21.10.2013 Views

Ferromagnetism and Metal-Insulator Transition in Hubbard Model ...

Ferromagnetism and Metal-Insulator Transition in Hubbard Model ...

Ferromagnetism and Metal-Insulator Transition in Hubbard Model ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Ferromagnetism</strong> <strong>and</strong> <strong>Metal</strong>-<strong>Insulator</strong><br />

<strong>Transition</strong> <strong>in</strong> <strong>Hubbard</strong> <strong>Model</strong> with Alloy<br />

Disorder<br />

Krzysztof Byczuk<br />

Institute of Physics, Augsburg University<br />

Institute of Theoretical Physics, Warsaw University<br />

October 13th, 2005


Ma<strong>in</strong> results<br />

• New collective effects <strong>in</strong>duced by correlation <strong>and</strong> disorder<br />

• Enhancement of Tc <strong>in</strong> b<strong>in</strong>ary alloy ferromagnets<br />

• New Mott–<strong>Hubbard</strong> metal–<strong>in</strong>sulator transition at n = 1<br />

K. Byczuk, M. Ulmke, D. Vollhardt<br />

Phys. Rev. Lett. 90, 196403 (2003)<br />

K. Byczuk, W. Hofstetter, D. Vollhardt<br />

Phys. Rev. B 69, 04512 (2004)<br />

K. Byczuk, M. Ulmke<br />

Eur. Phys. J. B 45, 449 (2005)


Collaboration<br />

• Walter Hofstetter - Aachen, Germany<br />

• Mart<strong>in</strong> Ulmke - FGAN - FKIE, Wachtberg, Germany<br />

• Dieter Vollhardt - Augsburg University, Germany<br />

Plan of the talk<br />

1. Introduction<br />

• localized vs. it<strong>in</strong>erant FM<br />

• Mott-<strong>Hubbard</strong> MIT<br />

• b<strong>in</strong>ary alloy disorder<br />

• alloy FM <strong>in</strong> Nature<br />

2. Earlier result with<strong>in</strong> DMFT on pure FM<br />

3. Our results on b<strong>in</strong>ary alloy FM<br />

• enhancement of Tc<br />

• magnetization <strong>and</strong> Curie–Weiss law<br />

• Mott–<strong>Hubbard</strong> MIT at n = 1<br />

4. Conclusions


<strong>Ferromagnetism</strong> of local moments<br />

Exchange (Heisenberg) coupl<strong>in</strong>g<br />

H = X<br />

Jij Si · Sj<br />

Saturated magnetization M(T = 0) = µBS<br />

ij<br />

T > Tc<br />

T < Tc<br />

J < 0 → FM appears at Curie temperature Tc


It<strong>in</strong>erant <strong>Ferromagnetism</strong><br />

Dynamical way to make FM<br />

To reduce <strong>in</strong>teraction energy electrons prefer FM state<br />

due to Pauli pr<strong>in</strong>ciple E FM<br />

<strong>in</strong>t<br />

However, |E FM<br />

k<strong>in</strong><br />

| < |EPM|<br />

!<br />

k<strong>in</strong><br />

= 0<br />

t


Mott-<strong>Hubbard</strong> MIT at n = 1<br />

U ≪ |tij|, ∆p = 0 U ≫ |tij|, ∆r = 0<br />

typical <strong>in</strong>termediate coupl<strong>in</strong>g problem Uc ≈ |tij|


Alloy B<strong>and</strong> Splitt<strong>in</strong>g<br />

B<strong>in</strong>ary alloy disorder (alloys A1−xBx, e.g Fe1−xCox)<br />

P(ɛi) = xδ(ɛi + ∆<br />

2 ) + (1 − x)δ(ɛi − ∆<br />

2 )<br />

H = P<br />

i ɛi + t P<br />

ij a†<br />

i aj<br />

alloy b<strong>and</strong> splitt<strong>in</strong>g for ∆ W <strong>in</strong> any dimension<br />

<strong>in</strong>termediate “coupl<strong>in</strong>g” problem !!!<br />

physical quantity: O = R dɛP(ɛ) <<br />

E<br />

∆<br />

Ô(ɛ) ><br />

1−x<br />

DOS<br />

x


Alloy Ferromagnets <strong>in</strong> Nature I<br />

Piryts: T1−x(T+1)xS2, T=Fe, Co, Ni, Cu, Zn<br />

t 6<br />

2gen g<br />

with n = 0, 1, 2, 3, 4<br />

Fe1−xCoxS2, max Tc(x) @ x ≈ 0.76<br />

Jarrett et al., PRL 1968, Leighton 2004


Alloy Ferromagnets <strong>in</strong> Nature II<br />

T c (critical temperature: K)<br />

110<br />

109<br />

108<br />

107<br />

106<br />

105<br />

104<br />

103<br />

Theory<br />

Annealed for 14 days at 875 o C<br />

102<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

x (amount of Ge)<br />

MT2X2 ternary <strong>in</strong>termetallic alloys<br />

UCu2Si2−xGex, max Tc(x) @ x ≈ 1.6<br />

Silva Neto et al., PRL 2003<br />

Si <strong>and</strong> Ge isovalent, only structural disorder


Alloy Ferromagnets <strong>in</strong> Nature III<br />

Fe weak FM, Co strong FM, bcc alloy<br />

Fe1−xCox, max Tc(x) @ x ≈ 0.5<br />

Pratzer et al., PRL 2003


Alloy Ferromagnets <strong>in</strong> Nature IV<br />

Alloy ruthenates<br />

SrRu1−xMnxO3, FM Met–AF Ins<br />

Cao et al., cond-mat/0409157


<strong>Hubbard</strong> model to capture right physics<br />

ɛ0 + U<br />

ɛ0<br />

H = X<br />

ɛ0niσ + X<br />

iσ<br />

t<br />

ijσ<br />

• long history, many contradictions<br />

• exactly solvable <strong>in</strong> d = 1<br />

U<br />

• exactly solvable <strong>in</strong> d = ∞ (DMFT)<br />

• how to approximate <strong>in</strong> 1 < d < ∞?<br />

tij a †<br />

iσ ajσ + U X<br />

t<br />

i<br />

E<br />

U=0<br />

E<br />

E F<br />

ni↑ni↓<br />

DOS: ρ(E) = P R<br />

n dx|ψn(x)|δ(E − ɛn)<br />

t=0<br />

U<br />

2(n/2)<br />

ρ( E)<br />

ρ( E)<br />

2(1−n/2)


Physical picture, n = 1<br />

E+U<br />

E<br />

atomic levels<br />

|t|=0 |t|>0<br />

U<br />

UHB<br />

LHB<br />

sp<strong>in</strong> flip on central site<br />

E+U<br />

dynamical processes with sp<strong>in</strong>-flips <strong>in</strong>ject states <strong>in</strong>to correlation gap<br />

giv<strong>in</strong>g a quasiparticle resonance<br />

E<br />

at U = Uc resonance disapears<br />

gaped <strong>in</strong>sulator


Route to FM <strong>in</strong> one-b<strong>and</strong> <strong>Hubbard</strong> (DMFT)<br />

H = P ta †<br />

iσ ajσ + U P ni↑ni↓<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

N<br />

0.6<br />

0 (ε)<br />

0.4<br />

0.2<br />

a=0<br />

a=0.5<br />

a=0.9<br />

a=0.98<br />

a=1<br />

1.4<br />

N 0 (ε)<br />

0.7<br />

0<br />

−2 −1.8<br />

ε<br />

−1.6<br />

0<br />

−2 −1 0<br />

ε<br />

1 2<br />

Wahle et al. 1998<br />

DOS asymmetry - a<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

a=0.97<br />

0.01<br />

a=0.98<br />

a=0.99<br />

a=1 0<br />

Interaction - U<br />

T<br />

T<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

F<br />

a=1<br />

a=0.98<br />

a=0.97<br />

0 0.2 0.4 0.6 0.8 1<br />

n<br />

F<br />

U=8<br />

U=6<br />

U=4<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

n<br />

P<br />

P<br />

U = 4<br />

a = 0.98


FCC d =∞ FM <strong>in</strong> one-b<strong>and</strong> <strong>Hubbard</strong><br />

M<br />

0.6<br />

0.4<br />

0.2<br />

√ π(1+ √ 2ɛ)<br />

N 0 (ɛ) = exp[−1+√ 2ɛ<br />

2<br />

U=4<br />

n=0.58<br />

0<br />

0.03 0.05 0.07<br />

T<br />

0.09<br />

Ulmke et al. 1998<br />

]<br />

4<br />

χ −1<br />

F<br />

T<br />

N(ω)<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

1.2<br />

0.8<br />

0.4<br />

P<br />

F<br />

0 0.2 0.4 0.6 0.8 1.0<br />

n<br />

U=4<br />

n=0.58<br />

T=0.04<br />

M=0.4<br />

0<br />

−2.0 0.0 2.0<br />

ω−µ<br />

4.0 6.0<br />

U = 2, 4, 5


FM <strong>in</strong> b<strong>in</strong>ary alloy it<strong>in</strong>erant electrons<br />

Anderson–<strong>Hubbard</strong> Hamiltonian<br />

H = X<br />

ij,σ<br />

tijĉ †<br />

iσ ĉjσ + X<br />

iσ<br />

ɛiˆniσ + U X<br />

i<br />

ˆni↑ˆni↓<br />

where ɛ is r<strong>and</strong>om variable with bimodal PDF<br />

„<br />

P(ɛ) = xδ ɛ + ∆<br />

«<br />

„<br />

+ (1 − x)δ ɛ −<br />

2<br />

∆<br />

«<br />

2<br />

Physical observable averaged arithmetically<br />

Z<br />

〈· · · 〉dis = dɛP(ɛ)(· · · )<br />

d = ∞ FCC DOS stabilizes FM<br />

N 0 (ω) = exp[−1+√ 2ω<br />

2 ]<br />

q<br />

π(1 + √ 2ω)


Dynamical Mean–Field Theory<br />

Local Green function - Hilbert transform of DOS with self–energy<br />

Gσn =<br />

Z<br />

N<br />

dɛ<br />

0 (ɛ)<br />

iωn + µ − Σσn − ɛ<br />

expressed by path <strong>in</strong>tegral, which is calculated with<br />

<strong>Hubbard</strong>–Stratonovich <strong>and</strong> QMC over auxiliary Is<strong>in</strong>g sp<strong>in</strong>s<br />

Gσn = −<br />

*R D [cσ, c ⋆<br />

⋆<br />

σ ] cσncσneAi {cσ,c ⋆ σ ,G−1 σ }<br />

R D [cσ, c ⋆ σ ] eA i {cσ,c ⋆ σ ,G−1<br />

σ }<br />

s<strong>in</strong>gle impurity action for each ɛi = ±∆/2<br />

Ai{cσ, c ⋆<br />

σ<br />

X<br />

, G−1<br />

σ } = c<br />

n,σ<br />

⋆<br />

σnG−1 σncσn−ɛi X<br />

σ<br />

k–<strong>in</strong>tegrated Dyson equation for Weiss function<br />

G −1<br />

σn<br />

= G−1<br />

σn<br />

+ Σσn<br />

Zβ<br />

0<br />

+<br />

dis<br />

dτnσ(τ)− U<br />

2<br />

X<br />

σ<br />

Zβ<br />

0<br />

dτc ∗<br />

∗<br />

σ (τ)cσ(τ)c −σ (τ)c−σ(τ)


T c<br />

T c<br />

T c<br />

T c<br />

Curie temperature<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

∆=1<br />

∆=4<br />

Mott<br />

n=0.3<br />

U=2<br />

U=6<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

concentration, x<br />

n=0.7<br />

U=2<br />

U=6<br />

∆=1<br />

∆=4<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

concentration, x<br />

Mott<br />

T c<br />

T c<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

0 1 2 3 4<br />

0.038<br />

0.028<br />

0.018<br />

0.008<br />

(b)<br />

Tc(x) <strong>in</strong>creases !!! at some cases<br />

T c<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

U=2<br />

(a)<br />

U=4<br />

n>x<br />

U=6<br />

n


E<br />

∆<br />

Is there an alloy b<strong>and</strong> splitt<strong>in</strong>g at U > 0?<br />

1−x<br />

DOS<br />

x<br />

U = 4, n = 0.3, n = 0.5, T = 0.071, MEM<br />

SPECTRAL DENSITY<br />

LHB<br />

∆=0.0<br />

UHB<br />

∆=0.4<br />

∆=1.0<br />

∆=1.4<br />

∆=1.8<br />

−1 0 1 2 3 4 5<br />

ω−µ<br />

Subtle <strong>in</strong>terplay between ∆ <strong>and</strong> U <strong>in</strong>creases Tc!


E<br />

∆<br />

Why is Curie temperature enhanced?<br />

1−x<br />

DOS<br />

x<br />

n < 2x → neff = n<br />

x<br />

Tc = xT p<br />

c<br />

T c<br />

T<br />

p<br />

c<br />

(n)<br />

Tc(x) <strong>in</strong>creases !!! at some cases<br />

n > 2x → neff = n−2x<br />

1−x<br />

Tc = (1 − x)T p<br />

c<br />

T c<br />

T<br />

p<br />

(<br />

c n eff )<br />

(n)<br />

Tc<br />

x<br />

n n eff<br />

U1<br />

U<br />

0.0 0.5 1.0<br />

T c (n)<br />

n<br />

eff<br />

1−x<br />

Tc p (neff )<br />

U 1<br />

Tc p (n)<br />

2<br />

U 2<br />

0.0 0.5 1.0<br />

n<br />

T<br />

0.06<br />

0.04<br />

0.02<br />

n<br />

n<br />

P<br />

0<br />

0 0.2 0.4 0.6 0.8 1.0<br />

n<br />

F<br />

Good for large U<br />

Good for small U


T c<br />

T c<br />

T c<br />

T c<br />

Magnetization <strong>and</strong> Curie-Weiss law<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

∆=1<br />

∆=4<br />

Mott<br />

n=0.3<br />

U=2<br />

U=6<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

concentration, x<br />

n=0.7<br />

U=2<br />

U=6<br />

∆=1<br />

∆=4<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

concentration, x<br />

Mott<br />

M(T) , χ −1 (T)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

x=0.6, U=6, n=0.3<br />

x=0.1, U=2, n=0.7<br />

If ∆ ≫ W <strong>and</strong> n < 2x → Ms = n but n > 2x → Ms = n − 2x<br />

∆=4<br />

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2<br />

kT<br />

M(T)<br />

Ms<br />

= tanh[TcM(T)<br />

TMs ]<br />

χ(T) = C<br />

T −Tc<br />

, where C ≈ Ms<br />

C1 C = 0.623 close to<br />

2 3<br />

5


T c<br />

T c<br />

T c<br />

T c<br />

Mott–<strong>Hubbard</strong> metal–<strong>in</strong>sulator transition<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

∆=1<br />

∆=4<br />

Mott<br />

n=0.3<br />

U=2<br />

U=6<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

concentration, x<br />

n=0.7<br />

U=2<br />

U=6<br />

∆=1<br />

∆=4<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

concentration, x<br />

Mott<br />

A( ω)<br />

µ<br />

LHB<br />

µ<br />

2N L<br />

ω<br />

xNL<br />

µ µ<br />

U<br />

METAL<br />

U<br />

µ<br />

LAB UAB<br />

2xNL<br />

2(1−x)NL<br />

µ<br />

xNL<br />

∆<br />

INSULATOR<br />

If n = x (or 1 + x) Mott-<strong>Hubbard</strong> MIT occures for ∆ > √ x <strong>and</strong> U > 6 √ x (or √ 1 − x <strong>and</strong> 6 √ 1 − x)<br />

SPECTRAL DENSITY<br />

UHB<br />

∆ c<br />

U = 6, x = 0.5, n = 0.5, T = 0.071, MEM<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

TEMPERATURE T<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

PM<br />

FM<br />

0 1 2<br />

DISORDER ∆<br />

∆<br />

U c<br />

0<br />

−2 −1 0 1 2<br />

ω−µ<br />

3 4 5 6 7<br />

PI


Correlated <strong>in</strong>sulators<br />

• alloy Mott <strong>in</strong>sulator<br />

• alloy charge transfer <strong>in</strong>sulator<br />

ε+<br />

∆<br />

ε+<br />

U<br />

U< ∆ U> ∆<br />

UHB<br />

ε + U<br />

ε + ∆<br />

UHB<br />

UAB UAB<br />

ε LHB ε LHB<br />

alloy Mott<br />

<strong>in</strong>sulator<br />

alloy charge transfer<br />

<strong>in</strong>sulator


T c<br />

T c<br />

Quantum critical po<strong>in</strong>ts<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

∆=1<br />

∆=4<br />

Mott<br />

n=0.3<br />

U=2<br />

U=6<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

concentration, x<br />

T c<br />

T c<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

n=0.7<br />

U=2<br />

U=6<br />

∆=1<br />

∆=4<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

concentration, x<br />

At T = 0 quantum phase transitions: FM met → PM <strong>in</strong>s or FM met → PM <strong>in</strong>s (Mott).<br />

Correlation (b<strong>and</strong>-width) controlled, Fill<strong>in</strong>g controlled, Alloy concentration controlled Mott MITs.<br />

Is non-Fermi liquid <strong>in</strong> d < ∞ ? Role of correlations <strong>in</strong> space.<br />

Mott


Summary<br />

• New collective effects <strong>in</strong>duced by correlation <strong>and</strong> disorder<br />

• Possibilities of Tc <strong>in</strong>crease <strong>in</strong> b<strong>in</strong>ary alloy ferromagnet<br />

• New Mott–<strong>Hubbard</strong> metal–<strong>in</strong>sulator transition at n = 1<br />

• Alloy Mott <strong>in</strong>sulator vs. Alloy charge transfer <strong>in</strong>sulator<br />

• Alloy concentration controlled Mott MIT<br />

Outlook<br />

• Tc(x) - QPT ? 2nd vs 1st order PT ?<br />

• Multi-b<strong>and</strong> <strong>Hubbard</strong> model, role of Hund <strong>and</strong> exchange coupl<strong>in</strong>g,<br />

which from our f<strong>in</strong>d<strong>in</strong>gs are generic for many orbitals ?<br />

• Material specific models ?? LDA+DMFT+disorder ???

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!