28.08.2013 Views

Detection of Heavy Metal ions in water using nanoparticles

Detection of Heavy Metal ions in water using nanoparticles

Detection of Heavy Metal ions in water using nanoparticles

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Detection</strong> <strong>of</strong> <strong>Heavy</strong> <strong>Metal</strong> <strong>ions</strong> <strong>in</strong> <strong>water</strong> us<strong>in</strong>g <strong>nanoparticles</strong><br />

Siriphun Ameritachot, Tanmay Bera & Joydeep Dutta*<br />

NANOTEC Center <strong>of</strong> Excellence <strong>in</strong> Nanotechnology, School <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g and Technology, ISE-Build<strong>in</strong>g,<br />

Asian Institute <strong>of</strong> Technology, Pathumthani 12120, Thailand<br />

*Correspond<strong>in</strong>g Author: joy@ait.ac.th<br />

Abstract<br />

Water pollution by toxic metals rema<strong>in</strong> a serious<br />

environmental problem and can be detrimental to plants,<br />

animals, and human be<strong>in</strong>g alike. Different governments have<br />

set up environmental laws to determ<strong>in</strong>e amount <strong>of</strong> heavy metal<br />

ion <strong>in</strong> dra<strong>in</strong>age, considered to be non-detrimental to the<br />

environment. Traditional heavy metal analysis methods<br />

require tra<strong>in</strong>ed staff, equipment and time consum<strong>in</strong>g, limit<strong>in</strong>g<br />

the application <strong>of</strong> metal ion sens<strong>in</strong>g to non-specialists. The use<br />

<strong>of</strong> surface plasmon resonance as an <strong>in</strong>dicator <strong>of</strong> the ion<br />

content can be a useful approach to dissem<strong>in</strong>ate the<br />

application <strong>of</strong> cont<strong>in</strong>uous <strong>water</strong> quality management even <strong>in</strong><br />

remote sites. Follow<strong>in</strong>g our earlier work, we report on the<br />

enhancement <strong>of</strong> sensitivity and selectivity <strong>of</strong> sensor [1]. When<br />

heavy metal ion is added to gold nanoparticle capped with<br />

polymer, functionalized group <strong>in</strong> polymer attaches with metal<br />

ion lead<strong>in</strong>g to the shape and size <strong>of</strong> <strong>nanoparticles</strong> be<strong>in</strong>g<br />

changed, result<strong>in</strong>g <strong>in</strong> a change <strong>in</strong> surface plasmon resonance<br />

frequency. A comparison <strong>of</strong> the optical absorption spectra <strong>of</strong><br />

the colloidal suspension before and after exposure to metal<br />

<strong>ions</strong> is a good <strong>in</strong>dicator <strong>of</strong> the concentration <strong>of</strong> the heavy<br />

metal <strong>ions</strong>. Optimization <strong>of</strong> the deconvolution <strong>of</strong> the optical<br />

absorption spectra gives a fantastic tool to follow the<br />

agglomeration process <strong>of</strong> gold nanoparticle through the<br />

chelation <strong>of</strong> the cat<strong>ions</strong> on the polymer utilized for the steric<br />

stabilization that has been used for ion-sens<strong>in</strong>g. In order to<br />

complete the chelation <strong>of</strong> the metal <strong>ions</strong> like copper, z<strong>in</strong>c and<br />

manganese, about 1 hour was sufficient to complete the<br />

reaction <strong>in</strong> most <strong>of</strong> the cases. This simple metal ion sensor can<br />

be implanted <strong>in</strong> lab-on-chip type <strong>of</strong> applicat<strong>ions</strong> for easier<br />

implementation.<br />

Keywords: heavy metals gold <strong>nanoparticles</strong>, chelation, surface<br />

plasmon resonance<br />

1. Introduction<br />

Environmental monitor<strong>in</strong>g is becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly<br />

critical to protect the public and the environment from toxic<br />

contam<strong>in</strong>ants and pathogens released <strong>in</strong>to air, soil, and <strong>water</strong><br />

from toxic chemical wastes, spills, manufactur<strong>in</strong>g waste and<br />

even underground storage tanks. The United States<br />

Environmental Protection Agency (U.S. EPA) has imposed<br />

strict regulat<strong>ions</strong> on the maximum allowable concentrat<strong>ions</strong> <strong>of</strong><br />

many environmental contam<strong>in</strong>ants <strong>in</strong> air and <strong>water</strong> and is<br />

reported to be monitor<strong>in</strong>g over two million underground<br />

storage tanks conta<strong>in</strong><strong>in</strong>g hazardous (and <strong>of</strong>ten volatile)<br />

contam<strong>in</strong>ants from as early as 1992 [2]. Nanotechnology has<br />

the potential to br<strong>in</strong>g <strong>in</strong> solut<strong>ions</strong> to m<strong>in</strong>imize or elim<strong>in</strong>ate the<br />

use <strong>of</strong> toxic materials and the generation <strong>of</strong> undesirable by-<br />

products, as well as, sensitively detect (and monitor) specific<br />

pollut<strong>in</strong>g agents well before any major environmental<br />

catastrophe occur. Research related to improved <strong>in</strong>dustrial<br />

processes and start<strong>in</strong>g material requirements, development <strong>of</strong><br />

new chemical and <strong>in</strong>dustrial procedures, and materials to<br />

replace current hazardous constituents and processes, result<strong>in</strong>g<br />

<strong>in</strong> reduct<strong>ions</strong> <strong>in</strong> energy, materials, and waste generation are<br />

be<strong>in</strong>g supplemented by the application <strong>of</strong> nanotechnology to<br />

control and predict the potential damage to the environment.<br />

Monitor<strong>in</strong>g hazardous materials with current methods are<br />

costly and time <strong>in</strong>tensive and several limitat<strong>ions</strong> <strong>in</strong> sampl<strong>in</strong>g<br />

and test<strong>in</strong>g with analytical techniques have been identified.<br />

The time and expense <strong>in</strong>volved <strong>in</strong> the detection <strong>of</strong><br />

environmental pollutants (i.e., sample acquisition, sample<br />

preparation, and laboratory analysis) have led to the renewed<br />

<strong>in</strong>terest for f<strong>in</strong>d<strong>in</strong>g newer solut<strong>ions</strong> to analyze contam<strong>in</strong>ation<br />

<strong>in</strong> order to prevent, seek remedial action or to destroy the<br />

contam<strong>in</strong>ants prior to the pollution <strong>of</strong> the environment. Fast<br />

and cost-effective field-analytical technologies that can<br />

<strong>in</strong>crease the number <strong>of</strong> analyses and drastically reduce the<br />

time required to perform them will help <strong>in</strong> prevention <strong>of</strong><br />

environmental catastrophe. Increas<strong>in</strong>g the amount <strong>of</strong> analytical<br />

data tends to improve the accuracy <strong>of</strong> hazardous waste site<br />

characterization lead<strong>in</strong>g to a better management <strong>of</strong> the<br />

problems by and the risk assessments can be improved by<br />

efficient cleanup procedure [3].<br />

The wide variation <strong>of</strong> optical properties <strong>of</strong> metal<br />

<strong>nanoparticles</strong> with particle size and shape, particle-particle<br />

distance, and the dielectric properties <strong>of</strong> the surround<strong>in</strong>g<br />

solution due to the phenomenon called surface plasmon<br />

resonance enables construction <strong>of</strong> simple but sensitive<br />

colorimetric sensors for various analyses. The chemical<br />

<strong>in</strong>ertness and resistance to surface oxidation make production<br />

<strong>of</strong> gold <strong>nanoparticles</strong> easier <strong>in</strong> comparison to other metal<br />

<strong>nanoparticles</strong>.<br />

Unlike spherical particles, light cannot polarize the<br />

anisotropic <strong>nanoparticles</strong> homogenously and retardation<br />

effects lead to the excitation <strong>of</strong> multimodes (higher order<br />

modes). Therefore, several resonances are generated lead<strong>in</strong>g to<br />

a broad ext<strong>in</strong>ction pr<strong>of</strong>ile, or a few other low energy peaks <strong>in</strong><br />

the absorption spectra. The plasmon resonance <strong>of</strong> nonspherical<br />

<strong>nanoparticles</strong>, like nanorods and nanocha<strong>in</strong>s, splits<br />

<strong>in</strong>to 2 modes. The first mode be<strong>in</strong>g perpendicular to the long<br />

axis <strong>of</strong> rod is referred as the transverse mode. The other mode<br />

be<strong>in</strong>g parallel to the long axis <strong>of</strong> rod is referred as the<br />

longitud<strong>in</strong>al mode. Follow<strong>in</strong>g our earlier work [1], we<br />

improved on the sensitivity and selectivity <strong>of</strong> sensor. The test<br />

kit must have a good metal-ion selectivity property. That<br />

means sensor can recognize difference between metal <strong>ions</strong>.<br />

When heavy metal ion is added to gold nanoparticle capped


with polymer, functionalized group <strong>in</strong> polymer will attach<br />

with heavy metal ion lead<strong>in</strong>g to shape and size <strong>of</strong><br />

<strong>nanoparticles</strong> be<strong>in</strong>g changed, result<strong>in</strong>g <strong>in</strong> a change <strong>in</strong> surface<br />

plasmon resonance frequency.<br />

Table 1: Maximum concentration <strong>of</strong> heavy metal ion and<br />

traditional analyze method [4]<br />

<strong>Heavy</strong><br />

metal ion<br />

Maximum<br />

concentration<br />

(ppm)<br />

Analysis methods<br />

Copper 2.0 Atomic Absorption<br />

Spectrophotometry<br />

(Direct Aspiration)<br />

Manganese 5.0<br />

or<br />

Plasma Emission<br />

Spectroscopy<br />

Z<strong>in</strong>c 5.0 (Inductively Coupled<br />

Plasma: ICP)<br />

In the Table 1 the maximum tolerated concentration <strong>of</strong><br />

heavy metal <strong>ions</strong> <strong>in</strong> <strong>water</strong> stipulated by the M<strong>in</strong>istry <strong>of</strong> Natural<br />

and Environment <strong>of</strong> the Royal Government <strong>of</strong> Thailand is<br />

given. As a test case <strong>of</strong> the application <strong>of</strong> the plasmon<br />

resonance sensor, we have considered only copper, manganese<br />

and z<strong>in</strong>c for this study. Copper is widely used <strong>in</strong> many<br />

products such as pip<strong>in</strong>g, electronic devices, structural<br />

eng<strong>in</strong>eer<strong>in</strong>g, household products, co<strong>in</strong>s, biomedical and<br />

chemical applicat<strong>ions</strong>. In Thailand, major <strong>in</strong>dustries are<br />

work<strong>in</strong>g <strong>in</strong> the area <strong>of</strong> electronic assembly, so copper is the<br />

ma<strong>in</strong> material for Pr<strong>in</strong>ted Circuit Board (PCB). The process<br />

<strong>in</strong>volved <strong>in</strong> mak<strong>in</strong>g the PCB’s lead to land and contam<strong>in</strong>ation<br />

<strong>of</strong> wafer. In sufficient amounts (more than 10 mg per day) [5],<br />

copper can be poisonous and even fatal to human organisms.<br />

Manganese is essential to iron and steel production by virtue<br />

<strong>of</strong> its sulfur-fix<strong>in</strong>g, deoxidiz<strong>in</strong>g, and alloy<strong>in</strong>g properties.<br />

Manganese compounds are less toxic than those <strong>of</strong> other<br />

widespread metals such as iron, nickel and copper compounds.<br />

However manganese is toxic <strong>in</strong> excess. Z<strong>in</strong>c is the fourth most<br />

common metal <strong>in</strong> use, follow<strong>in</strong>g only iron, alum<strong>in</strong>um, and<br />

copper <strong>in</strong> annual production. Moreover, Z<strong>in</strong>c is used as part <strong>of</strong><br />

the conta<strong>in</strong>ers <strong>of</strong> batteries; the most widespread such use is as<br />

the anode <strong>in</strong> alkal<strong>in</strong>e batteries. It is known that used batteries<br />

are a major cause <strong>of</strong> z<strong>in</strong>c contam<strong>in</strong>ation <strong>of</strong> land and <strong>water</strong>.<br />

In this work, the synthesized <strong>nanoparticles</strong> were capped<br />

with chitosan, which is well known as a heavy metal-chelat<strong>in</strong>g<br />

agent [6]. Chitosan has free am<strong>in</strong>es <strong>in</strong> its monomer, which<br />

gets protonated <strong>in</strong> dilute acidic media. These protonated<br />

am<strong>in</strong>es form the multiple bond<strong>in</strong>g sites that are useful <strong>in</strong><br />

chelat<strong>in</strong>g heavy metals like Mn 2+ , Cu 2+ and Zn 2+ [7]. Though<br />

chelation <strong>of</strong> heavy metal <strong>ions</strong> by chitosan has been widely<br />

studied, relatively less attention has been given to<br />

development <strong>of</strong> simple colorimetric sensors to detect the<br />

presence <strong>of</strong> heavy metal ion contam<strong>in</strong>ants <strong>in</strong> <strong>water</strong>. S<strong>in</strong>ce gold<br />

<strong>nanoparticles</strong> are an ideal candidate for the construction <strong>of</strong><br />

colorimetric sensors, the electrostatic attachment <strong>of</strong> chitosan<br />

over gold <strong>nanoparticles</strong> has been studied <strong>in</strong> order to<br />

demonstrate a simple colorimetric sensor for <strong>in</strong>dicat<strong>in</strong>g the<br />

concentration <strong>of</strong> heavy metals <strong>ions</strong> (Cu 2+ , Zn 2+ and Mn 2+ ) <strong>in</strong> a<br />

solution.<br />

2. Materials and methods<br />

One <strong>of</strong> the most commonly used techniques to stabilize<br />

colloids <strong>of</strong> gold <strong>nanoparticles</strong> <strong>in</strong> aqueous system was first<br />

described by Turkevich is based on the reduction <strong>of</strong><br />

choloroauric acid with trisodium citrate [8]. This technique<br />

was cont<strong>in</strong>uously improved to achieve narrower particle size<br />

distribution today.<br />

There are many reports on the application <strong>of</strong> gold<br />

<strong>nanoparticles</strong> capped with polymer such as polystyrene [9],<br />

thiol [10], and chitosan [1]. Polymers serve dual-purpose, one<br />

<strong>of</strong> provid<strong>in</strong>g sufficient steric or electrosteric h<strong>in</strong>drance<br />

ensur<strong>in</strong>g stability <strong>of</strong> the colloids and also to functionalize the<br />

<strong>nanoparticles</strong> for sens<strong>in</strong>g applicat<strong>ions</strong>.<br />

Synthesis <strong>of</strong> gold nanoparticle was based on the welldocumented<br />

Turkevitch process. Stock solution <strong>of</strong> 5 or 50 mM<br />

chloroauric acid (Aldrich) (Solution A), and 25 or 250 mM trisodium<br />

citrate (Merck) (Solution B) are prepared <strong>in</strong> de-ionized<br />

<strong>water</strong>. Solution B is employed as a reduc<strong>in</strong>g agent [1].<br />

Chitosan (CTS) was used for capp<strong>in</strong>g the gold nanoparticle<br />

(Aldrich, medium molecular weight). 1 wt% chitosan was<br />

dissolved <strong>in</strong> (1 wt%) hydrochloric acid (HCl) (Merck).<br />

Prior to measurement, the gold colloid was mixed with<br />

prepared heavy metal ion. In our experiment, Copper acetate<br />

(Aldrich), Copper sulphate (APS), Manganese acetate (Fluka),<br />

and Z<strong>in</strong>c acetate (Merck) are dissolved <strong>in</strong> de-ionized <strong>water</strong> at<br />

2000, 200 and 20 ppm. Each <strong>of</strong> f<strong>in</strong>al mix<strong>in</strong>g reagents<br />

conta<strong>in</strong>ed 50 % <strong>of</strong> gold nanoparticle and 50 % <strong>of</strong> vary<strong>in</strong>g<br />

concentration <strong>of</strong> heavy metal ion solution that are 100, 50, 20,<br />

10, 5, 2, 1, 0.5, 0.2, and 0.1 ppm. The optical spectrum <strong>of</strong><br />

absorbance curve is measured by spectrophotometer (Ocean<br />

Optic Model USB 2000-FLG) after mix<strong>in</strong>g for vary<strong>in</strong>g times<br />

from m<strong>in</strong>utes to 1 hour, for ensur<strong>in</strong>g that all metal <strong>ions</strong> have<br />

reacted. Each absorbance curve reported <strong>in</strong> this work is a<br />

representation <strong>of</strong> at least five measurements. Additionally a<br />

reference sample was always measured dur<strong>in</strong>g the<br />

measurement <strong>of</strong> all optical spectra; where we used 50% <strong>of</strong><br />

gold nanoparticle and 50 % <strong>of</strong> de-ionized <strong>water</strong> to cross-check<br />

the optical measurement set up prior to each separate optical<br />

absorption measurement.<br />

As already discussed earlier, due to the agglomeration <strong>of</strong><br />

spherical gold <strong>nanoparticles</strong> by the chelation <strong>of</strong> metal <strong>ions</strong>,<br />

longitud<strong>in</strong>al plasmon resonance absorption develops. Thus the<br />

<strong>in</strong>terpretation <strong>of</strong> data is accomplished by us<strong>in</strong>g curve fitt<strong>in</strong>g<br />

tools.<br />

3. Results and Discussion<br />

In Figure 1, the broad and red-shifted peak is a dist<strong>in</strong>ct<br />

sign <strong>of</strong> agglomeration <strong>of</strong> gold <strong>nanoparticles</strong>. Though the signal<br />

caused by agglomeration is apparent even with 1 mM <strong>of</strong> Cu 2+<br />

<strong>ions</strong>, no significant difference between the signals obta<strong>in</strong>ed for<br />

various concentrat<strong>ions</strong>, rang<strong>in</strong>g from 1 mM to 5 mM could be<br />

observed. This agglomeration is probably caused due to the<br />

disturbance <strong>of</strong> the ionic equilibrium, result<strong>in</strong>g <strong>in</strong> loss <strong>of</strong> the<br />

protective glutamate capp<strong>in</strong>g from the gold nanoparticle<br />

surfaces. In gold colloids, it has been observed that the<br />

transverse plasmon resonance shifts to lower energies when<br />

the particle size <strong>in</strong>creases [11].


Figure 1: Series <strong>of</strong> optical absorption spectra obta<strong>in</strong>ed by<br />

expos<strong>in</strong>g gold colloid to vary<strong>in</strong>g concentrat<strong>ions</strong> <strong>of</strong> Cu 2+ <strong>ions</strong><br />

without prior surface treatment with chitosan.<br />

It has been reported earlier by Sugunan [1] that the gold<br />

<strong>nanoparticles</strong> <strong>in</strong> the colloids agglomerate <strong>in</strong> l<strong>in</strong>ear cha<strong>in</strong>s upon<br />

the disturbance <strong>of</strong> the double layer <strong>of</strong> the colloids by the<br />

adsorption <strong>of</strong> cat<strong>ions</strong>. Hence <strong>in</strong> the plasmon resonance<br />

absorption spectra the longitud<strong>in</strong>al modes change most<br />

dist<strong>in</strong>ctly compared to any shifts <strong>in</strong> the transverse mode <strong>of</strong><br />

optical absorption, as shown <strong>in</strong> Figure 2.<br />

wavelength shift (nm)<br />

wavelength shift (nm)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

0.3<br />

0.15<br />

0<br />

Transverse plasmon resonance<br />

Gold Colloid MR3 @ 0.2 mM capped 0.1% chitosan pH6<br />

-0.15<br />

0 1 2<br />

Initial Wavelength 525.399 nm<br />

Cu#av<br />

Mn#av<br />

Zn#av<br />

Cu#av (Copper Sulphate)<br />

-0.2<br />

0 10 20 30 40 50 60 70 80 90 100<br />

amount <strong>of</strong> ion (ppm)<br />

(A)<br />

110<br />

100<br />

40<br />

30<br />

Longitudianl plasmon resonance<br />

Gold Colloid MR3 @ 0.2 mM capped 0.1% chitosan pH6<br />

Initial Wavelengh 564.184 nm<br />

90<br />

80<br />

20<br />

10<br />

0<br />

-10<br />

70<br />

0 1 2<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

Cu#av<br />

Mn#av<br />

Zn#av<br />

Cu#av (Copper Sulphate)<br />

0 10 20 30 40 50 60 70 80 90 100<br />

amount <strong>of</strong> ion (ppm)<br />

(B)<br />

Figure 2: The plasmon resonance peak shift with varied metal<br />

ion concentration with gold colloid capped 0.1% chitosan pH<br />

6 (MR 3; 0.2 mM) A) Transverse B) Longitud<strong>in</strong>al<br />

In Figure 3, we have compared the result <strong>of</strong> the shift <strong>in</strong><br />

the longitud<strong>in</strong>al plasmon resonance <strong>in</strong> gold colloids<br />

synthesized at two different molar rat<strong>ions</strong>, upon exposure to<br />

different concentrat<strong>ions</strong> <strong>of</strong> copper, manganese, and z<strong>in</strong>c<br />

cat<strong>ions</strong>. In either case, copper is more sensitive to chang<strong>in</strong>g<br />

the longitud<strong>in</strong>al plasmon resonance peak compared to<br />

manganese and z<strong>in</strong>c.<br />

Figure 3: The different color with varied metal ion<br />

concentration with gold colloid capped 0.1 % chitosan pH 6<br />

(MR 3; 0.2 mM) (Copper acetate, Copper sulphate,<br />

Manganese acetate, Z<strong>in</strong>c acetate and mix<strong>in</strong>g <strong>ions</strong>)<br />

4. Conclus<strong>ions</strong><br />

In summary, a novel strategy for detection <strong>of</strong> heavy metal<br />

<strong>ions</strong> <strong>in</strong> <strong>water</strong> has been developed employ<strong>in</strong>g 20 nm gold<br />

particles capped with a biopolymer called chitosan. Polymer<br />

capp<strong>in</strong>g <strong>of</strong> <strong>nanoparticles</strong> serves a two-fold purpose, that <strong>of</strong><br />

stabilization and surface functionalization for application as<br />

sensors. Chitosan is widely used as a chelat<strong>in</strong>g agent for<br />

removal <strong>of</strong> heavy metal contam<strong>in</strong>ants <strong>in</strong> waste<strong>water</strong>. This<br />

property <strong>of</strong> chitosan has been effectively used to demonstrate<br />

the detection <strong>of</strong> low concentrat<strong>ions</strong> <strong>of</strong> heavy metal <strong>ions</strong> like<br />

Cu 2+ and Zn 2+ . A relatively simple characterization tool like<br />

UV-visible absorption spectrum is found to be sufficient to<br />

observe the concentration levels <strong>of</strong> the analyte. Further<br />

modification <strong>of</strong> the attached chitosan molecules has the<br />

promise to achieve high-specificity sensors for various<br />

applicat<strong>ions</strong>. Apart from applicat<strong>ions</strong> <strong>in</strong> colorimetric pollution<br />

sensors, chitosan capped gold <strong>nanoparticles</strong> may have<br />

biology-oriented applicat<strong>ions</strong> because it was found that<br />

chitosan shows selectivity <strong>in</strong> attachment to certa<strong>in</strong> k<strong>in</strong>ds <strong>of</strong><br />

bacteria. Future experiments will be directed towards this<br />

aspect <strong>of</strong> chitosan capped gold <strong>nanoparticles</strong>.


5. Acknowledgements<br />

The authors would like to acknowledge partial f<strong>in</strong>ancial<br />

support from the NANOTEC Centre <strong>of</strong> Excellence <strong>in</strong><br />

Nanotechnology at the Asian Institute <strong>of</strong> Technology and the<br />

National Nanotechnology Center, both belong<strong>in</strong>g to the<br />

National Science & Technology Development Agency<br />

(NSTDA), Thailand.<br />

6. References<br />

[1]A. Sugunan, C. Thanachayanont, J. Dutta, and J.G. Hilborn,<br />

''<strong>Heavy</strong> – metal ion sensors us<strong>in</strong>g chitosan–capped gold<br />

<strong>nanoparticles</strong>'', Science and Technology <strong>of</strong> Advanced<br />

Materials , Vol. 6, 2005, p 335 - 340<br />

[2] U.S. Environmental Protection Agency (EPA), Report<br />

#EPA/600/R-92/219, 1992<br />

[3] K. R. Rogers and L. R. Williams, "Biosensors for<br />

Environmental Monitor<strong>in</strong>g: A Regulatory Perspective",<br />

Trends Anal. Chem., Vol.14, 1995, p 289-294<br />

[4]http://www.reo09.go.th/reo09/law_environment/law_qualit<br />

y_standard_narmt<strong>in</strong>g.asp (Downloaded on August 30, 2007)<br />

[5] J.R. Turnlund, ''Prob<strong>in</strong>g Dietary Copper’s Healthy Limits'',<br />

Agricultural Research, Vol. 54, 2006, p.23<br />

[6] S.E. Bailey, T.J. Ol<strong>in</strong>, R.M. Bricka, and D.D. Adrian, ''A<br />

review <strong>of</strong> potentially low-cost sorbents for heavy metals'',<br />

Water Research. Vol, 33, 1999, p 2469-2479<br />

[7] E. Guibal, ''Interact<strong>ions</strong> <strong>of</strong> metal <strong>ions</strong> with chitosan-based<br />

sorbents: a review'', Separation and Purification Technology ,<br />

Vol.38, 2004, p 43–74<br />

[8] A. Sugunan, Formation and potential uses <strong>of</strong> glutamatestabilized<br />

gold <strong>nanoparticles</strong>, Asian Institute <strong>of</strong> Technology,<br />

2005, Thesis no. ME-05-04<br />

[9] M. Bockstaller, R. Kolb, and E.L. Thomas,<br />

''<strong>Metal</strong>lodielectric photonic crystals based on diblock<br />

copolymers'', Advanced Materials,Vol.13, 2001, p 1783 - 1786<br />

[10] J. Bourgo<strong>in</strong>, C. Kergueris, E. Lefèvre, and S. Palac<strong>in</strong>,<br />

''Langmuir – Blodgett films <strong>of</strong> thiol – capped gold<br />

nanoclusters: fabrication and electrical properties'', Th<strong>in</strong> Solid<br />

Films, Vol. 327-329 ,1998, p 515 - 519<br />

[11] M. Daniel and D. Astruc, ''Gold <strong>nanoparticles</strong>: assembly,<br />

supramolecular chemistry, quantum-size-related properties,<br />

and applicat<strong>ions</strong> toward biology, catalysis, and<br />

nanotechnology'', Chemical reviews, Vol. 104, 2004, p 293 –<br />

346

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!