28.08.2013 Views

PDF Presentation - faculty.ait.ac.th - Asian Institute of Technology

PDF Presentation - faculty.ait.ac.th - Asian Institute of Technology

PDF Presentation - faculty.ait.ac.th - Asian Institute of Technology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CP Audit in a<br />

Visu/Kumar<br />

Textile Industry<br />

Pr<strong>of</strong>. C. Visvana<strong>th</strong>an, UEEM Program<br />

Dr. S. Kumar, Energy Program<br />

School <strong>of</strong> Environment, Resources and Development<br />

<strong>Asian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong><br />

1


CP Audit in a Textile Industry<br />

ZEBRA Industry Co., Ltd.: Medium size f<strong>ac</strong>tory in Samutprakarn<br />

Products: Knitted fabrics, dyed clo<strong>th</strong> and yarns<br />

Two main sections: Knitting and dyeing<br />

Office and<br />

Residence<br />

Visu/Kumar<br />

Municipal<br />

Workshop<br />

Yarn<br />

Dyeing<br />

Section<br />

Knitting Section<br />

Boiler<br />

Office<br />

LAB Dyeing<br />

Finishing<br />

Section<br />

Gate<br />

1<br />

2<br />

3<br />

4<br />

WW to<br />

Klong<br />

5<br />

6<br />

7<br />

1. Setting pond<br />

2. Aerated pond 2<br />

3. Aerated pond 1<br />

4. Equalization pond<br />

5. Oxidation pond 3<br />

6. Oxidation pond 2<br />

7. Oxidation pond 1<br />

2


Step 1: Define <strong>th</strong>e Objectives and Scope <strong>of</strong> Auditing<br />

Objectives:<br />

Visu/Kumar<br />

• Upgrade and modify <strong>th</strong>e existing treatment processes, to<br />

obtain higher removal efficiency <strong>of</strong> COD and color<br />

• Adopt a long term economically viable Cleaner Production<br />

appro<strong>ac</strong>h, which essentially focuses into <strong>th</strong>e possibility <strong>of</strong> waste<br />

prevention and reduction at <strong>th</strong>e production stage, ra<strong>th</strong>er <strong>th</strong>an<br />

concentrating on <strong>th</strong>e end <strong>of</strong> <strong>th</strong>e line pollution control<br />

• Investigate energy conservation measures<br />

Scope:<br />

What should be <strong>th</strong>e scope <strong>of</strong> <strong>th</strong>e study??<br />

• Focus mainly on <strong>th</strong>e dyeing and finishing section<br />

3


Step 2: Formation <strong>of</strong> Audit Team<br />

Name Designation<br />

Dr. C. Visvana<strong>th</strong>an Pr<strong>of</strong>essor, Environmental Engineering Program,<br />

Visu/Kumar<br />

Audit Team Advisor<br />

Dr. Kumar Associate pr<strong>of</strong>essor, Energy program<br />

Mr. Ramon C. de Mesa<br />

Ms. Mendeluz B.<br />

Mr. T. Pichitchai Plant Manager<br />

Mrs. N.T.Lien Ha Research Associate<br />

Mr. D.Q. Tuan Research Associate<br />

Ms. Yamuana Alles Dye Master<br />

Mr. Ashish Arora Plant Engineer<br />

Mr. T. Visu<strong>th</strong> Plant Engineer<br />

4


Step 3: Plant Walk Through: Understanding <strong>th</strong>e Dyeing Process<br />

Visu/Kumar<br />

Start plant walk<strong>th</strong>rough<br />

After plant walk<strong>th</strong>rough, what can you observe?<br />

Observations:<br />

• Leaks/overflow in <strong>th</strong>e production area<br />

• Bad Housekeeping at dye kitchen<br />

•<br />

• Bad insulation(steam pipes)<br />

• Bad smell from WWTP/Products plant<br />

•<br />

Higher emission from <strong>th</strong>e boiler<br />

Layout problems<br />

•Bo<strong>th</strong> boilers working; no metering <strong>of</strong> steam<br />

•Flue gas measurement not continuous<br />

What Else…??<br />

5


Step 4: Listing <strong>of</strong> Unit Operations<br />

Clo<strong>th</strong> Dyeing Section<br />

Visu/Kumar<br />

Ble<strong>ac</strong>hing<br />

Scouring<br />

Washing<br />

Filling<br />

Dyeing<br />

Washing<br />

Filling<br />

Fixing<br />

Drying<br />

What else??<br />

6


Visu/Kumar<br />

H 2 O, L:R = 10:1<br />

NaOH, 1%W/W<br />

H 2 O 2 , 2%<br />

Detergent, 0.8%<br />

Sequestering, 1%<br />

OBA (Optical Brightening Agent), 0.3%<br />

H 2 O, 60 c<br />

Formic <strong>ac</strong>id, 0.2%<br />

H 2 O 98 0 C, L:R = 10:1<br />

NaCl, 6.5%<br />

Formic <strong>ac</strong>id 0.5%<br />

Dyestuff: disperse 0.012%<br />

Amonium sulphate 0.65%<br />

Dispersing Agent 1.0%<br />

Batch Operation<br />

H 2 O 40 0 C<br />

H 2 O 40 0 C<br />

H 2 O 40 0 C<br />

H 2 O 40 0 C<br />

H 2 O 60 0 C<br />

Fixing Agent 0.15%<br />

H 2 O L:R = 1:1<br />

PVAC 10%<br />

S<strong>of</strong>tener 1%<br />

(non-ionic)<br />

H 2 O 60 0 C, L:R = 10:1<br />

Soaping Agent 0.15%<br />

Step 5: Process Flow Diagram<br />

Gray Clo<strong>th</strong><br />

Ble<strong>ac</strong>hing/Scouring Fluorescent whitening<br />

Washing 1<br />

Washing 2<br />

Filling 1<br />

Clo<strong>th</strong> Dyeing<br />

Washing 3<br />

Washing 4<br />

Filling 2<br />

Fixing<br />

Drying<br />

Resin Finishing Flores whitening<br />

Drying<br />

Curing<br />

Rolling up Plainting Down<br />

What else<br />

is missing<br />

7


Step 6: M<strong>ac</strong>hine Layout <strong>of</strong> <strong>th</strong>e Dyeing-Finishing Section<br />

R: Rapid Winch<br />

W: Washing M<strong>ac</strong>hine<br />

Visu/Kumar<br />

Finishing<br />

Finishing<br />

Drier 2<br />

Finishing<br />

Finishing<br />

Dryer1<br />

HT: High Temperature Winch<br />

: Sampling Site<br />

: Wastewater channels<br />

: Wastewater sump<br />

Screen<br />

Printing<br />

To Equalization Pond<br />

Samp. Site 4<br />

Sump<br />

Samp. Site 3<br />

WS3 WS2 WS1<br />

RW6<br />

RW5<br />

RW8<br />

RW7<br />

RW1<br />

RW9<br />

RW4<br />

RW3<br />

RW2<br />

HT3 HT2 HT1<br />

Samp.<br />

Site 3<br />

Samp. Site 3<br />

To Oxidation Pond<br />

8


Step 7: Review <strong>th</strong>e WWTP<br />

To Klong<br />

Visu/Kumar<br />

Activated<br />

Carbon<br />

Sand filter<br />

Settling pond<br />

(400 m 2 )<br />

Aerated pond 2<br />

(400 m 2 )<br />

Aerated pond 1<br />

(400 m 2 )<br />

Wetland<br />

Oxidation pond 1 (3000 m 2 )<br />

Oxidation pond 2 (2000 m 2 )<br />

Oxidation pond 3 (2500 m 2 )<br />

Equalization<br />

Pond (400 m 2 )<br />

Wastewater from Stentor<br />

Schematic Diagram <strong>of</strong> <strong>th</strong>e Wastewater Treatment Plant<br />

Wastewater from sampling site 1<br />

9


Step 8: Material Consumption for <strong>th</strong>e Clo<strong>th</strong> and Yarn Dyeing Sections<br />

Material Recorded<br />

Clo<strong>th</strong> (dry, kg/d) 12,000<br />

Yarn (dry, kg/d) 2,000<br />

Fresh Water (m 3 /d) 565<br />

Dyestuff (kg/d) 2.25<br />

Auxiliary Chemicals (kg/d) 3,068<br />

-NaOH 120<br />

-H2O2 240<br />

-Detergent 88<br />

- Sequestering Agent 120<br />

- NaCl 980<br />

-Formic <strong>ac</strong>id 84<br />

- Ammonium sulphate(AMS) 66<br />

- Soaping Agent 30.4<br />

-Fixing Agent 219.2<br />

- Polyvinyl<strong>ac</strong>etate(PVAC) 1,200<br />

-S<strong>of</strong>tener 120<br />

- Steam 142,000<br />

Visu/Kumar<br />

What is<br />

missing<br />

10


Step 9:<br />

Ground water Treated water<br />

s<strong>of</strong>tening)<br />

Visu/Kumar<br />

Domestic use<br />

Industrial use<br />

Boiler<br />

Yarn Dyeing section<br />

Clo<strong>th</strong> Dyeing section<br />

Knitting<br />

11


Step 10: Benchmarking (Comparison <strong>of</strong> wastewater generation)<br />

Visu/Kumar<br />

Type <strong>of</strong><br />

processes<br />

Scouring,<br />

Ble<strong>ac</strong>hing,<br />

Dyeing and<br />

Washing<br />

Electricity<br />

Consumption<br />

Type <strong>of</strong><br />

product<br />

Cotton Yarn 0.15<br />

UNIDO<br />

m 3 /Kg<br />

0.3-12.6<br />

MWh/ton<br />

Energy Consumption…???? …. > ….. 42% %<br />

Measured<br />

m 3 /Kg<br />

0.05<br />

18 MWh/ton<br />

Or you can use COD as ano<strong>th</strong>er indicator (kg/ton)<br />

12


R: Rapid Winch<br />

W: Washing M<strong>ac</strong>hine<br />

Visu/Kumar<br />

Stenter 1<br />

Stenter 2<br />

Drier 2<br />

Stenter 3<br />

Stenter 4<br />

Dryer1<br />

HT: High Temperature Winch<br />

: Sampling Site<br />

: Wastewater channels<br />

: Wastewater sump<br />

To Equalization Pond<br />

Screen<br />

Printing<br />

Samp. Site 4<br />

Sump<br />

Samp. Site 3<br />

WS3 WS2 WS1<br />

RW6<br />

RW5<br />

RW8<br />

RW7<br />

RW1<br />

RW9<br />

RW4<br />

RW3<br />

RW2<br />

HT3 HT2 HT1<br />

Step 11: Sampling plan<br />

Samp.<br />

Site 3<br />

Samp. Site 3<br />

To Oxidation Pond<br />

13


Step 12: Overall Water Consumption Record<br />

Section<br />

Visu/Kumar<br />

Fresh<br />

water in<br />

To ETP Recycled Loss<br />

Domestic 30 30 0<br />

Boilers 142 N/A- 0<br />

Yarn<br />

Dyeing<br />

Clo<strong>th</strong><br />

Dyeing<br />

O<strong>th</strong>er<br />

(knitting)<br />

80 80 0<br />

485 29 0<br />

10 N/A 0<br />

Cooling 28 N/A<br />

Total 775 539 0<br />

Output: Wastewater = 539 m3 (This value was measured at <strong>th</strong>e WWTP)<br />

Mass Balance:?? (775 -539) / (775) * 100 = 30.45%<br />

OK<br />

or not<br />

0<br />

142<br />

0<br />

56<br />

-<br />

228<br />

14


Step 13: Overall Water Consumption Record<br />

Visu/Kumar<br />

INPUT<br />

Boiler (142 m3)<br />

18%<br />

Knitting<br />

(10 m3)<br />

1%<br />

Domestic Usage<br />

(30 m3)<br />

4%<br />

Water Supply<br />

(775 m 3 /day)<br />

Yarn Dyeing<br />

(80 m3) 10%<br />

Cooling (28 m3)<br />

4%<br />

Clo<strong>th</strong> Dyeing<br />

(485m3)<br />

63%<br />

15


Step 14: Clo<strong>th</strong> Dyeing Wastewater 485 m 3<br />

Stentor WW<br />

6%<br />

Visu/Kumar<br />

Losses<br />

12%<br />

Fixing &<br />

Washing<br />

57%<br />

Ble<strong>ac</strong>hing<br />

12%<br />

Dyeing<br />

13%<br />

16


Step 15: Material Balance: Sector Level<br />

Total Input: 485 m 3<br />

Output<br />

Visu/Kumar<br />

Section m 3 /d<br />

Ble<strong>ac</strong>hing : 60<br />

Dyeing : 64<br />

Fixing and Washing : 274<br />

Stentor : 30<br />

TOTAL : 429<br />

Percentage deficit : (485 ….?? -429) / 485 * 100 % : 11.5 % < 20%<br />

Difference = 56 m 3 : due to evaporation losses / pick up on <strong>th</strong>e clo<strong>th</strong>.<br />

OK<br />

17


Step 16: Unit Level Material Balance<br />

Percent Loss:<br />

Visu/Kumar<br />

Tie Compound COLOR : ADMI<br />

1 ADMI : 1 mg/L Dye<br />

Input:<br />

(At dyeing unit)<br />

Jet Dyeing : 2,040 g/d<br />

Dyeing<br />

Outputs:<br />

Washing 3 : 325 g/d<br />

Washing 4 : 275 g/d<br />

Fixing : 25 g/d<br />

Clo<strong>th</strong> : 1,400 g/d<br />

TOTAL : 2,025 g/d<br />

..?? (2040-02025)/(2040)*100 = 0.75 % How Excellent is it..?<br />

Total Waste<br />

(% Fixing <strong>of</strong> Dye) = 68%<br />

Industry Norms : ≥ 75%<br />

Which Item is not efficient..? Washing 3<br />

18


Step 17: Current Level <strong>of</strong> Water Reuse - Recycling<br />

Step 18: Quantifying <strong>th</strong>e Process Outputs<br />

Major:<br />

Visu/Kumar<br />

Clo<strong>th</strong> Dry : 12,000 kg/d<br />

Wastewater : 539 m 3 /d<br />

Solid waste (including sludge) : 820 kg/d<br />

19


Step 19:<br />

Thousands<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Visu/Kumar<br />

13.6<br />

3.5<br />

4<br />

W.W. x 0.1m3 COD Color x 0.5 ADMI BOD<br />

1.9<br />

1.5<br />

0.8 0.8 0.8<br />

1<br />

0.8 0.8<br />

0.8 0.8<br />

0.5<br />

0.7<br />

0.4<br />

0.5<br />

0.25<br />

0 0 0 0.05 0 0<br />

Ble<strong>ac</strong>hing Neutralizing Dyeing Washing 1 Fixing Washing 2 Stentor<br />

0.3<br />

7.3<br />

1<br />

PVAC<br />

3<br />

20


Step 20: Pollution Load per day on ETP<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Visu/Kumar<br />

7<br />

Flow<br />

COD Load<br />

BOD Load<br />

1 1<br />

20<br />

2 2<br />

80<br />

96<br />

95<br />

8<br />

18 18<br />

Domestic Yarn Dyeing Clo<strong>th</strong> Dyeing Stenter<br />

21


Step 21: COD / BOD Removal Efficiency <strong>of</strong> <strong>th</strong>e ETP<br />

Units Flowrate (m COD Removal BOD Removal<br />

Efficiency<br />

In Out Loss In Out Efficiency in out<br />

3 /d)<br />

(mg/L)<br />

(%)<br />

Visu/Kumar<br />

(mg/L)<br />

Filters 250 250 0 190 185 2.6 36 28 22.2<br />

Settling Pond 254 250 4 235 190 20.4 52 36 31.9<br />

Aerated Pond 2 258 254 4 271 235 14.6 122 52 58.0<br />

Aerated Pond 1 262 258 4 900 271 70.3 381 122 31.5<br />

Wetland Pond 539 262 277 2650 900 83.5 1174 381 84.2<br />

Equalization Pond 30 30 0 5800 1240 78.6 2628 338 87.1<br />

Total 289<br />

Loss in Pond: 277 m 3 /d<br />

How Much ???<br />

Why?<br />

(%)<br />

22


Step 22: Performance <strong>of</strong> Current ETP<br />

Filters<br />

Out 250 m 3<br />

COD 190<br />

Out 250 m 3<br />

COD 190<br />

Visu/Kumar<br />

Setting<br />

Pond<br />

Wetland Area<br />

Loss due to infiltration and<br />

evaporation 277 m 3 (51.3%)<br />

20.4% COD<br />

31.9% BOD<br />

Out 254 m 3<br />

COD 235<br />

14.6% COD<br />

58.0% BOD<br />

Aerated Pond<br />

2 wi<strong>th</strong> 4<br />

aerators<br />

Loss 45.8%<br />

Out 258 m 3<br />

COD 271<br />

70.3% COD<br />

Aerated<br />

Pond 1<br />

83.5% COD<br />

84.2% BOD<br />

31.5% BOD<br />

Out 30 m 3<br />

78.6% COD<br />

87.1% BOD<br />

COD 1240<br />

Equalization<br />

Pond<br />

Input 539 m 3<br />

COD 2650 mg/L<br />

Out 262 m 3<br />

COD 900<br />

In 30 m 3<br />

COD 5800<br />

23


Step 23: Major Sources <strong>of</strong> Wastewater<br />

Visu/Kumar<br />

Ble<strong>ac</strong>hing / dyeing and finishing stage<br />

Wash water + Steam condensate<br />

Wastewater and COD Load on ETP<br />

24


R = Rapid Winch<br />

W = Washing M<strong>ac</strong>hine<br />

HT = High Temperature Winch<br />

CTP = Chemical Treatment Plant<br />

Visu/Kumar<br />

Sampling site<br />

Wastewater sump<br />

HT3 HT2 HT1<br />

Samp.<br />

Site 3<br />

RW3<br />

Less-polluted Wastewater channels<br />

Polluted Wastewater Channel<br />

RW4<br />

RW2<br />

RW5<br />

RW1<br />

RW7<br />

RW6<br />

RW8<br />

WS3 WS2 WS1<br />

RW9<br />

Sump<br />

1<br />

2<br />

3<br />

CTP<br />

Step 24: Proposed Layout <strong>of</strong> Segregated Effluent Channels and<br />

Modification <strong>of</strong> <strong>th</strong>e Current ETP.<br />

4<br />

25


Step 25:<br />

Visu/Kumar<br />

Total dye Purchased : 2.25<br />

Total Dye Used : 2.04<br />

Difference in handling : ..??? %<br />

9.33%<br />

House keeping Records<br />

26


Option 1: Polyvinyl<strong>ac</strong>etate (PVAC)<br />

Visu/Kumar<br />

Used for resin finishing after dyeing process<br />

Daily consumption = 1200 kg/d (PVAC)<br />

Organic compound = compound volatile<br />

Expensive = 500 Baht / kg<br />

High BOD Load<br />

Smell in <strong>th</strong>e drying chamber (OHS)<br />

Most <strong>of</strong> <strong>th</strong>e ‘PVAC’ which is not att<strong>ac</strong>hed to <strong>th</strong>e clo<strong>th</strong> is removed<br />

at <strong>th</strong>e drying chamber.<br />

Moisture content : at <strong>th</strong>e finishing : 95%<br />

at <strong>th</strong>e drying : 7.5%<br />

10% PVAC Add a v<strong>ac</strong>uum evaporator<br />

27


Option 2: Steam Condensate<br />

Visu/Kumar<br />

Currently discharged as a Waste water at a<br />

temperature <strong>of</strong> 75 0 C,<br />

Measured volume = 120 m 3 / d<br />

Condensate Recovery System<br />

28


Fabric<br />

Visu/Kumar<br />

Boiler<br />

Underground cooling<br />

water storage<br />

Fresh boiler water IN<br />

Heat Exchanger<br />

Condensate discharge<br />

Fresh Cooling water IN<br />

Finishing Dip<br />

Drying chamber<br />

Fresh finishing<br />

chemicals<br />

29


Fabric<br />

Boiler<br />

Underground cooling<br />

water storage<br />

Visu/Kumar<br />

Boiler water<br />

makeup<br />

Heat Exchanger<br />

Condensate recovery unit<br />

Fresh Cooling water IN<br />

Finishing Dip<br />

EVAC suction system<br />

Drying chamber<br />

Fresh finishing<br />

chemicals<br />

30


Option 3: Recovery <strong>of</strong> Kerosene used in Textile Printing<br />

Brief Description :<br />

Kerosene is used as print paste <strong>th</strong>ickener:<br />

Visu/Kumar<br />

120-140 c : recovery chamber<br />

Loss <strong>of</strong> Kerosene at Different Stages <strong>of</strong> Printing<br />

78%<br />

1%<br />

4%<br />

12%<br />

5%<br />

Before entry into Drier<br />

On Blankets, Screen &<br />

Drained waste<br />

On Curing m<strong>ac</strong>hine<br />

Remains on fabric<br />

Atmospheric release from<br />

Drier<br />

Number <strong>of</strong> Trials 10<br />

Total kerosene used for preparation <strong>of</strong> print paste 1870 litres<br />

Quantity <strong>of</strong> kerosene evaporated at Dryer 1402 l itres<br />

Kerosene vapour recovered <strong>th</strong>ro’ plant 1100 litres<br />

Percentage <strong>of</strong> kerosene recovery from printing Dryer 78.5%<br />

Percentage <strong>of</strong> Kerosene recovered based on total<br />

consumption<br />

58.8%<br />

31


Visu/Kumar<br />

Boiler is a very common heat exchange equipment<br />

Analyze <strong>th</strong>e data<br />

→ Air used →<br />

Theoretical- Input<br />

Actual- Output<br />

→ Excess → Temp↓<br />

O<strong>th</strong>er Cap<strong>ac</strong>ity<br />

(Blower)<br />

→ Efficiency<br />

Important (2 Phase)<br />

32


Visu/Kumar<br />

3 Pass Coal Fire Boiler<br />

Steam Out<br />

Fire Tube Steam Boiler<br />

Steam Out<br />

Smoke St<strong>ac</strong>k<br />

Smoke St<strong>ac</strong>k<br />

Water In<br />

Water Tube Steam Boiler<br />

33


Visu/Kumar<br />

Plant Walk<strong>th</strong>rough: Boiler Data<br />

1. Flue gas % (O 2 ) = 8.2%<br />

Temperature = 310 0 C<br />

2. Fuel = 750 kg/h<br />

(C = 85.9%, H = 11.8%, S = 2%,…. )<br />

3. Oil Heater = 8 kW<br />

Oil Pump = 1 kW<br />

4. Fan = 30 kW<br />

5. Pumps = 1 kW<br />

6. Water Feed = 10 m 3 / h<br />

7. Blow Down = 0.6 m 3 / h<br />

8. Steam Pressure = 10 bar<br />

Temperature = 180 0 C<br />

9. Convection & Radiation Loss = 50,000 kJ/h<br />

34


Boiler is a very common heat exchange equipment.<br />

Visu/Kumar<br />

35


Visu/Kumar<br />

Boiler Analysis: Combustion<br />

A. Calculation <strong>of</strong> Theoretical Air requirement:<br />

Required data (Fuel constituents):<br />

C - 85.9% H - 11.8% S - 2%<br />

H 2 O - 0.3% Ash - 0.008%<br />

Chemical equations<br />

C + O 2 CO 2<br />

S + O 2 SO 2<br />

2H 2 + O 2 2H 2 O<br />

(2) (1)<br />

1 mole <strong>of</strong> air = 0.21 moles <strong>of</strong> O 2 + 0.79 moles <strong>of</strong> N 2<br />

∴ 1 mole <strong>of</strong> O 2 = 0.79/0.21 = 3.76 mole <strong>of</strong> N 2<br />

36


Visu/Kumar<br />

Calculation <strong>of</strong> Theoretical Air Requirement……..<br />

Constituents % wt Moles Moles <strong>of</strong> O 2<br />

(for 100 Kg <strong>of</strong> fuel) (%wt/MW) required .<br />

C (12) 85.9 7.16 7.16<br />

H (2) 11.8 5.9 2.95<br />

S (32) 2 0.063 0.063<br />

For complete combustion, we require O 2 for <strong>th</strong>is fuel,<br />

Mole <strong>of</strong> O 2 = .. 7.16 + 2.95 + 0.06 = 10.17<br />

???<br />

∴ Theoretical Air req. = (MW)O 2*(Mole)O 2 + (3.76) * (Mole)O 2 * (MW)N 2<br />

A/F.. ???<br />

= (32) (10.17) + (3.76) (10.17) 28<br />

= 1396 kg air/100 kg <strong>of</strong> fuel<br />

= 13.96 (kg <strong>of</strong> air/kg <strong>of</strong> fuel)<br />

37


Visu/Kumar<br />

B. Calculation <strong>of</strong> Actual Air Fuel Ratio:<br />

Kumar.. Check here <strong>th</strong>e Water molecule in <strong>th</strong>e calculation…<br />

Required data (Flue gas constituents)<br />

CO2 = 7.16 moles<br />

SO2 = 0.063 ,,<br />

N2 = (10.17) (3.76) = 38.2 (<strong>th</strong>eoretical)<br />

O2 = x (Oxygen in flue gas - measured)<br />

= 3.76 x<br />

N 2<br />

∴ Total mole = 7.16 + 0.063 + 38.2 + x + 3.76 x<br />

= 45.46 + 4.76 x<br />

x 8.2<br />

∴ O 2 ratio in flue gas = --------------------- = -------<br />

(45.46 + 4.76 x ) 100<br />

38


Visu/Kumar<br />

Calculation <strong>of</strong> Actual Air Fuel Ratio…….<br />

372.72 + 39.03 x = 100 x<br />

∴ x = 6.11 mole <strong>of</strong> O 2<br />

∴ Actual O 2 10.17 + 6.11 = 16.28<br />

∴ Actual air (kg) = (16.28) (32) + (16.28) (3.76) (28)<br />

= 2235.9 (kg <strong>of</strong> air/100kg <strong>of</strong> fuel)<br />

∴ Actual A/F = 22.35 kg <strong>of</strong> air/kg <strong>of</strong> fuel<br />

39


Visu/Kumar<br />

Flue Gas Analysis<br />

% O 2 in flue gas 8.2 % (measured)<br />

Summary<br />

• Theoretical Air/Fuel ratio = 13.9 (kg <strong>of</strong> air/kg <strong>of</strong> fuel)<br />

• Actual Air/Fuel ratio = 22.35<br />

Actual - Theoretical<br />

∴ Excess air = --------------------------- x 100 = 60% (very high)<br />

Theoretical<br />

Indicates improvements to be made in <strong>th</strong>e control <strong>of</strong> air supply (for<br />

oil, excess air = approx 20%)<br />

How do you do <strong>th</strong>is? Air flow control?… Valves? Fans? Blower?<br />

40


Visu/Kumar<br />

Fuel<br />

Air<br />

Water<br />

Electricity<br />

Boiler Energy Balance<br />

Radiation and<br />

convection losses<br />

Flue gas<br />

Steam<br />

O<strong>th</strong>er losses<br />

Blow down<br />

41


A. Energy in Fuel:<br />

Visu/Kumar<br />

Boiler Energy Balance: Energy Input<br />

= Higher heating value <strong>of</strong> fuel oil<br />

= 39.7 MJ / kg <strong>of</strong> fuel<br />

= 39,700 kJ / kg <strong>of</strong> fuel<br />

B. Shaft work: (Electricity Inputs)<br />

(All in kJ / kg <strong>of</strong> fuel)<br />

Oil Heater = 8 kW * 3600/750 = 38.4 kJ / kg<br />

Pumps = 1 kW * 3600/750 = 4.8 kJ / kg<br />

Fan + Pumps = 46 kW * 3600/750 =220.8 kJ / kg<br />

TOTAL =264.0 kJ / kg<br />

Total Energy Input = 39,700 kJ / kg + 264 kJ / kg<br />

= 39,964 kJ / kg <strong>of</strong> fuel<br />

Energy in air is neglected ( = ambient temperature)<br />

42


Visu/Kumar<br />

h feed water<br />

h steam<br />

En<strong>th</strong>alpy Value (From Table) :<br />

h water at steam<br />

= 217 kJ / kg<br />

= 2278.2 kJ / kg<br />

= 763 kJ / kg<br />

43


Visu/Kumar<br />

Energy Output<br />

Useful Output = Energy in Steam - Energy in Feed Water<br />

(Steam) = m w (h s -h f )<br />

= 10 * 1000 (2278.2 - 217.7) / m fuel<br />

= 27,473 kJ / kg<br />

Energy lost in flue gas = m C P (T 2 -T 1 )<br />

C P <strong>of</strong> air / flue gas = 1 kJ / (kg 0 K)<br />

m = 23 kg <strong>of</strong> air / kg <strong>of</strong> fuel<br />

= 23 * 1 * (310 - 30)<br />

= 6,440 kJ / kg <strong>of</strong> fuel<br />

44


Energy lost in blow down = m b (h b -h f )<br />

= 0.6 *1000 (……. 763 - …….) 217 / 750<br />

Blow down value = ….… 437 kJ / kg<br />

Radiation and convection losses = 750,000 / m fuel<br />

= 750,000 / 750<br />

= 1,000 kJ / kg<br />

Energy in H 2 (lost as water vapor) = A (S + L+V)<br />

Visu/Kumar<br />

A = Water formed (kg)<br />

Wt <strong>of</strong> H2 = 0.118 kg /kg <strong>of</strong> fuel (data)<br />

A = (0.118*9) = 1.062 kg/kg <strong>of</strong> fuel<br />

2H 2 + O 2 = 2 H 2O<br />

4 + 32 = 36<br />

1 + 8 = 9<br />

45


Visu/Kumar<br />

S = Sensible heat <strong>of</strong> water (due to raise in temp)<br />

= C P (T 2 -T 1 )<br />

= 4.18 (100 - 30)<br />

= 292.6 kJ / kg <strong>of</strong> water<br />

L = Latent heat <strong>of</strong> water at atmospheric condition<br />

= 2200 kJ / kg<br />

V = Sensible hot <strong>of</strong> water vapor<br />

= 2.18 (310 – 100) = 457.8<br />

Energy Loss = (1.062) (292.6 + 220)+457.8<br />

= 3000 kJ / kg <strong>of</strong> fuel<br />

O<strong>th</strong>er losses = moisture in air + moisture in water<br />

46


Visu/Kumar<br />

Boiler Energy Balance Summary<br />

( In kJ / kg <strong>of</strong> fuel)<br />

Energy in = Fuel (39,700)<br />

= O<strong>th</strong>er ( 264)<br />

Output = Steam (27,473)<br />

= Flue gas ( 6,440)<br />

= Blow down ( 437)<br />

= Hydrogen ( 3,000)<br />

= Radiation &<br />

Convection ( 1,000)<br />

Un<strong>ac</strong>counted --> Assumption in calculation<br />

Un<strong>ac</strong>counted losses ≈ 4.0 %<br />

Efficiency = 27,473 / 39,964 = 68.7 %<br />

39,964<br />

38,350<br />

1,614<br />

47


Option 4: Saving from Controlling Excess Air at Boiler.<br />

From specifications, optimum excess air air for fuel oil = 20%<br />

0.20 =<br />

Weight <strong>of</strong> excess air<br />

Weight <strong>of</strong> <strong>th</strong>eoretical air<br />

Visu/Kumar<br />

Weight <strong>of</strong> excess air = 0.2 * 13.96 = 2.792 kg<br />

Weight <strong>of</strong> O 2 in excess air = 2.792 * 0.232<br />

= 0.65 kg<br />

Weight <strong>of</strong> N 2 in excess air = 2.14 kg<br />

Energy loss in flue gas at “correct+excess air condition”<br />

= m C P (T 2 -T 1 )<br />

= (13.96 + 2.79) (1.02) (310 - 30)<br />

= 4,784 kJ / kg <strong>of</strong> fuel (1)<br />

48


Visu/Kumar<br />

But Energy loss in flue gas at 60% excess air,<br />

i. e., <strong>ac</strong>tual is 6,440 kJ/kg <strong>of</strong> fuel (2)<br />

Energy saving = 6,440 - 4,784<br />

= 1,656 kJ / kg <strong>of</strong> fuel<br />

Fuel consumption = 750 kg/h<br />

Energy saving / h = 1,656 * 750<br />

= 1,242,000 kJ/h<br />

49


Option 5: Heat loss <strong>th</strong>rough leaks away from Boiler<br />

• Steam pressure = 10 bar<br />

• Hole size = approximately 8 mm<br />

• From figure, heat lost for a 8 mm (0.25 inch) hole at a<br />

pressure <strong>of</strong> 10 bar (145 psi) can be got<br />

• Energy lost from steam (per year) = 3,000,000 Btu =<br />

3,165,300 kJ ( 1 Btu = 1.0551 kJ)<br />

• At 60% boiler efficiency, energy supplied by fuel = 5,275,500<br />

kJ (133 kg -> 150 litres <strong>of</strong> fuel)<br />

• Cost : Minimal (Good housekeeping)<br />

Visu/Kumar<br />

This is for only ONE leak!<br />

3165300<br />

0.6=<br />

x×<br />

3970<br />

X = 133 kg<br />

50


Annual heat loss (10 3 Btu / yr)<br />

Visu/Kumar<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

0.025 0.05 0.1<br />

600 psig<br />

400 psig<br />

Hole Size (in.)<br />

200 psig<br />

0.25<br />

100 psig<br />

Heat losses from steam leaks<br />

50 psig<br />

20 psig<br />

0.50 0.75 1.0<br />

51


Option 5: Heat Loss from Exposed Pipes (uninsulated)<br />

Visu/Kumar<br />

• Steam pressure = 10 bar<br />

• Exposed pipe leng<strong>th</strong> (one stretch) = approximately 5 m<br />

• Steam pipe diameter = 25 cm<br />

• From figure, heat lost for a 25 cm (10 inch)<br />

uninsulated pipe at a pressure <strong>of</strong> 10 bar (145 psi) can<br />

be got<br />

• Energy lost from steam (per year) = 3,000,000 Btu =<br />

3,165,300 kJ ( 1 Btu = 1.0551 kJ) for 33 m<br />

• Energy lost from steam (per year) = 3,000,000 Btu =<br />

479,590 kJ for 5 m<br />

• At 60% boiler efficiency, energy supplied by fuel =<br />

799,318 kJ (20 kg -> 23 litres <strong>of</strong> fuel)<br />

• Cost : Minimal (Good housekeeping)<br />

52


Heat loss per 100 ft <strong>of</strong> bare steam line (10 3 Btu / yr)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Visu/Kumar<br />

0<br />

12 in. line<br />

10 in. line<br />

8 in. line<br />

0 100 200 300 400 500 600<br />

Operating steam pressure (psig)<br />

Heat losses from uninsulated pipes<br />

6 in. line<br />

4 in. line<br />

3 in. line<br />

2 in. line<br />

11/2 in. line<br />

1 in. line<br />

1/2 in. line<br />

53


Cost Calculation<br />

Water Reuse:condensate recovery<br />

Present effluent treatment cost = 10,200 B/mon<strong>th</strong> = 340 B/day<br />

Wastewater output = 539 m 3 /day<br />

Therefore cost per m 3 <strong>of</strong> wastewater = 0.6 B<br />

Saving due to reduction <strong>of</strong> wastewater treatment: 120 m 3 /day x 0.6 B/m 3 = 72 B/day<br />

Visu/Kumar<br />

Cost <strong>of</strong> raw water in <strong>th</strong>e f<strong>ac</strong>tory = 1.8 B/m 3 (Pumping)<br />

Saving due to water reuse: 120 m 3 /day x 1.8 B/m 3 = 216 B/day<br />

Net saving: 648 B/day = 194,400 B/year (300 working day)<br />

Investment: 100,000 B (reported by <strong>th</strong>e f<strong>ac</strong>tory management)<br />

Cost <strong>of</strong> Deionized water for Boiler = 3 B/m 3<br />

Saving = 3 * 120 = 360 B /d<br />

Cost <strong>of</strong> Fuel = 3%, 5 B /Liter<br />

Fuel consumption = 150,000 L/mon<strong>th</strong><br />

Saving due to fuel reduction =?? = 150,000*3/100*12 m/y * 5 = 270,000 B<br />

Total Saving:?? 194,400 + 270,000 = 464,400 B<br />

1,000,000 B<br />

Payb<strong>ac</strong>k Period : = 2.15 Years<br />

464,400 B/year<br />

54


Long-term Waste Reduction Options<br />

Stream Segregation<br />

30% <strong>of</strong> <strong>th</strong>e effluents <strong>of</strong> <strong>th</strong>e dyeing process could be<br />

separated in <strong>th</strong>e form <strong>of</strong> a polluted stream<br />

Visu/Kumar<br />

60 m 3 from <strong>th</strong>e ble<strong>ac</strong>hing stage and 64 m 3 from <strong>th</strong>e<br />

dyeing process<br />

Leng<strong>th</strong> <strong>of</strong> channel to be built = 144 m<br />

Cost/m <strong>of</strong> channel = approx. 400 B/m (including labor)<br />

Total cost = 57 000 B<br />

If a reinforced concrete pipe is used instead <strong>of</strong> a channel, <strong>th</strong>en<br />

cost/m <strong>of</strong> pipe = 200 B/m<br />

Total cost = 28 800 B<br />

55


Effluent Treatment Plant Modification:<br />

modification wi<strong>th</strong> <strong>th</strong>e ETP such as adding a filter wall<br />

between aerated ponds 2 and 3<br />

Total cost <strong>of</strong> <strong>th</strong>e treatment operation has decreased<br />

to 10,000 B/mon<strong>th</strong> from an original 20,000 B/mon<strong>th</strong>.<br />

Fur<strong>th</strong>er modification <strong>of</strong> <strong>th</strong>e ETP by segregation <strong>of</strong> <strong>th</strong>e<br />

wastewater streams and using an optimum dosage <strong>of</strong> Alum<br />

will fur<strong>th</strong>er reduce <strong>th</strong>e treatment cost and simultaneously<br />

will increase its performance.<br />

Visu/Kumar<br />

56


Obvious Waste Reduction Measures<br />

Water Reuse:<br />

Condensate recycled b<strong>ac</strong>k to boiler.<br />

Cooling water collected in a storage tank, and is used as non-process washing<br />

water. Saving <strong>of</strong> 120 m 3 <strong>of</strong> raw water per day.<br />

Dyeing Process:<br />

washing steps can be reduced to one washing e<strong>ac</strong>h wi<strong>th</strong>out considerably affecting<br />

<strong>th</strong>e quality <strong>of</strong> dyeing.<br />

Assuming <strong>th</strong>at four batches are dyed per day at 100% m<strong>ac</strong>hine cap<strong>ac</strong>ity, <strong>th</strong>e<br />

reduction in raw water consumption will be 96 m 3 per day.<br />

Washing Pr<strong>ac</strong>tice:<br />

Floor and equipment washdown operations can still be improved by using hot<br />

water taken from <strong>th</strong>e storage tank (collected cooling water) wi<strong>th</strong> <strong>th</strong>e use <strong>of</strong><br />

spray guns.<br />

Improving present drainage system:<br />

Visu/Kumar<br />

The drainage system can be improved by cleaning and removing all <strong>th</strong>e current<br />

blocking objectes at site 5 and 6, inside <strong>th</strong>e dyeing section and along <strong>th</strong>e long<br />

channel leading to <strong>th</strong>e wetland area.<br />

57


Long-term Waste Reduction Options<br />

Visu/Kumar<br />

Stream Segregation<br />

Innovation <strong>of</strong> Dyeing Process<br />

Heat Energy Conservation<br />

1. Improving boiler efficiency<br />

2. Reducing Heat Loss <strong>th</strong>rough leaks<br />

Effluent Treatment Plant Modifications<br />

1. treatment using Ferrous Sulfate<br />

2. treatment using Ferrous Sulfate and Lime<br />

3. treatment using Alum<br />

Combined Wastewater Treatment<br />

Colored Wastewater Treatment After Segregation<br />

Sludge Char<strong>ac</strong>teristics<br />

Treatment Train for Polluted Waste Stream<br />

Treatment Train for <strong>th</strong>e Less-Polluted Stream<br />

58


Major Concerns <strong>of</strong> <strong>th</strong>e Present Waste Water<br />

Treatment Plant:<br />

Visu/Kumar<br />

1. Groundwater Contamination - Wetlands ???<br />

2. Aerators in Pond 1 & 2<br />

3. Addition <strong>of</strong> alum in pond 2 what for?<br />

4. Surf<strong>ac</strong>e aeration in settling tank, what for ?<br />

5. Frequent regeneration <strong>of</strong> <strong>ac</strong>tivated carbon.<br />

59


Option Evaluation by Weighted Sum Me<strong>th</strong>od<br />

Criteria Weight<br />

Option Rating (R)<br />

#1 Option #2 Option #3 Option #4 Option #5 Option<br />

R R*W R R*W R R*W R R*W R R*W<br />

Reduction in treatment/disposal costs 8 7 7 5 2 2<br />

Reduction <strong>of</strong> Input material costs 4 8 6 8 4 4<br />

Extent <strong>of</strong> current use in Industry 5 8 8 7 7 7<br />

Effect on Product quality (no effect=10) 10 9 9 2 8 8<br />

Low capital cost 5 2 5 4 7 8<br />

Low O and M cost 5 5 6 5 8 8<br />

Short Implementation period 8 3 5 3 7 8<br />

Ease <strong>of</strong> Implementation 7 3 6 5 7 8<br />

Reduction in Energy Bills 9 5 9 5 10 10<br />

Improvement in OHS 7 10 3 10 2 2<br />

Final<br />

Evaluation<br />

Sum <strong>of</strong> Weighted Ratings Σ (W*R)<br />

Option Ranking<br />

Feasibility Analysis Scheduled for (Date)


Option Evaluation by Weighted Sum Me<strong>th</strong>od<br />

Criteria Weight<br />

Option Rating (R)<br />

#1 Option #2 Option #3 Option #4 Option #5 Option<br />

R R*W R R*W R R*W R R*W R R*W<br />

Reduction in treatment/disposal costs 8 7 56 7 56 5 40 2 16 2 16<br />

Reduction <strong>of</strong> Input material costs 4 8 32 6 24 8 32 4 16 4 16<br />

Extent <strong>of</strong> current use in Industry 5 8 40 8 40 7 35 7 35 7 35<br />

Effect on Product quality (no effect=10) 10 9 90 9 90 2 20 8 80 8 80<br />

Low capital cost 5 2 10 5 25 4 20 7 35 8 40<br />

Low O and M cost 5 5 25 6 30 5 25 8 40 8 40<br />

Short Implementation period 8 3 24 5 40 3 24 7 56 8 64<br />

Ease <strong>of</strong> Implementation 7 3 21 6 42 5 35 7 49 8 56<br />

Reduction in Energy Bills 9 5 45 9 81 5 45 10 90 10 90<br />

Improvement in OHS 7 10 70 3 21 10 70 2 14 2 14<br />

Final<br />

Evaluation<br />

Sum <strong>of</strong> Weighted Ratings Σ (W*R) 413 449 346 431 451<br />

Option Ranking<br />

Feasibility Analysis Scheduled for (Date)


Option Evaluation by Weighted Sum Me<strong>th</strong>od<br />

Criteria Weight<br />

Option Rating (R)<br />

#1 Option #2 Option #3 Option #4 Option #5 Option<br />

R R*W R R*W R R*W R R*W R R*W<br />

Reduction in treatment/disposal costs 8 7 56 7 56 5 40 2 16 2 16<br />

Reduction <strong>of</strong> Input material costs 4 8 32 6 24 8 32 4 16 4 16<br />

Extent <strong>of</strong> current use in Industry 5 8 40 8 40 7 35 7 35 7 35<br />

Effect on Product quality (no effect=10) 10 9 90 9 90 2 20 8 80 8 80<br />

Low capital cost 5 2 10 5 25 4 20 7 35 8 40<br />

Low O and M cost 5 5 25 6 30 5 25 8 40 8 40<br />

Short Implementation period 8 3 24 5 40 3 24 7 56 8 64<br />

Ease <strong>of</strong> Implementation 7 3 21 6 42 5 35 7 49 8 56<br />

Reduction in Energy Bills 9 5 45 9 81 5 45 10 90 10 90<br />

Improvement in OHS 7 10 70 3 21 10 70 2 14 2 14<br />

Final<br />

Evaluation<br />

Sum <strong>of</strong> Weighted Ratings Σ (W*R) 413 449 346 431 451<br />

Option Ranking 4 2 5 3 1<br />

Feasibility Analysis Scheduled for (Date)


Audit Report<br />

Table <strong>of</strong> Contents<br />

Introduction..................................................................................................................................<br />

I. B<strong>ac</strong>kground ......................................................................................................................<br />

1.1 Objective .....................................................................................................................<br />

II. Planning and Organization 2<br />

2.1 Study Objectives..........................................................................................................<br />

2.2 Formation <strong>of</strong> <strong>th</strong>e Audit Team ....................................................................................<br />

2.3 Audit Appro<strong>ac</strong>h...........................................................................................................<br />

III. Assessment Preparation Phase ........................................................................................<br />

3.1 Plant's manuf<strong>ac</strong>turing process ...................................................................................<br />

3.1.1 Clo<strong>th</strong> dyeing section.....................................................................................<br />

3.1.2 Yarn dyeing section......................................................................................<br />

3.2 Material consumption and wastewater generation....................................................<br />

3.2.1 Raw material consumption..........................................................................<br />

3.2.2 Water usage..................................................................................................<br />

3.2.3 Wastewater char<strong>ac</strong>teristics ..........................................................................<br />

3.3 Performance <strong>of</strong> <strong>th</strong>e current effluent treatment plant .................................................<br />

3.3.1 Description...................................................................................................<br />

3.3.2 Assessment <strong>of</strong> <strong>th</strong>e effluent treatment plant.................................................<br />

IV. Assessment Phase - Proposed reduction options............................................................<br />

4.1 Obvious waste reduction measures............................................................................<br />

4.2 Long term waste reduction options ...........................................................................<br />

4.3 Major concerns <strong>of</strong> <strong>th</strong>e present effluent treatment plant ............................................<br />

V. Feasibility Analysis Phase: Techno-economical Evaluation ..........................................<br />

Conclusions ......................................................................................................................<br />

References<br />

Appendix A: Data Analysis<br />

B: Sequence <strong>of</strong> material handling observed during a one-batch period<br />

C: Detailed time schedule <strong>of</strong> <strong>th</strong>e audit team<br />

D: Water use values taken from literature<br />

E: Flow rate measurement device<br />

F: Segregated flow channel dimensions<br />

G: Wastewater treatment<br />

Visu/Kumar<br />

Total no. <strong>of</strong> pages: 30<br />

63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!