28.08.2013 Views

Synthesis and Optical Properties of Transition Metal Doped ZnO ...

Synthesis and Optical Properties of Transition Metal Doped ZnO ...

Synthesis and Optical Properties of Transition Metal Doped ZnO ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Transform (FFT) <strong>and</strong> inverse FFT to the<br />

transmission electron micrographs. The<br />

measured lattice spacing <strong>of</strong> 2.81Å <strong>and</strong> 1.9 Å<br />

correspond to the (100) <strong>and</strong> (102) planes <strong>of</strong><br />

the Wurtzite structure [22, 23].<br />

Modification in the b<strong>and</strong> gap<br />

structure <strong>of</strong> <strong>ZnO</strong> through manganese doping<br />

has been reported to cause ferromagnetic<br />

ordering [24]. We therefore assume that<br />

doping <strong>of</strong> <strong>ZnO</strong> with metal <strong>and</strong> transition<br />

metals add tails within the conduction <strong>and</strong><br />

valence b<strong>and</strong>. Thus visible light energy will<br />

be enough to excite electrons from tails state<br />

to the conduction states. Further, <strong>ZnO</strong> doped<br />

with Mn 2+ is more effective than<br />

<strong>ZnO</strong>:Cu 2+ in absorbing visible light This<br />

highest absorption intensity <strong>of</strong> Mn 2+ doped<br />

<strong>ZnO</strong> is attributed to the lowest dopant level<br />

<strong>of</strong> Mn 2+ with in the b<strong>and</strong> gap <strong>of</strong> <strong>ZnO</strong> as<br />

compared to that <strong>of</strong> Cu 2+ ion.<br />

5. Conclusion<br />

In summary we have shown that manganese<br />

doping <strong>of</strong> <strong>ZnO</strong> nanoparticles have decrease the native<br />

b<strong>and</strong> gap <strong>of</strong> <strong>ZnO</strong> <strong>and</strong> created more defects sites on<br />

the <strong>ZnO</strong> surface. The nanoparticles synthesized by<br />

co-precipitation techniques have poly crystalline<br />

structure with average particles size <strong>of</strong> 37 nm. The<br />

increased surface defects are capable to absorb more<br />

visible light. This newly synthesized manganese<br />

doped <strong>ZnO</strong> will have applications in<br />

electrophotochemical hydrogen production <strong>and</strong><br />

heterogeneous photocatalysis. It will make the<br />

photocatalyst capable to work with only visible light<br />

irradiation <strong>and</strong> will eliminate the need <strong>of</strong> UV light.<br />

The preliminary results suggest that manganese<br />

doped <strong>ZnO</strong> nanoparticles can be used as immobilized<br />

photocatalysts for water <strong>and</strong> environmental<br />

detoxification from organic compounds.<br />

6. Acknowledgment<br />

The author gratefully acknowledge the<br />

financial <strong>and</strong> intellectual support from Asian<br />

Institute <strong>of</strong> Technology Bangkok, Thail<strong>and</strong><br />

7. References<br />

[1] J. H. He, C. L. Hsin, J. Liu, L. J. Chen<br />

<strong>and</strong> Z. L. Wang, Advanced Materials,<br />

19(2007) 781-784<br />

[2] C. Y. Lee, Y.T. Haung, W. F. Su, C. F.<br />

Lin, App. Phy. Lett., 89 (2006) 231116<br />

[3] W. Shen, Z. Li, H. Wang, Y. Liu, Q.<br />

Guo, Y. Zhang,Journal <strong>of</strong> Hazardous<br />

Materials (2007) (in press)<br />

[4] M. A. Garcia, J. M. Merino, E. F. Pinel,<br />

A. Quesada, J. d. Venta, M. L. R. Gonza,<br />

G. R. Castro, P. Crespo, J. Llopis, J. M.<br />

G. Calbet <strong>and</strong> A. Hern<strong>and</strong>o, Nano letter<br />

7 (2007) 1489-1494<br />

[5] T. Makino, K. Tamura, C. H. Chia, Y.<br />

Segawa, M. Kawasaki, A. Ohtomo, <strong>and</strong><br />

H. Koinuma, Phy. Review B, 65 (2002)<br />

121201-121204<br />

[6] X. Liu, G. Li, Y. Luo, Z. Quan, H.<br />

Xiang, <strong>and</strong> J. Lin, J. Phys. Chem. B 110<br />

(2006) 9469-9476<br />

[7] M. Miyauchi, A. Nakajima, T.<br />

Watanabe <strong>and</strong> K. Hashimoto, Chem.<br />

Mater. 14(2002) 2812-2816<br />

[8] K. Vanhesuden, W. L. Warren, J. A.<br />

Voigt, C. H. Seager <strong>and</strong> D. R. Tallant,<br />

Impact <strong>of</strong> Pb doping on the optical <strong>and</strong><br />

electronic properties <strong>of</strong> <strong>ZnO</strong> powders,<br />

Applied Physics letter, 67(1995) 1280-<br />

1282<br />

[9] R. Wang, J. H. Xin, Y. Yang, H. Liu, L.<br />

Xu <strong>and</strong> J. Hu, Applied Surface Science<br />

227 (2004) 312-317<br />

[10] R. Viswanatha, S. Sapra, S. S. Gupta,<br />

B. Satpati, <strong>and</strong> P. V. Satyam, J. Phys.<br />

Chem. B, 108 (2004) 6303-6310<br />

[11] S. Sakthivel, B. Neppolian, M.V.<br />

Shankar, B. Arabindoo, M.<br />

Palanichamy, <strong>and</strong> V. Murugesan, Solar<br />

Energy Materials & Solar Cells 77<br />

(2003) 65–82<br />

[12] T. F. Jaramillo, S. Baeck, A. K.<br />

Shwarsctein, K. S. Choi, G. D. Stucky,<br />

<strong>and</strong> E. W. McFarl<strong>and</strong>, J. Comb. Chem. 7<br />

(2005) 264-271<br />

[13] K. Vanheusden. W. L. Warren, J. A.<br />

Voigt, C. H. Seager, <strong>and</strong> D. R. Tallant,<br />

Appl. Phys. Lett. 76 (1995) 1280-1282<br />

310

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!