28.08.2013 Views

Growth of ZnO nanowires on nonwoven polyethylene fibers

Growth of ZnO nanowires on nonwoven polyethylene fibers

Growth of ZnO nanowires on nonwoven polyethylene fibers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sci. Technol. Adv. Mater. 9 (2008) 025009 S Baruah et al<br />

semic<strong>on</strong>ductors such as Si [3], Ge [4], InP [5], GaAs [6]<br />

and <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> [7–9] are available in the literature. A wide variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nanostructures have been reported for <str<strong>on</strong>g>ZnO</str<strong>on</strong>g>, such as<br />

<str<strong>on</strong>g>nanowires</str<strong>on</strong>g>, nanocombs, nanorings, nanohelices, nanobows,<br />

nanobelts and nanocages, which have been successfully<br />

synthesized under specific growth c<strong>on</strong>diti<strong>on</strong>s [10, 11]. The<br />

synthesis methods <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc oxide nanostructures can broadly be<br />

classified as gas-phase synthesis and soluti<strong>on</strong>-phase synthesis.<br />

Gas-phase synthesis uses a gaseous envir<strong>on</strong>ment in a closed<br />

chamber for the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> nanostructures and is normally<br />

carried out at high temperatures from 500 to 1500 ◦ C. Some<br />

comm<strong>on</strong>ly used gas-phase methods are vapor phase transport,<br />

which includes vapor solid (VS) and vapor liquid solid (VLS)<br />

growth, physical vapor depositi<strong>on</strong>, chemical vapor depositi<strong>on</strong>,<br />

metal vapor depositi<strong>on</strong> and thermal oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pure Zn<br />

followed by c<strong>on</strong>densati<strong>on</strong>. In the soluti<strong>on</strong> phase-synthesis, the<br />

growth process is carried out in a liquid. Normally aqueous<br />

soluti<strong>on</strong>s are used, and the process is then referred to as<br />

a hydrothermal growth process. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong>-phase<br />

synthesis processes include a zinc acetate hydrate (ZAH)derived<br />

nanocolloidal sol-gel route [12], ZAH in an alcoholic<br />

soluti<strong>on</strong> with sodium hydroxide (NaOH) or tetra methyl<br />

amm<strong>on</strong>ium hydroxide (TMAH) [13–15], template-assisted<br />

growth [16], spray pyrolysis [17, 18] and electrophoresis [19]<br />

for fabricating nanostructured thin films.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most energy-efficient and inexpensive<br />

strategies for synthesizing <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> <str<strong>on</strong>g>nanowires</str<strong>on</strong>g> is the hydrothermal<br />

process, which does not require a high temperature<br />

or a complex vacuum envir<strong>on</strong>ment. The hydrothermal<br />

process induces epitaxial, anisotropic crystal growth in a<br />

soluti<strong>on</strong> [20, 21]. The hydrothermal process is usually<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface [22] and provides good c<strong>on</strong>trol<br />

over the morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>nanowires</str<strong>on</strong>g> grown [23]. The<br />

successful growths <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> <str<strong>on</strong>g>nanowires</str<strong>on</strong>g> <strong>on</strong> flat substrates such<br />

as Si [19], glass [19, 24], TCO [25], carb<strong>on</strong> cloth [26] and<br />

Al foil [27] have been reported. However, there have been<br />

no reports <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> <str<strong>on</strong>g>nanowires</str<strong>on</strong>g> grown <strong>on</strong> n<strong>on</strong>woven polymeric<br />

fibrous substrates.<br />

The hydrothermal process, first reported by Vayssieres<br />

et al [20] uses an equimolar soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc nitrate<br />

hexahydrate and hexamethylene tetramine, popularly called<br />

hexamine, to epitaxially grow <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> rods <strong>on</strong> various substrates<br />

by fixing presynthesized <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> nanoparticles <strong>on</strong> the substrate<br />

as seeds. The growth technique relies <strong>on</strong> the innate anisotropy<br />

in the crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ZnO</str<strong>on</strong>g>. The <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> crystal is hexag<strong>on</strong>al<br />

wurtzite and exhibits partial polar characteristics [9] with<br />

lattice parameters a = 0.3296 nm and c = 0.52065 nm. The<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> can be simply described as a series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

alternating planes composed <str<strong>on</strong>g>of</str<strong>on</strong>g> tetrahedrally coordinated<br />

O 2− and Zn 2+ arranged al<strong>on</strong>g the c-axis. The most comm<strong>on</strong><br />

polar surface is the basal plane (001). One end <str<strong>on</strong>g>of</str<strong>on</strong>g> the basal<br />

polar plane terminates in partially positive Zn lattice points<br />

and the other end terminates in partially negative oxygen<br />

lattice points.<br />

It was reported that in a chemical bath c<strong>on</strong>taining zinc<br />

nitrate and hexamine used in <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> nanowire synthesis by the<br />

hydrothermal process, hexamine, a n<strong>on</strong>i<strong>on</strong>ic tertiary amine<br />

derivative and a n<strong>on</strong>polar chelating agent, preferentially<br />

2<br />

attaches to the n<strong>on</strong>polar facets <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> crystal, thereby<br />

exposing <strong>on</strong>ly the (002) plane for epitaxial growth [23]. Thus<br />

preferential growth al<strong>on</strong>g the [0002] directi<strong>on</strong> is possible. The<br />

seeding <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate with <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> nanoparticles was found<br />

to lower the thermodynamic barrier by providing nucleati<strong>on</strong><br />

sites, further improving the aspect ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the synthesized<br />

<str<strong>on</strong>g>nanowires</str<strong>on</strong>g> [20].<br />

The seeding <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate is thus an important factor in<br />

the hydrothermal growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ZnO</str<strong>on</strong>g>. Seeding can be carried out<br />

by processes such as dip coating and spin coating [20] using<br />

a colloidal soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> nanoparticles or by sputtering,<br />

whereby a thin layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> particles is deposited <strong>on</strong> the<br />

substrate [28]. Growing <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> <str<strong>on</strong>g>nanowires</str<strong>on</strong>g> and nanorods over a<br />

large area using the hydrothermal method is a difficult task as<br />

the seed particles tend to become dislodged from the substrate,<br />

and normally nanowire growth is observed in small patches<br />

across the substrate.<br />

In this work, we have used the hydrothermal method<br />

to synthesize <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> <str<strong>on</strong>g>nanowires</str<strong>on</strong>g> <strong>on</strong> <strong>polyethylene</strong> <strong>fibers</strong>, which<br />

are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the toughest <strong>fibers</strong> available and are about 10–15<br />

times str<strong>on</strong>ger than steel [29]. What makes this work very<br />

interesting is the fact that the <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> <str<strong>on</strong>g>nanowires</str<strong>on</strong>g> grown <strong>on</strong> a<br />

mesh <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>woven <strong>fibers</strong> can be used as a membrane that can<br />

filter out harmful organic compounds from gases or solvents<br />

passing through it using photocatalysis.<br />

Photocatalysis is a change in the reacti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

chemical reacti<strong>on</strong> under the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light in the presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a catalyst <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called a photocatalyst. Exposing a<br />

semic<strong>on</strong>ductor surface to an energy greater than its band gap<br />

excites electr<strong>on</strong>s from the valence band to the c<strong>on</strong>ducti<strong>on</strong><br />

band, generating electr<strong>on</strong>-hole pairs <strong>on</strong> its surface. The<br />

electr<strong>on</strong>-hole pairs generated by irradiati<strong>on</strong> has very short life<br />

spans [30], and undergoes volume and surface recombinati<strong>on</strong>,<br />

surface trapping or catalyzes redox reacti<strong>on</strong>s through<br />

interfacial charge transfer. Volatile organic compounds can be<br />

removed through photocatalysis up<strong>on</strong> exposure to UV light<br />

using <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> as a photocatalyst.<br />

Organic pollutant + O2<br />

<str<strong>on</strong>g>ZnO</str<strong>on</strong>g><br />

hv>Band gap<br />

→CO2<br />

+ H2O + Mineral acid.<br />

<str<strong>on</strong>g>ZnO</str<strong>on</strong>g> nanoparticles as well as <str<strong>on</strong>g>nanowires</str<strong>on</strong>g> can be used for<br />

the degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic pollutants and are more effective<br />

than bulk <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> as their effective surface to volume ratio is<br />

much higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the bulk.<br />

2. Experimental<br />

2.1. Synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> nanoparticles<br />

The synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ZnO</str<strong>on</strong>g> nanoparticles was carried out in<br />

an alcoholic medium following the procedure reported by<br />

Bahnemann et al [31]. A 1 mM zinc acetate (Zn(CH3COO)2,<br />

Merck, 99% purity) soluti<strong>on</strong> was prepared in 20 ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2-propanol ((CH3)2CHOH, Carlo Erba, 99.7% purity) under<br />

vigorous stirring at 50 ◦ C. The soluti<strong>on</strong> was then diluted to<br />

230 ml with 2-propanol and cooled. Then 20 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mM<br />

sodium hydroxide in 2-propanol was added dropwise to<br />

the cooled soluti<strong>on</strong> under c<strong>on</strong>tinuous stirring. The mixture

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!