28.08.2013 Views

PDF Presentation - faculty.ait.ac.th - Asian Institute of Technology

PDF Presentation - faculty.ait.ac.th - Asian Institute of Technology

PDF Presentation - faculty.ait.ac.th - Asian Institute of Technology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CP Audit in a<br />

Visu/Kumar<br />

Textile Industry<br />

Pr<strong>of</strong>. C. Visvana<strong>th</strong>an, UEEM Program<br />

Dr. S. Kumar, Energy Program<br />

School <strong>of</strong> Environment, Resources and Development<br />

<strong>Asian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong><br />

1


CP Audit in a Textile Industry<br />

ZEBRA Industry Co., Ltd.: Medium size f<strong>ac</strong>tory in Samutprakarn<br />

Products: Knitted fabrics, dyed clo<strong>th</strong> and yarns<br />

Two main sections: Knitting and dyeing<br />

Office and<br />

Residence<br />

Visu/Kumar<br />

Municipal<br />

Workshop<br />

Yarn<br />

Dyeing<br />

Section<br />

Knitting Section<br />

Boiler<br />

Office<br />

LAB Dyeing<br />

Finishing<br />

Section<br />

Gate<br />

1<br />

2<br />

3<br />

4<br />

WW to<br />

Klong<br />

5<br />

6<br />

7<br />

1. Setting pond<br />

2. Aerated pond 2<br />

3. Aerated pond 1<br />

4. Equalization pond<br />

5. Oxidation pond 3<br />

6. Oxidation pond 2<br />

7. Oxidation pond 1<br />

2


Step 1: Define <strong>th</strong>e Objectives and Scope <strong>of</strong> Auditing<br />

Objectives:<br />

Visu/Kumar<br />

• Upgrade and modify <strong>th</strong>e existing treatment processes, to<br />

obtain higher removal efficiency <strong>of</strong> COD and color<br />

• Adopt a long term economically viable Cleaner Production<br />

appro<strong>ac</strong>h, which essentially focuses into <strong>th</strong>e possibility <strong>of</strong> waste<br />

prevention and reduction at <strong>th</strong>e production stage, ra<strong>th</strong>er <strong>th</strong>an<br />

concentrating on <strong>th</strong>e end <strong>of</strong> <strong>th</strong>e line pollution control<br />

• Investigate energy conservation measures<br />

Scope:<br />

What should be <strong>th</strong>e scope <strong>of</strong> <strong>th</strong>e study??<br />

• Focus mainly on <strong>th</strong>e dyeing and finishing section<br />

3


Step 2: Formation <strong>of</strong> Audit Team<br />

Name Designation<br />

Dr. C. Visvana<strong>th</strong>an Pr<strong>of</strong>essor, Environmental Engineering Program,<br />

Visu/Kumar<br />

Audit Team Advisor<br />

Dr. Kumar Associate pr<strong>of</strong>essor, Energy program<br />

Mr. Ramon C. de Mesa<br />

Ms. Mendeluz B.<br />

Mr. T. Pichitchai Plant Manager<br />

Mrs. N.T.Lien Ha Research Associate<br />

Mr. D.Q. Tuan Research Associate<br />

Ms. Yamuana Alles Dye Master<br />

Mr. Ashish Arora Plant Engineer<br />

Mr. T. Visu<strong>th</strong> Plant Engineer<br />

4


Step 3: Plant Walk Through: Understanding <strong>th</strong>e Dyeing Process<br />

Visu/Kumar<br />

Start plant walk<strong>th</strong>rough<br />

After plant walk<strong>th</strong>rough, what can you observe?<br />

Observations:<br />

• Leaks/overflow in <strong>th</strong>e production area<br />

• Bad Housekeeping at dye kitchen<br />

•<br />

• Bad insulation(steam pipes)<br />

• Bad smell from WWTP/Products plant<br />

•<br />

Higher emission from <strong>th</strong>e boiler<br />

Layout problems<br />

•Bo<strong>th</strong> boilers working; no metering <strong>of</strong> steam<br />

•Flue gas measurement not continuous<br />

What Else…??<br />

5


Step 4: Listing <strong>of</strong> Unit Operations<br />

Clo<strong>th</strong> Dyeing Section<br />

Visu/Kumar<br />

Ble<strong>ac</strong>hing<br />

Scouring<br />

Washing<br />

Filling<br />

Dyeing<br />

Washing<br />

Filling<br />

Fixing<br />

Drying<br />

What else??<br />

6


Visu/Kumar<br />

H 2 O, L:R = 10:1<br />

NaOH, 1%W/W<br />

H 2 O 2 , 2%<br />

Detergent, 0.8%<br />

Sequestering, 1%<br />

OBA (Optical Brightening Agent), 0.3%<br />

H 2 O, 60 c<br />

Formic <strong>ac</strong>id, 0.2%<br />

H 2 O 98 0 C, L:R = 10:1<br />

NaCl, 6.5%<br />

Formic <strong>ac</strong>id 0.5%<br />

Dyestuff: disperse 0.012%<br />

Amonium sulphate 0.65%<br />

Dispersing Agent 1.0%<br />

Batch Operation<br />

H 2 O 40 0 C<br />

H 2 O 40 0 C<br />

H 2 O 40 0 C<br />

H 2 O 40 0 C<br />

H 2 O 60 0 C<br />

Fixing Agent 0.15%<br />

H 2 O L:R = 1:1<br />

PVAC 10%<br />

S<strong>of</strong>tener 1%<br />

(non-ionic)<br />

H 2 O 60 0 C, L:R = 10:1<br />

Soaping Agent 0.15%<br />

Step 5: Process Flow Diagram<br />

Gray Clo<strong>th</strong><br />

Ble<strong>ac</strong>hing/Scouring Fluorescent whitening<br />

Washing 1<br />

Washing 2<br />

Filling 1<br />

Clo<strong>th</strong> Dyeing<br />

Washing 3<br />

Washing 4<br />

Filling 2<br />

Fixing<br />

Drying<br />

Resin Finishing Flores whitening<br />

Drying<br />

Curing<br />

Rolling up Plainting Down<br />

What else<br />

is missing<br />

7


Step 6: M<strong>ac</strong>hine Layout <strong>of</strong> <strong>th</strong>e Dyeing-Finishing Section<br />

R: Rapid Winch<br />

W: Washing M<strong>ac</strong>hine<br />

Visu/Kumar<br />

Finishing<br />

Finishing<br />

Drier 2<br />

Finishing<br />

Finishing<br />

Dryer1<br />

HT: High Temperature Winch<br />

: Sampling Site<br />

: Wastewater channels<br />

: Wastewater sump<br />

Screen<br />

Printing<br />

To Equalization Pond<br />

Samp. Site 4<br />

Sump<br />

Samp. Site 3<br />

WS3 WS2 WS1<br />

RW6<br />

RW5<br />

RW8<br />

RW7<br />

RW1<br />

RW9<br />

RW4<br />

RW3<br />

RW2<br />

HT3 HT2 HT1<br />

Samp.<br />

Site 3<br />

Samp. Site 3<br />

To Oxidation Pond<br />

8


Step 7: Review <strong>th</strong>e WWTP<br />

To Klong<br />

Visu/Kumar<br />

Activated<br />

Carbon<br />

Sand filter<br />

Settling pond<br />

(400 m 2 )<br />

Aerated pond 2<br />

(400 m 2 )<br />

Aerated pond 1<br />

(400 m 2 )<br />

Wetland<br />

Oxidation pond 1 (3000 m 2 )<br />

Oxidation pond 2 (2000 m 2 )<br />

Oxidation pond 3 (2500 m 2 )<br />

Equalization<br />

Pond (400 m 2 )<br />

Wastewater from Stentor<br />

Schematic Diagram <strong>of</strong> <strong>th</strong>e Wastewater Treatment Plant<br />

Wastewater from sampling site 1<br />

9


Step 8: Material Consumption for <strong>th</strong>e Clo<strong>th</strong> and Yarn Dyeing Sections<br />

Material Recorded<br />

Clo<strong>th</strong> (dry, kg/d) 12,000<br />

Yarn (dry, kg/d) 2,000<br />

Fresh Water (m 3 /d) 565<br />

Dyestuff (kg/d) 2.25<br />

Auxiliary Chemicals (kg/d) 3,068<br />

-NaOH 120<br />

-H2O2 240<br />

-Detergent 88<br />

- Sequestering Agent 120<br />

- NaCl 980<br />

-Formic <strong>ac</strong>id 84<br />

- Ammonium sulphate(AMS) 66<br />

- Soaping Agent 30.4<br />

-Fixing Agent 219.2<br />

- Polyvinyl<strong>ac</strong>etate(PVAC) 1,200<br />

-S<strong>of</strong>tener 120<br />

- Steam 142,000<br />

Visu/Kumar<br />

What is<br />

missing<br />

10


Step 9:<br />

Ground water Treated water<br />

s<strong>of</strong>tening)<br />

Visu/Kumar<br />

Domestic use<br />

Industrial use<br />

Boiler<br />

Yarn Dyeing section<br />

Clo<strong>th</strong> Dyeing section<br />

Knitting<br />

11


Step 10: Benchmarking (Comparison <strong>of</strong> wastewater generation)<br />

Visu/Kumar<br />

Type <strong>of</strong><br />

processes<br />

Scouring,<br />

Ble<strong>ac</strong>hing,<br />

Dyeing and<br />

Washing<br />

Electricity<br />

Consumption<br />

Type <strong>of</strong><br />

product<br />

Cotton Yarn 0.15<br />

UNIDO<br />

m 3 /Kg<br />

0.3-12.6<br />

MWh/ton<br />

Energy Consumption…???? …. > ….. 42% %<br />

Measured<br />

m 3 /Kg<br />

0.05<br />

18 MWh/ton<br />

Or you can use COD as ano<strong>th</strong>er indicator (kg/ton)<br />

12


R: Rapid Winch<br />

W: Washing M<strong>ac</strong>hine<br />

Visu/Kumar<br />

Stenter 1<br />

Stenter 2<br />

Drier 2<br />

Stenter 3<br />

Stenter 4<br />

Dryer1<br />

HT: High Temperature Winch<br />

: Sampling Site<br />

: Wastewater channels<br />

: Wastewater sump<br />

To Equalization Pond<br />

Screen<br />

Printing<br />

Samp. Site 4<br />

Sump<br />

Samp. Site 3<br />

WS3 WS2 WS1<br />

RW6<br />

RW5<br />

RW8<br />

RW7<br />

RW1<br />

RW9<br />

RW4<br />

RW3<br />

RW2<br />

HT3 HT2 HT1<br />

Step 11: Sampling plan<br />

Samp.<br />

Site 3<br />

Samp. Site 3<br />

To Oxidation Pond<br />

13


Step 12: Overall Water Consumption Record<br />

Section<br />

Visu/Kumar<br />

Fresh<br />

water in<br />

To ETP Recycled Loss<br />

Domestic 30 30 0<br />

Boilers 142 N/A- 0<br />

Yarn<br />

Dyeing<br />

Clo<strong>th</strong><br />

Dyeing<br />

O<strong>th</strong>er<br />

(knitting)<br />

80 80 0<br />

485 29 0<br />

10 N/A 0<br />

Cooling 28 N/A<br />

Total 775 539 0<br />

Output: Wastewater = 539 m3 (This value was measured at <strong>th</strong>e WWTP)<br />

Mass Balance:?? (775 -539) / (775) * 100 = 30.45%<br />

OK<br />

or not<br />

0<br />

142<br />

0<br />

56<br />

-<br />

228<br />

14


Step 13: Overall Water Consumption Record<br />

Visu/Kumar<br />

INPUT<br />

Boiler (142 m3)<br />

18%<br />

Knitting<br />

(10 m3)<br />

1%<br />

Domestic Usage<br />

(30 m3)<br />

4%<br />

Water Supply<br />

(775 m 3 /day)<br />

Yarn Dyeing<br />

(80 m3) 10%<br />

Cooling (28 m3)<br />

4%<br />

Clo<strong>th</strong> Dyeing<br />

(485m3)<br />

63%<br />

15


Step 14: Clo<strong>th</strong> Dyeing Wastewater 485 m 3<br />

Stentor WW<br />

6%<br />

Visu/Kumar<br />

Losses<br />

12%<br />

Fixing &<br />

Washing<br />

57%<br />

Ble<strong>ac</strong>hing<br />

12%<br />

Dyeing<br />

13%<br />

16


Step 15: Material Balance: Sector Level<br />

Total Input: 485 m 3<br />

Output<br />

Visu/Kumar<br />

Section m 3 /d<br />

Ble<strong>ac</strong>hing : 60<br />

Dyeing : 64<br />

Fixing and Washing : 274<br />

Stentor : 30<br />

TOTAL : 429<br />

Percentage deficit : (485 ….?? -429) / 485 * 100 % : 11.5 % < 20%<br />

Difference = 56 m 3 : due to evaporation losses / pick up on <strong>th</strong>e clo<strong>th</strong>.<br />

OK<br />

17


Step 16: Unit Level Material Balance<br />

Percent Loss:<br />

Visu/Kumar<br />

Tie Compound COLOR : ADMI<br />

1 ADMI : 1 mg/L Dye<br />

Input:<br />

(At dyeing unit)<br />

Jet Dyeing : 2,040 g/d<br />

Dyeing<br />

Outputs:<br />

Washing 3 : 325 g/d<br />

Washing 4 : 275 g/d<br />

Fixing : 25 g/d<br />

Clo<strong>th</strong> : 1,400 g/d<br />

TOTAL : 2,025 g/d<br />

..?? (2040-02025)/(2040)*100 = 0.75 % How Excellent is it..?<br />

Total Waste<br />

(% Fixing <strong>of</strong> Dye) = 68%<br />

Industry Norms : ≥ 75%<br />

Which Item is not efficient..? Washing 3<br />

18


Step 17: Current Level <strong>of</strong> Water Reuse - Recycling<br />

Step 18: Quantifying <strong>th</strong>e Process Outputs<br />

Major:<br />

Visu/Kumar<br />

Clo<strong>th</strong> Dry : 12,000 kg/d<br />

Wastewater : 539 m 3 /d<br />

Solid waste (including sludge) : 820 kg/d<br />

19


Step 19:<br />

Thousands<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Visu/Kumar<br />

13.6<br />

3.5<br />

4<br />

W.W. x 0.1m3 COD Color x 0.5 ADMI BOD<br />

1.9<br />

1.5<br />

0.8 0.8 0.8<br />

1<br />

0.8 0.8<br />

0.8 0.8<br />

0.5<br />

0.7<br />

0.4<br />

0.5<br />

0.25<br />

0 0 0 0.05 0 0<br />

Ble<strong>ac</strong>hing Neutralizing Dyeing Washing 1 Fixing Washing 2 Stentor<br />

0.3<br />

7.3<br />

1<br />

PVAC<br />

3<br />

20


Step 20: Pollution Load per day on ETP<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Visu/Kumar<br />

7<br />

Flow<br />

COD Load<br />

BOD Load<br />

1 1<br />

20<br />

2 2<br />

80<br />

96<br />

95<br />

8<br />

18 18<br />

Domestic Yarn Dyeing Clo<strong>th</strong> Dyeing Stenter<br />

21


Step 21: COD / BOD Removal Efficiency <strong>of</strong> <strong>th</strong>e ETP<br />

Units Flowrate (m COD Removal BOD Removal<br />

Efficiency<br />

In Out Loss In Out Efficiency in out<br />

3 /d)<br />

(mg/L)<br />

(%)<br />

Visu/Kumar<br />

(mg/L)<br />

Filters 250 250 0 190 185 2.6 36 28 22.2<br />

Settling Pond 254 250 4 235 190 20.4 52 36 31.9<br />

Aerated Pond 2 258 254 4 271 235 14.6 122 52 58.0<br />

Aerated Pond 1 262 258 4 900 271 70.3 381 122 31.5<br />

Wetland Pond 539 262 277 2650 900 83.5 1174 381 84.2<br />

Equalization Pond 30 30 0 5800 1240 78.6 2628 338 87.1<br />

Total 289<br />

Loss in Pond: 277 m 3 /d<br />

How Much ???<br />

Why?<br />

(%)<br />

22


Step 22: Performance <strong>of</strong> Current ETP<br />

Filters<br />

Out 250 m 3<br />

COD 190<br />

Out 250 m 3<br />

COD 190<br />

Visu/Kumar<br />

Setting<br />

Pond<br />

Wetland Area<br />

Loss due to infiltration and<br />

evaporation 277 m 3 (51.3%)<br />

20.4% COD<br />

31.9% BOD<br />

Out 254 m 3<br />

COD 235<br />

14.6% COD<br />

58.0% BOD<br />

Aerated Pond<br />

2 wi<strong>th</strong> 4<br />

aerators<br />

Loss 45.8%<br />

Out 258 m 3<br />

COD 271<br />

70.3% COD<br />

Aerated<br />

Pond 1<br />

83.5% COD<br />

84.2% BOD<br />

31.5% BOD<br />

Out 30 m 3<br />

78.6% COD<br />

87.1% BOD<br />

COD 1240<br />

Equalization<br />

Pond<br />

Input 539 m 3<br />

COD 2650 mg/L<br />

Out 262 m 3<br />

COD 900<br />

In 30 m 3<br />

COD 5800<br />

23


Step 23: Major Sources <strong>of</strong> Wastewater<br />

Visu/Kumar<br />

Ble<strong>ac</strong>hing / dyeing and finishing stage<br />

Wash water + Steam condensate<br />

Wastewater and COD Load on ETP<br />

24


R = Rapid Winch<br />

W = Washing M<strong>ac</strong>hine<br />

HT = High Temperature Winch<br />

CTP = Chemical Treatment Plant<br />

Visu/Kumar<br />

Sampling site<br />

Wastewater sump<br />

HT3 HT2 HT1<br />

Samp.<br />

Site 3<br />

RW3<br />

Less-polluted Wastewater channels<br />

Polluted Wastewater Channel<br />

RW4<br />

RW2<br />

RW5<br />

RW1<br />

RW7<br />

RW6<br />

RW8<br />

WS3 WS2 WS1<br />

RW9<br />

Sump<br />

1<br />

2<br />

3<br />

CTP<br />

Step 24: Proposed Layout <strong>of</strong> Segregated Effluent Channels and<br />

Modification <strong>of</strong> <strong>th</strong>e Current ETP.<br />

4<br />

25


Step 25:<br />

Visu/Kumar<br />

Total dye Purchased : 2.25<br />

Total Dye Used : 2.04<br />

Difference in handling : ..??? %<br />

9.33%<br />

House keeping Records<br />

26


Option 1: Polyvinyl<strong>ac</strong>etate (PVAC)<br />

Visu/Kumar<br />

Used for resin finishing after dyeing process<br />

Daily consumption = 1200 kg/d (PVAC)<br />

Organic compound = compound volatile<br />

Expensive = 500 Baht / kg<br />

High BOD Load<br />

Smell in <strong>th</strong>e drying chamber (OHS)<br />

Most <strong>of</strong> <strong>th</strong>e ‘PVAC’ which is not att<strong>ac</strong>hed to <strong>th</strong>e clo<strong>th</strong> is removed<br />

at <strong>th</strong>e drying chamber.<br />

Moisture content : at <strong>th</strong>e finishing : 95%<br />

at <strong>th</strong>e drying : 7.5%<br />

10% PVAC Add a v<strong>ac</strong>uum evaporator<br />

27


Option 2: Steam Condensate<br />

Visu/Kumar<br />

Currently discharged as a Waste water at a<br />

temperature <strong>of</strong> 75 0 C,<br />

Measured volume = 120 m 3 / d<br />

Condensate Recovery System<br />

28


Fabric<br />

Visu/Kumar<br />

Boiler<br />

Underground cooling<br />

water storage<br />

Fresh boiler water IN<br />

Heat Exchanger<br />

Condensate discharge<br />

Fresh Cooling water IN<br />

Finishing Dip<br />

Drying chamber<br />

Fresh finishing<br />

chemicals<br />

29


Fabric<br />

Boiler<br />

Underground cooling<br />

water storage<br />

Visu/Kumar<br />

Boiler water<br />

makeup<br />

Heat Exchanger<br />

Condensate recovery unit<br />

Fresh Cooling water IN<br />

Finishing Dip<br />

EVAC suction system<br />

Drying chamber<br />

Fresh finishing<br />

chemicals<br />

30


Option 3: Recovery <strong>of</strong> Kerosene used in Textile Printing<br />

Brief Description :<br />

Kerosene is used as print paste <strong>th</strong>ickener:<br />

Visu/Kumar<br />

120-140 c : recovery chamber<br />

Loss <strong>of</strong> Kerosene at Different Stages <strong>of</strong> Printing<br />

78%<br />

1%<br />

4%<br />

12%<br />

5%<br />

Before entry into Drier<br />

On Blankets, Screen &<br />

Drained waste<br />

On Curing m<strong>ac</strong>hine<br />

Remains on fabric<br />

Atmospheric release from<br />

Drier<br />

Number <strong>of</strong> Trials 10<br />

Total kerosene used for preparation <strong>of</strong> print paste 1870 litres<br />

Quantity <strong>of</strong> kerosene evaporated at Dryer 1402 l itres<br />

Kerosene vapour recovered <strong>th</strong>ro’ plant 1100 litres<br />

Percentage <strong>of</strong> kerosene recovery from printing Dryer 78.5%<br />

Percentage <strong>of</strong> Kerosene recovered based on total<br />

consumption<br />

58.8%<br />

31


Visu/Kumar<br />

Boiler is a very common heat exchange equipment<br />

Analyze <strong>th</strong>e data<br />

→ Air used →<br />

Theoretical- Input<br />

Actual- Output<br />

→ Excess → Temp↓<br />

O<strong>th</strong>er Cap<strong>ac</strong>ity<br />

(Blower)<br />

→ Efficiency<br />

Important (2 Phase)<br />

32


Visu/Kumar<br />

3 Pass Coal Fire Boiler<br />

Steam Out<br />

Fire Tube Steam Boiler<br />

Steam Out<br />

Smoke St<strong>ac</strong>k<br />

Smoke St<strong>ac</strong>k<br />

Water In<br />

Water Tube Steam Boiler<br />

33


Visu/Kumar<br />

Plant Walk<strong>th</strong>rough: Boiler Data<br />

1. Flue gas % (O 2 ) = 8.2%<br />

Temperature = 310 0 C<br />

2. Fuel = 750 kg/h<br />

(C = 85.9%, H = 11.8%, S = 2%,…. )<br />

3. Oil Heater = 8 kW<br />

Oil Pump = 1 kW<br />

4. Fan = 30 kW<br />

5. Pumps = 1 kW<br />

6. Water Feed = 10 m 3 / h<br />

7. Blow Down = 0.6 m 3 / h<br />

8. Steam Pressure = 10 bar<br />

Temperature = 180 0 C<br />

9. Convection & Radiation Loss = 50,000 kJ/h<br />

34


Boiler is a very common heat exchange equipment.<br />

Visu/Kumar<br />

35


Visu/Kumar<br />

Boiler Analysis: Combustion<br />

A. Calculation <strong>of</strong> Theoretical Air requirement:<br />

Required data (Fuel constituents):<br />

C - 85.9% H - 11.8% S - 2%<br />

H 2 O - 0.3% Ash - 0.008%<br />

Chemical equations<br />

C + O 2 CO 2<br />

S + O 2 SO 2<br />

2H 2 + O 2 2H 2 O<br />

(2) (1)<br />

1 mole <strong>of</strong> air = 0.21 moles <strong>of</strong> O 2 + 0.79 moles <strong>of</strong> N 2<br />

∴ 1 mole <strong>of</strong> O 2 = 0.79/0.21 = 3.76 mole <strong>of</strong> N 2<br />

36


Visu/Kumar<br />

Calculation <strong>of</strong> Theoretical Air Requirement……..<br />

Constituents % wt Moles Moles <strong>of</strong> O 2<br />

(for 100 Kg <strong>of</strong> fuel) (%wt/MW) required .<br />

C (12) 85.9 7.16 7.16<br />

H (2) 11.8 5.9 2.95<br />

S (32) 2 0.063 0.063<br />

For complete combustion, we require O 2 for <strong>th</strong>is fuel,<br />

Mole <strong>of</strong> O 2 = .. 7.16 + 2.95 + 0.06 = 10.17<br />

???<br />

∴ Theoretical Air req. = (MW)O 2*(Mole)O 2 + (3.76) * (Mole)O 2 * (MW)N 2<br />

A/F.. ???<br />

= (32) (10.17) + (3.76) (10.17) 28<br />

= 1396 kg air/100 kg <strong>of</strong> fuel<br />

= 13.96 (kg <strong>of</strong> air/kg <strong>of</strong> fuel)<br />

37


Visu/Kumar<br />

B. Calculation <strong>of</strong> Actual Air Fuel Ratio:<br />

Kumar.. Check here <strong>th</strong>e Water molecule in <strong>th</strong>e calculation…<br />

Required data (Flue gas constituents)<br />

CO2 = 7.16 moles<br />

SO2 = 0.063 ,,<br />

N2 = (10.17) (3.76) = 38.2 (<strong>th</strong>eoretical)<br />

O2 = x (Oxygen in flue gas - measured)<br />

= 3.76 x<br />

N 2<br />

∴ Total mole = 7.16 + 0.063 + 38.2 + x + 3.76 x<br />

= 45.46 + 4.76 x<br />

x 8.2<br />

∴ O 2 ratio in flue gas = --------------------- = -------<br />

(45.46 + 4.76 x ) 100<br />

38


Visu/Kumar<br />

Calculation <strong>of</strong> Actual Air Fuel Ratio…….<br />

372.72 + 39.03 x = 100 x<br />

∴ x = 6.11 mole <strong>of</strong> O 2<br />

∴ Actual O 2 10.17 + 6.11 = 16.28<br />

∴ Actual air (kg) = (16.28) (32) + (16.28) (3.76) (28)<br />

= 2235.9 (kg <strong>of</strong> air/100kg <strong>of</strong> fuel)<br />

∴ Actual A/F = 22.35 kg <strong>of</strong> air/kg <strong>of</strong> fuel<br />

39


Visu/Kumar<br />

Flue Gas Analysis<br />

% O 2 in flue gas 8.2 % (measured)<br />

Summary<br />

• Theoretical Air/Fuel ratio = 13.9 (kg <strong>of</strong> air/kg <strong>of</strong> fuel)<br />

• Actual Air/Fuel ratio = 22.35<br />

Actual - Theoretical<br />

∴ Excess air = --------------------------- x 100 = 60% (very high)<br />

Theoretical<br />

Indicates improvements to be made in <strong>th</strong>e control <strong>of</strong> air supply (for<br />

oil, excess air = approx 20%)<br />

How do you do <strong>th</strong>is? Air flow control?… Valves? Fans? Blower?<br />

40


Visu/Kumar<br />

Fuel<br />

Air<br />

Water<br />

Electricity<br />

Boiler Energy Balance<br />

Radiation and<br />

convection losses<br />

Flue gas<br />

Steam<br />

O<strong>th</strong>er losses<br />

Blow down<br />

41


A. Energy in Fuel:<br />

Visu/Kumar<br />

Boiler Energy Balance: Energy Input<br />

= Higher heating value <strong>of</strong> fuel oil<br />

= 39.7 MJ / kg <strong>of</strong> fuel<br />

= 39,700 kJ / kg <strong>of</strong> fuel<br />

B. Shaft work: (Electricity Inputs)<br />

(All in kJ / kg <strong>of</strong> fuel)<br />

Oil Heater = 8 kW * 3600/750 = 38.4 kJ / kg<br />

Pumps = 1 kW * 3600/750 = 4.8 kJ / kg<br />

Fan + Pumps = 46 kW * 3600/750 =220.8 kJ / kg<br />

TOTAL =264.0 kJ / kg<br />

Total Energy Input = 39,700 kJ / kg + 264 kJ / kg<br />

= 39,964 kJ / kg <strong>of</strong> fuel<br />

Energy in air is neglected ( = ambient temperature)<br />

42


Visu/Kumar<br />

h feed water<br />

h steam<br />

En<strong>th</strong>alpy Value (From Table) :<br />

h water at steam<br />

= 217 kJ / kg<br />

= 2278.2 kJ / kg<br />

= 763 kJ / kg<br />

43


Visu/Kumar<br />

Energy Output<br />

Useful Output = Energy in Steam - Energy in Feed Water<br />

(Steam) = m w (h s -h f )<br />

= 10 * 1000 (2278.2 - 217.7) / m fuel<br />

= 27,473 kJ / kg<br />

Energy lost in flue gas = m C P (T 2 -T 1 )<br />

C P <strong>of</strong> air / flue gas = 1 kJ / (kg 0 K)<br />

m = 23 kg <strong>of</strong> air / kg <strong>of</strong> fuel<br />

= 23 * 1 * (310 - 30)<br />

= 6,440 kJ / kg <strong>of</strong> fuel<br />

44


Energy lost in blow down = m b (h b -h f )<br />

= 0.6 *1000 (……. 763 - …….) 217 / 750<br />

Blow down value = ….… 437 kJ / kg<br />

Radiation and convection losses = 750,000 / m fuel<br />

= 750,000 / 750<br />

= 1,000 kJ / kg<br />

Energy in H 2 (lost as water vapor) = A (S + L+V)<br />

Visu/Kumar<br />

A = Water formed (kg)<br />

Wt <strong>of</strong> H2 = 0.118 kg /kg <strong>of</strong> fuel (data)<br />

A = (0.118*9) = 1.062 kg/kg <strong>of</strong> fuel<br />

2H 2 + O 2 = 2 H 2O<br />

4 + 32 = 36<br />

1 + 8 = 9<br />

45


Visu/Kumar<br />

S = Sensible heat <strong>of</strong> water (due to raise in temp)<br />

= C P (T 2 -T 1 )<br />

= 4.18 (100 - 30)<br />

= 292.6 kJ / kg <strong>of</strong> water<br />

L = Latent heat <strong>of</strong> water at atmospheric condition<br />

= 2200 kJ / kg<br />

V = Sensible hot <strong>of</strong> water vapor<br />

= 2.18 (310 – 100) = 457.8<br />

Energy Loss = (1.062) (292.6 + 220)+457.8<br />

= 3000 kJ / kg <strong>of</strong> fuel<br />

O<strong>th</strong>er losses = moisture in air + moisture in water<br />

46


Visu/Kumar<br />

Boiler Energy Balance Summary<br />

( In kJ / kg <strong>of</strong> fuel)<br />

Energy in = Fuel (39,700)<br />

= O<strong>th</strong>er ( 264)<br />

Output = Steam (27,473)<br />

= Flue gas ( 6,440)<br />

= Blow down ( 437)<br />

= Hydrogen ( 3,000)<br />

= Radiation &<br />

Convection ( 1,000)<br />

Un<strong>ac</strong>counted --> Assumption in calculation<br />

Un<strong>ac</strong>counted losses ≈ 4.0 %<br />

Efficiency = 27,473 / 39,964 = 68.7 %<br />

39,964<br />

38,350<br />

1,614<br />

47


Option 4: Saving from Controlling Excess Air at Boiler.<br />

From specifications, optimum excess air air for fuel oil = 20%<br />

0.20 =<br />

Weight <strong>of</strong> excess air<br />

Weight <strong>of</strong> <strong>th</strong>eoretical air<br />

Visu/Kumar<br />

Weight <strong>of</strong> excess air = 0.2 * 13.96 = 2.792 kg<br />

Weight <strong>of</strong> O 2 in excess air = 2.792 * 0.232<br />

= 0.65 kg<br />

Weight <strong>of</strong> N 2 in excess air = 2.14 kg<br />

Energy loss in flue gas at “correct+excess air condition”<br />

= m C P (T 2 -T 1 )<br />

= (13.96 + 2.79) (1.02) (310 - 30)<br />

= 4,784 kJ / kg <strong>of</strong> fuel (1)<br />

48


Visu/Kumar<br />

But Energy loss in flue gas at 60% excess air,<br />

i. e., <strong>ac</strong>tual is 6,440 kJ/kg <strong>of</strong> fuel (2)<br />

Energy saving = 6,440 - 4,784<br />

= 1,656 kJ / kg <strong>of</strong> fuel<br />

Fuel consumption = 750 kg/h<br />

Energy saving / h = 1,656 * 750<br />

= 1,242,000 kJ/h<br />

49


Option 5: Heat loss <strong>th</strong>rough leaks away from Boiler<br />

• Steam pressure = 10 bar<br />

• Hole size = approximately 8 mm<br />

• From figure, heat lost for a 8 mm (0.25 inch) hole at a<br />

pressure <strong>of</strong> 10 bar (145 psi) can be got<br />

• Energy lost from steam (per year) = 3,000,000 Btu =<br />

3,165,300 kJ ( 1 Btu = 1.0551 kJ)<br />

• At 60% boiler efficiency, energy supplied by fuel = 5,275,500<br />

kJ (133 kg -> 150 litres <strong>of</strong> fuel)<br />

• Cost : Minimal (Good housekeeping)<br />

Visu/Kumar<br />

This is for only ONE leak!<br />

3165300<br />

0.6=<br />

x×<br />

3970<br />

X = 133 kg<br />

50


Annual heat loss (10 3 Btu / yr)<br />

Visu/Kumar<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

0.025 0.05 0.1<br />

600 psig<br />

400 psig<br />

Hole Size (in.)<br />

200 psig<br />

0.25<br />

100 psig<br />

Heat losses from steam leaks<br />

50 psig<br />

20 psig<br />

0.50 0.75 1.0<br />

51


Option 5: Heat Loss from Exposed Pipes (uninsulated)<br />

Visu/Kumar<br />

• Steam pressure = 10 bar<br />

• Exposed pipe leng<strong>th</strong> (one stretch) = approximately 5 m<br />

• Steam pipe diameter = 25 cm<br />

• From figure, heat lost for a 25 cm (10 inch)<br />

uninsulated pipe at a pressure <strong>of</strong> 10 bar (145 psi) can<br />

be got<br />

• Energy lost from steam (per year) = 3,000,000 Btu =<br />

3,165,300 kJ ( 1 Btu = 1.0551 kJ) for 33 m<br />

• Energy lost from steam (per year) = 3,000,000 Btu =<br />

479,590 kJ for 5 m<br />

• At 60% boiler efficiency, energy supplied by fuel =<br />

799,318 kJ (20 kg -> 23 litres <strong>of</strong> fuel)<br />

• Cost : Minimal (Good housekeeping)<br />

52


Heat loss per 100 ft <strong>of</strong> bare steam line (10 3 Btu / yr)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Visu/Kumar<br />

0<br />

12 in. line<br />

10 in. line<br />

8 in. line<br />

0 100 200 300 400 500 600<br />

Operating steam pressure (psig)<br />

Heat losses from uninsulated pipes<br />

6 in. line<br />

4 in. line<br />

3 in. line<br />

2 in. line<br />

11/2 in. line<br />

1 in. line<br />

1/2 in. line<br />

53


Cost Calculation<br />

Water Reuse:condensate recovery<br />

Present effluent treatment cost = 10,200 B/mon<strong>th</strong> = 340 B/day<br />

Wastewater output = 539 m 3 /day<br />

Therefore cost per m 3 <strong>of</strong> wastewater = 0.6 B<br />

Saving due to reduction <strong>of</strong> wastewater treatment: 120 m 3 /day x 0.6 B/m 3 = 72 B/day<br />

Visu/Kumar<br />

Cost <strong>of</strong> raw water in <strong>th</strong>e f<strong>ac</strong>tory = 1.8 B/m 3 (Pumping)<br />

Saving due to water reuse: 120 m 3 /day x 1.8 B/m 3 = 216 B/day<br />

Net saving: 648 B/day = 194,400 B/year (300 working day)<br />

Investment: 100,000 B (reported by <strong>th</strong>e f<strong>ac</strong>tory management)<br />

Cost <strong>of</strong> Deionized water for Boiler = 3 B/m 3<br />

Saving = 3 * 120 = 360 B /d<br />

Cost <strong>of</strong> Fuel = 3%, 5 B /Liter<br />

Fuel consumption = 150,000 L/mon<strong>th</strong><br />

Saving due to fuel reduction =?? = 150,000*3/100*12 m/y * 5 = 270,000 B<br />

Total Saving:?? 194,400 + 270,000 = 464,400 B<br />

1,000,000 B<br />

Payb<strong>ac</strong>k Period : = 2.15 Years<br />

464,400 B/year<br />

54


Long-term Waste Reduction Options<br />

Stream Segregation<br />

30% <strong>of</strong> <strong>th</strong>e effluents <strong>of</strong> <strong>th</strong>e dyeing process could be<br />

separated in <strong>th</strong>e form <strong>of</strong> a polluted stream<br />

Visu/Kumar<br />

60 m 3 from <strong>th</strong>e ble<strong>ac</strong>hing stage and 64 m 3 from <strong>th</strong>e<br />

dyeing process<br />

Leng<strong>th</strong> <strong>of</strong> channel to be built = 144 m<br />

Cost/m <strong>of</strong> channel = approx. 400 B/m (including labor)<br />

Total cost = 57 000 B<br />

If a reinforced concrete pipe is used instead <strong>of</strong> a channel, <strong>th</strong>en<br />

cost/m <strong>of</strong> pipe = 200 B/m<br />

Total cost = 28 800 B<br />

55


Effluent Treatment Plant Modification:<br />

modification wi<strong>th</strong> <strong>th</strong>e ETP such as adding a filter wall<br />

between aerated ponds 2 and 3<br />

Total cost <strong>of</strong> <strong>th</strong>e treatment operation has decreased<br />

to 10,000 B/mon<strong>th</strong> from an original 20,000 B/mon<strong>th</strong>.<br />

Fur<strong>th</strong>er modification <strong>of</strong> <strong>th</strong>e ETP by segregation <strong>of</strong> <strong>th</strong>e<br />

wastewater streams and using an optimum dosage <strong>of</strong> Alum<br />

will fur<strong>th</strong>er reduce <strong>th</strong>e treatment cost and simultaneously<br />

will increase its performance.<br />

Visu/Kumar<br />

56


Obvious Waste Reduction Measures<br />

Water Reuse:<br />

Condensate recycled b<strong>ac</strong>k to boiler.<br />

Cooling water collected in a storage tank, and is used as non-process washing<br />

water. Saving <strong>of</strong> 120 m 3 <strong>of</strong> raw water per day.<br />

Dyeing Process:<br />

washing steps can be reduced to one washing e<strong>ac</strong>h wi<strong>th</strong>out considerably affecting<br />

<strong>th</strong>e quality <strong>of</strong> dyeing.<br />

Assuming <strong>th</strong>at four batches are dyed per day at 100% m<strong>ac</strong>hine cap<strong>ac</strong>ity, <strong>th</strong>e<br />

reduction in raw water consumption will be 96 m 3 per day.<br />

Washing Pr<strong>ac</strong>tice:<br />

Floor and equipment washdown operations can still be improved by using hot<br />

water taken from <strong>th</strong>e storage tank (collected cooling water) wi<strong>th</strong> <strong>th</strong>e use <strong>of</strong><br />

spray guns.<br />

Improving present drainage system:<br />

Visu/Kumar<br />

The drainage system can be improved by cleaning and removing all <strong>th</strong>e current<br />

blocking objectes at site 5 and 6, inside <strong>th</strong>e dyeing section and along <strong>th</strong>e long<br />

channel leading to <strong>th</strong>e wetland area.<br />

57


Long-term Waste Reduction Options<br />

Visu/Kumar<br />

Stream Segregation<br />

Innovation <strong>of</strong> Dyeing Process<br />

Heat Energy Conservation<br />

1. Improving boiler efficiency<br />

2. Reducing Heat Loss <strong>th</strong>rough leaks<br />

Effluent Treatment Plant Modifications<br />

1. treatment using Ferrous Sulfate<br />

2. treatment using Ferrous Sulfate and Lime<br />

3. treatment using Alum<br />

Combined Wastewater Treatment<br />

Colored Wastewater Treatment After Segregation<br />

Sludge Char<strong>ac</strong>teristics<br />

Treatment Train for Polluted Waste Stream<br />

Treatment Train for <strong>th</strong>e Less-Polluted Stream<br />

58


Major Concerns <strong>of</strong> <strong>th</strong>e Present Waste Water<br />

Treatment Plant:<br />

Visu/Kumar<br />

1. Groundwater Contamination - Wetlands ???<br />

2. Aerators in Pond 1 & 2<br />

3. Addition <strong>of</strong> alum in pond 2 what for?<br />

4. Surf<strong>ac</strong>e aeration in settling tank, what for ?<br />

5. Frequent regeneration <strong>of</strong> <strong>ac</strong>tivated carbon.<br />

59


Option Evaluation by Weighted Sum Me<strong>th</strong>od<br />

Criteria Weight<br />

Option Rating (R)<br />

#1 Option #2 Option #3 Option #4 Option #5 Option<br />

R R*W R R*W R R*W R R*W R R*W<br />

Reduction in treatment/disposal costs 8 7 7 5 2 2<br />

Reduction <strong>of</strong> Input material costs 4 8 6 8 4 4<br />

Extent <strong>of</strong> current use in Industry 5 8 8 7 7 7<br />

Effect on Product quality (no effect=10) 10 9 9 2 8 8<br />

Low capital cost 5 2 5 4 7 8<br />

Low O and M cost 5 5 6 5 8 8<br />

Short Implementation period 8 3 5 3 7 8<br />

Ease <strong>of</strong> Implementation 7 3 6 5 7 8<br />

Reduction in Energy Bills 9 5 9 5 10 10<br />

Improvement in OHS 7 10 3 10 2 2<br />

Final<br />

Evaluation<br />

Sum <strong>of</strong> Weighted Ratings Σ (W*R)<br />

Option Ranking<br />

Feasibility Analysis Scheduled for (Date)


Option Evaluation by Weighted Sum Me<strong>th</strong>od<br />

Criteria Weight<br />

Option Rating (R)<br />

#1 Option #2 Option #3 Option #4 Option #5 Option<br />

R R*W R R*W R R*W R R*W R R*W<br />

Reduction in treatment/disposal costs 8 7 56 7 56 5 40 2 16 2 16<br />

Reduction <strong>of</strong> Input material costs 4 8 32 6 24 8 32 4 16 4 16<br />

Extent <strong>of</strong> current use in Industry 5 8 40 8 40 7 35 7 35 7 35<br />

Effect on Product quality (no effect=10) 10 9 90 9 90 2 20 8 80 8 80<br />

Low capital cost 5 2 10 5 25 4 20 7 35 8 40<br />

Low O and M cost 5 5 25 6 30 5 25 8 40 8 40<br />

Short Implementation period 8 3 24 5 40 3 24 7 56 8 64<br />

Ease <strong>of</strong> Implementation 7 3 21 6 42 5 35 7 49 8 56<br />

Reduction in Energy Bills 9 5 45 9 81 5 45 10 90 10 90<br />

Improvement in OHS 7 10 70 3 21 10 70 2 14 2 14<br />

Final<br />

Evaluation<br />

Sum <strong>of</strong> Weighted Ratings Σ (W*R) 413 449 346 431 451<br />

Option Ranking<br />

Feasibility Analysis Scheduled for (Date)


Option Evaluation by Weighted Sum Me<strong>th</strong>od<br />

Criteria Weight<br />

Option Rating (R)<br />

#1 Option #2 Option #3 Option #4 Option #5 Option<br />

R R*W R R*W R R*W R R*W R R*W<br />

Reduction in treatment/disposal costs 8 7 56 7 56 5 40 2 16 2 16<br />

Reduction <strong>of</strong> Input material costs 4 8 32 6 24 8 32 4 16 4 16<br />

Extent <strong>of</strong> current use in Industry 5 8 40 8 40 7 35 7 35 7 35<br />

Effect on Product quality (no effect=10) 10 9 90 9 90 2 20 8 80 8 80<br />

Low capital cost 5 2 10 5 25 4 20 7 35 8 40<br />

Low O and M cost 5 5 25 6 30 5 25 8 40 8 40<br />

Short Implementation period 8 3 24 5 40 3 24 7 56 8 64<br />

Ease <strong>of</strong> Implementation 7 3 21 6 42 5 35 7 49 8 56<br />

Reduction in Energy Bills 9 5 45 9 81 5 45 10 90 10 90<br />

Improvement in OHS 7 10 70 3 21 10 70 2 14 2 14<br />

Final<br />

Evaluation<br />

Sum <strong>of</strong> Weighted Ratings Σ (W*R) 413 449 346 431 451<br />

Option Ranking 4 2 5 3 1<br />

Feasibility Analysis Scheduled for (Date)


Audit Report<br />

Table <strong>of</strong> Contents<br />

Introduction..................................................................................................................................<br />

I. B<strong>ac</strong>kground ......................................................................................................................<br />

1.1 Objective .....................................................................................................................<br />

II. Planning and Organization 2<br />

2.1 Study Objectives..........................................................................................................<br />

2.2 Formation <strong>of</strong> <strong>th</strong>e Audit Team ....................................................................................<br />

2.3 Audit Appro<strong>ac</strong>h...........................................................................................................<br />

III. Assessment Preparation Phase ........................................................................................<br />

3.1 Plant's manuf<strong>ac</strong>turing process ...................................................................................<br />

3.1.1 Clo<strong>th</strong> dyeing section.....................................................................................<br />

3.1.2 Yarn dyeing section......................................................................................<br />

3.2 Material consumption and wastewater generation....................................................<br />

3.2.1 Raw material consumption..........................................................................<br />

3.2.2 Water usage..................................................................................................<br />

3.2.3 Wastewater char<strong>ac</strong>teristics ..........................................................................<br />

3.3 Performance <strong>of</strong> <strong>th</strong>e current effluent treatment plant .................................................<br />

3.3.1 Description...................................................................................................<br />

3.3.2 Assessment <strong>of</strong> <strong>th</strong>e effluent treatment plant.................................................<br />

IV. Assessment Phase - Proposed reduction options............................................................<br />

4.1 Obvious waste reduction measures............................................................................<br />

4.2 Long term waste reduction options ...........................................................................<br />

4.3 Major concerns <strong>of</strong> <strong>th</strong>e present effluent treatment plant ............................................<br />

V. Feasibility Analysis Phase: Techno-economical Evaluation ..........................................<br />

Conclusions ......................................................................................................................<br />

References<br />

Appendix A: Data Analysis<br />

B: Sequence <strong>of</strong> material handling observed during a one-batch period<br />

C: Detailed time schedule <strong>of</strong> <strong>th</strong>e audit team<br />

D: Water use values taken from literature<br />

E: Flow rate measurement device<br />

F: Segregated flow channel dimensions<br />

G: Wastewater treatment<br />

Visu/Kumar<br />

Total no. <strong>of</strong> pages: 30<br />

63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!