06.10.2013 Views

Signature of phonon drag thermopower in periodically modulated ...

Signature of phonon drag thermopower in periodically modulated ...

Signature of phonon drag thermopower in periodically modulated ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Signature</strong> <strong>of</strong> <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong> <strong>in</strong> <strong>periodically</strong> <strong>modulated</strong> structures<br />

Ala<strong>in</strong> Nogaret<br />

Department <strong>of</strong> Physics, University <strong>of</strong> Bath, Bath BA2 7AY, United K<strong>in</strong>gdom<br />

Received 30 January 2002; revised manuscript received 2 May 2002; published 3 September 2002<br />

A theory is presented to <strong>in</strong>terpret the <strong>phonon</strong> <strong>drag</strong> magneto-<strong>thermopower</strong> oscillations observed <strong>in</strong> a <strong>periodically</strong><br />

<strong>modulated</strong> two-dimensional electron gas. The thermoelectric and <strong>phonon</strong> <strong>drag</strong> tensors are obta<strong>in</strong>ed by<br />

solv<strong>in</strong>g a Boltzmann equation driven by an anisotropic electron-<strong>phonon</strong> scatter<strong>in</strong>g rate reflect<strong>in</strong>g the tw<strong>of</strong>old<br />

symmetry <strong>of</strong> the Fermi surface. It is shown that commensurability oscillations <strong>in</strong> the <strong>phonon</strong> <strong>drag</strong> and the<br />

Nernst-Ett<strong>in</strong>gshausen coefficients arise exclusively because <strong>of</strong> f<strong>in</strong>ite angle scatter<strong>in</strong>g events. The calculated<br />

oscillations are found to be <strong>in</strong> phase with the magnetoresistance and their magnitude is proportional to the<br />

electron-<strong>phonon</strong> anisotropy.<br />

DOI: 10.1103/PhysRevB.66.125302 PACS numbers: 73.23.Ad, 72.20.Pa<br />

I. INTRODUCTION<br />

Periodically <strong>modulated</strong> two-dimensional electron gases<br />

2DEG’s have been <strong>in</strong>tensively studied over the past decade<br />

follow<strong>in</strong>g the discovery, by Weiss et al. 1 <strong>of</strong> commensurability<br />

magnetoresistance oscillations. The physical orig<strong>in</strong> <strong>of</strong><br />

these oscillations is now well established from concurr<strong>in</strong>g<br />

theoretical pictures. 2–5 Collisions between quasiballistic<br />

electrons and the superlattice potential contribute to large<br />

corrections <strong>in</strong> the conductivity. In the presence <strong>of</strong> a magnetic<br />

field B applied perpendicular to the 2DEG, the resistance<br />

oscillates due to the cyclotron diameter at the Fermi level,<br />

2R c , scal<strong>in</strong>g with an <strong>in</strong>teger number superlattice periods a<br />

with<strong>in</strong> a phase factor. This picture was extended to the electronic<br />

heat conductivity and the diffusion <strong>thermopower</strong>. 6 The<br />

latter was subsequently measured us<strong>in</strong>g a local heat<strong>in</strong>g technique<br />

that allows one to study diffusion <strong>of</strong> hot electrons<br />

without heat<strong>in</strong>g the lattice. Commensurability <strong>thermopower</strong><br />

oscillations were observed which were 90° out <strong>of</strong> phase compared<br />

to the resistivity oscillations, <strong>in</strong> l<strong>in</strong>e with the theoretical<br />

expectations. 7<br />

This paper <strong>in</strong>vestigates the voltage <strong>in</strong>duced by a macroscopic<br />

heat current flow<strong>in</strong>g across a lateral superlattice fabricated<br />

from a GaAs/Al,GaAs heterostructure. The difference<br />

from Ref. 7 is that the dom<strong>in</strong>ant contribution to the<br />

<strong>thermopower</strong> now arises from the <strong>phonon</strong> <strong>drag</strong> act<strong>in</strong>g on the<br />

2DEG rather than from the diffusion <strong>of</strong> hot electrons. 8,9 A<br />

series <strong>of</strong> magneto-<strong>drag</strong> <strong>thermopower</strong> oscillations were<br />

reported 10 that cannot be expla<strong>in</strong>ed with<strong>in</strong> the current theoretical<br />

framework that only extends to un<strong>modulated</strong><br />

systems. 11–13 We shall show that the potential modulation<br />

lowers the symmetry <strong>of</strong> the Fermi surface and we shall calculate<br />

its <strong>in</strong>fluence on the <strong>phonon</strong> <strong>drag</strong> act<strong>in</strong>g on the<br />

2DEG. 9,11,14<br />

The <strong>thermopower</strong> S is def<strong>in</strong>ed as ES•“T, where E is<br />

the gradient <strong>of</strong> the electrochemical potential and “T is the<br />

temperature gradient applied to the 2DEG. Thermopower<br />

measurements are realised with no net charge current flow<strong>in</strong>g<br />

through the sample so that the thermoelectric current is exactly<br />

compensated by a electric current: j•E-L•“T0.<br />

The <strong>thermopower</strong> is then S À1 L, where and L are the<br />

conductivity and the thermoelectric tensor respectively. In<br />

contrast to the diffusion <strong>thermopower</strong>, the <strong>phonon</strong> <strong>drag</strong> ther-<br />

PHYSICAL REVIEW B 66, 125302 2002<br />

mopower (S g ) is an <strong>in</strong>direct means <strong>of</strong> prob<strong>in</strong>g the 2DEG. A<br />

temperature gradient generates a nonequilibrium <strong>phonon</strong> distribution<br />

that <strong>in</strong> turn transfers some <strong>of</strong> its momentum to the<br />

electrons. 13 Electron-<strong>phonon</strong> <strong>in</strong>teractions be<strong>in</strong>g slow, ep<br />

10 9 s, 15 compared to impurity scatter<strong>in</strong>g, 10– 30 ps,<br />

momentum is rapidly scattered away. In average, the Fermi<br />

sea is displaced <strong>in</strong> momentum space by an amount<br />

(/ ep)“T. Miele et al. 11 have explicitly shown that the<br />

action <strong>of</strong> <strong>phonon</strong> <strong>drag</strong> is equivalent to that <strong>of</strong> an effective<br />

electric field directed along the temperature gradient and depend<strong>in</strong>g<br />

only on temperature and <strong>phonon</strong> parameters. This<br />

result implies that S g is <strong>in</strong>dependent <strong>of</strong> B, it expla<strong>in</strong>s the<br />

absence <strong>of</strong> weak localisation effects 11 <strong>in</strong> the <strong>thermopower</strong>,<br />

S yy , and the vanish<strong>in</strong>gly small Nernst-Ett<strong>in</strong>gshausen coefficient<br />

S xy . 16 Whether the 2DEG is <strong>modulated</strong> or not is actually<br />

irrelevant because S g rema<strong>in</strong>s <strong>in</strong>dependent <strong>of</strong> B, therefore<br />

the <strong>phonon</strong> <strong>drag</strong> is not expected to show<br />

commensurability effects. This picture has two limitations:<br />

first, electron and <strong>phonon</strong> anisotropies comb<strong>in</strong>e to <strong>in</strong>crease<br />

the Nernst-Ett<strong>in</strong>gshausen coefficient, 17 and second, the displaced<br />

electron and <strong>phonon</strong> distributions <strong>in</strong> momentum space<br />

cannot be <strong>in</strong> equilibrium because the magnetic field only acts<br />

on electrons. 18<br />

In the follow<strong>in</strong>g, I shall derive a solution to Boltzmann<br />

equation driven by an anisotropic electron-<strong>phonon</strong> scatter<strong>in</strong>g<br />

rate. This anisotropy has a tw<strong>of</strong>old symmetry that reflects the<br />

symmetry <strong>of</strong> the Fermi surface imposed by the onedimensional<br />

grat<strong>in</strong>g. The thermoelectric and <strong>thermopower</strong><br />

tensors are calculated with <strong>phonon</strong> anisotropy be<strong>in</strong>g <strong>in</strong>troduced<br />

as a s<strong>in</strong>gle phenomenological parameter. With this<br />

new assumption, the standard <strong>phonon</strong> <strong>drag</strong> theory 10 is capable<br />

<strong>of</strong> reproduc<strong>in</strong>g the commensurability oscillations seen<br />

<strong>in</strong> S g .<br />

The paper is organized <strong>in</strong>to three sections. The first one<br />

derives the thermoelectric tensor modified for the effects <strong>of</strong><br />

the periodic potential. The <strong>thermopower</strong> is then calculated <strong>in</strong><br />

the simple case <strong>of</strong> isotropic electron-<strong>phonon</strong> <strong>in</strong>teraction. The<br />

second section presents an exact solution <strong>of</strong> Boltzmann<br />

equation driven by anisotropic electron-<strong>phonon</strong> scatter<strong>in</strong>g.<br />

Each angular harmonic contributes a corrective term to the<br />

<strong>thermopower</strong>, the lead<strong>in</strong>g term <strong>of</strong> which is given by the roots<br />

<strong>of</strong> a characteristic polynomial. The magnetic-field depen-<br />

0163-1829/2002/6612/1253027/$20.00 66 125302-1<br />

©2002 The American Physical Society


ALAIN NOGARET PHYSICAL REVIEW B 66, 125302 2002<br />

dence <strong>of</strong> the <strong>thermopower</strong> is calculated and results are discussed<br />

<strong>in</strong> the third section.<br />

II. ISOTROPIC ELECTRON PHONON SCATTERING<br />

The temperature gradient is applied along the potential<br />

modulation taken as V(y)V 0 cos(qy) where q2/a. This<br />

was experimentally realised by gat<strong>in</strong>g a 2DEG with 200-nmwide<br />

metal f<strong>in</strong>ger gates with a periodicity a500 nm. The<br />

electron density <strong>in</strong> the 2DEG was 2.410 15 m 2 and the<br />

mobility 930 000 cm 2 V 1 s 1 . The modulation had a piezoelectric<br />

orig<strong>in</strong>, 19 and its amplitude, calculated from the width<br />

<strong>of</strong> the positive magnetoresistance, was found to be V 0<br />

1 mV. The <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong> S yy and the Nernst-<br />

Ett<strong>in</strong>gshausen coefficient S yx are obta<strong>in</strong>ed by measur<strong>in</strong>g the<br />

voltage drop parallel and perpendicular to the temperature<br />

gradient. The electron-<strong>phonon</strong> scatter<strong>in</strong>g rate responsible for<br />

<strong>phonon</strong> <strong>drag</strong> is given by 11<br />

f k<br />

<br />

t<br />

ph<br />

f k 0<br />

k <br />

m*s <br />

<br />

ep v k<br />

“T<br />

, 1<br />

T<br />

where f k 0 /k is the derivative <strong>of</strong> the Fermi-Dirac function,<br />

m*0.067m 0 is the electron effective mass, s is the <strong>phonon</strong><br />

velocity <strong>of</strong> the acoustic mode , is the <strong>phonon</strong> mean<br />

free path, and v k is the velocity <strong>of</strong> an electron <strong>in</strong> state k. At<br />

4 K, the 2DEG is highly degenerate hence f k 0 /k may be<br />

replaced by ( k F) <strong>in</strong> Eq. 1. An electron on the<br />

Fermi surface travell<strong>in</strong>g with velocity v(y) along the direction<br />

u 1(cos ,s<strong>in</strong> ) will be subject to a <strong>phonon</strong> <strong>drag</strong> W 0 ,<br />

W 0 ,y 0<br />

<br />

dkk 2e<br />

4 2<br />

f<br />

t ph<br />

y<br />

2<br />

0S 0<br />

u<br />

D<br />

1•“T,<br />

0<br />

2<br />

where 0n se 2 /m* is the Drude conductivity, D 0<br />

1/2 F 2 and<br />

S 0 <br />

m*s <br />

<br />

e epT<br />

is the isotropic <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong>, F is the<br />

Fermi velocity <strong>of</strong> the un<strong>modulated</strong> 2DEG and e is the<br />

electron charge. The thermoelectric current is j<br />

a 2 0<br />

0(dy/a)0 d f (y,)u1 where f 0 is the charge distribution<br />

function solution <strong>of</strong> Boltzmann equation:<br />

Lf 0 yu 1•“ rycos c <br />

<br />

1 2 d<br />

1<br />

0<br />

2 f 0 y,W 0 y,. 3<br />

ceB/m* is the cyclotron frequency. Equation 3 is<br />

mathematically identical to that govern<strong>in</strong>g the resistivity<br />

problem previously solved by Beenakker; 2 therefore, only<br />

key steps <strong>of</strong> the calculation will need to be recalled here. A<br />

function F 0 (y,) is <strong>in</strong>troduced as<br />

2 f 0 y, y 0<br />

S<br />

D<br />

0u11“T 0<br />

F 0 y, 1S 0 cT xT y, 4<br />

which has to satisfy<br />

LF 0 eEy/ F<br />

where E(y)dV(y)/dy is the periodic electric field. n 0<br />

is the unperturbed conductivity tensor <strong>of</strong> order n (n1,2...)<br />

which has components xx yy n and xy yx<br />

n c n where n 0 /1(n c) 2 . It will also be useful<br />

to <strong>in</strong>troduce the vector u ncos(n),s<strong>in</strong>(n). The current<br />

<strong>in</strong>tegrals are simplified by observ<strong>in</strong>g that the only non<br />

vanish<strong>in</strong>g contributions arise from the terms <strong>in</strong> cos and<br />

s<strong>in</strong> <strong>in</strong> the Fourier expansion <strong>of</strong> F 0 . Insert<strong>in</strong>g this expansion<br />

<strong>in</strong>to Eq. 5 gives the Fourier coefficients <strong>of</strong> cos and s<strong>in</strong> ,<br />

and one obta<strong>in</strong>s<br />

5<br />

a dy 2 d 0 a 0 2 yF0 y,u 1K c,1. 6<br />

The ratio eV 0 / F is small (0.12) and, to first order<br />

<strong>in</strong> , Eq. 5 has an exact solution whose oscillatory dependence<br />

is given by Bessel functions <strong>of</strong> complex order, 20,21<br />

K<br />

125302-2<br />

D 0<br />

1 c 2 0<br />

2<br />

4<br />

ql 2<br />

1 c 2<br />

a dy<br />

a 0<br />

eEy<br />

F<br />

2<br />

0 y,<br />

2 d<br />

F<br />

J i/c qR cJ i/c qR c<br />

s<strong>in</strong>h/ c<br />

/ c J i/ c qR cJ i/c qR c<br />

7<br />

where Rcm* F /eB. Comb<strong>in</strong><strong>in</strong>g Eqs. 4 and 6 one f<strong>in</strong>ds<br />

the thermoelectric current to be: jS01“T, where<br />

1 1 1K c 2 1K c<br />

1K c 1K 8<br />

is the Drude conductivity tensor modified by the oscillatory<br />

contribution from the grat<strong>in</strong>g. The thermoelectric tensor is<br />

identified as L 1S 0 1 and, recall<strong>in</strong>g the condition 1E<br />

L 1“T0, the <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong> follows as S 1<br />

1 1 L1S 01.<br />

This result demonstrates that the periodic modulation has<br />

no effect on the <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong>. The lack <strong>of</strong> oscillatory<br />

dependence suggests that some <strong>in</strong>gredient may be<br />

miss<strong>in</strong>g <strong>in</strong> the <strong>in</strong>itial assumptions. For <strong>in</strong>stance, the formation<br />

<strong>of</strong> Brillou<strong>in</strong> m<strong>in</strong>izones due to the periodicity <strong>of</strong> the superlattice<br />

potential is assumed to have no effect on the scatter<strong>in</strong>g<br />

rate. The fold<strong>in</strong>g <strong>of</strong> energy dispersion curves fractures<br />

the Fermi surface <strong>in</strong>to a complex pattern <strong>of</strong> arcs <strong>of</strong> circle<br />

exhibit<strong>in</strong>g tw<strong>of</strong>old symmetry as shown <strong>in</strong> Fig. 1. Such an<br />

anisotropy will be passed onto the electron-<strong>phonon</strong> <strong>in</strong>teraction<br />

s<strong>in</strong>ce it depends strongly on the density <strong>of</strong> available<br />

states on the Fermi surface. In particular, the scatter<strong>in</strong>g rate<br />

<strong>in</strong>creases dramatically for transitions between opposite edges<br />

<strong>of</strong> the Fermi surface where the density <strong>of</strong> states is divergent<br />

,


SIGNATURE OF AN ANISOTROPIC PHONON DRAG IN . . . PHYSICAL REVIEW B 66, 125302 2002<br />

FIG. 1. Schematic view <strong>of</strong> the Fermi surface <strong>in</strong> the presence <strong>of</strong><br />

a small 1D potential modulation. K 1 ,...,K 4 label the acoustic<strong>phonon</strong>-mediated<br />

transitions for which the scatter<strong>in</strong>g rate diverges<br />

Kohn anomalies.<br />

Kohn anomalies. Kohn anomalies are, for example, well<br />

known for enhanc<strong>in</strong>g the <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong> around<br />

10 K. 8 Figure 1 shows that longitud<strong>in</strong>al (K 2 ,K 3 ,K 4) and<br />

transverse transitions (K 4) <strong>in</strong>volve <strong>phonon</strong>s with different<br />

wavevectors suggest<strong>in</strong>g some degree <strong>of</strong> angular anisotropy<br />

will be present <strong>in</strong> the electron-<strong>phonon</strong> scatter<strong>in</strong>g. The Fermi<br />

density <strong>of</strong> states will rema<strong>in</strong> largely unaffected by the magnetic<br />

field, s<strong>in</strong>ce Landau levels are not formed. The <strong>in</strong>dependence<br />

<strong>of</strong> the electron-<strong>phonon</strong> anisotropy on the magnetic<br />

field may therefore be assumed. 22 These considerations suggest<br />

that the scatter<strong>in</strong>g rate can be expanded accord<strong>in</strong>g to its<br />

angular harmonics as<br />

SaS 0 a0 2 <br />

<br />

an cosnb n s<strong>in</strong>n . 9<br />

n1<br />

III. ANISOTROPIC ELECTRON-PHONON SCATTERING<br />

The new driv<strong>in</strong>g term W(y,) is obta<strong>in</strong>ed by substitut<strong>in</strong>g<br />

S a Eq. 9 <strong>in</strong>to Eq. 2:<br />

Wy, y<br />

2<br />

0S 0<br />

D 0 <br />

a 0<br />

2 u 1"“T 1<br />

2 cos a 2T x<br />

b 2T ys<strong>in</strong> b 2T xa 2T y<br />

1<br />

2 <br />

n2<br />

cosna n1a n1T x<br />

b n1b n1T ys<strong>in</strong>nb n1b n1<br />

T xa n1a n1T y . 10<br />

One may seek the solution <strong>of</strong> Lf (y,)W(y,) as the sum<br />

<strong>of</strong> the partial electronic responses to each angular harmonic<br />

<strong>in</strong> W(y,). Us<strong>in</strong>g the l<strong>in</strong>earity <strong>of</strong> the Liouville operator,<br />

125302-3<br />

0 <br />

f (y,) f 1 f 1 n2 f n . It follows that each harmonic<br />

contributes <strong>in</strong>dependently to the thermoelectric current, the<br />

thermoelectric and the <strong>thermopower</strong> tensors.<br />

The partial responses to the driv<strong>in</strong>g terms <strong>in</strong> cos and<br />

0<br />

s<strong>in</strong> were solved <strong>in</strong> Sec. I. The distribution function f 1, correspond<strong>in</strong>g the first term <strong>in</strong> Eq. 10, is obta<strong>in</strong>ed by replac<strong>in</strong>g<br />

“T→(a 0/2)“T <strong>in</strong> Eq. 4. In the same way, f 1<br />

is obta<strong>in</strong>ed by substitut<strong>in</strong>g “T→(a 2(T) x<br />

b 2(T) y ,b 2(T) xa 2(T) y) <strong>in</strong> Eq. 4. The <strong>thermopower</strong><br />

contribution from the first two terms <strong>in</strong> Eq. 10 is<br />

found to be<br />

S 1 S 0<br />

2 a 0a 2<br />

b 2<br />

b 2 a 0a 2 . 11<br />

The electronic response to harmonics n2 is governed by<br />

Lf ny, y<br />

2<br />

0S 0<br />

D 0<br />

1<br />

2 cosn<br />

a n1a n1T xb n1b n1T y<br />

s<strong>in</strong>nb n1b n1T x<br />

a n1a n1T y. 12<br />

A function F n is def<strong>in</strong>ed as<br />

where<br />

2 f ny, y 0<br />

S<br />

D<br />

0unn“TnS 0F ny,,<br />

0<br />

b n1b n1<br />

“T 1<br />

2 an1a n1<br />

13<br />

bn1b n1 a n1a n1<br />

with the condition that<br />

LF n eEy<br />

F<br />

1<br />

2 n <br />

n1 un1 n1 <br />

n1 un1 0<br />

n1 n“T n2. 14<br />

Substitution 13 removes all spatial harmonics other than<br />

the fundamental frequency <strong>in</strong> the function Fn . One may<br />

therefore seek solutions <strong>of</strong> Eq. 14 <strong>in</strong> the form: Fn(y,) <br />

(/ F) mme<br />

i(qym) cc. 21 Insert<strong>in</strong>g this expan-<br />

sion <strong>in</strong>to Eq. 14 gives a recursion formula generat<strong>in</strong>g the<br />

entire set <strong>of</strong> m ,<br />

where<br />

m m m1 m1 m , 15


ALAIN NOGARET PHYSICAL REVIEW B 66, 125302 2002<br />

m 2<br />

ql im c1 m,0,<br />

m n1<br />

<br />

4<br />

m,n1V xiVy m,n1V xiVy n1<br />

<br />

4<br />

m,n1V xiVy m,n1V xiVy, n2,3..., m...2,1,0,1,2... . 16<br />

A vector is <strong>in</strong>troduced which is def<strong>in</strong>ed as V n 0 “T/n .<br />

Mirl<strong>in</strong> and Wölfle observed 20,21 that equations <strong>of</strong> the type <strong>of</strong><br />

Eq. 15, albeit with no driv<strong>in</strong>g term ( m0), are satisfied<br />

by Bessel functions <strong>of</strong> complex order. The solutions <strong>of</strong> Eq.<br />

15 with m0 are: m(i) m J mi(1m,0 )/ c (qR c).<br />

These may be computed <strong>in</strong> the form <strong>of</strong> cont<strong>in</strong>ued fractions. 23<br />

1 0 <br />

1<br />

1 2 / 1<br />

1 1<br />

2 3 1 4 / 3<br />

4¯ Simplifications occur by observ<strong>in</strong>g that, for m0, Eq. 15<br />

gives 1 1 . Second, coefficients with negative values<br />

<strong>of</strong> m are elim<strong>in</strong>ated us<strong>in</strong>g: m m * and m m * .<br />

, 1<br />

0<br />

Third 3 ( 3) relates to 0 and 1 via 3( 1 2<br />

1)1 2 0 2 3( 1 * 2 *1)1 2 * 0<br />

2 *. These manipulations reduce Eqs. 18 to a system <strong>of</strong><br />

two equations with two complex unknowns 0 and 1 .<br />

Once 1 is known, the thermoelectric current immediately<br />

follows from<br />

j nS 00<br />

a dy<br />

a 0<br />

2 d<br />

2 F ny,yu 1 . 19<br />

The Fermi velocity (y) F1 cos(qy)F F(/2)cos(qy)O(2 ) is well approximated by its two<br />

lead<strong>in</strong>g terms s<strong>in</strong>ce 1. Equation 19 is then easily <strong>in</strong>tegrated,<br />

and I f<strong>in</strong>d<br />

<br />

j xnS 0<br />

2<br />

4 Re 1,<br />

<br />

j ynS 0<br />

2<br />

4 Im 1.<br />

20<br />

It should be remarked that Eq. 6 cannot be used here due to<br />

the coupl<strong>in</strong>g to higher (n1) harmonics. This is the reason<br />

why the current must be calculated from 1 rather than from<br />

0 . 2,21 Consider<strong>in</strong>g Eqs. 17 and 18, one notes that the<br />

125302-4<br />

i J1 <br />

J 1<br />

1<br />

1<br />

2 1<br />

3¯<br />

, i J1 <br />

J 1<br />

1<br />

2<br />

1<br />

1<br />

3¯<br />

17<br />

where the shorthand notation J 1J 1i/(c )(qR c) and J <br />

J i/(c )(qR c) is be<strong>in</strong>g used. 21 If electron-<strong>phonon</strong> <strong>in</strong>teraction<br />

has a tw<strong>of</strong>old symmetry, the Fourier coefficients <strong>in</strong> a 2<br />

and b 2 dom<strong>in</strong>ate <strong>in</strong> the Fourier expansion 9. In the first<br />

<strong>in</strong>stance, one may neglect the contribution <strong>of</strong> higher angular<br />

harmonics Eqs. 4, 8, etc. and solve Eq. 15 driven by<br />

the second harmonic only. This approach limits the number<br />

<strong>of</strong> fitt<strong>in</strong>g parameters to two one if b 20 In these conditions,<br />

V will have non zero components if n3 n1 is<br />

already accounted for. Equation 16 shows that m will be<br />

f<strong>in</strong>ite for m2 and 4. The solutions <strong>of</strong> Eq. 15 therefore<br />

take the form<br />

<br />

1<br />

2<br />

1<br />

1 2 / 1<br />

1<br />

3 1 4 / 3<br />

4¯<br />

. 18<br />

sequence <strong>of</strong> ratios cont<strong>in</strong>u<strong>in</strong>g beyond 4 ( 4) is common<br />

to both equations. The sequence <strong>of</strong> equations 17 is then<br />

substituted <strong>in</strong>to Eq. 18 which, after some algebra, reduces<br />

to a nonl<strong>in</strong>ear system <strong>in</strong> 0 and 1 :<br />

2 2<br />

r 1r 0ii 0 1 r 1i i 0 r0,<br />

21<br />

2 2<br />

i 1i 0ir 0 1 i 1i r 0 i0,<br />

where r , i , r , i ...Zr , Zi are the real and imag<strong>in</strong>ary<br />

parts <strong>of</strong><br />

1 21,<br />

i 2J 1 /J ,<br />

2/ 2 ,<br />

21Z, 22<br />

2/ 2 2Z,<br />

2 2 Z,<br />

Z 1<br />

2 3 2 33 1 3/ 2.<br />

4 has been replaced us<strong>in</strong>g the fact that, for n3, Eq. 16<br />

gives 40.5 2 . The real and imag<strong>in</strong>ary parts r , i , r ,


SIGNATURE OF AN ANISOTROPIC PHONON DRAG IN . . . PHYSICAL REVIEW B 66, 125302 2002<br />

i ... r , i are obta<strong>in</strong>ed by summ<strong>in</strong>g and subtract<strong>in</strong>g each<br />

coefficient and its complex conjugate. This operation when<br />

applied to J 1 /J produces two terms R (J 1J <br />

I f<strong>in</strong>d<br />

J 1J )/J J and R i(J 1J J 1J )/J J which are<br />

conveniently evaluated from the series expansion <strong>of</strong> the<br />

Bessel product: 24<br />

JzJ z 1<br />

2 z<br />

1<br />

k0<br />

k2k1 1<br />

4 z2<br />

k<br />

. 23<br />

k1k1k1k!<br />

J1J J 1J 1<br />

1<br />

qR c k1<br />

k2k1 1<br />

2 qR 2k<br />

c<br />

i/ ck1i/ ck1k1k! ki/ cki/ c, 24<br />

from which R and R are identified as<br />

and<br />

R d<br />

dqRc lnJ J <br />

1<br />

<br />

qRc cos2qR csgnB<br />

cos 2 qR c/4s<strong>in</strong>h 2 /2 c ,<br />

R 2<br />

ql s<strong>in</strong>h/ c// c<br />

1<br />

JJ <br />

<br />

qR c1 25<br />

s<strong>in</strong>h/ csgnB<br />

cos 2 qR c/4s<strong>in</strong>h 2 /2 c<br />

2<br />

ql ,<br />

qRc1. 26<br />

The Bessel functions are well approximated by their<br />

asymptotic expansion s<strong>in</strong>ce qRc1 holds <strong>in</strong> the range <strong>of</strong><br />

magnetic fields where the commensurability oscillations are<br />

observed. Us<strong>in</strong>g Eq. 23, it is easy to verify that the product<br />

J J (2/qR c)cos 2 (qR c/4)s<strong>in</strong>h 2 /(2 c) must<br />

be an even function <strong>of</strong> B, which is the reason for tak<strong>in</strong>g the<br />

modulus <strong>of</strong> qR c . r , i , r , i ...Z r , Z i are listed <strong>in</strong> Appendix<br />

A. Either equation <strong>in</strong> Eqs. 21 may be viewed as a<br />

second degree polynomial <strong>in</strong> 0 with roots depend<strong>in</strong>g on<br />

1 . These roots are calculated analytically <strong>in</strong> one equation<br />

and then elim<strong>in</strong>ated by substitution <strong>in</strong>to the other. The result<br />

is a characteristic polynomial <strong>in</strong> 1 whose coefficients are<br />

all real and are listed <strong>in</strong> Appendix B:<br />

c 4 1 4 c3 1 3 c2 1 2 c1 1c 00 27<br />

S<strong>in</strong>ce 1 is a nonl<strong>in</strong>ear function <strong>of</strong> “T, the tensor notation<br />

will, <strong>in</strong> general, be <strong>in</strong>valid for express<strong>in</strong>g quantities derived<br />

from it. However most experiments are concerned with temperature<br />

gradients applied either along x or y but not along<br />

both directions simultaneously. In this specific case, the thermoelectric<br />

current components j x and j y Eqs. 20 may still<br />

be presented <strong>in</strong> the tensor form:<br />

<br />

L3 3S 0<br />

2<br />

4 Re 1T x1,T y0 Re 1T x0,T y1<br />

. 28<br />

Im 1T x1,T y0 Im 1T x0,T y1<br />

The correspond<strong>in</strong>g <strong>thermopower</strong> contribution is<br />

S 3 1 1 L3 , 29<br />

and the total <strong>thermopower</strong> is given by the sum <strong>of</strong> contributions<br />

11 and 29 is SS 1S 3 .<br />

IV. RESULTS AND DISCUSSION<br />

The roots <strong>of</strong> Eq. 27 are calculated numerically for each<br />

value <strong>of</strong> B. A polynomial root-f<strong>in</strong>der implement<strong>in</strong>g the Hessenberg<br />

method 25 was used for its robust convergence and its<br />

125302-5<br />

appropriateness to our type <strong>of</strong> polynomial. The model parameters<br />

consider a unit temperature gradient along the y<br />

axis: (T) x0,(T) y1. b 2 is set to zero, thus <strong>in</strong>dicat<strong>in</strong>g<br />

that the pr<strong>in</strong>cipal axes <strong>of</strong> anisotropy <strong>in</strong> Fig. 1 correspond to<br />

the x and y axes. Numerical results show that Eq. 27 admits<br />

two real and two complex roots. Real roots imply that no<br />

current will flow parallel to the temperature gradient, a<br />

physically mean<strong>in</strong>gless proposition. The physical answer is<br />

given by the complex root for which the thermoelectric tensor<br />

satisfies Osanger symmetry rules. The symmetry <strong>of</strong> the<br />

root is itself determ<strong>in</strong>ed by the coefficients <strong>of</strong> the polyno-


ALAIN NOGARET PHYSICAL REVIEW B 66, 125302 2002<br />

FIG. 2. Top panel: theoretical full l<strong>in</strong>e and experimental<br />

dashed l<strong>in</strong>e magnetoresistance <strong>of</strong> a lateral superlattice with period<br />

a500 nm. The Drude resistance 460 was calculated from the<br />

values <strong>of</strong> and n s and a hall bar aspect ratio <strong>of</strong> 20; no fitt<strong>in</strong>g<br />

parameter was used <strong>in</strong> the theoretical curve. Bottom panel: theoretical<br />

full l<strong>in</strong>e and experimental dashed l<strong>in</strong>e <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong><br />

<strong>of</strong> the same lateral superlattice. The fitt<strong>in</strong>g parameters to<br />

the <strong>thermopower</strong> amplitude are a 0a 24020 (b 20).<br />

mial. It may be shown that c 4 , c 2 , and c 0 are even functions<br />

<strong>of</strong> B while c 3 and c 1 are odd functions <strong>of</strong> B. 26 It follows that<br />

real part the root, giv<strong>in</strong>g L xy , is antisymmetric with respect<br />

to B, as expected. The sign <strong>of</strong> the imag<strong>in</strong>ary part is chosen so<br />

that L xy and L yy have opposite sign when B0 and the same<br />

sign when B0.<br />

The theoretical <strong>thermopower</strong> S yy is plotted together with<br />

the experimental trace <strong>in</strong> the lower panel <strong>of</strong> Fig. 2 whereas<br />

the top panel compares the theoretical and experimental resistance.<br />

Compar<strong>in</strong>g the experimental peak positions <strong>in</strong> the<br />

top and bottom panels shows that the <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong><br />

oscillates <strong>in</strong> phase with the resistance. One notes<br />

an anti-symmetric component <strong>in</strong> the experimental <strong>thermopower</strong>.<br />

Now consider<strong>in</strong>g the theoretical trace, commensurability<br />

<strong>thermopower</strong> oscillations arise because <strong>of</strong> the anisotropy<br />

<strong>in</strong> the scatter<strong>in</strong>g. The magnitude <strong>of</strong> these oscillations is<br />

proportional to a 2 : if the pr<strong>in</strong>cipal scatter<strong>in</strong>g axis is along<br />

the x axis (a 20) S yy oscillates <strong>in</strong> phase with R yy and out <strong>of</strong><br />

phase otherwise. The isotropic <strong>thermopower</strong> was evaluated<br />

as S 0220 V/K us<strong>in</strong>g a <strong>phonon</strong> mean free path equal to<br />

the etched sample length, 1 mm. The vertical fit to the<br />

experimental <strong>thermopower</strong> then gave a 2a 04020 <strong>in</strong>dicat<strong>in</strong>g<br />

that the magnitude <strong>of</strong> the oscillations is a relatively<br />

125302-6<br />

small fraction <strong>of</strong> S 0 . As shown <strong>in</strong> Fig. 2, the shape <strong>of</strong> the<br />

peaks <strong>in</strong> S yy is different, <strong>in</strong> particular the last oscillation is<br />

strongly attenuated <strong>in</strong> the theoretical trace. At vanish<strong>in</strong>g<br />

magnetic fields, both the <strong>thermopower</strong> and the resistance<br />

show a peak not observed <strong>in</strong> the experimental data. This is<br />

because our description does not account for the channel<strong>in</strong>g<br />

<strong>of</strong> open electron orbits that gives the positive magnetoresistance<br />

at low magnetic field. In order to <strong>in</strong>vestigate the sensitivity<br />

<strong>of</strong> <strong>phonon</strong> <strong>drag</strong> to the smoothness <strong>of</strong> the <strong>in</strong>terface, we<br />

have measured the <strong>thermopower</strong> after scrib<strong>in</strong>g the sample<br />

surface between the heater and the Hall bar. The presence <strong>of</strong><br />

the cut was found to dampen the amplitude <strong>of</strong> the oscillations<br />

very strongly. This outl<strong>in</strong>es the importance <strong>of</strong> hav<strong>in</strong>g a<br />

large mean free path for <strong>phonon</strong> modes travell<strong>in</strong>g parallel to<br />

the sample surface. 27<br />

In summary, commensurability oscillations <strong>in</strong> the <strong>phonon</strong><br />

<strong>drag</strong> <strong>thermopower</strong> <strong>of</strong> <strong>periodically</strong> <strong>modulated</strong> structures were<br />

shown to arise from the anisotropy <strong>of</strong> the electron-<strong>phonon</strong><br />

<strong>in</strong>teraction. The contribution <strong>of</strong> higher scatter<strong>in</strong>g harmonics<br />

(n2) was neglected because it decays as 1/n 2 . Their effect<br />

could nevertheless be calculated along similar l<strong>in</strong>es but this<br />

would only be useful if the spectrum <strong>of</strong> Fourier harmonics<br />

was known. In agreement with Ref. 17, our results show that<br />

both electron (0) and <strong>phonon</strong> anisotropy (a 2 ,b 20) are<br />

required for the <strong>phonon</strong> <strong>drag</strong> <strong>thermopower</strong> to exhibit a<br />

magnetic-field dependence.<br />

ACKNOWLEDGMENTS<br />

I wish to acknowledge useful discussions with Dr A. Pogosov.<br />

I also thank EPSRC and the Royal Society UK for<br />

support.<br />

APPENDIX A<br />

The coefficients <strong>of</strong> Eqs. 21 are<br />

r1 2 2<br />

12<br />

ql<br />

c 2 , nyA1<br />

i 2 2<br />

3<br />

ql c, A2<br />

r 1<br />

ql 2 cR R , A3<br />

i 1<br />

ql 2 cR R , A4<br />

r 2<br />

<br />

ql i 2 R r 2 R , A5<br />

i 2<br />

2<br />

ql c i 2 R r 2 R , A6


SIGNATURE OF AN ANISOTROPIC PHONON DRAG IN . . . PHYSICAL REVIEW B 66, 125302 2002<br />

Zr 1<br />

2 3 2 2<br />

16<br />

ql<br />

c 2 <br />

1<br />

ql 3 c1 r<br />

iR 33 i c rR , A7<br />

Zi 1<br />

2 2 2<br />

5<br />

ql c 1<br />

3<br />

ql c1 rR <br />

33 i c rR , A8<br />

rV x1 rZ r iZ iV y rZ i iZ r, A9<br />

iV x rZ i iZ rV y1 rZ r iZ i, A10<br />

r Vx 2 R Vy 2 R 2<br />

V<br />

ql xZ r2 cZ i<br />

V yZ i2 cZ r, A11<br />

i Vx 2 R Vy 2 R 2<br />

V<br />

ql xZ i2 cZ r<br />

V yZ r2 cZ i, A12<br />

rZ rV x 2 Vy 2 2ZiV xV y , A13<br />

iZ iV x 2 Vy 2 2ZrV xV y . A14<br />

1<br />

D. Weiss, K. von Klitz<strong>in</strong>g, K. Ploog, and G. Weimann, Europhys.<br />

Lett. 8, 179 1989.<br />

2<br />

C. W. J. Beenakker, Phys. Rev. Lett. 62, 2020 1989.<br />

3<br />

R. R. Gerhardts, D. Weiss, and K. von Klitz<strong>in</strong>g, Phys. Rev. Lett.<br />

62, 1173 1989.<br />

4<br />

R. W. W<strong>in</strong>kler, J. P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 62,<br />

1177 1989.<br />

5<br />

P. Streda and A. H. McDonald, Phys. Rev. B 41, 11 892 1990.<br />

6<br />

F. M. Peeters and P. Vasilopoulos, Phys. Rev. B 42, 5899 1990;<br />

F. M. Peeters and P. Vasilopoulos, Phys. Rev. B 46, 4667 1992.<br />

7<br />

R. Taboryski, B. Brosh, M. Y. Simmons, D. A. Ritchie, C. J. B.<br />

Ford, and M. Pepper, Phys. Rev. B 51, 17 243 1995.<br />

8<br />

B. L. Gallagher and P. N. Butcher, Handbook on Semiconductors,<br />

edited by P. T. Langsberg Amsterdam, Elsevier, 1992, Vol. 1.<br />

9<br />

R. Fletcher, Semicond. Sci. Technol. 14, R11999.<br />

10<br />

D. Uzur, A. Nogaret, A. Pogosov, S. J. Bend<strong>in</strong>g, H. A. Beere, and<br />

D. A. Ritchie unpublished.<br />

11<br />

A. Miele, R. Fletcher, E. Zaremba, Y. Feng, C. T. Foxon, and J. J.<br />

Harris, Phys. Rev. B 58, 13 181 1998.<br />

12<br />

X. Zianni, P. N. Butcher, and M. J. Kearney, Phys. Rev. B 49,<br />

7520 1994.<br />

13<br />

C. Herr<strong>in</strong>g, Phys. Rev. 96, 1163 1954.<br />

14<br />

M. J. Kearney, R. T. Syrme, and M. Pepper, Phys. Rev. Lett. 66,<br />

1622 1991.<br />

15<br />

A. J. Kent, <strong>in</strong> Hot Electrons <strong>in</strong> Semiconductors, edited by N.<br />

Balkan Clarendon, Oxford, 1988.<br />

125302-7<br />

APPENDIX B<br />

The coefficients <strong>of</strong> the characteristic polynomial Eq.<br />

27 are<br />

c 4 r i i r 2 r r i i r r i i,<br />

c 3 r r i i r r i i2 r r r r i i<br />

2 i i r r i i<br />

B1<br />

r i i r2 i r r i r i i r,<br />

B2<br />

c 22 r i i r r i i r i r r i 2<br />

i i r r i i r r r r i i r r<br />

i i r i i r r i i r2 r r r r<br />

i i i i, B3<br />

c 1 r r i i r r i i2 r r r r i i<br />

2 i i r r i i r i i r2 i r r i<br />

r i i r, B4<br />

c 0 r i i r 2 r r i i r r i i. B5<br />

16<br />

B. Tieke, R. Fletcher, U. Zeitler, M. Hen<strong>in</strong>i, and J. C. Maan, Phys.<br />

Rev. B 58, 2017 1999.<br />

17<br />

P. N. Butcher and M. Tsaousidou, Phys. Rev. Lett. 80, 1718<br />

1998.<br />

18<br />

J. M. Ziman, Pr<strong>in</strong>ciple <strong>of</strong> the Theory <strong>of</strong> Solids Cambridge University<br />

Press, Cambridge, 1954.<br />

19<br />

J. H. Davies and I. A. Lark<strong>in</strong>, Phys. Rev. B 49, 4800 1994; S.<br />

Chowdhury, C. J. Emeleus, B. Milton, E. Skuras, A. R. Long, J.<br />

H. Davies, G. Pennelli, and C. R. Stanley, ibid. 62, R4821<br />

2000.<br />

20<br />

A. D. Mirl<strong>in</strong> and P. Wölfle, Phys. Rev. Lett. 78, 3717 1997.<br />

21<br />

A. D. Mirl<strong>in</strong> and P. Wölfle, Phys. Rev. B 58, 12986 1998.<br />

22<br />

M. Prasad and M. S<strong>in</strong>gh, Phys. Rev. B 29, 4803 1984.<br />

23<br />

P. M. Morse and N. Feshbach, Methods <strong>of</strong> Theoretical Physics<br />

McGraw Hill, London, 1953, Vol. I, p. 557.<br />

24<br />

Milton Abramowitz and Irene Stegun, Handbook <strong>of</strong> Mathematical<br />

Functions National Bureau <strong>of</strong> Standards, Wash<strong>in</strong>gton, DC,<br />

1972; the identity (1i/ c)(1i/ c)<br />

(/ c)/s<strong>in</strong>h(/c) is also be<strong>in</strong>g used.<br />

25<br />

W. H. Press, S. A. Teukolsky, W. T. Vetterl<strong>in</strong>g, and B. P. Flanner<strong>in</strong>g,<br />

Numerical Recipes <strong>in</strong> C, 2nd ed. Cambridge University<br />

Press, Cambridge, 1994, Chap. 9.<br />

26<br />

The same is true when T changes sign.<br />

27<br />

M. D’Iorio, R. Stoner, and R. Fletcher, Solid State Commun. 65,<br />

697 1988.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!