plane is parallel to the baseline in all micrographs. It seems to be that<br />

the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements is somewhat smaller at higher pressures, however the effect<br />

is even if very small (Figure C.4). The micrographs show that the structural elements are<br />

el<strong>on</strong>gated. The l<strong>on</strong>gitudinal axis forms an angle with the vertical that is clearly smaller than<br />

the corresp<strong>on</strong>ding shear angle.<br />

C.4 Discussi<strong>on</strong><br />

The results from the in-situ measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque curves, tensile tests, microhardness<br />

measurements <strong>and</strong> SEM micrographs have clearly shown that for both materials saturati<strong>on</strong> in<br />

structural size <strong>and</strong> strength takes place when they are deformed by high pressure torsi<strong>on</strong> up to<br />

very high strains. This saturati<strong>on</strong> <strong>and</strong> the resulting microstructure can be explained by a steady<br />

state deformati<strong>on</strong>, where new structural elements are c<strong>on</strong>tinuously formed (for more details<br />

see 1 ), the current results <strong>and</strong> the micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure are supporting this.<br />

C–6


C.4 Discussi<strong>on</strong><br />

Figure C.4: SEM micrographs (a) copper, γ = 220 hydrostatic pressure 0.95 MPa, (b) copper, γ = 220 hydrostatic<br />

pressure 7500 MPa, (c) Armco ir<strong>on</strong>, γ = 180, hydrostatic pressure 1.9 GPa, (d) Armco ir<strong>on</strong>, γ = 180<br />

hydrostatic pressure 7.5 GPa.<br />

A surprising result is that there is almost no dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strength <strong>on</strong> the<br />

hydrostatic pressure in the investigated range when <strong>on</strong>ly the values obtained after the deformati<strong>on</strong><br />

are c<strong>on</strong>sidered. In c<strong>on</strong>tradicti<strong>on</strong> to this, the in-situ measured torque curves apparently<br />

show such differences that are not present in the other experiments although these differences<br />

are not as large as <strong>on</strong>e might expect. 8 An explanati<strong>on</strong> for this could be that, as menti<strong>on</strong>ed<br />

before, the measured curves do not <strong>on</strong>ly c<strong>on</strong>tain the torque necessary to plastically deform<br />

the material but also a c<strong>on</strong>tributi<strong>on</strong> from the burr. This c<strong>on</strong>tributi<strong>on</strong> str<strong>on</strong>gly depends <strong>on</strong> the<br />

design <str<strong>on</strong>g>of</str<strong>on</strong>g> the used HPT tool. We always make great efforts to ensure that the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

sample lying inside the cavity is deformed by simple torsi<strong>on</strong>, so Equati<strong>on</strong> C.4 will describe<br />

the fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque for the plastic deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this part. For the present analyses<br />

we assume that slip between <strong>on</strong>e side <str<strong>on</strong>g>of</str<strong>on</strong>g> the burr <strong>and</strong> the anvil takes place. In this case the<br />

torque due to the burr Mb will be proporti<strong>on</strong>al to the hydrostatic pressure <strong>and</strong> the coefficient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fricti<strong>on</strong> µ. Recent results from finite element calculati<strong>on</strong>s 9 make it reas<strong>on</strong>able to assume<br />

C–7<br />

C


C<br />

C Strain Hardening during High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Armco ir<strong>on</strong> copper<br />

Hydrostatic Pressure [MPa] 1900 3800 7500 1900 3800 5700<br />

τS [MPa] 1100 1277 1519 431 497 527<br />

τS (corrected) [MPa] µ = 0.05 1069 1232 1405 405 448 455<br />

τS (corrected) [MPa] µ = 0.15 1018 1107 1217 353 350 311<br />

Table C.1: Summarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculated values for τS for different hydrostatic pressures<br />

for our tool a linear decrease from eighty per cent <str<strong>on</strong>g>of</str<strong>on</strong>g> the nominal hydrostatic pressure at the<br />

inner edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the burr to the flow stress <str<strong>on</strong>g>of</str<strong>on</strong>g> the undeformed material at the outer edge. This<br />

torque due to fricti<strong>on</strong> can then be subtracted from the measured torque curves <strong>and</strong> the resulting<br />

curve can be fitted again using Equati<strong>on</strong> C.4. In Table C.1 calculated τs are shown where<br />

the coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> fricti<strong>on</strong> was 0.05 <strong>and</strong> 0.15, respectively. It can bee seen that the differences<br />

between the shear stresses for different hydrostatic pressures are reduced more. The estimated<br />

shear stress depends str<strong>on</strong>gly <strong>on</strong> the values for the fricti<strong>on</strong> coefficient. Therefore it is very<br />

difficult to obtain absolute values for the shear stress during the HPT deformati<strong>on</strong>. However,<br />

these estimati<strong>on</strong>s show that the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure is much smaller than <strong>on</strong>e would expect from<br />

the torque measurements.<br />

Nevertheless, the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque can be very useful to study changes in the<br />

mechanical strength <strong>and</strong> to find the necessary amount <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> to reach the steady state.<br />

The ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear stresses in the steady state for copper <strong>and</strong> ir<strong>on</strong> are similar as the ratios<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the ultimate tensile strengths. Hence it is possible to compare the hardening behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different materials when the experimental setup is the same. For example the present results<br />

indicate that the steady state <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow stress is reached at significantly smaller strains in the<br />

fcc copper than in the bcc Armco ir<strong>on</strong>.<br />

C.5 C<strong>on</strong>clusi<strong>on</strong><br />

C–8<br />

• Depending <strong>on</strong> the material, saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strain hardening <strong>and</strong> grain refinement takes<br />

place at γ <str<strong>on</strong>g>of</str<strong>on</strong>g> about 40 <strong>and</strong> 20 for Armco ir<strong>on</strong> <strong>and</strong> copper, respectively.<br />

• Only a very small influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrostatic pressure <strong>on</strong> the resulting microstructure<br />

<strong>and</strong> the tensile strength <strong>on</strong> Armco-ir<strong>on</strong> <strong>and</strong> copper samples deformed by high pressure<br />

torsi<strong>on</strong> could be observed.


Bibliography to paper C<br />

[1] T. Hebesberger, H. P. Stuewe, A. Vorhauer, F. Wetscher, <strong>and</strong> R. Pippan. Acta Mater.,<br />

53:393–402, 2005.<br />

[2] F. Wetscher, A. Vorhauer, R. Stock, <strong>and</strong> R. Pippan. Mater. Sci. Eng. A, 387-389:809–816,<br />

2004.<br />

[3] N. Q. Chinh, G. Horvath, Z. Horita, <strong>and</strong> T. G. Langd<strong>on</strong>. Acta mater., 52:3555–3563, 2004.<br />

[4] A. Vorhauer <strong>and</strong> R. Pippan. Scripta Mater., 51:921–925, 2004.<br />

[5] H. P. Stuewe <strong>and</strong> H. Turk. Zeitschrift f. Metallkunde, 55:699–703, 1964.<br />

[6] M. Sus-Ryszkowska, T. Wejrzanowski, Z. Pakiela, <strong>and</strong> K. J. Kurzydlowski. Mater. Sci.<br />

Eng.A, 369:151–156, 2004.<br />

[7] B.Q. Han, E.J. Lavernia, <strong>and</strong> F.A.Mohamed. Met. Trans., 35A:1343–1350, 2004.<br />

[8] M. J. Zehetbauer, J. Kohout, E. Schafler, F. Sachslehner, <strong>and</strong> A. Dubravina. J. Alloys <strong>and</strong><br />

Compounds, 378:329–334, 2004.<br />

[9] W. Ecker. Master’s thesis, Leoben, 2004.<br />

C–9<br />

C


C<br />

C–10


D<br />

Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface layers: the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the strain path<br />

F. Wetscher 1,2 , R. Stock 3 <strong>and</strong> R. Pippan 1,2<br />

1 Erich Schmid Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Material Sciences, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Jahnstraße 12,<br />

A-8700 Leoben, Austria<br />

2 Christian Doppler Laboratory for Local Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> Fracture, Jahnstraße<br />

12, A-8700 Leoben, Austria<br />

3 voestAlpine Schienen GmbH, Leoben, Austria<br />

Abstract<br />

To simulate the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavily deformed layers <strong>on</strong> rails in service, High Pressure Torsi<strong>on</strong><br />

experiments as well as simple surface deformati<strong>on</strong> experiments with the pearlitic rail steel<br />

900A have been performed. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure was investigated, with close<br />

attenti<strong>on</strong> to the differences between a m<strong>on</strong>ot<strong>on</strong>ic <strong>and</strong> a cyclic deformati<strong>on</strong> path. It turned out<br />

that the resulting microstructure is markedly affected by the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> plastic deformati<strong>on</strong> per<br />

cycle. The higher this value is, the more similar are the resulting microstructure compared to<br />

the m<strong>on</strong>ot<strong>on</strong>ic deformed samples. In experiments, where <strong>on</strong>ly the surface was deformed, the<br />

microstructure showed the same features as in the HPT-deformed samples, thus c<strong>on</strong>firming<br />

the assumpti<strong>on</strong> that High Pressure Torsi<strong>on</strong> is capable to simulate the processes during the surface<br />

deformati<strong>on</strong> due to overrun <str<strong>on</strong>g>of</str<strong>on</strong>g> the rail tracks by trains. The microhardness measurements<br />

showed clear differences between the m<strong>on</strong>ot<strong>on</strong>ic <strong>and</strong> cyclic deformed samples, indicating that<br />

a m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong> promotes higher dislocati<strong>on</strong> densities <strong>and</strong> gives rise to the assumpti<strong>on</strong><br />

that dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite is taking place.<br />

D–1<br />

D


D<br />

D–2


D.1 Introducti<strong>on</strong><br />

D.1 Introducti<strong>on</strong><br />

The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nanostructured layers due to fricti<strong>on</strong> <strong>and</strong> shear deformati<strong>on</strong> is a well known<br />

phenomen<strong>on</strong>. It can be observed in as different areas as machining like turning <strong>and</strong> grinding,<br />

1–4 sliding 5, 6 <strong>and</strong> abrasi<strong>on</strong>. 7, 8 Another industrial very important area is the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rails. During service <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rails such a nanostructured deformati<strong>on</strong><br />

layer evolves, which is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> all phenomena like headcecks, ratcheting, formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

white-etching layers <strong>and</strong> wear. 9–13 Due to an increasing exposure in respect to both load <strong>and</strong><br />

frequency the dem<strong>and</strong>s <strong>on</strong> the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> rails steels are very high <strong>and</strong> the need for an improved<br />

knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the resulting changes in the microstructure <strong>and</strong> the mechanical properties<br />

at the surface arises.<br />

D.2 Experimental<br />

To simulate the shear deformati<strong>on</strong> <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rail steels, the methods <str<strong>on</strong>g>of</str<strong>on</strong>g> severe plastic<br />

deformati<strong>on</strong> (SPD) are very suitable. Normally, these methods are used to produced nanoscale<br />

grained materials which unique mechanical properties, 14–18 but they are also suitable to investigate<br />

processes where both high hydrostatic pressures <strong>and</strong> high shear deformati<strong>on</strong>s are<br />

combined. For this study, high pressure torsi<strong>on</strong> (HPT) has been used to deform the rail steel<br />

UIC 900A, the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this steel <strong>and</strong> mechanical properties are given in Table D.1.<br />

A high pressure torsi<strong>on</strong> tool c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two anvils with a coin-shaped cavity for the sample,<br />

see Figure D.1. While applying a pressure to supply enough fricti<strong>on</strong>, <strong>on</strong>e anvil is turned with<br />

respect to the other. Due to fricti<strong>on</strong> the sample is deformed by almost pure shear.<br />

The equivalent v<strong>on</strong> Mises strain is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the radius r, <str<strong>on</strong>g>of</str<strong>on</strong>g> the thickness t <strong>and</strong> the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> turns n according to Equati<strong>on</strong> D.1.<br />

ɛeq = 2πrn<br />

t √ 3<br />

(D.1)<br />

In this investigati<strong>on</strong>, the sample had a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 mm <strong>and</strong> a initial thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 mm.<br />

The applied hydrostatic pressure was about 6.5GPa. With the method <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT samples where<br />

prepared with a m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong> <strong>and</strong> a cyclic deformati<strong>on</strong> representing a change in<br />

the strain path. Samples with a m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong> were prepared up to deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ɛeq = 32 at a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 mm, for the samples with cyclic deformati<strong>on</strong>, v<strong>on</strong> Mises strains<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ɛeq = 0.25; 0.5; 1 <strong>and</strong> 2 per cycle at a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> 3mm <strong>and</strong> a total deformati<strong>on</strong>s up to<br />

ɛeq = 64 were realised.<br />

The third type <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> experiment c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> two samples <str<strong>on</strong>g>of</str<strong>on</strong>g> the same material<br />

pressed together <strong>and</strong> <strong>on</strong>e was turned with respect to the other. This induced a deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the surface layer, which was investigated for comparis<strong>on</strong> with homogeneous deformed samples.<br />

The diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample that was shaped like a frustum <str<strong>on</strong>g>of</str<strong>on</strong>g> pyramid was 2 mm, the<br />

C Si Mn P S R m A5 HB<br />

0,76 0,35 1,0 0,017 0,04 900 10 260<br />

Table D.1: Compositi<strong>on</strong> <strong>and</strong> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> rail steel 900A<br />

D–3<br />

D


D<br />

D Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface layers: the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path<br />

Figure D.1: Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> High Pressure Torsi<strong>on</strong><br />

c<strong>on</strong>tact pressure was 1 GPa <strong>and</strong> the samples were turned 10 times <strong>and</strong> 20 times around the axis.<br />

The changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure was characterised by scanning electr<strong>on</strong> microscopy (SEM)<br />

using a sec<strong>on</strong>dary electr<strong>on</strong> detector (SE) <strong>and</strong> a backscatter electr<strong>on</strong> detector (BSE) depicting<br />

the microstructure in different directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples as indicated in D.2. Microhardness<br />

measurements were performed to follow the changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical properties.<br />

D–4<br />

Figure D.2: Sample preparati<strong>on</strong> for microscopy


D.3 Results<br />

D.3.1 M<strong>on</strong>ot<strong>on</strong>ic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

D.3 Results<br />

From the SEM-micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>ot<strong>on</strong>ic deformed samples taken with the SE-detector<br />

(Figure D.3) it can be seen that at low shear strain a severe deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the normally brittle<br />

lamellae takes place leading to heavily bended lamellae, sometimes the lamellae are broken.<br />

Lamellae originally oriented roughly parallel to the shear plane try to align in this directi<strong>on</strong>.<br />

At higher strains all the lamellae <strong>and</strong> respectively fragments <str<strong>on</strong>g>of</str<strong>on</strong>g> lamellae are orientated parallel<br />

to the shear plane, this can be seen both in radial <strong>and</strong> tangential directi<strong>on</strong>. The pearlite<br />

col<strong>on</strong>ies are no l<strong>on</strong>ger recognizable. When the strain gets even higher, <strong>on</strong> the etched samples<br />

the lamellae are hardly recognizable; it seems that dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite has started. The<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> the fragments is in both depicted directi<strong>on</strong>s smaller than 1 µm, the distance between<br />

the lamellae respectively this fragments is decreasing from approximately 300nm in the undeformed<br />

state to a mean value <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 100nm. The images taken with the BSE-detector revealed<br />

that the size <str<strong>on</strong>g>of</str<strong>on</strong>g> ferrite’s structural elements with the same orientati<strong>on</strong> decreases quickly,<br />

at higher shear strains the lamellae spacing is an upper bound.<br />

D.3.2 Cyclic deformati<strong>on</strong><br />

The SEM-images <str<strong>on</strong>g>of</str<strong>on</strong>g> the cyclically deformed samples reveal that the deformati<strong>on</strong> per cycle<br />

has a distinct effect <strong>on</strong> the resulting microstructure. Figure D.4 shows the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

microstructure after a deformati<strong>on</strong> by cyclic HPT with a strain amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ɛeq = 0.5 per<br />

cycle. It can be seen that even at total deformati<strong>on</strong> as high as ɛeq = 16 or even ɛeq = 32 the<br />

original cementite col<strong>on</strong>ies are still recognizable. In this case <str<strong>on</strong>g>of</str<strong>on</strong>g> quite low amplitudes it seems<br />

that the main feature <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> is the fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae <strong>and</strong> it needs much<br />

higher strains to achieve these changes at all cyclic experiments compared to a m<strong>on</strong>ot<strong>on</strong>ic<br />

deformati<strong>on</strong>. Figure D.4d shows the microstructure after a deformati<strong>on</strong> up to ɛeq = 64 (0.5<br />

per cycle). It can be seen that now all the lamellae are broken to pieces smaller than 1 µm,<br />

<strong>and</strong> again the distance between these pieces has been reduced compared to the undeformed<br />

microstructure. All these pieces are more or less oriented parallel to the shear plane, just as<br />

in Figure D.3d. Nevertheless, the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> this cyclic deformed sample is different<br />

from the m<strong>on</strong>ot<strong>on</strong>ic deformed <strong>on</strong>e. The change in the lamellae spacing is not as pr<strong>on</strong>ounced<br />

as in the m<strong>on</strong>ot<strong>on</strong>ic deformed samples <strong>and</strong> there is no indicati<strong>on</strong> that the etching behaviour<br />

has changed <strong>and</strong> therefore it cannot be assumed that the carb<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbide has g<strong>on</strong>e in<br />

soluti<strong>on</strong>. When the strain per cycle becomes larger, the changes in the microstructure are<br />

similar to those in the m<strong>on</strong>ot<strong>on</strong>ic deformed samples. In Figure D.5 <strong>on</strong>e can see that after a<br />

total deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 8 all <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae are heavily bend <strong>and</strong> fanfold. But it is still<br />

possible to distinguish areas that bel<strong>on</strong>ged to the same cementite col<strong>on</strong>y. In some places the<br />

lamellae distance has been markedly decreased. At higher total deformati<strong>on</strong>s at first there<br />

are no more obvious changes; in some areas a wavy structure can be observed. From these<br />

SEM-images it cannot be definitely seen that the lamellae are heavily fragmented. Again,<br />

after a deformati<strong>on</strong> to ɛeq = 64, almost all lamellae are parallel to the shear plane, in this<br />

case with some steps, probably resulting from the change in the strain path. If Figure D.5d is<br />

compared to 4d (same total deformati<strong>on</strong>, but different deformati<strong>on</strong> per cycle) it can be seen<br />

D–5<br />

D


D<br />

D Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface layers: the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path<br />

Figure D.3: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> 900A deformed by m<strong>on</strong>ot<strong>on</strong>ic HPT (a) ɛeq = 1, tangential (b) ɛeq = 2,<br />

tangential (c) ɛeq = 8, radial (d) ɛeq = 32, tangential<br />

that in this case the etching behaviour has changed like in the m<strong>on</strong>ot<strong>on</strong>ic deformed sample,<br />

but higher total deformati<strong>on</strong>s were needed. Figure D.6 shows SEM-images taken with the<br />

BSE-detector (reproducing mainly orientati<strong>on</strong> differences <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite) <str<strong>on</strong>g>of</str<strong>on</strong>g> samples with the<br />

same total deformati<strong>on</strong> but a different strain per cycle. In these images two things can be<br />

seen. First, the decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae spacing is larger <strong>and</strong> quicker in the samples with a<br />

higher ∆ɛ per cycle, <strong>and</strong> sec<strong>on</strong>d, the size <str<strong>on</strong>g>of</str<strong>on</strong>g> structural elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite is limited by this<br />

distance between the lamellae. The size <str<strong>on</strong>g>of</str<strong>on</strong>g> these structural elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite decreases<br />

quickly at early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> <strong>and</strong> is reduced then further slowly simultaneously with<br />

the lamellae spacing.<br />

D.3.3 <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a surface due to fricti<strong>on</strong><br />

The micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> this experiments (Figure D.7) show all the features <str<strong>on</strong>g>of</str<strong>on</strong>g> the HPT deformed<br />

samples: a severely deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae, fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lamellae, an alignment<br />

D–6


D.3 Results<br />

Figure D.4: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> 900A deformed by cyclic HPT with a strain amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ɛeq = 0.5, all<br />

images are in radial directi<strong>on</strong> (a) ɛeq = 8; (b) ɛeq = 16; (c) ɛeq = 32; (d) ɛeq = 64<br />

parallel to the shear plane <strong>and</strong> even a change in the etching behaviour close to the surface can<br />

be observed (Figure D.7b-d). Of course, the deformati<strong>on</strong> is not uniform <strong>and</strong> there is a gradient<br />

not <strong>on</strong>ly from the centre <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong> to the border but also from the surface to the bulk material<br />

(Figure D.7a). In this case, it is not possible to define a certain strain. In some cases, cracks<br />

were observed at the surface.<br />

D.3.4 Microhardness measurements<br />

Figure D.8a shows an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the microhardness measurements. It can be<br />

seen that for the m<strong>on</strong>ot<strong>on</strong>ic deformed sample the microhardness almost triples after a deformati<strong>on</strong><br />

up to ɛeq = 32, while the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the cyclically deformed samples is much less<br />

pr<strong>on</strong>ounced. Only the sample with ∆ɛeq = 2 deformed up to ɛeq = 64 had similar hardness<br />

like the highest m<strong>on</strong>ot<strong>on</strong>ic sample. The lower the plastic deformati<strong>on</strong> per cycle was, the lower<br />

is the increase in microhardness at the same strain level. In Figure D.8b the microhardness<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample in Figure D.7a is shown. As expected the hardness is highest <strong>on</strong> the most<br />

D–7<br />

D


D<br />

D Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface layers: the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path<br />

Figure D.5: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> 900A deformed by cyclic HPT with a strain amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ɛeq = 2, all images<br />

are in radial directi<strong>on</strong> (a) ɛeq = 8; (b) ɛeq = 16; (c) ɛeq = 32; (d) ɛeq = 64<br />

severe deformed surface <strong>and</strong> decreases to the hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> the undeformed bulk material.<br />

D.4 Discussi<strong>on</strong><br />

D.4.1 Microstructure<br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> this pearlitic rail steel deformed by High Pressure<br />

Torsi<strong>on</strong> has been described previously. 19, 20 The results are very similar to the results <str<strong>on</strong>g>of</str<strong>on</strong>g> cold<br />

drawn wires both in respect to the microstructure <strong>and</strong> to microhardness. 21–23 Some <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

papers also show by means <str<strong>on</strong>g>of</str<strong>on</strong>g> tomographic atom probe or Mössbauer spectroscopy that at<br />

least a partly dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite has occurred. The most comm<strong>on</strong> explanati<strong>on</strong> for<br />

this dissoluti<strong>on</strong> is that dislocati<strong>on</strong>s crossing the carbide drag carb<strong>on</strong> atoms out <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae<br />

due to a higher binding energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong> to the dislocati<strong>on</strong> compared to the binding energy<br />

in the carbide. 23, 24 So it is reas<strong>on</strong>able to assume that such a dissoluti<strong>on</strong> has also taken place<br />

D–8


D.4 Discussi<strong>on</strong><br />

Figure D.6: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> 900A deformed by cyclic HPT with a total strain ɛeq = 8, all images are in<br />

radial directi<strong>on</strong> (a) ∆ɛeq = 0.25; (b) ∆ɛeq = 0.5; (c) ∆ɛeq = 0.1; (d) ∆ɛeq = 2<br />

in the m<strong>on</strong>ot<strong>on</strong>ic deformed samples. If a dislocati<strong>on</strong> is supposed to cross a cementite lamella,<br />

a high stress is necessary. If the strain is not high enough, the lamellae act as a barrier for<br />

the dislocati<strong>on</strong>s <strong>and</strong> they pile up at the interface. So some kind <str<strong>on</strong>g>of</str<strong>on</strong>g> threshold value for a strain<br />

per cycle is needed to start a dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite. If the strain is below this threshold,<br />

cementite lamellae can be bent, they can break, they can align to favourable orientati<strong>on</strong>s,<br />

but no dissoluti<strong>on</strong> will occur. If the fragments are small enough, they can be moved in the<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>t matrix without further deformati<strong>on</strong> (see Figure D.4d). When the strain is high enough,<br />

carb<strong>on</strong> atoms are dragged into the matrix <strong>and</strong> this leads to an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> hardness due to solid<br />

soluti<strong>on</strong> hardening. This further enhances the plastically deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae because<br />

the difference <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical strength between the ferrite matrix <strong>and</strong> the carbide decreases.<br />

The resulting microstructure (Figure D.5d) is similar to the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>ot<strong>on</strong>ic<br />

deformed sample (Figure D.3d). The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples form<br />

the fricti<strong>on</strong> experiments <strong>and</strong> pictures out <str<strong>on</strong>g>of</str<strong>on</strong>g> the literature 25, 26 with the HPT samples shows<br />

that the use <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT is suitable to produce samples for studying the fundamental mechanism<br />

D–9<br />

D


D<br />

D Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface layers: the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path<br />

Figure D.7: Steel 900A deformed by fricti<strong>on</strong> (a) light optical microscope micrograph with microhardness indents<br />

(b) SEM-micrograph; lightly deformed area (c) SEM; severely deformed area (d) SEM; severely deformed surface<br />

Figure D.8: Results <str<strong>on</strong>g>of</str<strong>on</strong>g> microhardness measurements (a) Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the HPT-deformed samples (b) Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the microhardness as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> distance from the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample from the fricti<strong>on</strong> experiment<br />

D–10


occurring <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rails.<br />

D.4.2 Microhardness<br />

D.4 Discussi<strong>on</strong><br />

The increase <str<strong>on</strong>g>of</str<strong>on</strong>g> hardness <strong>and</strong> therefore other mechanical properties like tensile strength can<br />

be explained by three comp<strong>on</strong>ents: the decreasing lamellae spacing, the increasing dislocati<strong>on</strong><br />

density <strong>and</strong> the assumed soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> atoms in the ferrite. The difference <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae<br />

spacing between the samples with various deformati<strong>on</strong> paths could be the major influence for<br />

the different run <str<strong>on</strong>g>of</str<strong>on</strong>g> the microhardness curve. Another reas<strong>on</strong> for the increased microhardness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>ot<strong>on</strong>ic deformed sample compared to the cyclically deformed <strong>on</strong>es is the higher<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> solved carb<strong>on</strong> atoms in the ferrite matrix. But if the strain per cycle is high enough<br />

for a start <str<strong>on</strong>g>of</str<strong>on</strong>g> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite, the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> solid soluti<strong>on</strong> hardening at a certain<br />

total deformati<strong>on</strong> should be the same. So maybe another mechanism is active. In principle,<br />

the same amount <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong> is needed when samples are deformed to the same total strain,<br />

so the dislocati<strong>on</strong> density should also be the same. At the very beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong>, <strong>on</strong>e<br />

dislocati<strong>on</strong> has to be generated from a source. If this deformati<strong>on</strong> is reversed, the dislocati<strong>on</strong><br />

could go back to the source that is acting now as a sink. This may sometimes happen for very<br />

small deformati<strong>on</strong>s, but in reality, most <str<strong>on</strong>g>of</str<strong>on</strong>g> the generated dislocati<strong>on</strong>s will not be able to go back<br />

exactly the same way <strong>and</strong> annihilate in the former source. If the strain path is reversed exactly<br />

in the opposite directi<strong>on</strong>, some dislocati<strong>on</strong>s can go back <strong>and</strong> annihilate, but the amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these dislocati<strong>on</strong>s is smaller when the strain gets higher. So the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong> density<br />

is slower for samples with a smaller ∆ɛ due to an easier recombinati<strong>on</strong> or annihilati<strong>on</strong> after<br />

the change <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path.<br />

D.4.3 C<strong>on</strong>clusi<strong>on</strong>s<br />

• The m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pearlitic steels by HPT is dominated by an alignment <strong>and</strong><br />

fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae. The lamellae spacing is markedly decreasing,<br />

at the highest reached strains indicati<strong>on</strong>s for a cementite dissoluti<strong>on</strong> can be observed.<br />

• The cyclic deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pearlitic steel by HPT is str<strong>on</strong>gly affected by the plastic strain<br />

per cycle. When the strain per cycle is low enough, the carbides are fragmented <strong>and</strong> align<br />

themselves in favourable directi<strong>on</strong>s, no indicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a dissoluti<strong>on</strong> can be observed. If<br />

the strain per cycle is high enough, the resulting microstructure is similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

m<strong>on</strong>ot<strong>on</strong>ic deformed samples, but higher total strains are needed.<br />

• The fricti<strong>on</strong> experiments showed that the methods <str<strong>on</strong>g>of</str<strong>on</strong>g> SPD <strong>and</strong> here especially HPT are<br />

usable to investigate the processes <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rails.<br />

• The observed changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the microhardness can be explained when all the comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strengthening are c<strong>on</strong>sidered.<br />

D–11<br />

D


D<br />

D–12


Bibliography to paper D<br />

[1] Y. K. Chou <strong>and</strong> H. S<strong>on</strong>g. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Processing Technology, 148:259–268,<br />

2004.<br />

[2] G. Poulach<strong>on</strong>, A. Albert, M. Schluraff, <strong>and</strong> I.S. Jawahir. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Machine<br />

Tools <strong>and</strong> Manufacture, in press, 2005.<br />

[3] J. Rech <strong>and</strong> A. Moisan. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Machine Tools <strong>and</strong> Manufacture,<br />

43:543–550, 2003.<br />

[4] J. Palmers, M. Van Stappen, J. D’Haen, <strong>and</strong> M. D’Olieslaeger. Surface <strong>and</strong> Coatings<br />

Technology, 74-75:162–167, 1995.<br />

[5] O. D. Tasbaz, R. J. K. Wood, M. Browne, H. E. G. Powrie, <strong>and</strong> G. Denuault. Wear,<br />

230:86–97, 1999.<br />

[6] E. Jisheng <strong>and</strong> D. T. Gawne. Wear, 211:1–8, 1997.<br />

[7] L. Xu, S. Clough, P. Howard, <strong>and</strong> D. Stjohn. Wear, 181-183:112–117, 1995.<br />

[8] O. Barrau, C. Boher, R. Gras, <strong>and</strong> F. Rezai-Aria. Wear, 255:1444–1454, 2003.<br />

[9] U. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>ss<strong>on</strong> <strong>and</strong> T. Telliskivi. Wear, 254:80–93, 2003.<br />

[10] J.-K. Kim <strong>and</strong> C.-S. Kim. Mater. Sci. Eng.A, 338:191–201, 2002.<br />

[11] A. Boehmer <strong>and</strong> T. Klimpel. Wear, 253:150–161, 2002.<br />

[12] J. W. Ringsberg, M. Loo-Morrey, B. L. Josefs<strong>on</strong>, A. Kapoor, <strong>and</strong> J. H. Beyn<strong>on</strong>. Int. J.<br />

Fatigue, 22:205–215, 2000.<br />

[13] J. H. Beyn<strong>on</strong>, A. Kapoor, <strong>and</strong> W. R. Tyfour. Wear, 197:255–265, 1996.<br />

[14] T. Y. Zhu, T. C. Lowe, <strong>and</strong> T. G. Langd<strong>on</strong>. Scripta mater., 51:825–830, 2004.<br />

[15] Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev, <strong>and</strong> Y. T. Zhu. Acta mater., 52:4589–4599,<br />

2004.<br />

[16] R. Z. Valiev, A. V. Sergueeva, <strong>and</strong> A. K. Mukherjee. Scripta mater., 49:669–674, 2003.<br />

[17] A. Vinogradov, S. Hashimoto, <strong>and</strong> V. I. Kopylov. Mater. Sci. Eng.A, 355:277–285, 2003.<br />

[18] M. Furukawa, Z. Horita, M., <strong>and</strong> T. G. Langd<strong>on</strong>. Mater. Sci. Eng.A, 324:82–89, 2002.<br />

BIB–13<br />

BIB


D<br />

Bibliography to paper D<br />

[19] F. Wetscher, A. Vorhauer, R. Stock, <strong>and</strong> R. Pippan. Mater. Sci. Eng. A, 387-389:809–816,<br />

2004.<br />

[20] Florian Wetscher, Andreas Vorhauer, <strong>and</strong> Reinhard Pippan. Mater. Sci. Eng.A, 410-<br />

411:213–216, 2005.<br />

[21] M. Zelin. Acta Mater., 50(17):4431–4447, 2002.<br />

[22] J. Languillaume, G. Kapelski, <strong>and</strong> B. Baudelet. Materials Letters, 33:241–245, 1997.<br />

[23] F. Danoix, D. Julien, X. Sauvage, <strong>and</strong> J. Copreaux. Mater. Sci. Eng.A, 250:8–13, 1998.<br />

[24] J. Languillaume, G. Kapelski, <strong>and</strong> B. Baudelet. Acta mater., 45:1201–1212, 1997.<br />

[25] R. Stock. Master’s thesis, Leoben, 2001.<br />

[26] L. Wang. PhD thesis, Berlin, 2002.<br />

D–14


E<br />

High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong><br />

F. Wetscher 1,2 , B. Tian 3 , R. Stock 4 <strong>and</strong> R. Pippan 1,2<br />

3Erich Schmid Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Material Sciences, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Jahnstraße<br />

12, A-8700 Leoben, Austria<br />

3CD-Laboratory for Local Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> Fracture, Jahnstraße 12, A-8700<br />

Leoben, Austria<br />

3now Boehler Edelstahl<br />

3voestalpine SCHIENEN GMBH, Kerpelystr. 199, A-8700 Leoben, Austria<br />

Abstract<br />

To study the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> shear deformati<strong>on</strong> <strong>on</strong> the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure <strong>and</strong> the<br />

mechanical strength in rail steels, three steels with different microstructure (two pearlitic, <strong>on</strong>e<br />

bainitic) were deformed by High Pressure Torsi<strong>on</strong> (HPT). In order to evaluate in additi<strong>on</strong> the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path, a cyclic form <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT was applied. The mechanical strength was determined<br />

by means <str<strong>on</strong>g>of</str<strong>on</strong>g> in-situ measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow stress <strong>and</strong> microhardness measurements.<br />

The differences <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strengths between the m<strong>on</strong>ot<strong>on</strong>ic <strong>and</strong> cyclic deformed samples<br />

clearly indicate that a m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong> promotes higher dislocati<strong>on</strong> densities <strong>and</strong><br />

leads to the assumpti<strong>on</strong> that dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite takes place more pr<strong>on</strong>ounced.<br />

E–1<br />

E


E<br />

E–2


E.1 Introducti<strong>on</strong><br />

E.1 Introducti<strong>on</strong><br />

The dem<strong>and</strong>s <strong>on</strong> modern rail steels are permanently increasing due to an increasing exposure<br />

in respect to both load <strong>and</strong> frequency <strong>and</strong> so the trend goes to high-strength rail steels. It is well<br />

known that <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rails a nanostructured deformati<strong>on</strong> layer evolves, 1, 2 which can<br />

be the starting point <str<strong>on</strong>g>of</str<strong>on</strong>g> cracks, especially dangerous in the more brittle high-strength steels.<br />

Hence, better knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> shear deformati<strong>on</strong> <strong>on</strong> the microstructure <strong>and</strong> the<br />

mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> these steels is necessary to improve, for example, service intervals<br />

or to enhance finite element simulati<strong>on</strong>s for lifetime estimati<strong>on</strong>s or to develop design tools<br />

for new rail steels. In order to obtain samples with a known deformati<strong>on</strong> history, methods <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

severe plastic deformati<strong>on</strong> (SPD) are used to study these effects.<br />

E.2 Experimental<br />

In this study, two pearlitic rail steels with different lamellae spacing (300nm <strong>and</strong> 100nm) <strong>and</strong><br />

<strong>on</strong>e bainitic rail steel were investigated. The compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these steels are shown in Table<br />

E.1; the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the undeformed steels can be seen in Figure E.1. The samples were<br />

deformed up to very high strains by means <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT 3 at a hydrostatic pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.5 GPa. The<br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample was 8 mm; the initial thickness was 0.8 mm; the turning speed <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

rotating anvil was 0.2 per minute. For high pressure torsi<strong>on</strong>, the equivalent strain ɛeq as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the radius r, the sample thickness t <strong>and</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> turns n can be calculated by<br />

εeq = 2πnr<br />

t √ 3<br />

C Si Mn Cr P S<br />

900A 0,76 0,35 1,0 0,014 0,017 0,04<br />

350 LHT 0,78 0,46 1,18 0,23 0,012 0,015<br />

Dobain 430 0,70-0,82 0,4-1,0 0,7-1,1 0,4-0,7 0,02 0,02<br />

Table E.1: Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the used materials<br />

(E.1)<br />

To study whether there is an influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path or not, also a cyclic form <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT<br />

for the steel 900A was used, Cyclic High Pressure Torsi<strong>on</strong>, CHPT, corresp<strong>on</strong>ding to route C in<br />

equal channel angular pressing. 4 To realise this, the drive mechanism was modified to allow a<br />

reversing <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong>. CHPT was performed with different strains per cycle ∆ɛeq ranging<br />

from ∆ɛeq = 0.5 to ∆ɛeq = 4 at a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> r = 3 mm up to a total deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq= 64 at<br />

a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 mm. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure in radial <strong>and</strong> tangential directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

sample was investigated by scanning electr<strong>on</strong> microscopy (SEM) <strong>and</strong> transmissi<strong>on</strong> electr<strong>on</strong><br />

microscopy (TEM) using a LEO 1525 <strong>and</strong> a Philips CM12 at 120kV, respectively. The samples<br />

for the SEM were grinded, polished <strong>and</strong> etched with Nital. The foils for the TEM were<br />

produced using a focused i<strong>on</strong> beam workstati<strong>on</strong> LEO 1540 XB. The change <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical<br />

strength was determined by microhardness measurements <strong>and</strong> in-situ measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow<br />

stress during (C)HPT by means <str<strong>on</strong>g>of</str<strong>on</strong>g> strain gauges at <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the anvils, for details see. 5<br />

E–3<br />

E


E<br />

E High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong><br />

Figure E.1: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the undeformed material (a) SEM micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> 350 LHT, (b) SEM micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Dobain 430.<br />

E.3 Results<br />

E.3.1 Microstructure<br />

From the series <str<strong>on</strong>g>of</str<strong>on</strong>g> SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the rail steel 350 LHT the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure<br />

for samples deformed by c<strong>on</strong>venti<strong>on</strong>al HPT as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear strain can bee seen<br />

in Figure E.2a - d. Figure E.2e <strong>and</strong> f show the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the pearlitic steel 900A <strong>and</strong> the<br />

bainitic steel Dobain 430 after a deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq= 16. Even at low strains the relatively brittle<br />

carbides are severely deformed, <strong>and</strong> some lamellae are broken. Favorable oriented lamellae<br />

already begin to align parallel to the shear plane. After a strain <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately ɛeq= 4, the<br />

pearlite col<strong>on</strong>ies are no l<strong>on</strong>ger recognizable. The same is true for the sheaves in case <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

bainitic steel.<br />

When the fine pearlitic 350 LHT is compared to the coarse spaced 900A, it seems that in the<br />

later the fragmentati<strong>on</strong> at an early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> is more pr<strong>on</strong>ounced. Due to the small<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbides in the bainitic steel, a fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these carbides is less frequent. At<br />

higher strains, most <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae are broken <strong>and</strong> the fragments are clearly oriented parallel<br />

to the shear plane. A general decreasing <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae spacing with increasing strain can be<br />

observed. In some areas this is excessively pr<strong>on</strong>ounced. While in the samples deformed to low<br />

strains the etchant has no effect <strong>on</strong> the carbides <strong>and</strong> the microstructure is easily made visible,<br />

in the severely deformed samples also the carbides are affected by the etching.<br />

The TEM micrographs in Figure E.3 reveal that in some areas a lamellar structure is present<br />

with a spacing that is markedly smaller than 20 - 30 nm. In additi<strong>on</strong> a pr<strong>on</strong>ounced thinning <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the lamellae is observed. This occurs in all investigated materials. Selected Area Diffracti<strong>on</strong><br />

Patterns (SAD) show that the ferrite is fragmented into very small structural elements. This<br />

is c<strong>on</strong>firmed by darkfield micrographs that show that the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

ferritic matrix is determined by the spacing <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellar structure in <strong>on</strong>e directi<strong>on</strong>.<br />

The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path can be seen in Figure E.4. The SEM micrographs show the<br />

E–4


E.3 Results<br />

Figure E.2: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> deformed samples (a) LHT 350, ɛeq = 1, tangential directi<strong>on</strong>, (b) LHT 350,<br />

ɛeq = 2 , tangential directi<strong>on</strong>, (c) LHT 350, ɛeq = 4, tangential directi<strong>on</strong>, (d) LHT 350, ɛeq = 8, tangential<br />

directi<strong>on</strong>, (e) 900A,ɛeq = 16, radial directi<strong>on</strong>, (f) Dobain 430, ɛeq = 16, radial directi<strong>on</strong>.<br />

microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the steel 900A after a total cyclic deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq= 64 for a ∆ɛeq= 0.5<br />

<strong>and</strong> 4, respectively. A significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong> per cycle is clearly visible. The<br />

E–5<br />

E


E<br />

E High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong><br />

Figure E.3: TEM micrographs (a) 900A, ɛeq = 8, bright field image, (b) 350 LHT ɛeq = 8 bright field image, (c)<br />

350 LHT, ɛeq = 8, dark field image.<br />

main feature <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples with a small ∆ɛeq is the fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae<br />

that are more or less aligned parallel to the shear plane. The size <str<strong>on</strong>g>of</str<strong>on</strong>g> these fragments is in most<br />

cases smaller than 1 µm, <strong>and</strong> the distance between the fragments has also decreased markedly<br />

compared to the lamellae spacing <str<strong>on</strong>g>of</str<strong>on</strong>g> the undeformed material. Although the total deformati<strong>on</strong><br />

in this case is larger than the largest deformati<strong>on</strong> reached with m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong>, no<br />

affect <str<strong>on</strong>g>of</str<strong>on</strong>g> the etchant <strong>on</strong> the carbides is visible. On the other h<strong>and</strong>, the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

sample with a high deformati<strong>on</strong> per cycle is comparable to the m<strong>on</strong>ot<strong>on</strong>ic deformed sample,<br />

but again the total deformati<strong>on</strong> is much higher. The alignment to the shear plane is not as<br />

pr<strong>on</strong>ounced due to cyclic deformati<strong>on</strong>. Apparently in both cases the total strain, after which<br />

the original pearlite col<strong>on</strong>ies are no l<strong>on</strong>ger recognizable, is by far higher than in the m<strong>on</strong>ot<strong>on</strong>ic<br />

deformed samples.<br />

Figure E.4: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclic deformed 900A in radial directi<strong>on</strong>, (a) ∆ɛ = 0.5, ɛeq = 64, (b) ∆ɛ = 4,<br />

ɛeq = 64.<br />

E–6


E.3.2 Mechanical strengths<br />

E.4 Discussi<strong>on</strong><br />

The in-situ measured flow stresses for the three steels are shown in Figure E.5a. A pr<strong>on</strong>ounced<br />

increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strengths in the steels according their initial strength is present <strong>and</strong><br />

for the investigated deformati<strong>on</strong>s no indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strengthening can be<br />

assumed. Figure E.5b <strong>and</strong> c show the in-situ measured flow stress for the steel 900A for<br />

m<strong>on</strong>ot<strong>on</strong>ic HPT <strong>and</strong> CHPT <strong>and</strong> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the microhardness measurements afterwards,<br />

respectively, for different ∆ɛeq per cycle. It can be seen that the needed total strain to reach<br />

the same strengths for CHPT is much higher than for HPT <strong>and</strong> there is a str<strong>on</strong>g influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the strain per cycle.<br />

Figure E.5: Results <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strength (a) in-situ measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow stress in<br />

m<strong>on</strong>ot<strong>on</strong>ic HPT for all three steel8s, (b) comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow stress for m<strong>on</strong>ot<strong>on</strong>ic <strong>and</strong> cyclic HPT for the steel<br />

900A, (c) comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microhardness for m<strong>on</strong>ot<strong>on</strong>ic <strong>and</strong> cyclic HPT for the steel 900A.<br />

E.4 Discussi<strong>on</strong><br />

The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the rail steel 900A deformed by High Pressure Torsi<strong>on</strong><br />

has been described previously. 6 After very large strain, the resulting microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

rail steel 350 LHT is very similar to the rail steel 900A, although at low strains it seems<br />

that the fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae is not as pr<strong>on</strong>ounced, the smaller lamellae<br />

thickness permits a better deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite. 7 The results are very similar to those<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cold drawn pearlitic steel wires. 8–10 In a previous paper 5 it has been shown that the insitu<br />

measured flow stress does not give absolute values due to fricti<strong>on</strong> <strong>on</strong> the tool, however,<br />

E–7<br />

E


E<br />

E High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Rail</strong> <strong>Steels</strong><br />

the changes in the flow stress also reflects changes in tensile strength. The measured torque<br />

gives approximately a triplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tensile strength in the investigated regime. This is<br />

also supported by the microhardness measurement <strong>and</strong> is in agreement with values for drawn<br />

wires. For these wires it has been shown by means <str<strong>on</strong>g>of</str<strong>on</strong>g> tomographic atom probe or Mössbauer<br />

spectroscopy that at least a partly dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite has occurred. 9, 10 It is comm<strong>on</strong>ly<br />

assumed that crossing dislocati<strong>on</strong>s drag carb<strong>on</strong> out <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbide. This is possible because the<br />

binding energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong> to the dislocati<strong>on</strong> is larger than the binding energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong><br />

atom in the carbide. 10 This gives rise to the assumpti<strong>on</strong> that such a dissoluti<strong>on</strong> also takes<br />

place in the m<strong>on</strong>ot<strong>on</strong>ic deformed samples. For a dislocati<strong>on</strong> to cross a cementite lamellae,<br />

a high stress is necessary. Hence, the lamellae will act as a barrier for the dislocati<strong>on</strong>s <strong>and</strong><br />

they pile up at the interface, if the strain is not high enough. If the strain is below a certain<br />

threshold to overcome this barrier, no dissoluti<strong>on</strong> will occur, although cementite lamellae can<br />

be bent, they can break <strong>and</strong> align to favorable orientati<strong>on</strong>s. When the fragments are finally<br />

small enough, they will be moved in the s<str<strong>on</strong>g>of</str<strong>on</strong>g>t matrix without much further deformati<strong>on</strong>. When<br />

the strain, i.e. the dislocati<strong>on</strong> density, is large enough, carb<strong>on</strong> atoms are dragged into the<br />

matrix which leads to an additi<strong>on</strong>al increase <str<strong>on</strong>g>of</str<strong>on</strong>g> hardness due to solid soluti<strong>on</strong> hardening. As a<br />

c<strong>on</strong>sequence, the plastic deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae will be enhanced because the difference<br />

in the mechanical strength between the ferrite matrix <strong>and</strong> the carbide decreases. Therefore<br />

the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure E.2e <strong>and</strong> E.4b are quite similar. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical<br />

strength is governed by three comp<strong>on</strong>ents: the decreasing lamellae spacing, the increasing<br />

dislocati<strong>on</strong> density <strong>and</strong> the assumed soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> atoms in the ferrite. This is most<br />

pr<strong>on</strong>ounced for the m<strong>on</strong>ot<strong>on</strong>ic deformed samples <strong>and</strong> explains the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the strength in<br />

HPT for the investigated steels. Of course, the difference <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae spacing between the<br />

samples with different deformati<strong>on</strong> paths will have a large influence for the difference in the<br />

mechanical strength. Another reas<strong>on</strong> for different hardening in HPT <strong>and</strong> CHPT may be the<br />

unequal amount <str<strong>on</strong>g>of</str<strong>on</strong>g> solved carb<strong>on</strong> atoms in the ferrite matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>ot<strong>on</strong>ic deformed sample<br />

compared to the cyclically deformed <strong>on</strong>es. One may assume that at the same total deformati<strong>on</strong>,<br />

the same amount <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>s are involved; hence the dislocati<strong>on</strong> density should be the<br />

same. But if the deformati<strong>on</strong> is reversed, some <str<strong>on</strong>g>of</str<strong>on</strong>g> the generated dislocati<strong>on</strong>s will be able<br />

to annihilate in the former source. This mechanism should be more efficient at small ∆ɛeq;<br />

therefore the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the dislocati<strong>on</strong> density will be the larger at larger ∆ɛeq.<br />

E.5 C<strong>on</strong>clusi<strong>on</strong>s<br />

E–8<br />

• The m<strong>on</strong>ot<strong>on</strong>ic shear deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the investigated rail steels is dominated by the carbides.<br />

Depending <strong>on</strong> the size <strong>and</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these carbides, fragmentati<strong>on</strong>, alignment<br />

<strong>and</strong> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the spacing are the main features <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong>.<br />

• The CHPT experiments clearly showed a significant influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path <strong>on</strong> the<br />

resulting microstructure <strong>and</strong> the mechanical strength.<br />

• The trend <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strength for HPT <strong>and</strong> CHPT deformed samples can be explained<br />

by a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the decreasing lamellae spacing, the increasing dislocati<strong>on</strong><br />

density <strong>and</strong> the soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> atoms.


Bibliography to paper E<br />

[1] L. Wang, A. Pyzalla, W. Stadlbauer, <strong>and</strong> E. A. Werner. Mater. Sci. Eng.A, 359:31–43,<br />

2003.<br />

[2] G. Baumann, K. Knothe, <strong>and</strong> H. J. Fecht. Nanostructured Materials, 9:751–754, 1997.<br />

[3] M. Furukawa, Z. Horita, M. Nemoto, <strong>and</strong> T. G. Langd<strong>on</strong>. Mater. Sci. Eng.A, 324(1-<br />

2):82–89, 2002.<br />

[4] V. V. Stolyarov, Y. T. Zhu, I. V. Alex<strong>and</strong>rov, T. C. Lowe, <strong>and</strong> R. Z. Valiev. Mater.Sci.<br />

Eng.A, 299:59–67, 2001.<br />

[5] F. Wetscher, A. Vorhauer, <strong>and</strong> R. Pippan. Mater. Sci. Eng.A, 410-411:213–216, 2005.<br />

[6] F. Wetscher, A. Vorhauer, R. Stock, <strong>and</strong> R. Pippan. Mater. Sci. Eng.A, 387-389:809–816,<br />

2004.<br />

[7] W. J. Nam, C. M. Bae, S. J. Oh, <strong>and</strong> S.-J. Kw<strong>on</strong>. Scripta Mater., 42:457–463, 2000.<br />

[8] M. Zelin. Acta Mater., 50:4431–4447, 2002.<br />

[9] J. Languillaume, G. Kapelski, <strong>and</strong> B. Baudelet. Materials Letters, 33:241–245, 1997.<br />

[10] F. Danoix, D. Julien, X. Sauvage, <strong>and</strong> J. Copreaux. Mater. Sci. Eng.A, 250:8–13, 1998.<br />

E–9<br />

E


E<br />

E–10


F<br />

TEM Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Structural<br />

Evoluti<strong>on</strong> in a Pearlitic Steel Deformed by<br />

High Pressure Torsi<strong>on</strong><br />

F. Wetscher 1,2 , R. Pippan 1,2 , S. Sturm 3 , F. Kauffmann 4 , C. Scheu 4,5 , G. Dehm 1,6<br />

1 Erich Schmid Institute for Materials Science, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Leoben,<br />

Austria<br />

2 CD-Laboratory for Local Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> Fracture, Leoben, Austria<br />

3 Max Planck Institute for Materials Research, Stuttgart, Germany<br />

4 Materialprüfungsanstalt, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stuttgart, Germany<br />

5 Department Physical Metallurgy <strong>and</strong> Materials Testing, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leoben, Austria<br />

6 Department Materials Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leoben, Austria<br />

Abstract<br />

A fully pearlitic steel was deformed by high pressure torsi<strong>on</strong> up to very high strains <strong>and</strong><br />

the changes in the microstructure were determined by analytical <strong>and</strong> c<strong>on</strong>venti<strong>on</strong>al transmissi<strong>on</strong><br />

electr<strong>on</strong> microscopy. The imposed strain leads to a fragmentati<strong>on</strong> <strong>and</strong> an alignment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the cementite lamellae parallel to the shear plane. The electr<strong>on</strong> energy-loss near-edge-fine<br />

structures <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fe-L2,3-edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the ir<strong>on</strong> matrix <strong>and</strong> the cementite lamellae were measured<br />

with high spatial resoluti<strong>on</strong>. The results indicated that after high pressure torsi<strong>on</strong> the ir<strong>on</strong><br />

matrix c<strong>on</strong>tains finely dispersed carb<strong>on</strong>-rich areas that do not show the electr<strong>on</strong>ic fingerprint<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cementite. However, the refinement in microstructure leads to an enormous increase in<br />

mechanical strength.<br />

F–1<br />

F


F<br />

F–2


F.1 Introducti<strong>on</strong><br />

F.1 Introducti<strong>on</strong><br />

Cold deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pearlitic steels occurs in many technical applicati<strong>on</strong>s, for instance in<br />

wire drawing or <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rails during service. 1, 2 Especially in the last example it is<br />

important to relate the deformati<strong>on</strong> <strong>and</strong> the resulting microstructure to changes <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical<br />

properties <strong>and</strong> damage processes. A key feature is therefore the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite<br />

lamellae (Fe3C) under shear deformati<strong>on</strong>.<br />

In most cases, methods <str<strong>on</strong>g>of</str<strong>on</strong>g> severe plastic deformati<strong>on</strong> are used as a new route to produce<br />

ultrafine grained materials with improved mechanical properties. 3–5 In the present study, high<br />

pressure torsi<strong>on</strong> (HPT) is used to obtain clearly defined deformed specimens <str<strong>on</strong>g>of</str<strong>on</strong>g> a low alloyed<br />

steel with a initially pearlitic microstructure. The microstructural evoluti<strong>on</strong> was analysed by<br />

different transmissi<strong>on</strong> electr<strong>on</strong> microscopy (TEM) techniques. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> the study is to<br />

characterize the microstructure, especially <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae, resulting from the severe<br />

plastic shear deformati<strong>on</strong>.<br />

F.2 Experimental Details <strong>and</strong> Material<br />

A pearlitic rail steel 260 (UIC 900A) was deformed by high pressure torsi<strong>on</strong> to obtain severely<br />

deformed material. The chemical compositi<strong>on</strong> <strong>and</strong> the mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the material is<br />

given in Tab. 1, details <str<strong>on</strong>g>of</str<strong>on</strong>g> the HPT technique are described elsewhere. 6, 7 The samples for HPT<br />

had a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 mm <strong>and</strong> a thickness t <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 mm (0.7 after the deformati<strong>on</strong>). These discs<br />

where deformed at room temperature under a hydrostatic pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.7 GPa. The number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

turns n was calculated according to Equati<strong>on</strong> F.1 to reach equivalent v<strong>on</strong> Mises strains ɛeq <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2 <strong>and</strong> 8 at a radius r <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 mm.<br />

ɛeq = 2πrn<br />

t √ 3<br />

C Si Mn Cr P S Rm [MPa]<br />

0,76 0.35 1 0.014 0.017 0,04 900<br />

Table F.1: Table 1 Chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pearlitic steel, the balance is Fe [wt. %].<br />

(F.1)<br />

TEM specimens from the deformed samples as well as from undeformed material were<br />

prepared by cutting several millimeter small secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformed material parallel to the<br />

torsi<strong>on</strong> axis at a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 mm. The material was mechanically polished to a final thickness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

≈50 µm <strong>and</strong> further reduced in size in order to keep its magnetic volume as small as possible,<br />

see Figure F.1. Finally, several electr<strong>on</strong> transparent regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ≈10 x 10 µm 2 were made using<br />

a Zeiss XP 1540 focussed i<strong>on</strong> beam microscope. The TEM samples were then glued <strong>on</strong> a<br />

copper grid <strong>and</strong> subsequently analysed with a JEOL 2000 FX equipped with a Gatan imaging<br />

filter <strong>and</strong> a VG HB 501 UX scanning transmissi<strong>on</strong> electr<strong>on</strong> microscope. The VG HB 501UX<br />

has a cold-field-emissi<strong>on</strong> gun <strong>and</strong> is equipped with a Gatan Enfina System.<br />

On the JEOL 2000 FX, bright field micrographs <strong>and</strong> elemental distributi<strong>on</strong> maps for carb<strong>on</strong><br />

were taken at 200 kV. The carb<strong>on</strong> maps were measured by the three-window method. 8, 9 The<br />

F–3<br />

F


F<br />

F TEM Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Structural Evoluti<strong>on</strong> in a Pearlitic Steel Deformed by High Pressure Torsi<strong>on</strong><br />

Figure F.1: A secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the HPT-sample was cut out from the deformed disk for TEM investigati<strong>on</strong>s. Electr<strong>on</strong><br />

transparent windows were thinned into the specimen using a focused i<strong>on</strong> beam microscope.<br />

energy slit width was 20 eV <strong>and</strong> an acquisiti<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 s was used for each image. With the<br />

VG HB 501 UX electr<strong>on</strong> energy-loss (EEL) spectroscopy measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fe-L2,3 edge<br />

using the ENFINA system were performed at 100 kV. The EEL spectra were recorded with a<br />

dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 eV <strong>and</strong> an acquisiti<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 s. The full width at half maximum (FWHM)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the zero loss was smaller than 0.8 eV. The electr<strong>on</strong> energy-loss near-edge-fine structure<br />

(ELNES) <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fe-L2,3 edge was evaluated by fitting the measured spectra after background<br />

subtracti<strong>on</strong> with a Gaussian functi<strong>on</strong> (see Appendix) <strong>and</strong> deriving values for the peak areas,<br />

peak heights <strong>and</strong> FWHM for the Fe-L2,3 edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the matrix <strong>and</strong> the carbide phase. For the<br />

undeformed sample <strong>and</strong> the sample deformed up to ɛeq = 2 the beam was centred exactly <strong>on</strong><br />

the well defined cementite lamellae. Hence, it is possible to distinguish between measurements<br />

in the cementite <strong>and</strong> in the ferritic phase. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the specimen deformed up to ɛeq = 8,<br />

it was not possible to determine whether the electr<strong>on</strong> spot was <strong>on</strong> a cementite lamellae or<br />

not. Therefore, linescans with a length <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 15 nm <strong>and</strong> a step size smaller than 1<br />

nm where performed over a line that was crossing a deformed cementite lamellae. The beam<br />

diameter was nominally 1 nm for these measurements.<br />

F.3 Results<br />

F.3.1 Microstructure <strong>and</strong> Elemental Maps<br />

The initial structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the material c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> 10-20 µm large pearlite col<strong>on</strong>ies with ferrite<br />

lamellae ≈300 nm <strong>and</strong> cementite lamellae ≈ 20 nm wide, as can be seen in a scanning electr<strong>on</strong><br />

micrograph (Fig 2a). After a deformati<strong>on</strong> by HPT <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 8, pearlite col<strong>on</strong>ies are no<br />

l<strong>on</strong>ger visible in scanning electr<strong>on</strong> micrographs <strong>and</strong> a quite uniform lamellar structure with a<br />

decreasing lamellae spacing <str<strong>on</strong>g>of</str<strong>on</strong>g> deformed <strong>and</strong> broken cementite lamellae <strong>and</strong> ferrite is present,<br />

F–4


F.4 Discussi<strong>on</strong><br />

see Figure F.2b. The cementite fragments have predominately the form <str<strong>on</strong>g>of</str<strong>on</strong>g> plates with a maximum<br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 µm. 10 All the fragments are now aligned parallel to the shear plane.<br />

This change <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure does also lead to an enormous increase in the mechanical<br />

strength as can be seen in Figure F.3 in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the in-situ measured torque to deform the sample<br />

<strong>and</strong> was already reported elsewhere. 10 At high deformati<strong>on</strong>s, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> TEM is necessary<br />

to clearly resolve the microstructure. In Figure F.4 a series <str<strong>on</strong>g>of</str<strong>on</strong>g> bright-field TEM micrographs<br />

<strong>and</strong> the corresp<strong>on</strong>ding element maps for carb<strong>on</strong> is depicted showing the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

microstructure as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain. In the undeformed sample the cementite lamellae<br />

with a width <str<strong>on</strong>g>of</str<strong>on</strong>g> about 20 nm are straight <strong>and</strong> c<strong>on</strong>tinuous (Figure F.4a <strong>and</strong> d). Figure F.4b <strong>and</strong> c<br />

show a bright-field image <strong>and</strong> the corresp<strong>on</strong>ding carb<strong>on</strong> elemental map <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample deformed<br />

to ɛeq = 2. The cementite lamellae, which start to break up, are clearly resolved in the C-K<br />

map. At this degree <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> the crystallographic cementite structure is still preserved<br />

as found by selected area diffracti<strong>on</strong>. Also in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the highest deformed sample the<br />

lamellar structure that can be seen in bright field images corresp<strong>on</strong>d to carb<strong>on</strong> enriched areas<br />

in the elemental map, Figures F.4c <strong>and</strong> f. In this sample, the lamellae spacing as well as the<br />

lamellae thickness are markedly decreased down to a minimum value <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 25 nm<br />

<strong>and</strong> 2 nm, respectively.<br />

F.3.2 ELNES Measurements<br />

Figure F.5 shows the measured EEL spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ferrite <strong>and</strong> cementite <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial microstructure.<br />

A change in the Fe-L2,3 area-ratio from 3.24 ±0.1 for α-ir<strong>on</strong> to 2.82 ±0.12 for cementite<br />

as well as in the FWHM for both peaks is observed for the cementite phase compared to ferrite.<br />

The values for the Fe-L2,3 peak ratio, the Fe-L2,3 area ratio, the Fe-L2 FWHM <strong>and</strong> the Fe-L3<br />

FWHM measured from the undeformed samples where used as a fingerprint <strong>and</strong> compared to<br />

the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformed samples. In Figure F.6 all data for the area ratio <strong>and</strong> the FWHMs<br />

are summarized. The mean values as well as the largest <strong>and</strong> smallest values obtained from<br />

measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial microstructure are indicated by black <strong>and</strong> grey lines. It is obvious<br />

that <strong>on</strong>ly the initial structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the material <strong>and</strong> the sample deformed up to ɛeq = 2 reveal the<br />

characteristic values for the cementite phase. The values from the samples with a deformati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 8 are all in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferritic phase.<br />

F.4 Discussi<strong>on</strong><br />

The microstructures as can be seen in the bright field micrographs are very similar to the microstructure<br />

resulting from wire drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> pearlitic steels reported by Embury <strong>and</strong> Fisher 11<br />

<strong>and</strong> Langford. 12 The lamellae spacing λ in the undeformed microstructure was about 300 nm<br />

<strong>and</strong> decreases in the sample deformed to eq = 8 to about 25 nm. This is c<strong>on</strong>sistent with the<br />

calculated value for ≈23 nm (for n = 0.55) due to the deformati<strong>on</strong> according to Equati<strong>on</strong> F.2<br />

which indicates that the calculated macrostrain according to Equati<strong>on</strong> F.1 is homogeneously<br />

distributed in the microstructure. The larger spacing in some areas can be explained by inhomogeneous<br />

or deck-<str<strong>on</strong>g>of</str<strong>on</strong>g>-card deformati<strong>on</strong>. 13 The increase <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical strength in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the macroscopic tensile stress resulting from the decreasing lamellae spacing can be estimated<br />

F–5<br />

F


F<br />

F TEM Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Structural Evoluti<strong>on</strong> in a Pearlitic Steel Deformed by High Pressure Torsi<strong>on</strong><br />

Figure F.2: Scanning electr<strong>on</strong> microscopy micrographs (using sec<strong>on</strong>dary electr<strong>on</strong>s) <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) the undeformed material<br />

<strong>and</strong> (b) a sample after a deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 8, in radial directi<strong>on</strong>.<br />

F–6


Figure F.3: In-situ measured torque during the HPT-deformati<strong>on</strong>.<br />

F.4 Discussi<strong>on</strong><br />

Figure F.4: TEM bright-field micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) the undeformed sample, ɛeq = 0, (b) the sample after a deformati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 2, <strong>and</strong> (c) the sample after deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 8. Corresp<strong>on</strong>ding carb<strong>on</strong> maps <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples with<br />

(d) ɛeq = 0, (e) ɛeq = 2<strong>and</strong> (f) ɛeq = 8. See text for details.<br />

F–7<br />

F


F<br />

F TEM Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Structural Evoluti<strong>on</strong> in a Pearlitic Steel Deformed by High Pressure Torsi<strong>on</strong><br />

Figure F.5: Results for undeformed samples: (a) measured EEL spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ferrite <strong>and</strong> cementite. (b) Area ratios<br />

<strong>and</strong> peak height ratios for several measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> ferrite <strong>and</strong> cementite. (c) FWHM for the Fe-L3 <strong>and</strong> the Fe-L2<br />

peaks obtained in ferrite <strong>and</strong> cementite.<br />

according to Dollar et al. 14 by Equati<strong>on</strong> F.3, where λ is the interlamellar spacing given in mm:<br />

λnew = λt<br />

2rπn<br />

σE = 12.74<br />

λ 0.5<br />

(F.2)<br />

(F.3)<br />

For λ ≈= 25nm the expected tensile stress is ≈2300 MPa, which is more than twice the<br />

initial strength <str<strong>on</strong>g>of</str<strong>on</strong>g> ≈900 MPa. This increase is in good agreement with the measured increase<br />

in the microhardness [10] from 2 GPa for the undeformed sample to 4.2 GPa for a sample<br />

deformed to ɛeq = 8 <strong>and</strong> the measured increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque during the deformati<strong>on</strong> (Figure<br />

F.3).<br />

The elemental distributi<strong>on</strong> maps <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> for the samples with different deformati<strong>on</strong> clearly<br />

show that the carb<strong>on</strong> is c<strong>on</strong>centrated in the cementite lamellae. Hence, they c<strong>on</strong>firm that<br />

the observed lamellar structures in the highest deformed samples are remains <str<strong>on</strong>g>of</str<strong>on</strong>g> the original<br />

pearlitic structure <strong>and</strong> the carb<strong>on</strong> is still c<strong>on</strong>centrated near the remains <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite<br />

lamellae.<br />

The ELNES-measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the undeformed material dem<strong>on</strong>strate that the differences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Fe-L2,3 fine structure between the ferrite phase <strong>and</strong> the cementite phase in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fe-<br />

L2,3 peak ratio, the Fe-L2,3 area ratio <strong>and</strong> the FWHMs are significant <strong>and</strong> allow to postulate that<br />

a change in the chemical structure has occured. The reas<strong>on</strong> for that can be seen in the different<br />

chemical compositi<strong>on</strong> <strong>and</strong> c<strong>on</strong>sequently the different electr<strong>on</strong>ic structure. 15, 16 No differences<br />

were detectable in the distance between the two peaks (measured both the peak-peak distance<br />

as well as distance between the points <str<strong>on</strong>g>of</str<strong>on</strong>g> inflecti<strong>on</strong>) indicating a similar spin-orbit splitting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 2p states for ferrite <strong>and</strong> cementite. 17 The results for the sample deformed to ɛeq = 2 are<br />

F–8


F.4 Discussi<strong>on</strong><br />

Figure F.6: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the EEL spectroscopy measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the starting material <strong>and</strong> samples with ɛeq = 2<br />

<strong>and</strong> ɛeq = 8(a) area ratios, (b) FWHM for the Fe-L3 peaks <strong>and</strong> (c) FWHM for the Fe-L2 peaks.<br />

F–9<br />

F


F<br />

F TEM Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Structural Evoluti<strong>on</strong> in a Pearlitic Steel Deformed by High Pressure Torsi<strong>on</strong><br />

quite similar to the undeformed material. No significant deviati<strong>on</strong> for the Fe-L2,3 values from<br />

ferrite <strong>and</strong> cementite were observed <strong>and</strong> both phases are well distinguishable. Therefore, it can<br />

be c<strong>on</strong>cluded that there was no significant change <str<strong>on</strong>g>of</str<strong>on</strong>g> the chemical compositi<strong>on</strong> <strong>and</strong> structure<br />

in the cementite due to a deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 2. In c<strong>on</strong>trast, the electr<strong>on</strong>ic fingerprint for the<br />

highest deformed sample (ɛeq = 8) lies in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> the values for the ferritic phase. This<br />

means that even in the areas where the EFTEM micrographs showed an enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>,<br />

this carb<strong>on</strong> is no l<strong>on</strong>ger present as a Fe3C carbide. Hence, at least in the measured areas, the<br />

c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite has changed markedly due to the severe plastic deformati<strong>on</strong> by HPT<br />

at room temperature.<br />

Similar changes <str<strong>on</strong>g>of</str<strong>on</strong>g> cementite are especially known for cold-drawn pearlitic wires 18–22 <strong>and</strong><br />

ball-milled pearlitic powders. 23 It is generally assumed that the cementite dissolves as a result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the plastic deformati<strong>on</strong>. There is less agreement about the whereabout <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong> atoms<br />

after the dissoluti<strong>on</strong>. A saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong> atom at dislocati<strong>on</strong>s, 22 grain boundaries 23 or<br />

in a fine-grained martensite 20 are discussed in the literature. The methods used in the literature<br />

comprised Mössbauer spectroscopy, 22 atom probe field i<strong>on</strong> microscopy, 19 three dimensi<strong>on</strong>al<br />

atom probe methods 21 <strong>and</strong> thermomagnetic methods. 24 The most comm<strong>on</strong>ly used explanati<strong>on</strong><br />

for a dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cementite due to deformati<strong>on</strong> is that carb<strong>on</strong> atoms are dragged out <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

carbide by crossing dislocati<strong>on</strong>s. This might happen because the binding energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong><br />

atom to the dislocati<strong>on</strong> is greater than the binding energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong> atom in the carbide.<br />

A more detailed explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this process is given by Gavriljuk, 25 for instance. Ivanisenko<br />

et al. 24 reported a 40% decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cementite due to deformati<strong>on</strong> by HPT for a similar<br />

steel as used in this study after ɛeq = 36 <strong>and</strong> a total dissoluti<strong>on</strong> after ɛeq = 245 measured by<br />

a thermomagnetic method. In the present study a decompositi<strong>on</strong> has been observed already at<br />

much lower strains. The reas<strong>on</strong> for this might be the different experimental setup, especially<br />

the large shape change that is avoided in our HPT-tool which permits a defined shearing <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

samples. Another reas<strong>on</strong> might be the different techniques to investigate the actual state <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

carb<strong>on</strong>. In our case we have used a technique with high spatial resoluti<strong>on</strong> enabling electr<strong>on</strong>ic<br />

structure measurements down to the nanometer level, while the observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 are mainly<br />

based <strong>on</strong> integral techniques. The results form Sauvage 26 obtained by 3D-atom probe <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT<br />

deformed pearlitic steel are in good agreement with the present observati<strong>on</strong>s. He measured a<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial carb<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 at.% <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite down to 2 - 10 at. %<br />

after 5 turns <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT, observing similar carb<strong>on</strong>-rich lamellae instead <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite present<br />

in the initial microstructure.<br />

F.5 C<strong>on</strong>clusi<strong>on</strong><br />

F–10<br />

• In the current TEM study a markedly decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> both the lamellae spacing <strong>and</strong> the<br />

lamellae thickness in the pearlitic steel due to severe plastic deformati<strong>on</strong> by High Pressure<br />

Torsi<strong>on</strong> was observed.<br />

• In the bright field micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the severely deformed sample a lamellar structure was<br />

still observable <strong>and</strong> the elemental distributi<strong>on</strong> maps showed an enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> in<br />

these thin lamellae.


F.6 Appendix<br />

• Electr<strong>on</strong> energy-loss near-edge-fine structure measurements were successfully performed<br />

at the samples <strong>and</strong> analysed by using exp<strong>on</strong>entially modified Gaussian functi<strong>on</strong>s. With<br />

this method reliable ratios <strong>and</strong> peak width were obtained which act as fingerprints <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

ir<strong>on</strong> atoms.<br />

• The electr<strong>on</strong> energy-loss near-edge-fine structure measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong>-rich areas<br />

in the most severe deformed sample did not show the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> cementite indicating<br />

that cementite is no l<strong>on</strong>ger in these areas. This leads to the c<strong>on</strong>clusi<strong>on</strong> that due<br />

to the severe plastic deformati<strong>on</strong> by high pressure torsi<strong>on</strong> at least a partial dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the carb<strong>on</strong> from the cementite has occurred.<br />

F.6 Appendix<br />

F.6.1 Fitting <str<strong>on</strong>g>of</str<strong>on</strong>g> the EELS-spectra<br />

The measured EELS-spectra c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> element specific i<strong>on</strong>isati<strong>on</strong> edges superimposed <strong>on</strong> a<br />

background which is mainly arising from plural-scattering events <str<strong>on</strong>g>of</str<strong>on</strong>g> outer shell electr<strong>on</strong>s. 8, 17<br />

This background has to be removed to analyse the edges. For background subtracti<strong>on</strong>, a powerlaw<br />

approximati<strong>on</strong>:<br />

Ibackground = AE −r<br />

(F.4)<br />

was used. 17 The remaining signal was then analyzed with the s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware Mathematica from<br />

Wolfram Research. For the investigated Fe-L2,3 edge transiti<strong>on</strong>s occur from the 2p states into<br />

unoccupied 3d <strong>and</strong> 4s states. 17 The transiti<strong>on</strong> into the narrow unfilled 3d b<strong>and</strong> leads to white<br />

lines. These structures are superimposed <strong>on</strong> a smooth background which is due to transiti<strong>on</strong>s<br />

into the extended 4s b<strong>and</strong>s. To describe the white lines as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy E, two<br />

exp<strong>on</strong>entially modified Gaussian functi<strong>on</strong>s:<br />

Iwhiteline = B0<br />

e<br />

2B3<br />

B 2 2<br />

2B 2 3<br />

were used. The parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> this functi<strong>on</strong> are:<br />

B0 = Area <str<strong>on</strong>g>of</str<strong>on</strong>g> the dec<strong>on</strong>volved Gaussian<br />

B1 = Centre <str<strong>on</strong>g>of</str<strong>on</strong>g> the dec<strong>on</strong>volved Gaussian<br />

B2 = Width<br />

B3 = Distorti<strong>on</strong><br />

+ B1−E <br />

<br />

B E − B1<br />

3 Erf √ −<br />

B2 2 B2<br />

<br />

√ +<br />

B3 2<br />

B3<br />

<br />

|B3|<br />

(F.5)<br />

This functi<strong>on</strong> is a mathematical c<strong>on</strong>voluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an Gaussian <strong>and</strong> a exp<strong>on</strong>ential functi<strong>on</strong>. Due<br />

to its capability to describe asymmetric peaks it is widely used in the field <str<strong>on</strong>g>of</str<strong>on</strong>g> chromatography.<br />

An overview is given by Jeans<strong>on</strong>ne <strong>and</strong> Foley. 27 The reas<strong>on</strong> why this functi<strong>on</strong> was used in our<br />

study is that it gave much better agreement with the measured white lines than the normally<br />

used Lorentz-functi<strong>on</strong>. 28 The smooth background intensity in the threshold regi<strong>on</strong> results<br />

from the transiti<strong>on</strong>s into the 4s b<strong>and</strong> which is free-electr<strong>on</strong> like. 17 Therefore, the density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

F–11<br />

F


F<br />

F TEM Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Structural Evoluti<strong>on</strong> in a Pearlitic Steel Deformed by High Pressure Torsi<strong>on</strong><br />

Figure F.7: (a) Comparis<strong>on</strong> between a measured spectrum (ferrite, ɛeq = 0) <strong>and</strong> the fit. (b) Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the individual<br />

functi<strong>on</strong>s used for the fit, see Appendix for further details.<br />

states is proporti<strong>on</strong>al to the square root <str<strong>on</strong>g>of</str<strong>on</strong>g> energy <strong>and</strong> the intensity was fitted with C <strong>and</strong> E0 as<br />

parameters:<br />

I4s−states = C E − E0<br />

(F.6)<br />

The actual fitting was d<strong>on</strong>e using a least-square method. After choosing reas<strong>on</strong>able starting<br />

parameters, pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters (for example B0 for the Fe-L2 peak <strong>and</strong> for Fe-L3) were<br />

calculated separately <strong>and</strong> used as c<strong>on</strong>stants for the next fitting step. After calculating all the<br />

parameters, the whole procedure was repeated. A third repetiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this gave no significant<br />

changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the values for the parameters. In Figure F.6.1a a measured spectra is compared with<br />

the final fit. The separate graphs for the fitted functi<strong>on</strong>s are displayed in Figure F.6.1b. From<br />

the obtained functi<strong>on</strong>s, all other values like the peak height, the peak area <strong>and</strong> the FWHM<br />

for both peaks as well as the corresp<strong>on</strong>ding ratios (Fe-L2,3 peak ratio, Fe-L2,3 area ratio) were<br />

calculated; see Equati<strong>on</strong> F.7 <strong>and</strong> Equati<strong>on</strong> F.8, respectively.<br />

peak high ratio = Maximum (IW hiteline,F eL3 )<br />

Maximum (IW hiteline,F eL2 )<br />

area ratio =<br />

B1L3+10 <br />

IW hiteline,F eL3<br />

B1L3−10<br />

dE<br />

B1L2+10 <br />

IW hiteline,F eL2<br />

B1L2−10<br />

dE<br />

F.7 Acknowledgements<br />

(F.7)<br />

(F.8)<br />

The authors want to thank Dr. P. Pointer <strong>and</strong> Mr. R. Stock from voestAlpine Schienen GmbH<br />

for providing the material <strong>and</strong> their support <str<strong>on</strong>g>of</str<strong>on</strong>g> the CD-laboratory. The help <str<strong>on</strong>g>of</str<strong>on</strong>g> Mr. J. Thomas<br />

with the STEM measurements is gratefully acknowledged.<br />

F–12


[1] M. Zelin. Acta Mater., 50(17):4431–4447, 2002.<br />

Bibliography to paper F<br />

[2] G. Baumann, H. J. Fecht, <strong>and</strong> S. Liebelt. Wear, 191:133–140, 1996.<br />

[3] R. Z. Valiev, R. K. Islamgaliev, <strong>and</strong> I.V. Alex<strong>and</strong>rov. Prog. Mat. Sci., 45:103–189, 2000.<br />

[4] R. Z. Valiev <strong>and</strong> I.V. Alex<strong>and</strong>rov. Ann. Chim. - Sci. Mat., 27:3–14, 2002.<br />

[5] V. Y. Gertsman, R. Birringer, R. Z. Valiev, <strong>and</strong> H. Gleiter. Scripta Metall., 30:229–234,<br />

1994.<br />

[6] T. Hebesberger, H. P. Stüwe, A. Vorhauer, F. Wetscher, <strong>and</strong> R. Pippan. Acta Mater.,<br />

53:393–402, 2005.<br />

[7] O. Dimitrov. Ann. Chim. -Sci. Mat., 27:15–24, 2002.<br />

[8] D. B. Williams <strong>and</strong> C. B. Carter. Transmissi<strong>on</strong> Electr<strong>on</strong> Microscopy: A Textbook for<br />

Material Science. Plenum Press, New York, 1996.<br />

[9] F. H<str<strong>on</strong>g>of</str<strong>on</strong>g>er, W. Grogger, G. Kothleitner, <strong>and</strong> P. Wasbichler. Ultramicroscopy, 67:83–103,<br />

1997.<br />

[10] F. Wetscher, A. Vorhauer, R. Stock, <strong>and</strong> R. Pippan. Mater. Sci. Eng. A, 387-389:809–816,<br />

2004.<br />

[11] J. D. Embury <strong>and</strong> R. M. Fisher. Acta Met., 14:147–159, 1966.<br />

[12] G. Langford. Met. Trans., 1:465–477, 1970.<br />

[13] G. Langford. Met. Trans., 8A:861–875, 1977.<br />

[14] M. Dollar, I. M. Bernstein, <strong>and</strong> A. W. Thomps<strong>on</strong>. Acta Metall., 36:311–320, 1988.<br />

[15] R. D. Leapman <strong>and</strong> L. A. Grunes. Phys. Rev. Lett., 45:397–401, 1980.<br />

[16] R. D. Leapman, L. A. Grunes, <strong>and</strong> P. L. Fejes. Phys. Rev. B., 26:614, 1982.<br />

[17] R. F. Egert<strong>on</strong>. Electr<strong>on</strong> Energy Loss Spectroscopy in the Electr<strong>on</strong> Microscop, 2 nd ed.<br />

Plenum Press, New York, 1996.<br />

[18] J. Languillaume, G. Kapelski, <strong>and</strong> B. Baudelet. Acta Mater., 45:1201–1212, 1997.<br />

BIB–13<br />

BIB


F<br />

Bibliography to paper F<br />

[19] H. G. Read, W. T. Reynolds Jr., K. H<strong>on</strong>o, <strong>and</strong> T. Tarui. Scripta Mater., 37:1221–1230,<br />

1997.<br />

[20] K. H<strong>on</strong>o, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, <strong>and</strong> T. Takahashi. Scripta<br />

Mater., 44:977–983, 2001.<br />

[21] F. Danoix, D. Julien, X. Sauvage, <strong>and</strong> J. Copreaux. Mater. Sci. Eng.A, 250:8–13, 1998.<br />

[22] W. J. Nam, C. M. Bae, S. J. Oh, <strong>and</strong> S.-J. Kw<strong>on</strong>. Scripta Mater., 42:457–463, 2000.<br />

[23] M. Umemoto. Mater. Trans., JIM, 44:1900–1911, 2003.<br />

[24] Y. Ivanisenko, W. Lojkowski, R. Z. Valiev, <strong>and</strong> H.-J. Fecht. Acta Mater., 51:5555–5570,<br />

2003.<br />

[25] V. G. Gavriljuk. Mater. Sci. Eng.A, 345:81–89, 2002.<br />

[26] X. Sauvage. Mater. Sci. Forum, 503-504:433–438, 2006.<br />

[27] M. S. Jeans<strong>on</strong>ne <strong>and</strong> J. P. Foley. J. Chromatogr. A, 594:1–8, 1992.<br />

[28] T. Manoubi, M. Tence, M. G. Walls, <strong>and</strong> C. Colliex. Microsc. Microanal. Microstruct.,<br />

1:23–39, 1990.<br />

F–14


G<br />

Fracture Processes in Severe Plastic<br />

Deformed <strong>Rail</strong> <strong>Steels</strong><br />

F. Wetscher 1,2 , R. Stock 3 <strong>and</strong> R. Pippan 1,2<br />

1 Erich Schmid Institute for Materials Science, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Leoben,<br />

Austria<br />

2 CD-Laboratory for Local Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> Fracture, Leoben, Austria<br />

G.1 Abstract<br />

3 voestAlpine Schienen GmbH, Leoben, Austria<br />

A fully pearlitic steel used as a material for railway tracks was deformed by equal channel angular<br />

pressing. The shear deformati<strong>on</strong> results in an alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the pearlite col<strong>on</strong>ies <strong>and</strong> the<br />

cementite lamellae. This formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a preferred directi<strong>on</strong> leads to an anisotropy in mechanical<br />

properties, especially in the fracture toughness. To investigate this, two critical directi<strong>on</strong>s<br />

were defined <strong>and</strong> compact tensi<strong>on</strong> samples <str<strong>on</strong>g>of</str<strong>on</strong>g> undeformed <strong>and</strong> deformed materials were tested.<br />

With increasing strain, the fracture toughness decreases for samples where the crack can easily<br />

cross the deformed col<strong>on</strong>ies.<br />

G–1<br />

G


G<br />

G–2


G.2 Introducti<strong>on</strong><br />

G.2 Introducti<strong>on</strong><br />

The investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong> <strong>and</strong> the resulting changes in mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pearlitic steels has a l<strong>on</strong>g history. 1–3 This is mainly because cold deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pearlitic<br />

steels is a process that happens in many technical applicati<strong>on</strong>s. For instance, in wire drawing<br />

this leads to an enormous increase in mechanical strength. Another field is the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

deformati<strong>on</strong> layer <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rails during service. For the development <str<strong>on</strong>g>of</str<strong>on</strong>g> new materials,<br />

for a better scheduling <str<strong>on</strong>g>of</str<strong>on</strong>g> service intervals <strong>and</strong> for realistic simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> wheel-rail c<strong>on</strong>tacts a<br />

better knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> shear deformati<strong>on</strong> <strong>on</strong> the mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

steels is necessary. Since this deformati<strong>on</strong> layer is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> many defects like headchecks<br />

<strong>and</strong> ratcheting, 4, 5 especially the fracture properties are <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance. In the last year,<br />

many techniques were developed to deform materials up to very high strains under c<strong>on</strong>trolled<br />

c<strong>on</strong>diti<strong>on</strong>s. The most useful <str<strong>on</strong>g>of</str<strong>on</strong>g> these so-called severe plastic deformati<strong>on</strong> (SPD) methods are<br />

equal channel angular pressing (ECAP) 6, 7 <strong>and</strong> high pressure torsi<strong>on</strong>. 8, 9 Especially with ECAP<br />

it is possible to obtain samples with a known deformati<strong>on</strong> history <strong>and</strong> precisely known strains<br />

that are also large enough to determine fracture mechanics properties. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> the present<br />

study is to determine the fracture toughness <str<strong>on</strong>g>of</str<strong>on</strong>g> a deformed pearlitic steel as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

deformati<strong>on</strong> in different directi<strong>on</strong>s <strong>and</strong> to investigate the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the applied shear strain.<br />

G.3 Experimental<br />

The material used in this study is the pearlitic rail steel 900 UIC, the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this steel<br />

is 0.76 wt.% C, 0.35 wt.% Si, 1 wt.% Mn, 0.14 wt.% S <strong>and</strong> 0.17 wt.% P, the rest is Fe. To<br />

obtain material with a defined pre-deformati<strong>on</strong>, ECAP was applied. The samples for ECAP<br />

had a size <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 x 10 x 50 mm <strong>and</strong> were pressed through the die at room temperature. The<br />

pressing speed was approximately 0.5 mm/s. The used tool has an intersecti<strong>on</strong> angle Φ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

120°; therefore the strain per path according to Equati<strong>on</strong>s G.1 10 was 0.67.<br />

ɛ = 2<br />

√ 3 cot Φ<br />

2<br />

(G.1)<br />

Samples were pressed 1, 2 <strong>and</strong> 3 times through the tool using route A 7 resulting in strains<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.67, 1.34 <strong>and</strong> 2.01. From the deformed as well as the undeformed samples, compacttensi<strong>on</strong><br />

(CT) specimens were machined. Two different geometries were chosen in respect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the ECAP-sample geometry, see Figure G.3b. In the following, samples after N passes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP will be referred as NA or NB. The samples were cut with a diam<strong>on</strong>d-wire saw to<br />

prevent a rise in temperature <strong>and</strong> therefore recovery in the material. The samples were grinded<br />

<strong>and</strong> polished to the final thickness. The CT-specimens had a width W = 8 mm <strong>and</strong> a thickness<br />

B = 2 mm.<br />

To create a sharp crack, a notch was cut into the samples with a diam<strong>on</strong>d-wire saw <strong>and</strong><br />

further sharpened by polishing the notch ground with a razor blade. A fatigue crack was<br />

produced under compressi<strong>on</strong>-compressi<strong>on</strong> loading with a ∆K <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 MPa m <strong>and</strong> 10.000 to<br />

20.000 load cycles.<br />

G–3<br />

G


G<br />

G Fracture Processes in Severe Plastic Deformed <strong>Rail</strong> <strong>Steels</strong><br />

Figure G.1: (a) Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the ECAP tool: The sample is pressed through intersecting channels by a plunger;<br />

(b) Definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the two sample orientati<strong>on</strong>s in respect to the ECAP sample <strong>and</strong> CT-specimens after the fracture<br />

toughness test.<br />

Fracture toughness tests were carried out <strong>on</strong> a testing machine from Kammrath <strong>and</strong> Weiss at<br />

a c<strong>on</strong>stant cross-head speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.5 µm/s. For each deformati<strong>on</strong> grade <strong>and</strong> sample orientati<strong>on</strong>,<br />

three specimens were tested. The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the fracture toughness was d<strong>on</strong>e according to the<br />

st<strong>and</strong>ard E 399.<br />

The microstructure as well as the fracture surface was investigated using a Zeiss 1425 scanning<br />

electr<strong>on</strong> microscope at 5 kV. For microstructural investigati<strong>on</strong>s, the samples were grinded,<br />

polished <strong>and</strong> finally etched using pikrin acid. Micrographs were taken using sec<strong>on</strong>dary electr<strong>on</strong>s.<br />

G.4 Results<br />

G.4.1 Microstructure <strong>and</strong> crack path<br />

Figure G.4.1 is a series <str<strong>on</strong>g>of</str<strong>on</strong>g> micrographs showing the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the material <strong>and</strong> the<br />

crack path for the different geometries. The as-received material c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> pearlite col<strong>on</strong>ies<br />

with a size <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 10µm, the average lamellae spacing is 300 nm. The col<strong>on</strong>ies are<br />

more or less r<strong>and</strong>omly orientated <strong>and</strong> are almost equiaxed. After three passes <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP, most<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the pearlite col<strong>on</strong>ies are severely deformed <strong>and</strong> favorable orientated lamellae are aligned<br />

parallel to the pressing directi<strong>on</strong>. Other lamellae are severely deformed <strong>and</strong> a fragmentati<strong>on</strong><br />

starts. Figure G.4.1c depicts the crack path through an undeformed sample after a fracture<br />

G–4


G.4 Results<br />

toughness test. It can be seen that the crack propagates through col<strong>on</strong>y boundaries as well as<br />

directly through col<strong>on</strong>ies, breaking up the lamellas.<br />

In Figure G.4.1d, a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the crack through a sample 3A can be seen. In all these micrographs,<br />

the original notch is parallel to the baseline <str<strong>on</strong>g>of</str<strong>on</strong>g> the image. In this sample, the crack<br />

runs al<strong>on</strong>g the el<strong>on</strong>gated pearlite col<strong>on</strong>ies <strong>and</strong> through the aligned lamellae even if this means<br />

that the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the crack propagati<strong>on</strong> is perpendicular to the original notch. The crack<br />

propagati<strong>on</strong> in a sample 3B is depicted in Figure G.4.1e <strong>and</strong> f. Also in this case, the crack<br />

follows the deformed cementite col<strong>on</strong>ies <strong>and</strong> the aligned lamellae.<br />

G.4.2 Fracture toughness<br />

The fracture toughness was evaluated from force-displacement curves. In Figure G.4.2a, typical<br />

force-displacement curves for samples after 3 passes are shown. From these curves, PQ was<br />

determined; in most cases PQ was equal to Pmax. The stress intensity factor KQ was calculated<br />

using Equati<strong>on</strong> 2 (the functi<strong>on</strong> f(a/W) was used according to the st<strong>and</strong>ard E399):<br />

KQ = PQ<br />

<br />

a<br />

f<br />

BW 0.5 W<br />

(G.2)<br />

The results for KQ can be seen in Figure G.4.2b. The highest fracture toughness was measured<br />

for the undeformed material. The fracture toughness <str<strong>on</strong>g>of</str<strong>on</strong>g> the ECAP-deformed samples<br />

with orientati<strong>on</strong> B markedly decreases with the number <str<strong>on</strong>g>of</str<strong>on</strong>g> passes. Reas<strong>on</strong>able values <str<strong>on</strong>g>of</str<strong>on</strong>g> KQ<br />

for deformed samples with orientati<strong>on</strong> A could <strong>on</strong>ly be obtained after the first step. Samples<br />

with two or three passes did not fracture in the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the notch. In Figure G.3b, samples<br />

after the fracture test are compared. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample 3B, the crack propagates straight<br />

trough the CT-specimen. The crack in the sample 3A propagated perpendicular to this directi<strong>on</strong>,<br />

i.e. it propagates parallel to the loading directi<strong>on</strong>. Therefore, a value <str<strong>on</strong>g>of</str<strong>on</strong>g> KQ perpendicular<br />

to the aligned pearlite col<strong>on</strong>ies could not be obtained. Due to the small sample size <strong>and</strong> the<br />

quite high fracture toughness, the calculated KQ values are not valid KIC values except for the<br />

samples 3B.<br />

G.4.3 Fracture surface<br />

The fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the undeformed sample is depicted in Figure G.4.3a. It can be seen<br />

that the surface is very rough <strong>on</strong> a macroscopic level <strong>and</strong> shows a typical appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

cleavage-like fracture. In c<strong>on</strong>tradicti<strong>on</strong> to this, the fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples after three<br />

ECAP passes is quite smooth as it is shown in Figure G.4.3b for the sample 3A. Figure G.4.3c<br />

<strong>and</strong> d compare the fracture surface at a much higher magnificati<strong>on</strong>. Here, the differences<br />

are not so obvious. On this level, the surface is dominated by large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> cleavage-like<br />

fracture surface, surrounded by a more ductile dimple fracture <str<strong>on</strong>g>of</str<strong>on</strong>g> the remaining secti<strong>on</strong>. The<br />

occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> these areas with a dimple fracture is much more pr<strong>on</strong>ounced in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

undeformed specimens. In all these micrographs, the macroscopic crack propagati<strong>on</strong> directi<strong>on</strong><br />

was from the left to the right side <str<strong>on</strong>g>of</str<strong>on</strong>g> the image.<br />

G–5<br />

G


G<br />

G Fracture Processes in Severe Plastic Deformed <strong>Rail</strong> <strong>Steels</strong><br />

Figure G.2: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) the as-received material, (b) sample after 3 ECAP passes, (c) as-received<br />

sample after fracture toughness testing, (d) sample 3A after fracture toughness testing <strong>and</strong> (e) <strong>and</strong> (f) sample 3B<br />

after fracture toughness testing.<br />

G–6


G.5 Discussi<strong>on</strong><br />

Figure G.3: (a) Load-Displacement curves for samples 3A <strong>and</strong> 3B, (b) Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the results from the fracture<br />

toughness tests.<br />

G.5 Discussi<strong>on</strong><br />

G.5.1 Microstructure<br />

The present results <str<strong>on</strong>g>of</str<strong>on</strong>g> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure due to the shear deformati<strong>on</strong><br />

are in good agreement with previous studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the same material deformed by high pressure<br />

torsi<strong>on</strong>. 11, 12 The cementite col<strong>on</strong>ies become el<strong>on</strong>gated; favorable orientated lamellae begin<br />

to align parallel to the shear plane <strong>and</strong> others are severely deformed, see Figure G.4.1b. Although<br />

by using Route A in ECAP the shear plane is changed between the passes, 6 the overall<br />

effect is a simple shear in the pressing directi<strong>on</strong>, leading to a similar deformati<strong>on</strong> as in high<br />

pressure torsi<strong>on</strong>. ECAP <str<strong>on</strong>g>of</str<strong>on</strong>g> low-carb<strong>on</strong> steels was performed, for instance, by Fukuda et al. 13<br />

<strong>and</strong> Kim et al. 14 In these studies, the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear deformati<strong>on</strong> <strong>on</strong> the microstructure<br />

<strong>and</strong> mechanical properties was investigated. Although the microstructure in these steels was<br />

ferritic-pearlitic, the results c<strong>on</strong>cerning the pearlitic phase are comparable to the present findings.<br />

A fully pearlitic steel deformed by ECAP was investigated by Wang et al. 15 They also<br />

found a severe deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae, together with a spheroidizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite<br />

lamellae. This occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> globular cementite, which was not found in this investigati<strong>on</strong>,<br />

was obviously an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the elevated temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 923 K during ECAP. Together with the<br />

change in the microstructure, also mechanical properties are changed. Due to the severe cold<br />

working <strong>and</strong> a decrease in the lamellae spacing, an increase in the mechanical strength occurs.<br />

From measurements during <strong>and</strong> after HPT an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the tensile strength from ≈ 900 MPa<br />

to ≈ 1500 MPa can be expected. 16 Similar changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strength due to ECAP<br />

are reported in other studies for low-carb<strong>on</strong> steels, see for example. 17 What is missing in all<br />

these studies is that a str<strong>on</strong>g anisotropy due to the alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the lamellae has to evolve,<br />

especially for fracture properties.<br />

G–7<br />

G


G<br />

G Fracture Processes in Severe Plastic Deformed <strong>Rail</strong> <strong>Steels</strong><br />

Figure G.4: SEM micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>and</strong> (c) as-received material <strong>and</strong> (b) <strong>and</strong> (d) sample<br />

3A.<br />

G–8


G.5.2 Fracture<br />

G.5 Discussi<strong>on</strong><br />

Fracture <str<strong>on</strong>g>of</str<strong>on</strong>g> pearlitic microstructures was investigated in detail in many studies, see, for instance.<br />

18–21 Today, the model <str<strong>on</strong>g>of</str<strong>on</strong>g> shear cracking suggested by Miller <strong>and</strong> Smith 21 is widely<br />

accepted. In this model, shear stresses cause a cracking <str<strong>on</strong>g>of</str<strong>on</strong>g> a cementite plates. This local<br />

weakening promotes further shear deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ferrite <strong>and</strong> the cracking <str<strong>on</strong>g>of</str<strong>on</strong>g> neighboring<br />

plates. Pores grow at the cracks in the cementite <strong>and</strong> coalescent finally. This is exactly what<br />

can be seen in Figure G.4.1c <strong>and</strong> especially in Figure G.5.2a for the undeformed sample after<br />

the fracture toughness tests. In Figure G.5.2a additi<strong>on</strong>al cracks in the cementite are visible.<br />

Above <strong>and</strong> below the actual crack, the initial state <str<strong>on</strong>g>of</str<strong>on</strong>g> the model for shear cracking can be observed.<br />

A few neighboring lamellae are broken al<strong>on</strong>g a line <strong>and</strong> pores have formed. For the<br />

undeformed sample, this seems to be the main mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> fracture. Due to the fact that<br />

the pearlite col<strong>on</strong>ies are more or less r<strong>and</strong>omly orientated, the propagating crack locally <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

changes the directi<strong>on</strong> while retaining a global mode I propagati<strong>on</strong>. This results in the highest<br />

measured fracture toughness, see Figure G.4.2b, as well as in the observed very rough fracture<br />

surface.<br />

Figure G.5: SEM micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the crack in (a) as-received sample <strong>and</strong> (b) sample 3A.<br />

The fracture toughness experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples after three passes showed a distinctive<br />

anisotropy. In the samples with orientati<strong>on</strong> A, the crack was deflected by 90°as can be seen<br />

in Figure G.3b. Therefore, the crack propagates in the same directi<strong>on</strong> as in the sample with<br />

orientati<strong>on</strong> B. This explains why the fracture surface <str<strong>on</strong>g>of</str<strong>on</strong>g> both samples look very similar <strong>and</strong><br />

there are no obvious differences, as can be seen in Figure G.4.1d-f, although it has to noted<br />

the fracture mode in both samples is different. In the sample 3B, the crack propagated due to a<br />

pure mode I load while in the sample with orientati<strong>on</strong> A a mixed mode I - mode II propagati<strong>on</strong><br />

was present due to the crack deflecti<strong>on</strong>. A similar crack deflecti<strong>on</strong> was observed by Toribio<br />

et al. 22–24 for notched tensile specimen <str<strong>on</strong>g>of</str<strong>on</strong>g> drawn pearlitic wires. They found that pearlitic<br />

pseudocol<strong>on</strong>ies may trigger the deflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the crack. The occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> such pseudocol<strong>on</strong>ies<br />

is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the drawing strain. Such extreme slender col<strong>on</strong>ies are also observed after<br />

G–9<br />

G


G<br />

G Fracture Processes in Severe Plastic Deformed <strong>Rail</strong> <strong>Steels</strong><br />

the pure shear deformati<strong>on</strong> by ECAP. However, in Figures 2c-2f <strong>and</strong> 5b, almost no evidence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> shear cracking for the deformed samples is present. It seems that the crack runs mainly<br />

al<strong>on</strong>g the boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformed lamellae or parallel to the aligned lamellae, avoiding<br />

crossing cementite lamellae. After three passes <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP, the alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure<br />

is pr<strong>on</strong>ounced enough that even a 90°deflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the crack is more favorable than to follow<br />

the highest stress in mode I propagati<strong>on</strong>. The microstructure <strong>and</strong> not the stress field is now the<br />

determining factor for crack propagati<strong>on</strong>.<br />

Due to the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> possible fracture passes with very low resistance against crack<br />

propagati<strong>on</strong>, the fracture toughness decreases markedly in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> sample 3B.<br />

G.6 C<strong>on</strong>clusi<strong>on</strong>s<br />

G–10<br />

• <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fully pearlitic rail steel by equal channel angular pressing at room temperature<br />

leads to an alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite col<strong>on</strong>ies <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cementite lamellae.<br />

• This alignment leads to a markedly anisotropy in fracture properties. In the directi<strong>on</strong><br />

parallel to the el<strong>on</strong>gated col<strong>on</strong>ies, the fracture toughness decreases with the increasing<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP passes.<br />

• In the samples without pre-deformati<strong>on</strong>, mainly shear cracking was observed. In the<br />

samples after three ECAP passes, the crack propagated most notably al<strong>on</strong>g the borders<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the aligned col<strong>on</strong>ies <strong>and</strong> between aligned cementite lamellae.


Bibliography to paper G<br />

[1] J. D. Embury <strong>and</strong> R. M. Fisher. Acta Met., 14:147–159, 1966.<br />

[2] G. Langford. Met. Trans., 1:465–477, 1970.<br />

[3] G. Langford. Met. Trans., 8A:861–875, 1977.<br />

[4] J. H. Beyn<strong>on</strong>, A. Kapoor, <strong>and</strong> W. R. Tyfour. Wear, 197:255–265, 1996.<br />

[5] U. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>ss<strong>on</strong> <strong>and</strong> T. Telliskivi. Wear, 254:80–93, 2003.<br />

[6] V. M. Segal. Mater. Sci. Eng.A, 197:154–157, 1995.<br />

[7] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nomoto, <strong>and</strong> T. G. Langd<strong>on</strong>. Mater. Sci. Eng.A,<br />

257:328–332, 1998.<br />

[8] H. Jiang, Y. T. Zhu, D. P. Butt, I. V. Alex<strong>and</strong>rov, <strong>and</strong> T. C. Lowe. Mater. Sci. Eng.A,<br />

290:128–138, 2000.<br />

[9] V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev, <strong>and</strong> R. Z. Valiev. Mater. Sci.<br />

Eng.A, 282:78–85, 2000.<br />

[10] O. Dimitrov. Annales de Chimie Science des Materiaux, 27:15–24, 2002.<br />

[11] F. Wetscher, A. Vorhauer, R. Stock, <strong>and</strong> R. Pippan. Mater. Sci. Eng. A, 387-389:809–816,<br />

2004.<br />

[12] F. Wetscher, R.Stock, B.Tian, <strong>and</strong> R. Pippan. In Ultrafine Grained Materials III, pages<br />

673–678. TMS, Warrendale (USA), 2004.<br />

[13] Y. Fukuda, K. Oh-ishi, Z. Horita, <strong>and</strong> T. G. Langd<strong>on</strong>. Acta Mater., 50:1359–1368, 2002.<br />

[14] J. Kim, I. Kim, <strong>and</strong> D. H. Shin. Scripta Mater., 45:421–426, 2001.<br />

[15] J. T. Wang, J. Huang, Z. De, Z. Zhang, <strong>and</strong> X. Zhao. In Ultrafine Grained Materials III,<br />

pages 673–678. TMS, Warrendale (USA), 2004.<br />

[16] F. Wetscher, B. Tian, R. Stock, <strong>and</strong> R. Pippan. Mater. Sci. Forum, 503-504:455–460,<br />

2006.<br />

[17] J. T. Wang, C. Xu, Z. Z. Du, G. Z. Qu, <strong>and</strong> T. G. Langd<strong>on</strong>. Mater. Sci. Eng.A, 410-<br />

411:312–315, 2005.<br />

BIB–11<br />

BIB


G<br />

Bibliography to paper G<br />

[18] J. M. Hyzak <strong>and</strong> I. M. Bernstein. Met. Trans., 7A:1217–1224, 1976.<br />

[19] Y. J. Park <strong>and</strong> I. M. Bernstein. Met. Trans., 10A:1653–1664, 1979.<br />

[20] J. J. Lew<strong>and</strong>owski <strong>and</strong> A. W. Thomps<strong>on</strong>. Met. Trans., 17A:1769–1786, 1986.<br />

[21] L. E. Miller <strong>and</strong> G. C. Smith. J.I.S.I., 208:998–1005, 1970.<br />

[22] J. Toribio, E. Ovejero, <strong>and</strong> M. Toledano. Int. J. Fracture, 87:L83–L88, 1997.<br />

[23] J. Toribio <strong>and</strong> J. Ayaso. Int. J. Fracture, 115:L29–L34, 2002.<br />

[24] J. Toribio <strong>and</strong> J. Ayaso. Mater. Sci. Eng.A, 343:265–272, 2003.<br />

G–12


H<br />

Cyclic High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nickel <strong>and</strong> Armco Ir<strong>on</strong><br />

F. Wetscher 1,2 <strong>and</strong> R. Pippan 1,2<br />

1 Erich Schmid Institute for Materials Science, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Leoben,<br />

Austria<br />

2 CD-Laboratory for Local Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> Fracture, Leoben, Austria<br />

Abstract<br />

Cyclic high pressure torsi<strong>on</strong>, a modified versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high pressure torsi<strong>on</strong>, is applied to<br />

Armco-ir<strong>on</strong> <strong>and</strong> nickel. The results in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> microstructure <strong>and</strong> flow stress are compared<br />

to samples deformed by c<strong>on</strong>venti<strong>on</strong>al high pressure torsi<strong>on</strong>. For both processes <strong>and</strong> both materials,<br />

a saturati<strong>on</strong> in the decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure size <strong>and</strong> the increase in the flow stress is<br />

observed. The minimum size <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements which is obtainable is smallest for the<br />

c<strong>on</strong>venti<strong>on</strong>ally high pressure torsi<strong>on</strong> deformed samples <strong>and</strong> increases with decreasing strain<br />

per cycle in cyclic high pressure torsi<strong>on</strong>.<br />

H–1<br />

H


H<br />

H–2


H.1 Introducti<strong>on</strong><br />

H.1 Introducti<strong>on</strong><br />

In the last years numerous papers have proven the capability <str<strong>on</strong>g>of</str<strong>on</strong>g> the methods <str<strong>on</strong>g>of</str<strong>on</strong>g> severe plastic<br />

deformati<strong>on</strong> (SPD) to produce ultra fine grained <strong>and</strong> nanograined materials for new applicati<strong>on</strong>s,<br />

see for example. 1–3 Especially by using equal channel angular pressing (ECAP) with<br />

the different routes it is possible to determine the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path <strong>on</strong> grain refinement<br />

<strong>and</strong> the mechanical properties. 4, 5 Nevertheless, the possibilities to vary the strain per<br />

pass are very limited <strong>and</strong> do in most cases comprise a change in the geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the tool or<br />

the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> composed passes as used in. 4 Furthermore, the total strain reachable by<br />

ECAP is limited by practical c<strong>on</strong>siderati<strong>on</strong>s. The applying <str<strong>on</strong>g>of</str<strong>on</strong>g> extremely high strains is very<br />

time-c<strong>on</strong>suming for the incremental process <str<strong>on</strong>g>of</str<strong>on</strong>g> ECAP. The simplest method to reach extremely<br />

high strains is high pressure torsi<strong>on</strong> (HPT), 6–8 with the restricti<strong>on</strong> that no change in the strain<br />

path can be achieved easily.<br />

Therefore, in this paper a cyclic form <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT is introduced, cyclic high pressure torsi<strong>on</strong><br />

(CHPT). Due to modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our HPT tool it is now possible to cyclically reverse the<br />

deformati<strong>on</strong> after a chosen time. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is to evaluate the differences between<br />

samples deformed by HPT <strong>and</strong> CHPT in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> microstructure <strong>and</strong> mechanical strengths <strong>and</strong><br />

the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain per cycle over a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> this value.<br />

H.2 Experimental<br />

The materials used in this study are the bcc Armco ir<strong>on</strong> <strong>and</strong> the fcc nickel (99.99%). Disks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the materials with an original grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 50µm were produced with a radius r<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 4 mm <strong>and</strong> a thickness t <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 mm. These disks were deformed by HPT to a total equivalent<br />

strain <str<strong>on</strong>g>of</str<strong>on</strong>g> 64 <strong>and</strong> CHTP to total equivalent shear strains ɛeq,tot <str<strong>on</strong>g>of</str<strong>on</strong>g> 4, 8, 32 <strong>and</strong> 64 at a radius r =<br />

3 mm. The shear strain per cycle ∆ɛ was choosen to be 0.5, 1, 2 <strong>and</strong> 4 at a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> r = 3 mm<br />

for this investigati<strong>on</strong>. For comparisi<strong>on</strong>, samples <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel with ∆ɛ = 0.5 <strong>and</strong> 4 <strong>and</strong> ɛeq,tot=256<br />

were also examined. The total equivalent shear strain <strong>and</strong> the strain per cycle are calculated<br />

according to Equati<strong>on</strong> H.1 <strong>and</strong> Equati<strong>on</strong> H.2 where ϕ is the rotati<strong>on</strong> angle <strong>and</strong> m is the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cycles ∗ .<br />

∆ɛeq = ϕr<br />

t √ 3<br />

ɛeq,tot = m∆ɛeq<br />

(H.1)<br />

(H.2)<br />

The hydrostatic pressure was kept c<strong>on</strong>stant for all experiments at a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.7 GPa, the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> turns per minute was 0.2. All deformati<strong>on</strong> experiments were carried out at room<br />

temperature, no significant heating <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples due to the deformati<strong>on</strong> did occur. To evaluate<br />

the changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow stress, the torque was measured in-situ by means <str<strong>on</strong>g>of</str<strong>on</strong>g> strain gauges.<br />

From this measured torque, an upper value for the flow stress can be calculated. 9, 10 A sketch<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our HPT-tool can be seen in Figure H.1. The microstructure was investigated with a Zeiss<br />

∗ <strong>on</strong>e cycle means a deformati<strong>on</strong> in <strong>on</strong>e directi<strong>on</strong>, similar to <strong>on</strong>e pass in ECAP, it corresp<strong>on</strong>ds to 1<br />

2<br />

c<strong>on</strong>venti<strong>on</strong>al fatigue<br />

cycle in<br />

H–3<br />

H


H<br />

H Cyclic High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nickel <strong>and</strong> Armco Ir<strong>on</strong><br />

Figure H.1: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the HPT-tool.<br />

1525 scanning electr<strong>on</strong> microscope (SEM) at 20kV using backscattered electr<strong>on</strong>s (BSE). Orientati<strong>on</strong><br />

image maps were measured for nickel samples deformed with a ∆ɛ <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 <strong>and</strong> 4 by<br />

analyzing the Kikuchi patterns caused by back scattered electr<strong>on</strong>s (EBSD). The sample preparati<strong>on</strong><br />

comprised c<strong>on</strong>secutive grinding, polishing, etching <strong>and</strong> a final polishing step. Special<br />

care was taken that the samples were not exposed to elevated temperatures during this process<br />

to prevent recrystallisati<strong>on</strong>. All micrographs were taken in radial directi<strong>on</strong> as can be seen in<br />

Figure H.2.<br />

H.3 Results<br />

H.3.1 Flow stress<br />

A typical measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque which can be related to the flow stress during CHPT with<br />

a ∆ɛ = 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco ir<strong>on</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time which is proporti<strong>on</strong>al to the accumulated strain<br />

is presented in Figure H.3a. The negative values <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow stress corresp<strong>on</strong>d to an arbitrary<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a positive <strong>and</strong> negative directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong>. At the first few cycles, the<br />

increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow stress would be almost identical to the flow curve <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ot<strong>on</strong>ic deformed<br />

samples when absolute values are taken. In both materials a pr<strong>on</strong>ounced work hardening at<br />

the first few cycles is present, with an increasing number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the absolute<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow stress becomes very low. With higher total strains the<br />

H–4


Figure H.2: Sample preparati<strong>on</strong> for microscopy.<br />

H.3 Results<br />

cyclic flow curve shows another feature. After changing the strain path, the shear stress at the<br />

beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the new cycle is markedly lower as the maximum shear stress at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

previous cycle <strong>and</strong> a period with a slow increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow stress is present. As can be seen<br />

in Figure H.3b for nickel, this behavior depends <strong>on</strong> the strain per cycle. It is most pr<strong>on</strong>ounced<br />

at ∆ɛ = 1 <strong>and</strong> 2. After this, a further work hardening occures with a steep increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow<br />

stress until it reachs approximately the same absolute value at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the cycle as in the<br />

previous <strong>on</strong>e. (Figure H.4). It can be seen in Figure H.3b that the slope <str<strong>on</strong>g>of</str<strong>on</strong>g> this hardening stage<br />

decreases with increasing ∆ɛ. Figure H.4a <strong>and</strong> H.4b show the maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow stresses<br />

at each cycle as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the total deformati<strong>on</strong> for all applied ∆ɛ for Armco ir<strong>on</strong> <strong>and</strong><br />

nickel, respectively. In both materials the same features are visible. Just like in the m<strong>on</strong>ot<strong>on</strong>ic<br />

deformed samples, the maximum torque saturates after a certain saturati<strong>on</strong> strain. The lower<br />

the ∆ɛ is, the lower is also the strain necesarry for the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> this steady state deformati<strong>on</strong>.<br />

The quickest saturati<strong>on</strong> can be observed at a ∆ɛ = 0.5, the highest strain to reach the saturati<strong>on</strong><br />

is necessary for the m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong>. It can also be noted for both materials that the<br />

higher ∆ɛ was, the closer are the curves to the curve for the m<strong>on</strong>ot<strong>on</strong>ic deformed samples after<br />

the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong>. A difference between the two materials is also the <strong>on</strong>set strain for the<br />

saturati<strong>on</strong>. This strain is higher for the bcc ir<strong>on</strong> compared to the fcc nickel. The maximum<br />

torque <strong>and</strong> therefore the maximum flow stress is slightly higher for Armco ir<strong>on</strong> than for nickel.<br />

H.3.2 Microstructure<br />

The resulting microstructures after a deformati<strong>on</strong> to a total strain <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq,tot = 64 for different<br />

∆ɛ as can be seen by using backscattered electr<strong>on</strong>s are depicted in Figure H.5 <strong>and</strong> Figure H.6<br />

for Armco ir<strong>on</strong> <strong>and</strong> nickel. In all presented micrographs the baseline <str<strong>on</strong>g>of</str<strong>on</strong>g> the picture is parallel<br />

to the shear plane. For both materials the same features are recognizable. The microstructure<br />

for the samples with ∆ɛ = 0.5 c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> quite equiaxed elements, the structure size is<br />

markedly smaller than 1 µm, <strong>on</strong>ly a weak preferred directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the elements is detectable.<br />

H–5<br />

H


H<br />

H Cyclic High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nickel <strong>and</strong> Armco Ir<strong>on</strong><br />

Figure H.3: (a) Measured torque during CHPT experiment, Armco-ir<strong>on</strong>, ∆ɛ = 1 <strong>and</strong> during a HPT experiment<br />

(b) Details <str<strong>on</strong>g>of</str<strong>on</strong>g> measured torque curves during CHPT <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel at different ∆ɛ, the decrease in the torque after<br />

changing the shear directi<strong>on</strong> (+ <strong>and</strong> -) is indicated.<br />

Figure H.4: Measured torque during HPT <strong>and</strong> the maximum torques in the CHPT experiments (a) for Armco-ir<strong>on</strong><br />

<strong>and</strong> (b) for nickel.<br />

H–6


H.3 Results<br />

With increasing ∆ɛ a decreasing structure size <strong>and</strong> an aspect ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the elements markedly<br />

larger than 1 can be observed. Furthermore, a preferred directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements is<br />

now present. The microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> the nickel samples deformed m<strong>on</strong>ot<strong>on</strong>ically <strong>and</strong> the sample<br />

deformed with ∆ɛ = 4 are almost identical. The alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements is<br />

naturally in the opposite directi<strong>on</strong>, because the last cycle in the CHPT experiments is always<br />

in the ’negative’ directi<strong>on</strong>.<br />

Figure H.5: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco-ir<strong>on</strong> taken in radial directi<strong>on</strong> for ɛeq,tot = 64 at (a) ∆ɛ = 0.5, (b)∆ɛ =<br />

1, (c)∆ɛ = 2, (d)∆ɛ = 4.<br />

In Figure H.7, the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> Nickel after m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong> to strains <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq=0.5,<br />

1, 2 <strong>and</strong> 4 (as large as the strain increments in the CHPT experiments) is depicted. After a strain<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq = 0.5 the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a substructure within a grain can be seen. When<br />

the strain gets larger, more <strong>and</strong> more well defined elements form, until the whole microstructure<br />

is very homogeneous, compare Figure H.6e <strong>and</strong> Figure H.7d. During further deformati<strong>on</strong>,<br />

the microstructure is still somewhat refined, until this process reachs a steady state.<br />

Figure H.8 shows the inverse pole figures calculated from the EBSD measurements for<br />

different stages <str<strong>on</strong>g>of</str<strong>on</strong>g> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure for nickel samples deformed with<br />

∆ɛ = 0.5 <strong>and</strong> ∆ɛ = 4. The white lines corresp<strong>on</strong>d to boundaries with a missorientati<strong>on</strong><br />

H–7<br />

H


H<br />

H Cyclic High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nickel <strong>and</strong> Armco Ir<strong>on</strong><br />

Figure H.6: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel taken in radial directi<strong>on</strong> for ɛeq,tot = 64 at (a) ∆ɛ = 0.5, (b)∆ɛ = 1,<br />

(c)∆ɛ = 2, (d)∆ɛ = 4, (e) m<strong>on</strong>ot<strong>on</strong>ically deformed.<br />

H–8


H.3 Results<br />

Figure H.7: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel deformed by HPT in radial directi<strong>on</strong> for (a) ɛeq = 0.5, (b) ɛeq = 1, (c)<br />

ɛeq = 2 <strong>and</strong> (d) ɛeq = 4.<br />

H–9<br />

H


H<br />

H Cyclic High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nickel <strong>and</strong> Armco Ir<strong>on</strong><br />

Figure H.8: Orientati<strong>on</strong> maps <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel in axial directi<strong>on</strong> <strong>and</strong> the st<strong>and</strong>ard triangle, (a)∆ɛ = 0.5;ɛeq,tot = 4,<br />

(b)∆ɛ = 0.5; ɛeq,tot = 16, (c)∆ɛ = 0.5;ɛeq,tot = 64, (d)∆ɛ = 4;ɛeq,tot = 4, (e)∆ɛ = 4; ɛeq,tot = 16,<br />

(f)∆ɛ = 4;ɛeq,tot = 64, (g) ɛeq,tot = 64, m<strong>on</strong>ot<strong>on</strong>ically deformed.<br />

H–10


H.3 Results<br />

between 2°<strong>and</strong> 15°, the black lines show boundaries with a missorientati<strong>on</strong> greater than 15°.<br />

It can be seen that after a deformati<strong>on</strong> to total strains higher than 16 no significant changes in<br />

the structure size occurs. The differences between the samples deformed with ∆ɛ = 0.5 <strong>and</strong><br />

∆ɛ = 4 are similar to those seen in the BSE-micrographs.<br />

The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural size as well as the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the length <str<strong>on</strong>g>of</str<strong>on</strong>g> high angle boundaries<br />

(HAB) (≥15°) to low angel boundaries (LAB) (2°-15°) for nickel is presented in Figure H.9.<br />

The grain size presented here was evaluated from the EBSD measurements using a missorientati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ≥ 5°as a criteri<strong>on</strong> to define a grain boundary. Again, a saturati<strong>on</strong> in the decrease<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the structural size can be seen. With increasing total strain, the fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the high angle<br />

boundaries increases, somewhat faster for the samples with the higher ∆ɛ. It can be seen<br />

that the higher the ∆ɛ was, the higher was the fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the HAG. The highest value for the<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the HAG as well as the smallest structure size was measured for the m<strong>on</strong>ot<strong>on</strong>ic<br />

deformed sample.<br />

In Figure H.10, the missorientati<strong>on</strong> angle distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the nickel samples are compared<br />

to the r<strong>and</strong>om Mackenzie distributi<strong>on</strong>. Only missorientati<strong>on</strong>s larger than 5°were taken into<br />

account for the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these graphs. Of course, a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> boundaries with smaller missorientati<strong>on</strong>s<br />

exists, but they are mainly within the grains. For the samples deformed with<br />

∆ɛ = 0.5 almost no correlati<strong>on</strong> between the missorientati<strong>on</strong> distributi<strong>on</strong> <strong>and</strong> the r<strong>and</strong>om distributi<strong>on</strong><br />

can be seen. For higher total deformati<strong>on</strong>s, a slightly higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> high angle<br />

boundaries is present, but the fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small missorientati<strong>on</strong>s is still very high. In c<strong>on</strong>tradicti<strong>on</strong><br />

to this, the missorientati<strong>on</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> samples deformed with ∆ɛ = 4 c<strong>on</strong>verge to<br />

the r<strong>and</strong>om distributi<strong>on</strong> with increasing total strain. The samples deformed up to ɛeq,tot = 256<br />

as well as the missorientati<strong>on</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>ot<strong>on</strong>ic deformed sample with ɛeq = 64<br />

show no further shift to higher missorientati<strong>on</strong> angles.<br />

Figure H.9: (a) Size <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the total equivalent strain (b) ratio between<br />

the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the HAB <strong>and</strong> the LAB.<br />

H–11<br />

H


H<br />

H Cyclic High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nickel <strong>and</strong> Armco Ir<strong>on</strong><br />

Figure H.10: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the missorientati<strong>on</strong> angle in deformed nickel samples (a) Samples deformed with<br />

∆ɛ = 0.5 <strong>and</strong> m<strong>on</strong>ot<strong>on</strong>ically deformed sample, ɛeq = 64 (b) Samples deformed with ∆ɛ = 4.<br />

H.4 Discussi<strong>on</strong><br />

The cyclic high pressure torsi<strong>on</strong> can be seen in two c<strong>on</strong>texts. Firstly, as an advancement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the c<strong>on</strong>venti<strong>on</strong>al high pressure torsi<strong>on</strong> <strong>and</strong> also as a similar process like ECAP Route C, <strong>and</strong><br />

sec<strong>on</strong>dly, as a borderline case <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue.<br />

H.4.1 Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

SPD <str<strong>on</strong>g>of</str<strong>on</strong>g> pure metals is quite comm<strong>on</strong> <strong>and</strong> therefore a number <str<strong>on</strong>g>of</str<strong>on</strong>g> papers deal with the evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure <strong>and</strong> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel <strong>and</strong> pure ir<strong>on</strong>. After HPT, grain<br />

sizes in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 nm to 400nm for nickel are reported in the literature. 11–14 The grain<br />

sizes reported for nickel after ECAP are quite higher, namely between 300nm <strong>and</strong> 450nm. 14–17<br />

When comparing such results, <strong>on</strong>e has always to take care that different methods are used to<br />

evaluate the grain size. Another important factor is the level <str<strong>on</strong>g>of</str<strong>on</strong>g> impurities <strong>and</strong> alloying elements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the used materials. 18 Similar results are reported for SPD <str<strong>on</strong>g>of</str<strong>on</strong>g> pure ir<strong>on</strong>. 19–21 In the<br />

present investigati<strong>on</strong>, the structure size at saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel was determined from 370 nm<br />

for the m<strong>on</strong>ot<strong>on</strong>ic deformed samples up to 850 nm for the samples deformed with ∆ɛ = 0.5.<br />

The determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure size as well as the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow curve both for<br />

nickel <strong>and</strong> Armco-ir<strong>on</strong> clearly show that in HPT experiments after a total equivalent strain<br />

larger than approximately 20 no further refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure occures. This behavior was<br />

also shown for pure copper in HPT experiments. 9, 22 A similar saturati<strong>on</strong> in the structure size<br />

<strong>and</strong> in the mechanical strength can also be observed in CHPT experiments, as can be seen in<br />

Figure H.3 <strong>and</strong> Figure H.8. It can be seen that the strain necessary for the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong><br />

depends <strong>on</strong> the strain increment ∆ɛ. The larger ∆ɛ is, the larger has to be that <strong>on</strong>set strain<br />

<strong>and</strong> the more similar is the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> CHPT deformed samples compared to the microstructure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ot<strong>on</strong>ic HPT deformed samples. Hence, an obvious result is that the strain<br />

per cycle clearly determines the resulting structure size. C<strong>on</strong>venti<strong>on</strong>al HPT could be compared<br />

to ECAP Route A, where there is no rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the billet between the passes. Hence,<br />

elements are c<strong>on</strong>tiniously sheared in <strong>on</strong>e directi<strong>on</strong> during multiple passes. 23 CHPT is more<br />

H–12


H.4 Discussi<strong>on</strong><br />

comparable to ECAP Route C, where the billet is rotated by 180°al<strong>on</strong>g the billet axis. This<br />

leads to a foreward <strong>and</strong> backward shearing <str<strong>on</strong>g>of</str<strong>on</strong>g> an element during successive passes. 23 Therefore,<br />

it can be c<strong>on</strong>cluded that ECAP Route A will be more effective than Route C in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> grain refinement, although not necessarily in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> producing an equiaxed microstructure.<br />

This behavior should be well pr<strong>on</strong>ounced in most ECAP processes, where a tool angle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 90°is used <strong>and</strong> the resulting strain per pass is equal to 1. But as can be seen in Figure H.4,<br />

the differences at the beginning are not so large as in the steady state regime. This effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the strain path at ECAP was also found in other studies, for instance in. 24, 25 The c<strong>on</strong>flictive<br />

results from other studies26 may be c<strong>on</strong>tributed to the smaller differences at low total strains<br />

where the differences are not as significant.<br />

In c<strong>on</strong>trast to the saturati<strong>on</strong> in grain size <strong>and</strong> the mechanical strength, it seems that the ratio<br />

between the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the HAB <strong>and</strong> LAB as well as the increase in missorientati<strong>on</strong> between<br />

neighbouring elements does not saturate as fast as the strength. Hence, <strong>on</strong>e can assume that<br />

the mechanical strength is mainly determined by the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements <strong>and</strong> not by<br />

the missorientati<strong>on</strong> between these elements.<br />

Why does the structure size saturate in HPT <strong>and</strong> CHPT at different levels?<br />

The saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure size in single phase materials due to severe plastic deformati<strong>on</strong><br />

<strong>and</strong> its reas<strong>on</strong>s is a topic that is not widely discussed in the literature until recently. 22, 27, 28<br />

It is assumed that processes similar to dynamic recrystallisati<strong>on</strong> or grain boundary sliding are<br />

taking place. For a more detailed discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this, see.<br />

Richert et al. 29 reported that similare stages <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> are observed in cyclic experiments<br />

as in experiments with m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong>, although the accumulated strains have to be<br />

much higher. The reas<strong>on</strong> for this are annihilati<strong>on</strong> processes that are induced by the reversal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the shear strain. Stüwe 30 described this behaviour mathematical by an efficiency factor η.<br />

This factor η describes the efficiency to create new dislocati<strong>on</strong>s <strong>and</strong> store them in the structure.<br />

Only η times the shear strain increment c<strong>on</strong>tributes to the increase in dislocati<strong>on</strong> density. There<br />

are two limiting cases for η. If η = 0, no further strain hardening can occure. All dislocati<strong>on</strong>s<br />

that are created during the deformati<strong>on</strong> in <strong>on</strong>e directi<strong>on</strong> run backwards <strong>and</strong> recombine in the<br />

former sources during the reversal <str<strong>on</strong>g>of</str<strong>on</strong>g> the deformati<strong>on</strong> or the number <str<strong>on</strong>g>of</str<strong>on</strong>g> generated dislocati<strong>on</strong>s<br />

is equal to the number <str<strong>on</strong>g>of</str<strong>on</strong>g> annihilated dislocati<strong>on</strong>s in <strong>on</strong>e cycle. The other case is that for<br />

both directi<strong>on</strong>s new dislocati<strong>on</strong>s are generated <strong>and</strong> are stored in the microstructure, therefore<br />

η would be equal to 1. If this is true there should be no difference between the cyclic <strong>and</strong> the<br />

m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong>. In Figure H.3a it can be seen that this may be the case for the very<br />

first few cycles. After a certain number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles, the efficiency factor decreases, until after<br />

the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> η is obviously zero over an even number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles <strong>and</strong> no further work<br />

hardening occurs. Hence, in this descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the process, the efficiency factor η is itself a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the total strain <strong>and</strong> also differs for different ∆ɛ. It is near <strong>on</strong>e at low total strain<br />

<strong>and</strong> approachs zero as the number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles increases. This efficiency factor can be a useful<br />

tool to describe cyclic deformati<strong>on</strong> modes, although it has to be noted that no structural model<br />

is combined with it at the moment.<br />

But the detailed measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque show that this descripti<strong>on</strong> with η is <strong>on</strong>ly true<br />

when <strong>on</strong>e just looks at the reached maximum values for the torque at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the cycle.<br />

During the deformati<strong>on</strong>, the torque <strong>and</strong> therefore the flow stress developes in a different way<br />

as described in secti<strong>on</strong> 3.1. As can be seen in Figure H.3, after a reversal <str<strong>on</strong>g>of</str<strong>on</strong>g> the strain path, the<br />

22, 27<br />

H–13<br />

H


H<br />

H Cyclic High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nickel <strong>and</strong> Armco Ir<strong>on</strong><br />

torque at the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the cycle is significantly lower than the reached maximum torque<br />

after the previous cycle <strong>and</strong> increases <strong>on</strong>ly slightly for a significant fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole cycle.<br />

This regi<strong>on</strong> may be the c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>s running backwards toward their sources<br />

or newly generated dislocati<strong>on</strong>s that annihilate with dislocati<strong>on</strong> present <strong>on</strong> the same slip plane<br />

but with different sign from the previous cycle. Following this, the flow stress increases with<br />

a rate that is decreasing with increasing ∆ɛ. This means that after the process <str<strong>on</strong>g>of</str<strong>on</strong>g> a reversal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong> movement or annihilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>s is exhausted, new dislocati<strong>on</strong>s are<br />

created to further plastically deform the sample. For samples with a larger structure size (at<br />

the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> or small ∆ɛ) a high work harding capability exists, therefore<br />

the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> work hardening is large. For the samples with a structure size near the minimum<br />

structure size, almost no work hardening capability is left, leading to a slow increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

flow stress. From the measurement it can be assumed that the flow stress <strong>and</strong> the structure size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cyclically deformed samples would reach the level <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>ot<strong>on</strong>ic deformed samples if<br />

the deformati<strong>on</strong> would be carried <strong>on</strong> m<strong>on</strong>ot<strong>on</strong>ic. This behavior can be seen for both materials<br />

with the before menti<strong>on</strong>ed difference in the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> the steady state regi<strong>on</strong>.<br />

H.4.2 Fatigue<br />

Of course, it has to be emphazised that the results from CHPT <strong>and</strong> HPT cannot directly be<br />

compared to results from fatigue tests. Nevertheless, many features that are well known in<br />

fatigue have similarities with the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> CHPT deformed materials.<br />

Fatigue <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel <strong>and</strong> Armco-ir<strong>on</strong> was investigated in many studies, see for example. 31–35<br />

The presented cyclic hardening curves in these studies show similar characteristics like the<br />

measured curves in the present investigati<strong>on</strong>. After an intense hardening stage at the beginning,<br />

the stress amplitude saturates in strain-c<strong>on</strong>trolled experiments. It is comm<strong>on</strong>ly reported<br />

34, 36–39<br />

that the saturati<strong>on</strong> stress is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the plastic strain amplitude for symmetric tensi<strong>on</strong>compressi<strong>on</strong><br />

tests both for various single- <strong>and</strong> polycrystalline materials. The saturati<strong>on</strong> stress<br />

increases with the plastic strain amplitude, in some cases a plateau regi<strong>on</strong> exists as can be seen<br />

in Figure H.11a (from 38 ). A questi<strong>on</strong> which was not solved till now is: Exists a limit for the<br />

cyclic hardening <strong>and</strong>, if it exists, where is it?<br />

Of course, this can not be easily investigated due to the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> the plastic strain amplitude in a<br />

compressi<strong>on</strong>-tensi<strong>on</strong> experiment. In the present study, these limits do not exist, although it has<br />

to be minded that the deformati<strong>on</strong> mode is different. The increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the saturati<strong>on</strong> stress (here<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque) is compared to the m<strong>on</strong>ot<strong>on</strong>ic flow curve in Figure H.11b <strong>and</strong> H.11c for<br />

Armco-ir<strong>on</strong> <strong>and</strong> nickel, respectively. For both materials it is obvious that the saturati<strong>on</strong> stress<br />

increases with the plastic strain amplitude but the slope <str<strong>on</strong>g>of</str<strong>on</strong>g> this increase decreases markedly.<br />

Finally, for a ∆ɛ = 4, the saturati<strong>on</strong> stress has about reached the saturati<strong>on</strong> stress for the<br />

m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong> mode. The data from c<strong>on</strong>venti<strong>on</strong>al fatigue tests would just cover the<br />

very left side <str<strong>on</strong>g>of</str<strong>on</strong>g> the diagrams.<br />

The occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> a saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the stress in fatigue is generally explained by the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a dislocati<strong>on</strong> network that allows for a further deformati<strong>on</strong> without an increase in the<br />

dislocati<strong>on</strong> density. The cell size <str<strong>on</strong>g>of</str<strong>on</strong>g> this dislocati<strong>on</strong> network decreases with increasing plastic<br />

strain amplitude <strong>and</strong> leads therefore to a higher saturati<strong>on</strong> stress according to the mesh-length<br />

theory <str<strong>on</strong>g>of</str<strong>on</strong>g> work hardening. 40 Davids<strong>on</strong> <strong>and</strong> Lankford 41 measured the subgrain size in low car-<br />

H–14


H.5 C<strong>on</strong>clusi<strong>on</strong>s<br />

b<strong>on</strong> steels as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cyclic stress range <strong>and</strong> compared them with results from other<br />

studies. A main result is the decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the subgrain size with the increasing cyclic stress,<br />

the smallest subgrains where found for the m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong> in a tensile test. This is<br />

in good agreement with the present results as can be seen in Figure H.9a. The higher the<br />

∆ɛ was, the smaller was the structure size in the saturati<strong>on</strong> regime. The smallest structure<br />

size was measured for the m<strong>on</strong>ot<strong>on</strong>ic deformed sample. The decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure size for<br />

HPT-deformed copper was investigated by Hebesberger et al. 22 They observed a saturati<strong>on</strong> in<br />

the decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure size at higher strains similar as in the presented experiments in<br />

Armco ir<strong>on</strong> <strong>and</strong> nickel.<br />

Another feature <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al fatigue tests is the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> the saturati<strong>on</strong> in mechanical<br />

strength. Generally it is reported that saturati<strong>on</strong> is reached earlyer in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cycles for larger plastic strain amplitudes. When for example the results from 39 are expressed<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the product <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles for saturati<strong>on</strong> <strong>and</strong> the plastic strain amplitude<br />

(a value comparable to the equivalent strain as calculated in our study), the same behavior<br />

for fatigue <strong>and</strong> CHPT is present: The higher the strain per cycle, the higher has to be the<br />

accumulated strain until saturati<strong>on</strong> occurs. The highest total strain to reach the saturati<strong>on</strong> is<br />

needed for the m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong> in HPT.<br />

In fatigue experiments, the typical plastic strain amplitudes are quite low (in the order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10 −3 ) compared to the plastic strains in ECAP Route C or this investigati<strong>on</strong>. Nevertheless,<br />

the cell size is comparable or <strong>on</strong>ly somewhat larger than the structure size after SPD <strong>and</strong> the<br />

laws govering this size seem to be similar. The same characteristics both in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> structure<br />

size <strong>and</strong> strain hardening are present in both processes. But the much higher stresses that<br />

are measured for SPD-deformed materials <strong>and</strong> now also for the CHPT deformed nickel <strong>and</strong><br />

Armco ir<strong>on</strong> show that especially the boundaries cannot be directly compared to the structures<br />

in fatigued materials. One difference is <str<strong>on</strong>g>of</str<strong>on</strong>g> course the higher missorientati<strong>on</strong> between the elements<br />

in the SPD-deformed materials. But as could be seen in Figure H.10 <strong>and</strong> Figure H.4, the<br />

flow stress is mainly influenced by the structure size <strong>and</strong> not by the missorientati<strong>on</strong>. Another<br />

difference is the high hydrostatic pressure under which SPD takes place. It is assumed 42 that<br />

the vacancy c<strong>on</strong>centrati<strong>on</strong> is extremely high in these c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> these vacancies may influence<br />

the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundaries. The boundaries (which are no real grain boundaries)<br />

in SPD-deformed materials are sometimes referred as n<strong>on</strong>-equilibrium grain boundaries 6 <strong>and</strong><br />

seem therefore be a special feature <str<strong>on</strong>g>of</str<strong>on</strong>g> the very large plastic strains <strong>on</strong>ly reached by applying<br />

the methods <str<strong>on</strong>g>of</str<strong>on</strong>g> SPD.<br />

H.5 C<strong>on</strong>clusi<strong>on</strong>s<br />

• Cyclic High Pressure Torsi<strong>on</strong>, a modified versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> High Pressure Torsi<strong>on</strong> has been<br />

introduced, which permits to easily study many parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclic severe plastic deformati<strong>on</strong>.<br />

The method has been applied to Armco ir<strong>on</strong> <strong>and</strong> nickel.<br />

• M<strong>on</strong>ot<strong>on</strong> deformati<strong>on</strong> by HPT <str<strong>on</strong>g>of</str<strong>on</strong>g> both material results in a saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strain hardening.<br />

A similar saturati<strong>on</strong> occures due to deformati<strong>on</strong> by cyclic high pressure torsi<strong>on</strong>, but the<br />

accumulated strain to reach saturati<strong>on</strong> decreases with decreasing ∆ɛ.<br />

H–15<br />

H


H<br />

H Cyclic High Pressure Torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nickel <strong>and</strong> Armco Ir<strong>on</strong><br />

Figure H.11: (a) Cyclic stress strain curve in fatigued polycrystalline copper, 38 (b) Cyclic torque strain curve <strong>and</strong><br />

the m<strong>on</strong>ot<strong>on</strong> flow curve for ir<strong>on</strong>, (c) Cyclic torque strain curve <strong>and</strong> the m<strong>on</strong>ot<strong>on</strong> flow curve for nickel (∆ɛ,ɛ at<br />

r = 3mm).<br />

H–16


H.5 C<strong>on</strong>clusi<strong>on</strong>s<br />

• The steady state that is reached in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical strength is also reached in structure<br />

size, the differences in the saturati<strong>on</strong> strength is also reflected in differences <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

structure size. The <strong>on</strong>ly value that still changes somewhat is the missorientati<strong>on</strong> distributi<strong>on</strong>.<br />

The higher the total deformati<strong>on</strong>, the more similar is the orientati<strong>on</strong> distributi<strong>on</strong><br />

to the Mackenzie distributi<strong>on</strong>.<br />

• The structure size str<strong>on</strong>gly depends <strong>on</strong> the strain increment. The larger the strain increment<br />

is, the smaller gets the structure size after the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong>. The smallest<br />

structure size was reached for the m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong> by High Pressure Torsi<strong>on</strong>.<br />

H–17<br />

H


H<br />

H–18


Bibliography to paper H<br />

[1] Y. T. Zhu, T. G. Langd<strong>on</strong>, R. S. Mishra, S. L. Semiatin, M. J. Saran, <strong>and</strong> T. C. Lowe,<br />

editors. Ultrafine Grained Materials II. TMS Publicati<strong>on</strong>s, Warrendale, Pennsylvania,<br />

2002.<br />

[2] Y. T. Zhu, T. G. Langd<strong>on</strong>, R. Z. Valiev, S. L. Semiatin, D. H. Shin, <strong>and</strong> T. C. Lowe,<br />

editors. Ultrafine Grained Materials III. TMS Publicati<strong>on</strong>s, Warrendale, Pennsylvania,<br />

2004.<br />

[3] M. J. Zehetbauer <strong>and</strong> R. Z. Valiev, editors. Nanomaterials by Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g>.<br />

J. Wiley, VCH Weinheim (Germany), 2002.<br />

[4] A. Vinogradov, T. Ishida, K. Kitagawa, <strong>and</strong> V.I. Kopylov. Acta Mater., 53:2181–2192,<br />

2005.<br />

[5] P. L. Sun, P. W. Kao, <strong>and</strong> C. P. Chang. In Y. T. Zhu, T. G. Langd<strong>on</strong>, R. S. Mishra, S. L.<br />

Semiatin, M. J. Saran, <strong>and</strong> T. C. Lowe, editors, Ultrafine Grained Materials II, pages<br />

35–42. TMS Publicati<strong>on</strong>s, Warrendale, Pennsylvania, 2002.<br />

[6] R. Z. Valiev, R. K. Islamgaliev, <strong>and</strong> I. V. Alex<strong>and</strong>rov. Progr. Mat. Sci., 45:103–189, 2000.<br />

[7] T. Hebesberger, A. Vorhauer, H. P. Stüwe, <strong>and</strong> R. Pippan. In M. J. Zehetbauer <strong>and</strong> R. Z.<br />

Valiev, editors, Nanomaterials by Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g>, pages 447–452. J. Wiley,<br />

VCH Weinheim (Germany), 2002.<br />

[8] A. Vorhauer <strong>and</strong> R. Pippan. Scripta Mater., 51:921–925, 2004.<br />

[9] F. Wetscher, A. Vorhauer, <strong>and</strong> R. Pippan. Mat. Sci. Eng. A, in press, 2005.<br />

[10] A. Vorhauer <strong>and</strong> R. Pippan. submitted to Acta Mater.<br />

[11] R. K. Islamgaliev, F. Chmelik, <strong>and</strong> R. Kuzel. Mater. Sci. Eng., A, 237:43–51, 1997.<br />

[12] F. Dalla Torre, P. Spätig, R. Schäublin, <strong>and</strong> M. Victoria. Acta Mat, 53:2337–2349, 2005.<br />

[13] E. Schaffler <strong>and</strong> R. Pippan. Mat. Sci. Eng.A, 387-389:799–804, 2004.<br />

[14] A. P. Zhilyaev, B.-K. Kim, J. A. Szpunar, M. D. Baró, <strong>and</strong> T. G. Langd<strong>on</strong>. Mat. Sci.<br />

Eng.A, 391:377–389, 2004.<br />

[15] K. Neishi, Z. Horita, <strong>and</strong> T. G. Langd<strong>on</strong>. Mat. Sci. Eng.A, 325:54–58, 2002.<br />

BIB–19<br />

BIB


BIB<br />

Bibliography to paper H<br />

[16] N. Hansen, X. Huang, <strong>and</strong> D. A. Hughes. In Y. T. Zhu, T. G. Langd<strong>on</strong>, R. S. Mishra,<br />

S. L. Semiatin, M. J. Saran, <strong>and</strong> T. C. Lowe, editors, Ultrafine Grained Materials II,<br />

pages 35–42. TMS Publicati<strong>on</strong>s, Warrendale, Pennsylvania, 2002.<br />

[17] N. Krasilnikov, W. Lojkowski, Z. Pakiela, <strong>and</strong> R. Valiev. Mat. Sci. Eng.A, 397:330–337,<br />

2005.<br />

[18] R. Pippan, A. Vorhauer, F. Wetscher, M. Faleschini, M. Hafok, <strong>and</strong> I. Sabirov. Mater.<br />

Sci. Forum, 503-504:407–412, 2006.<br />

[19] R. Z. Valiev, Yu. V. Ivanisenko, E. F. Rauch, <strong>and</strong> B. Baudelet. Acta Mat., 44:4705–4712,<br />

1996.<br />

[20] Yu. Ivanisenko, A. V. Sergueeva, A. Minkow, R. Z. Valiev, <strong>and</strong> H.-J. Fecht. In M. J. Zehetbauer<br />

<strong>and</strong> R. Z. Valiev, editors, Nanomaterials by Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g>, pages<br />

453–458. J. Wiley, VCH Weinheim (Germany), 2002.<br />

[21] Florian Wetscher, Andreas Vorhauer, Richard Stock, <strong>and</strong> Reinhard Pippan. Materials<br />

Science <strong>and</strong> Engineering A, 387-389:809–816, 2004.<br />

[22] T. Hebesberger, H. P. Stüwe, A. Vorhauer, F. Wetscher, <strong>and</strong> R. Pippan. Acta Mater.,<br />

53:393–402, 2005.<br />

[23] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nomoto, <strong>and</strong> T. G. Langd<strong>on</strong>. Mater. Sci. Eng.A,<br />

257:328–332, 1998.<br />

[24] A. Gholinia, P. B. Prangnell, <strong>and</strong> M. V. Markushev. Acta Mater., 48:1115–1130, 2000.<br />

[25] L. Dupuy <strong>and</strong> E. F. Rauch. Mat. Sci. Eng.A, 337:241–247, 2002.<br />

[26] T. C. Lowe, Y. T. Zhu, S. I. Semjatin, <strong>and</strong> D. R. Berg. In T. C. Lowe <strong>and</strong> R. Z. Valiev,<br />

editors, Investigati<strong>on</strong>s <strong>and</strong> Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> SPD, page 237. Kluwer Academic Publishers,<br />

Norwell, 2000.<br />

[27] H. P. Stüwe. Mater. Sci. Forum, 503-504:175–178, 2006.<br />

[28] K. Nakashima, M. Suzuki, Y. Futamura, T. Tsuchiyama, <strong>and</strong> S. Takaki. Mater. Sci.<br />

Forum, 503-504:627–632, 2006.<br />

[29] M. Richert, H. P. Stüwe, M. J. Zehetbauer, J. Richert, R. Pippan, Ch. Motz, <strong>and</strong><br />

E. Schafler. Mater. Sci. Eng., A, 355:180–185, 2003.<br />

[30] H. P. Stüwe. In M. J. Zehetbauer <strong>and</strong> R. Z. Valiev, editors, Nanomaterials by Severe<br />

Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g>, pages 55–64. J. Wiley, VCH Weinheim (Germany), 2002.<br />

[31] D.J. Morris<strong>on</strong> <strong>and</strong> V. Chopra. Mater. Sci. Eng., A, 177:29–42, 1994.<br />

[32] P. Lukas <strong>and</strong> L. Kunz. Mater. Sci. Eng., A, 189:1–7, 1994.<br />

BIB–20


Bibliography to paper H<br />

[33] C. Buque, J. Bretschneider, A. Schwab, <strong>and</strong> C. Holste. Mater. Sci. Eng., A, 300:254–262,<br />

2001.<br />

[34] Y. El-Madhoun, A. Mohamed, <strong>and</strong> M. N. Bassim. Mater. Sci. Eng., A, 385:140–147,<br />

2004.<br />

[35] H. Haddou, M. Risbet, G. Marichal, <strong>and</strong> X. Feaugas. Mater. Sci. Eng., A, 379:102–111,<br />

2004.<br />

[36] H. Mughrabi. Mat. Sci. Eng., 33:207–223, 1978.<br />

[37] A. Giese, A. Styczynski, <strong>and</strong> Y. Estrin. Mat. Sci. Eng.A, 124:L11–L13, 1990.<br />

[38] C. D. Liu, M. N. Bassim, <strong>and</strong> D. X. You. Acta metall. mater., 42:3695–3704, 1994.<br />

[39] Y. El-Madhoun, A. Mohamed, <strong>and</strong> M. N. Bassim. Mat. Sci. Eng.A, 359:220–227, 2003.<br />

[40] D. Kuhlmann-Wilsdorf. Metall. Trans., 1:3173–3179, 1970.<br />

[41] D. L. Davids<strong>on</strong> <strong>and</strong> J. Lankford. Int. J. Fracture, 17:257–275, 1981.<br />

[42] M. Zehetbauer, H. P. Stüwe, A. Vorhauer, E. Schafler, <strong>and</strong> J. Kohout. In M. J. Zehetbauer<br />

<strong>and</strong> R. Z. Valiev, editors, Nanomaterials by Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g>, pages 435–446.<br />

J. Wiley, VCH Weinheim (Germany), 2002.<br />

H–21<br />

H


H<br />

H–22


I<br />

Structural Evoluti<strong>on</strong> during Cyclic Severe<br />

Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

F. Wetscher 1,2 <strong>and</strong> R. Pippan 1,2<br />

1 Erich Schmid Institute for Materials Science, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Leoben,<br />

Austria<br />

2 CD-Laboratory for Local Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> Fracture, Leoben, Austria<br />

Abstract<br />

To investigate the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclically large plastic deformati<strong>on</strong>s, a new form <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

pressure torsi<strong>on</strong>, cyclic high pressure torsi<strong>on</strong>, is presented. With this method experiments<br />

where carried out with plastic shear strains (equivalent v<strong>on</strong> Mises strains) per cycle ∆ɛeq between<br />

0.5 <strong>and</strong> 4 up to total strains <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛ = 64. The materials used in this investigati<strong>on</strong> are the<br />

bcc Armco-ir<strong>on</strong> <strong>and</strong> the fcc pure nickel. For both materials, the initial grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> some ten<br />

micrometer decreased markedly while the mechanical strength, measured in-situ during the<br />

deformati<strong>on</strong> experiment, increased. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructure was investigated by<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> scanning electr<strong>on</strong> microscopy using backscattered electr<strong>on</strong>s <strong>and</strong> electr<strong>on</strong> backscatter<br />

diffracti<strong>on</strong>. At higher ∆ɛeq the resulting microstructure is much finer, similar like in c<strong>on</strong>venti<strong>on</strong>al<br />

fatigue experiments. This difference in the microstructure results also in a difference in<br />

the mechanical strengths.<br />

I–1<br />

I


I<br />

I–2


I.1 Introducti<strong>on</strong><br />

I.1 Introducti<strong>on</strong><br />

The knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the microstructural evoluti<strong>on</strong> during fatigue is <str<strong>on</strong>g>of</str<strong>on</strong>g> great technological importance,<br />

hence a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> investigati<strong>on</strong>s deal with this problem, see for example. 1–3 If<br />

the plastic strain amplitude <strong>and</strong>/or the number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles is very large, the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue<br />

cracks is inevitable. Therefore, the range to investigate cyclic plastic deformati<strong>on</strong>s is quite<br />

small <strong>and</strong> c<strong>on</strong>stricted to quite low strain amplitudes. To overcome these limits <strong>and</strong> to exp<strong>and</strong><br />

the investigable range, new methods have to be applied. High pressure torsi<strong>on</strong> (HPT) 4, 5 is a<br />

method to severely plastically deform materials by simple torsi<strong>on</strong>. Due to the high hydrostatic<br />

pressure, very large strains can be reached without crack initiati<strong>on</strong>. To investigate the influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> very high cyclic deformati<strong>on</strong>s, a cyclic form <str<strong>on</strong>g>of</str<strong>on</strong>g> HPT, cyclic high pressure torsi<strong>on</strong> (CHPT)<br />

was developed.<br />

I.2 Experimental Procedure<br />

Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> pure nickel <strong>and</strong> Armco ir<strong>on</strong> (grain size ≈ 50µm with a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 mm <strong>and</strong><br />

a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 mm were deformed by CHPT at room temperature under a hydrostatic<br />

pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.7 GPa with 0.2 turns per minute. The equivalent v<strong>on</strong> Mises strain ɛeq for a<br />

deformati<strong>on</strong> in <strong>on</strong>e directi<strong>on</strong> was calculated according to equati<strong>on</strong> 1, the total deformati<strong>on</strong><br />

according to equati<strong>on</strong> 2:<br />

∆ɛeq = 2πrn<br />

t √ 3<br />

ɛeq,total = N∆ɛeq<br />

For this investigati<strong>on</strong>, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> turns n was chosen to reach a ∆ɛ at a radius r = 3 mm<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5, 1, 2 <strong>and</strong> 4. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles N for each experiment was chosen to obtain samples<br />

with ɛeq,total between 4 <strong>and</strong> 64 (<strong>on</strong>e cycle in the present study is corresp<strong>on</strong>ding to 1<br />

2 cycle in<br />

c<strong>on</strong>venti<strong>on</strong>al fatigue). Figure I.1 shows a sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the used HPT-tool, the torque during the<br />

experiment was measured in-situ using strain gauges.<br />

Microstructural investigati<strong>on</strong>s in the indicated directi<strong>on</strong>s were performed <strong>on</strong> a Zeiss 1525<br />

scanning electr<strong>on</strong> microscope (SEM) at 20 kV using backscattered electr<strong>on</strong>s. For determing<br />

informati<strong>on</strong> about missorientati<strong>on</strong>, orientati<strong>on</strong> image maps (OIM) were measured using back<br />

scattered Kikuchi lines.<br />

I.3 Results<br />

In Figure I.2 the microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel after a total deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq,total = 64 with<br />

different ∆ɛ is compared. In both samples, the microstructure in tangential directi<strong>on</strong> c<strong>on</strong>sists<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> almost equiaxed structural elements; the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the elements is significantly smaller for<br />

the samples cycled with a higher ∆ɛ. The same relati<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the elements<br />

is present in micrographs depicting the radial directi<strong>on</strong>. In the sample deformed with ∆ɛ =<br />

0.5, again the microstructure is quite equiaxed, <strong>and</strong> no preferred directi<strong>on</strong> is recognisable. In<br />

(I.1)<br />

(I.2)<br />

I–3<br />

I


I<br />

I Structural Evoluti<strong>on</strong> during Cyclic Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Figure I.1: Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> high pressure torsi<strong>on</strong> <strong>and</strong> the sample directi<strong>on</strong>s for microstructural investigati<strong>on</strong>s<br />

c<strong>on</strong>tradicti<strong>on</strong> to this, in the sample with ∆ɛ = 4, many <str<strong>on</strong>g>of</str<strong>on</strong>g> the elements are el<strong>on</strong>gated <strong>and</strong><br />

aligned al<strong>on</strong>g a certain directi<strong>on</strong>.<br />

Figure I.3 shows the corresp<strong>on</strong>ding micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco ir<strong>on</strong>. The microstructural elements<br />

are somewhat coarser compared to nickel. While in nickel the elements viewed in<br />

tangential directi<strong>on</strong> are equiaxed, the elements in Armco ir<strong>on</strong> in all micrographs are somewhat<br />

el<strong>on</strong>gated <strong>and</strong> a preferred directi<strong>on</strong> is present.<br />

The OIM images <str<strong>on</strong>g>of</str<strong>on</strong>g> deformed Armco ir<strong>on</strong> are presented in Figure I.4. Figure I.4a - c depict<br />

the microstructural evoluti<strong>on</strong> during a deformati<strong>on</strong> with ∆ɛ = 0.5 for different ɛeq,total. After<br />

a deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ɛeq,total = 4, remains <str<strong>on</strong>g>of</str<strong>on</strong>g> the original grains or grain boundaries are still<br />

recognisable, these vanish after higher total deformati<strong>on</strong>s. The decreasing structure size can<br />

be seen in Figure I.4c - e, where OIM images <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco ir<strong>on</strong> after a total deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 64 with<br />

different ∆ɛ are compared. In all these images, boundaries with missorientati<strong>on</strong>s between 2<br />

<strong>and</strong> 15 degrees are indicated with white lines, missorientati<strong>on</strong>s larger than 15°are marked with<br />

black lines. From these OIM images, structural sizes (elements with a missorientati<strong>on</strong> larger<br />

than 5°) <strong>and</strong> missorientati<strong>on</strong> distributi<strong>on</strong>s where calculated. Figure I.5a shows the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

structural elements <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco ir<strong>on</strong> <strong>and</strong> nickel as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the total deformati<strong>on</strong>. It can be<br />

seen for all materials that a quick decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure size from the original grain size <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some ten micrometer has occurred. At higher total strains, no further refinement occurs, the<br />

structure size remains c<strong>on</strong>stant. The <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> this saturati<strong>on</strong> in structure refinement seems to<br />

occur at lower total strains for the fcc nickel compared to the bcc Armco ir<strong>on</strong>. As seen in the<br />

I–4


I.3 Results<br />

Figure I.2: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> CHPT deformed nickel in different directi<strong>on</strong>s with a ɛeq,total = 64; (a) ∆ɛ =<br />

0.5, tangential directi<strong>on</strong>, (b)∆ɛ = 4 , tangential directi<strong>on</strong>, (c) ∆ɛ = 0.5, radial directi<strong>on</strong> <strong>and</strong> (d), ∆ɛ = 4, radial<br />

directi<strong>on</strong>.<br />

I–5<br />

I


I<br />

I Structural Evoluti<strong>on</strong> during Cyclic Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

micrographs, the structure size decreases with increasing ∆ɛ. Generally, the structure size <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nickel is somewhat smaller than the size <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco ir<strong>on</strong>.<br />

Figure I.3: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> CHPT deformed Armco ir<strong>on</strong> in different directi<strong>on</strong>s with a ɛeq,total = 64; (a)<br />

∆ɛ = 0.5, tangential directi<strong>on</strong>, (b)∆ɛ = 4 , tangential directi<strong>on</strong>, (c) ∆ɛ = 0.5, radial directi<strong>on</strong> <strong>and</strong> (d), ∆ɛ = 4,<br />

radial directi<strong>on</strong>.<br />

The missorientati<strong>on</strong> angle distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different samples <strong>and</strong> the r<strong>and</strong>om Mackenzie distributi<strong>on</strong><br />

are compared in Figure I.5b. It can be seen that the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> low angle boundaries for<br />

similar samples is much higher for Armco ir<strong>on</strong> than for nickel, especially for low ∆ɛ. For the<br />

highest ∆ɛ, the missorientati<strong>on</strong> angle distributi<strong>on</strong> is very similar to the Mackenzie distributi<strong>on</strong>.<br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear stress (here in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured torque) as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the total equivalent strain for nickel can be seen in Figure I.6a. For m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong>,<br />

a stage <str<strong>on</strong>g>of</str<strong>on</strong>g> intensive strain hardening is present that finally saturates after a strain <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately<br />

10. In the cyclic experiments, strain hardening is also present, especially in the first<br />

few cycles. There, the curves are almost identical. But the lower the ∆ɛ is, the faster the<br />

saturati<strong>on</strong> in strain hardening occurs <strong>and</strong> the lower is the torque <strong>and</strong> therefore the mechanical<br />

strength after saturati<strong>on</strong>. Figure I.6b compares the torque for certain ∆ɛ in saturati<strong>on</strong> with the<br />

m<strong>on</strong>ot<strong>on</strong>ic curve, showing the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strength with increasing ∆ɛ. It can<br />

I–6


I.4 Discussi<strong>on</strong><br />

be seen that saturati<strong>on</strong> torque almost reaches the saturati<strong>on</strong> torque for m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong><br />

for the highest applied ∆ɛ.<br />

Figure I.4: Orientati<strong>on</strong> image maps <str<strong>on</strong>g>of</str<strong>on</strong>g> CHPT deformed ir<strong>on</strong> in radial directi<strong>on</strong> with (a) ∆ɛ = 0.5, ɛeq,total = 4,<br />

(b) ∆ɛ = 0.5, ɛeq,total = 16, (c) ∆ɛ = 0.5, ɛeq,total = 64, (d) ∆ɛ = 1, ɛeq,total = 64 <strong>and</strong> (e) ∆ɛ = 2,<br />

ɛeq,total = 64.<br />

I.4 Discussi<strong>on</strong><br />

In many studies, 6–8 the microstructural evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel <strong>and</strong> Armco ir<strong>on</strong> during fatigue was<br />

investigated. These studies were limited to small plastic amplitudes due to practical reas<strong>on</strong>s.<br />

Therefore, it is not clear whether or not a limit for the cyclic hardening exists. In most cases<br />

the cyclic saturati<strong>on</strong> stress increases with an increasing plastic amplitude, sometimes, a plateau<br />

regi<strong>on</strong> is reported. 9, 10 The increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical strength is explained according to the<br />

mesh-length theory 11 by a formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a dislocati<strong>on</strong> network, the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the dislocati<strong>on</strong> cells<br />

decreases with an increasing plastic amplitude. These dislocati<strong>on</strong> networks also allow for a<br />

deformati<strong>on</strong> without a change in the dislocati<strong>on</strong> density <strong>and</strong> therefore without further work<br />

hardening.<br />

The same features that are reported in c<strong>on</strong>venti<strong>on</strong>al fatigue are also present in this study.<br />

The higher the plastic amplitude is, the smaller is the observed structure size. This decreasing<br />

I–7<br />

I


I<br />

I Structural Evoluti<strong>on</strong> during Cyclic Severe Plastic <str<strong>on</strong>g>Deformati<strong>on</strong></str<strong>on</strong>g><br />

Figure I.5: (a) Size <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural elements for Armco ir<strong>on</strong> <strong>and</strong> nickel. (b) Missorientati<strong>on</strong> angle distributi<strong>on</strong><br />

for Armco ir<strong>on</strong> <strong>and</strong> nickel, all samples with ɛeq,total = 64.<br />

Figure I.6: (a) maxima <str<strong>on</strong>g>of</str<strong>on</strong>g> the in-situ measured torque during the CHPT deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel for different plastic<br />

strain amplitudes. (b) Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the torque after the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> with the torque during m<strong>on</strong>ot<strong>on</strong>ic<br />

deformati<strong>on</strong> for Armco ir<strong>on</strong> <strong>and</strong> nickel.<br />

I–8


I.5 C<strong>on</strong>clusi<strong>on</strong>s<br />

structure size is also visible in an increase in the measured torque <strong>and</strong> therefore in the mechanical<br />

strength, 12 see Figure I.6a. Figure I.6b is similar to a c<strong>on</strong>venti<strong>on</strong>al cyclic stress strain<br />

curve <strong>and</strong> show the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the saturati<strong>on</strong> stress with increasing plastic strain amplitude. In<br />

this diagram, the results from c<strong>on</strong>venti<strong>on</strong>al fatigue tests would <strong>on</strong>ly lie in the very left corner.<br />

It is obvious that the limit for the plastic strain hardening is the curve for m<strong>on</strong>ot<strong>on</strong>ic deformati<strong>on</strong>;<br />

it is not possible to reach a smaller structure size <strong>and</strong> therefore a higher mechanical<br />

strength by applying a cyclic deformati<strong>on</strong>. Generally it is reported that the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong><br />

occurs after a smaller number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles for higher plastic strains. 13, 14 Nevertheless, c<strong>on</strong>verted<br />

to total equivalent strains, this means that the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> occurs faster for smaller plastic<br />

strain amplitudes. This is exactly what can be seen in Figure I.6a. The larger the ∆ɛ, the<br />

larger is the total strain necessary to reach saturati<strong>on</strong>. Nevertheless, despite all the similarities<br />

between CHPT <strong>and</strong> c<strong>on</strong>venti<strong>on</strong>al fatigue, some things are quite different. The structure sizes<br />

determined in the present study is in the same range than the cell size in fatigue. However,<br />

the mechanical strength measured here is much higher than in fatigue. Another difference<br />

is the missorientati<strong>on</strong> between the elements. While in fatigue mainly low angel boundaries<br />

are present, after CHPT most boundaries are large angle boundaries. In fatigued material,<br />

the boundaries c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>s, the exact nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundaries in SPD material is<br />

presently not known. Sometimes it is assumed that also these boundaries are made up <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>s,<br />

but with a much higher density so that the dislocati<strong>on</strong>s loose their identity <strong>and</strong> they<br />

are <strong>on</strong>ly referred as n<strong>on</strong>-equilibrium boundaries. 15 A recent study 16 suggests that mainly the<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundary <strong>and</strong> not the larger missorientati<strong>on</strong> causes the higher strains.<br />

I.5 C<strong>on</strong>clusi<strong>on</strong>s<br />

• Cyclic high pressure torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Armco ir<strong>on</strong> <strong>and</strong> nickel leads to a decreasing structure<br />

size <strong>and</strong> an increase in the mechanical strength.<br />

• This change <str<strong>on</strong>g>of</str<strong>on</strong>g> properties saturates after a certain number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles. The total strains for<br />

the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> depends <strong>on</strong> the plastic amplitude.<br />

• The larger the plastic amplitude, the smaller is the structure size <strong>and</strong> the higher the<br />

mechanical strength after the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong>.<br />

• The results <str<strong>on</strong>g>of</str<strong>on</strong>g> the performed experiments are similar to results from c<strong>on</strong>venti<strong>on</strong>al fatigue<br />

tests <strong>and</strong> can be c<strong>on</strong>sidered as a limiting chase for very large plastic amplitudes.<br />

I–9<br />

I


I<br />

I–10


[1] H. Mughrabi. Mater. Sci. Eng., 33:207–223, 1978.<br />

Bibliography to paper I<br />

[2] P. Haehner, B. Tippelt, <strong>and</strong> C. Holste. Acta mater., 46:5073–5084, 1998.<br />

[3] J. Zhang <strong>and</strong> Y. Jiang. Int. J. Plast., 21:2191–2211, 2005.<br />

[4] H. Jiang, Y. T. Zhu, D. P. Butt, I. V. Alex<strong>and</strong>rov, <strong>and</strong> T. C. Lowe. Mater. Sci. Eng.A,<br />

290:128–138, 2000.<br />

[5] A. Vorhauer <strong>and</strong> R. Pippan. Scripta Mater., 51:921–925, 2004.<br />

[6] D.J. Morris<strong>on</strong> <strong>and</strong> V. Chopra. Mater. Sci. Eng., A, 177:29–42, 1994.<br />

[7] P. Lukas <strong>and</strong> L. Kunz. Mater. Sci. Eng., A, 189:1–7, 1994.<br />

[8] Y. El-Madhoun, A. Mohamed, <strong>and</strong> M. N. Bassim. Mater. Sci. Eng., A, 385:140–147,<br />

2004.<br />

[9] C. D. Liu, M. N. Bassim, <strong>and</strong> D. X. You. Acta metall. mater., 42:3695–3704, 1994.<br />

[10] C. Buque, J. Bretschneider, A. Schwab, <strong>and</strong> C. Holste. Mater. Sci. Eng., A, 300:254–262,<br />

2001.<br />

[11] D. Kuhlmann-Wilsdorf. Metall. Trans., 1:3173–3179, 1970.<br />

[12] F. Wetscher, A. Vorhauer, <strong>and</strong> R. Pippan. Mater. Sci. Eng. A, 410-411:213–216, 2005.<br />

[13] Y. El-Madhoun, A. Mohamed, <strong>and</strong> M. N. Bassim. Mat. Sci. Eng.A, 359:220–227, 2003.<br />

[14] H. Haddou, M. Risbet, G. Marichal, <strong>and</strong> X. Feaugas. Mater. Sci. Eng., A, 379:102–111,<br />

2004.<br />

[15] R. Z. Valiev, R. K. Islamgaliev, <strong>and</strong> I. V. Alex<strong>and</strong>rov. Progr. Mat. Sci., 45:103–189, 2000.<br />

[16] F. Wetscher <strong>and</strong> R. Pippan. submitted to Phil. Mag., 2006.<br />

I–11<br />

I

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!