11.10.2013 Views

New Standards for Wireless LANs

New Standards for Wireless LANs

New Standards for Wireless LANs

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>New</strong> <strong>Standards</strong> <strong>for</strong><br />

<strong>Wireless</strong> <strong>LANs</strong><br />

Summer Term 2011<br />

Dr.-Ing. Andreas Könsgen<br />

Dr.-Ing. Koojana Kuladinithi<br />

TZI-ikom – University of Bremen<br />

E-Mail: {ajk|koo}@comnets.uni-bremen.de<br />

Phone: (0421) 218 62380<br />

www.comnets.uni-bremen.de/~ajk<br />

Room S2310 (NW1)


Acknowledgement<br />

This lecture is based on material by<br />

Prof. Dr.-Ing. Andreas Timm-Giel<br />

Institute of Communication Networks<br />

Technical University of Hamburg-Harburg<br />

Germany<br />

- 2 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Exam:<br />

Organisational Issues<br />

• Oral Exam (30min) after the end of the term<br />

Questions, Critics etc.:<br />

• always welcome<br />

How to reach me?<br />

• In my office S2310, or send an e-mail<br />

Exercises:<br />

• After the lecture, S 1270, 11:00 to 11:45<br />

• deepen understanding, open discussion, some<br />

labs/demos/simulation<br />

• Slides available on www.comnets.uni-bremen.de<br />

under “WLAN course”<br />

- 3 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


No lecture/tutorial:<br />

Organisational Issues<br />

• 25 April because of Easter holidays<br />

• 13 June because of public holiday<br />

– Will be taken at some other date<br />

– To be fixed later<br />

- 4 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Objective of the Lecture<br />

● Understand wireless technologies: how do<br />

they work?<br />

● Give an overview on existing and emerging<br />

wireless standards<br />

● Give an idea what is coming up in the<br />

future in <strong>Wireless</strong> Communications<br />

- 5 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Overview:<br />

Course Overview (1)<br />

● Mobile and <strong>Wireless</strong> Communications Basics<br />

― radio propagation<br />

― Modulation and coding<br />

― multiple access, duplex schemes, access protocols<br />

● IEEE 802.11(<strong>Wireless</strong> LAN)<br />

— Overview 802.11 a, b, g, h...<br />

— Physical Layer<br />

— MAC Layer<br />

— Security<br />

- 6 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Course Overview (2)<br />

● IEEE 802.16 – <strong>Wireless</strong> Metropolitan Area Network<br />

(WMAN) – WiMAX<br />

● IEEE 802.20 – Mobile Broadband <strong>Wireless</strong> Access<br />

(MBWA)<br />

● IEEE 802.15 – <strong>Wireless</strong> Personal Area Network<br />

(WPAN): Bluetooth and Zigbee<br />

● Sensor Networks (Dr. Koojana Kuladinithi)<br />

- 7 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Literature<br />

• See Website – www.comnets.uni-bremen.de<br />

• Jochen Schiller – Mobilkommunikation, Pearson, 2003,<br />

available in English, from Addison-Wesley.<br />

• James F. Kurose, Keith W. Ross, Computer Networking – A top-<br />

Down Approach, 4 th Edition, 2008, Pearson International<br />

Edition<br />

• Bernhard H. Walke – Mobile Radio Networks, J. Wiley & Sons,<br />

1999<br />

• Walke, UMTS – the fundamentals<br />

• IEEE Standardisation documents (links on website)<br />

• Many others, like:<br />

– K. David/T. Benkner, Digitale Mobilfunksysteme, Teubner,<br />

1996<br />

– Kammeyer, Nachrichtenübertragung, Teubner, 1996<br />

- 8 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Chapter 1: First Mobile and<br />

<strong>Wireless</strong> Communication<br />

Systems


Definition of <strong>Wireless</strong> and Mobile<br />

• <strong>Wireless</strong><br />

– Communication without wires, can be<br />

mobile and fixed<br />

• Mobile<br />

– Portable devices (laptops, notebooks etc.)<br />

connected at different location to wired<br />

networks (e.g. LAN or PSTN)<br />

– Portable devices (phones, notebooks,<br />

PDAs etc.) connected to wireless networks<br />

(UMTS, GSM, WLAN….)<br />

- 10 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Early History of <strong>Wireless</strong> Communications<br />

• In history first light and sound have been used to transmit<br />

messages over wide distances<br />

- 11 -<br />

Pics from http://www.connected-earth.com<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Transmission of Electromagnetic Waves<br />

• 1831: Faraday demonstrates<br />

magnetic induction<br />

• 1865: Maxwell theory of<br />

electromagnetic fields, wave<br />

equation<br />

• 1876 Patent on phone, Alexander<br />

Graham Bell (Antonio Meucci 1849)<br />

• 1888: H. Hertz: demonstrates<br />

the wave character of electrical<br />

transmission through space<br />

• Nikola Tesla extends the<br />

transmission range<br />

Pics from www.wikipedia.org<br />

- 12 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


History of <strong>Wireless</strong> Communication<br />

• 1895 Guglielmo Marconi<br />

– first demonstration of wireless<br />

telegraphy (digital!)<br />

– 1901 transatlantic transmission<br />

– long wave transmission, high<br />

transmission power necessary (> 200kW)<br />

• 1907 Commercial transatlantic connections<br />

– huge base stations<br />

(30 100m high antennas)<br />

• 1915 <strong>Wireless</strong> voice transmission <strong>New</strong> York - San Francisco<br />

• 1920 Discovery of short waves by Marconi<br />

– reflection at the ionosphere<br />

- 13 -<br />

Foto from www.wikipedia.org<br />

– smaller sender and receiver, possible due to the invention of the<br />

vacuum tube (1906, Lee DeForest and Robert von Lieben)<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


1924<br />

Beginning of Mobile Communications<br />

• 1911 mobile transmitter on Zeppelin<br />

• 1926 train (Hamburg – Berlin)<br />

• 1927 first commercial car radio (receive only)<br />

• First Mobile Communication Systems started<br />

in the 40s in the US and in the 50s in Europe.<br />

- 14 -<br />

CONCEPTS:<br />

• Large Areas per<br />

Transmitter<br />

• „Mobiles“ large, high<br />

power consumption<br />

• Systems low capacity,<br />

interference-prone<br />

• Expensive !!!<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Today's <strong>Wireless</strong> Communication (1)<br />

1984 CT-1 standard (Europe) <strong>for</strong> cordless telephones<br />

– In Germany selling no longer permitted since 2009<br />

1992 DECT<br />

– Digital European Cordless Telephone (today: Digital<br />

Enhanced Cordless Telecommunications)<br />

– 1880-1900MHz, ~100-500m range, 120 duplex channels,<br />

1.2Mbit/s data transmission, voice encryption,<br />

authentication, up to several 10000 user/km 2 , used in<br />

more than 50 countries<br />

1996 HiperLAN (High Per<strong>for</strong>mance Radio Local Area<br />

Network)<br />

– ETSI, standardization of type 1: 5.15 - 5.30GHz, 23.5Mbit/s<br />

– recommendations <strong>for</strong> type 2 and 3 (both 5GHz) and 4<br />

(17GHz) as wireless ATM-networks (up to 155Mbit/s)<br />

– Did not enter market<br />

- 15 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Today's <strong>Wireless</strong> Communications (2)<br />

In the 1990s: many proprietary products <strong>for</strong> wireless<br />

networks<br />

1997 <strong>Wireless</strong> LAN – IEEE standard 802.11<br />

2.4-2.5 GHz and infrared, 2Mbit/s<br />

1999 IEEE 802.11b, 2.4 GHz, 11Mbit/s<br />

1999 IEEE 802.11a, 5 GHz, 54 Mbit/s<br />

1999/2001 Bluetooth/IEEE 802.15.1 <strong>for</strong> piconets,<br />

2.4 GHz, < 1Mbit/s<br />

2003 IEEE 802.11g, 2.4 GHz, 54 Mbit/s<br />

2003/2004 Zigbee/IEEE 802.15.4 <strong>for</strong> sensor networks<br />

2009 IEEE 802.11n, 2.4 and 5 GHz, 600 Mbit/s<br />

- 16 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


End Chapter 1


Chapter 2 – Mobile<br />

Communications<br />

Definitions & Basics


Chapter 2 - Overview<br />

• Part 1 (today)<br />

– Digital Transmission System<br />

– Frequencies, Spectrum Allocation<br />

– Radio Propagation and Radio Channels<br />

• Part 2 (next week)<br />

– Modulation, Coding, Error Correction<br />

• Part 3 (in 2 weeks)<br />

– Capacity limits<br />

– Duplexing schemes<br />

– Media Access Protocols<br />

- 19 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Acknowledgement<br />

• Pictures and some slides of this chapter are<br />

taken from:<br />

– B. Walke, P. Seidenberg, M. P. Althof,<br />

UMTS: the fundamentals, Wiley<br />

– Schiller: Mobilkommunikation (Mobile<br />

Communications), Pearson<br />

Studium/Addison Wesley, 2003/2002<br />

– David/Benkner: Digitale<br />

Mobilfunksysteme, Teubner 1996<br />

– Proakis/Saleh, Grundlagen der<br />

Kommunikationstechnik, Pearson Studium<br />

2004<br />

- 20 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Application<br />

Transport<br />

Network<br />

Data Link<br />

Physical<br />

Simple Reference Model<br />

Radio<br />

Network Network<br />

Data Link<br />

Physical<br />

Data Link<br />

Physical<br />

- 21 -<br />

Wired Medium<br />

Application<br />

Transport<br />

Network<br />

Data Link<br />

Physical<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


More Detailed Reference Model<br />

• Application layer<br />

• Transport layer<br />

• Network layer<br />

• Data link layer<br />

• Physical layer<br />

– service location<br />

– new applications, multimedia<br />

– adaptive applications<br />

– congestion and flow control<br />

– quality of service<br />

– addressing, routing,<br />

device location<br />

– Hand-over<br />

– authentication<br />

– media access<br />

– multiplexing<br />

– media access control<br />

– encryption<br />

– modulation<br />

– interference<br />

– attenuation<br />

– frequency<br />

- 22 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Structure of Digital Transmission System<br />

Digital Source<br />

Sink<br />

- 23 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


twisted<br />

pair<br />

1000 km<br />

300 Hz<br />

Frequencies <strong>for</strong> Communication<br />

10 km<br />

30 kHz<br />

coax cable<br />

100 m<br />

3 MHz<br />

VLF LF MF HF VHF UHF SHF EHF infrared visible<br />

light<br />

UV<br />

VLF = Very Low Frequency UHF = Ultra High Frequency<br />

LF = Low Frequency SHF = Super High Frequency<br />

MF = Medium Frequency EHF = Extra High Frequency<br />

HF = High Frequency UV = Ultraviolet Light<br />

VHF = Very High Frequency<br />

Frequency and wave length:<br />

λ = c /f<br />

1 m<br />

300 MHz<br />

With wave length λ, speed of light c ≈ 310 8 m/s, frequency f<br />

- 24 -<br />

10 mm<br />

30 GHz<br />

100 μm<br />

3 THz<br />

optical transmission<br />

1 μm<br />

300 THz<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Frequencies <strong>for</strong> Mobile Communication<br />

• VHF-/UHF-ranges <strong>for</strong> mobile radio<br />

– simple, small antenna <strong>for</strong> cars<br />

– deterministic propagation characteristics, reliable<br />

connections<br />

• SHF and higher <strong>for</strong> directed radio links, satellite<br />

communication<br />

– small antenna, focusing<br />

– large bandwidth available<br />

• <strong>Wireless</strong> <strong>LANs</strong> use frequencies in UHF to SHF spectrum<br />

– some systems planned up to EHF<br />

– limitations due to absorption by water and oxygen<br />

molecules (resonance frequencies)<br />

• weather dependent fading, signal loss caused by heavy<br />

rainfall etc.<br />

- 25 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Frequency Regulations<br />

• Frequency assignments are managed by the International<br />

Telecommunication Union –<br />

Radiocommuncation Sector (ITU-R)<br />

– holds auctions <strong>for</strong> new frequencies, manages frequency<br />

bands worldwide (WRC, World Radio Conferences)<br />

• National regulation authorities<br />

– Germany: Bundesnetzagentur (Federal Network Agency)<br />

– USA: Federal Communications Commission (FCC)<br />

- 26 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Important Frequency Assignments<br />

Cellular<br />

Phones<br />

Cordless<br />

Phones<br />

<strong>Wireless</strong><br />

<strong>LANs</strong><br />

Europe USA Japan<br />

GSM 450-457, 479-<br />

486/460-467,489-<br />

496, 890-915/935-<br />

960,<br />

1710-1785/1805-<br />

1880<br />

UMTS (FDD) 1920-<br />

1980, 2110-2190<br />

UMTS (TDD) 1900-<br />

1920, 2020-2025<br />

CT1+ 885-887, 930-<br />

932<br />

CT2<br />

864-868<br />

DECT<br />

1880-1900<br />

IEEE 802.11<br />

2400-2483<br />

HIPERLAN 2<br />

5150-5350, 5470-<br />

5725<br />

Others RF-Control<br />

27, 128, 418, 433,<br />

868<br />

AMPS, TDMA, CDMA<br />

824-849,<br />

869-894<br />

TDMA, CDMA, GSM<br />

1850-1910,<br />

1930-1990<br />

PACS 1850-1910, 1930-<br />

1990<br />

PACS-UB 1910-1930<br />

902-928<br />

IEEE 802.11<br />

2400-2483<br />

5150-5350, 5725-5825<br />

RF-Control<br />

315, 915<br />

- 27 -<br />

PDC<br />

810-826,<br />

940-956,<br />

1429-1465,<br />

1477-1513<br />

PHS<br />

1895-1918<br />

JCT<br />

254-380<br />

IEEE 802.11<br />

2471-2497<br />

5150-5250<br />

RF-Control<br />

426, 868<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


ISM Bands: General facts<br />

Industrial, scientific, and medical (ISM) radio bands<br />

• originally reserved internationally by ITU-R <strong>for</strong> noncommercial<br />

use of RF electromagnetic fields <strong>for</strong><br />

industrial, scientific and medical purposes<br />

• Individual countries' use may differ due to variations in<br />

national radio regulations<br />

• In recent years permission <strong>for</strong> license-free short-range<br />

communication applications such as walkie-talkies,<br />

remote controls, <strong>Wireless</strong> <strong>LANs</strong>, Bluetooth<br />

Source: Wikipedia<br />

- 28 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


ISM Bands: Assignments<br />

Some typical ISM bands<br />

Frequency Comment<br />

13.553-13.567 MHz<br />

26.957-27.28 MHz<br />

40.66-40.70 MHz<br />

433-434 MHz Europe<br />

900-928 MHz America<br />

2.4-2.5 GHz WLAN/WPAN<br />

5.725-5.875 GHz WLAN<br />

24-24.25 GHz<br />

- 29 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Signal Propagation<br />

● Propagation in free space always like light (straight line)<br />

● Receiving power in free space proportional to 1/d²<br />

(d = distance between sender and receiver)<br />

● Sources of distortion<br />

● Reflection/refraction – bounce of a surface; enter material<br />

● Scattering – multiple reflections at rough surfaces<br />

● Diffraction – start “new wave” from a sharp edge<br />

● Doppler fading – shift in frequencies (loss of center)<br />

● Attenuation – energy is distributed to larger areas with<br />

increasing distance<br />

reflection refraction scattering diffraction<br />

- 30 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Attenuation results in path loss<br />

• Effect of attenuation: received signal strength is a<br />

function of the distance d between sender and<br />

transmitter<br />

• Captured by Frii's free-space equation<br />

– Describes signal strength at distance d relative<br />

to some reference distance d 0 < d <strong>for</strong> which<br />

strength is known<br />

– d 0 is far-field distance, depends on antenna<br />

technology<br />

- 31 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Pathloss in Free Space<br />

• Received power depends on frequency,<br />

transmitted power, antenna gains, distance and<br />

constants only<br />

P<br />

L<br />

L<br />

F<br />

R<br />

=<br />

P<br />

T<br />

⎛<br />

⎜<br />

⎝<br />

λ<br />

4πd<br />

⎞<br />

⎟<br />

⎠<br />

• EIRP: effective isotropic radiated power:<br />

– EIRP = P T G T<br />

2<br />

P<br />

( dB)<br />

= 10log<br />

P<br />

( dB)<br />

= 10log<br />

G<br />

R<br />

T<br />

G<br />

T<br />

T<br />

G<br />

R<br />

F f : Frequency [Hz]<br />

+ 10logG<br />

R<br />

- 32 -<br />

P<br />

G<br />

λ<br />

:<br />

d<br />

T / R<br />

T / R<br />

:<br />

:<br />

− 20log<br />

transmitted<br />

: Antenna Gain Transmitter/Receiver<br />

Wavelength[m]<br />

Distance[m]<br />

f<br />

/ received<br />

− 20log<br />

d<br />

Power<br />

+ 147.<br />

56<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Attenuation of different frequencies<br />

● Attenuation depends on the<br />

used frequency<br />

● Can result in a<br />

frequency-selective channel<br />

― If bandwidth spans<br />

frequency ranges with<br />

different attenuation<br />

properties<br />

Attenuation<br />

- 33 -<br />

moderate rain<br />

fog / clouds<br />

strong rain<br />

molecular dispersion<br />

frequency<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Atmospheric attenuation<br />

(dB/km)<br />

10<br />

1<br />

0.1<br />

0.01<br />

Attenuation in Atmosphere<br />

10 20 40 60 80 100 300 f (GHz)<br />

- 34 -<br />

vapor<br />

oxygen<br />

David Benkner:<br />

Digitale Mobilfunksysteme<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


• Signal can take many different paths between sender and<br />

receiver due to reflection, scattering, diffraction<br />

signal at sender<br />

Multipath Propagation<br />

• Time dispersion: signal is dispersed over time<br />

interference with “neighbor” symbols, Inter Symbol<br />

Interference (ISI)<br />

• The signal reaches a receiver directly and phase shifted<br />

distorted signal depending on the phases of the different parts<br />

- 35 -<br />

LOS pulses multipath<br />

pulses<br />

signal at receiver<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Channel characteristics change over time and location<br />

– signal paths change<br />

– different delay variations of different signal parts<br />

– different phases of signal parts<br />

quick changes in the power received (short term/fast<br />

fading)<br />

Additional changes in<br />

Multipath Propagation<br />

– distance to sender<br />

– obstacles further away<br />

slow changes in the average power<br />

received (long term/slow fading)<br />

All fading effects are frequency-dependent<br />

- 36 -<br />

power<br />

short term fading<br />

long term<br />

fading<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011<br />

t


Radio Channel Characteristics<br />

• Superposition of<br />

numerous direct and<br />

reflected multipath<br />

components with<br />

different attenuation<br />

and phasing<br />

• time variant<br />

• Differentiation of fast<br />

and slow fading<br />

• Fast fading due to superposition of different phases<br />

• Slow fading is due to the change of propagation<br />

environment<br />

• Both fading types depend on the frequency<br />

A<br />

- 37 -<br />

B<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Real World Example: Propagation<br />

- 38 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Real World Example: Time variation<br />

Signal<br />

amplitude<br />

5.18<br />

Frequency (GHz)<br />

Carrier frequency: 5.2 GHz<br />

Channel bandwidth: 40 MHz<br />

5.22<br />

- 39 -<br />

0<br />

0.5<br />

time (s)<br />

1<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Real World Example: Path Loss<br />

• Received power of<br />

a sender is<br />

decreasing with the<br />

distance between<br />

sender and<br />

receiver<br />

• Depends on<br />

Frequency<br />

• Many models, e.g.<br />

Okumura-Hata<br />

Walfish-Ikegami<br />

UMTS 30.03<br />

• Mostly shown in dB<br />

(attenuation)<br />

Pathloss [dB]<br />

40 60 80 100 120 140 160<br />

0 200 400 600 800 1000<br />

- 40 -<br />

Distance [m]<br />

UMTS 30.03 Vehicular<br />

From Walke: UMTS - the fundamentals<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Noise and Interference<br />

• So far: only a single transmitter assumed<br />

– Only disturbance: self-interference of a signal with multipath<br />

“copies” of itself<br />

• In reality, two further disturbances<br />

– Noise – due to effects in receiver electronics, depends<br />

on temperature<br />

• Typical model: an additive Gaussian variable, mean 0, no<br />

correlation in time<br />

– Interference from third parties<br />

• Co-channel interference: another sender uses the same<br />

spectrum<br />

• Adjacent-channel interference: another sender uses some<br />

other part of the radio spectrum, but receiver filters are not<br />

good enough to fully suppress it<br />

• Effect: Received signal is distorted by channel, corrupted by<br />

noise and interference<br />

- 41 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011


Channel models<br />

• Simplest model: assume transmission power and<br />

attenuation are constant, noise an uncorrelated Gaussian<br />

variable<br />

– Additive White Gaussian Noise model<br />

• Situation with no line-of-sight path, but many indirect<br />

paths: Amplitude of resulting signal has a Rayleigh<br />

distribution (Rayleigh fading)<br />

• One dominant line-of-sight plus many indirect paths:<br />

Signal has a Rice distribution (Rice fading)<br />

• Raytracing model<br />

– Given location of transmitters, receivers, obstacles<br />

– Calculate current SINR <strong>for</strong> each transmission path<br />

- 42 -<br />

TZI – FB 1 – Kommunikationsnetze<br />

Andreas Könsgen – Summer Term 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!