20.12.2013 Views

Alg 1 TE Lesson 10-8

Alg 1 TE Lesson 10-8

Alg 1 TE Lesson 10-8

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>10</strong>-8<br />

What You’ll Learn<br />

• To choose a linear,<br />

quadratic, or exponential<br />

model for data<br />

. . . And Why<br />

To model changes in an<br />

animal population, as in<br />

Example 3<br />

Choosing a Linear, Quadratic,<br />

or Exponential Model<br />

Check Skills You’ll Need GO for Help<br />

Graph each function. 1–6. See margin p. 599.<br />

1. y = 3x - 1 2. y =<br />

1<br />

4 x + 2<br />

3. y = 2 x 4. y = Q 1 3 Rx<br />

5. y = x 2 + 5 6. y = 2x 2 - 1<br />

<strong>Lesson</strong>s 6-2, 8-7, and <strong>10</strong>-1<br />

<strong>10</strong>-8<br />

1. Plan<br />

Objectives<br />

1 To choose a linear, quadratic,<br />

or exponential model for data<br />

Examples<br />

1 Choosing a Model by<br />

Graphing<br />

2 Modeling Data<br />

3 Real-World Problem Solving<br />

Math Background<br />

Part 1 1 Choosing a Linear, Quadratic, or Exponential Model<br />

You can use the linear, exponential, or quadratic functions you have studied to<br />

model some sets of data. Recall the general appearance of each type of function.<br />

Key Concepts Summary Linear, Quadratic, and Exponential Functions<br />

Linear Quadratic Exponential<br />

y = mx + b y = ax 2 + bx + c y = a ? b x<br />

y<br />

O<br />

x<br />

y<br />

O<br />

x<br />

y<br />

O<br />

x<br />

You can test ordered data for a<br />

common difference or common<br />

ratio. A linear model fits data<br />

with a common difference and<br />

an exponential model fits data<br />

with a common ratio. A quadratic<br />

model fits data with common<br />

second differences. (Second<br />

differences are differences of the<br />

first differences.) To find the<br />

second differences to determine<br />

quadratic models remember that<br />

x will be squared. To determine<br />

cubic models, you must consider<br />

the third differences.<br />

More Math Background: p. 548D<br />

1<br />

You may be able to use the graph of data points to determine a model for the data.<br />

EXAMPLE<br />

Choosing a Model by Graphing<br />

Graph each set of points. Which model is most appropriate for each set?<br />

a. (-3, 6), (-2, 2), (0, -2), b. (-2, 5), (0, 3), c. (-2, 4), (-1, 2),<br />

(3, 6), (1, -1), (2, 2) (1, 2.5), (2, 2) (1, -2), (2, -4)<br />

y<br />

6<br />

y<br />

5<br />

y<br />

6<br />

4<br />

4<br />

4<br />

64<br />

2<br />

x<br />

3<br />

x<br />

2<br />

O 2 4 6<br />

64<br />

O 2 4 6<br />

1<br />

x<br />

4<br />

4<br />

32<br />

O 1 2 3<br />

Quadratic model Exponential model Linear model<br />

<strong>Lesson</strong> Planning and<br />

Resources<br />

See p. 548E for a list of the<br />

resources that support this lesson.<br />

PowerPoint<br />

Bell Ringer Practice<br />

Check Skills You’ll Need<br />

For intervention, direct students to:<br />

Slope-Intercept Form<br />

<strong>Lesson</strong> 6-2: Example 4<br />

Extra Skills and Word<br />

Problem Practice, Ch. 6<br />

<strong>Lesson</strong> <strong>10</strong>-8 Choosing a Linear, Quadratic, or Exponential Model 597 Exponential Functions<br />

<strong>Lesson</strong> 8-7: Example 3<br />

Extra Skills and Word<br />

Special Needs L1<br />

Below Level L2<br />

Problem Practice, Ch. 8<br />

Ask students to predict what kind of function best Remind students that in the exponential model, the Exploring Quadratic Graphs<br />

models each set of data in Example 2. Point out that initial value occurs when x = 0.<br />

<strong>Lesson</strong> <strong>10</strong>-1: Example 4<br />

you cannot always tell from looking at the graph.<br />

Extra Skills and Word<br />

Have them compare how well the quadratic model<br />

Problem Practice, Ch. <strong>10</strong><br />

fits the data with how well the exponential model<br />

fits.<br />

learning style: visual learning style: verbal<br />

597


2. Teach<br />

Guided Instruction<br />

1<br />

Visual Learners<br />

Help students remember the<br />

general appearance of each<br />

function by drawing the<br />

following on the board:<br />

2<br />

EXAMPLE<br />

q adratic<br />

y ax sq ared bx c<br />

e ponential<br />

y a · b<br />

inear<br />

y mx b<br />

EXAMPLE<br />

Technology Tip<br />

Students can use a graphing<br />

calculator to graph the data,<br />

determine the type of function<br />

that best fits the data, and write<br />

an equation to model the data.<br />

Press<br />

to enter the data<br />

in lists. Press 2nd STAT PLOT<br />

9 to graph the points.<br />

You can see that the model is not<br />

linear.<br />

Quick Check<br />

1<br />

Graph each set of points. Which model is most appropriate for each set?<br />

a. (-1.5, -2), (0, 2), (1, 4), (2, 6) b. (-1, 1), (0, 0), (1, 1), (2, 4)<br />

c. (-1, 0.5), (0, 1), (1, 2), (2, 4) a–c. See margin.<br />

You can also analyze data numerically to find the best model.<br />

In <strong>Lesson</strong> 5-6, you learned that the terms of an arithmetic sequence have a<br />

common difference. You can model an arithmetic sequence with a linear function.<br />

1<br />

1<br />

1<br />

1<br />

The y-coordinates have a common difference of 4. A linear model fits the data.<br />

In <strong>Lesson</strong> 8-6, you learned that the terms of a geometric sequence have a common<br />

ratio. You can model a geometric sequence with an exponential function.<br />

1<br />

1<br />

1<br />

1<br />

x<br />

2 2<br />

1 2<br />

0 6<br />

1 <strong>10</strong><br />

x<br />

2<br />

1<br />

0<br />

The y-coordinates have a common ratio of 3. An exponential model fits the data.<br />

y<br />

2 14<br />

y<br />

1<br />

9<br />

1<br />

3<br />

1<br />

1 3<br />

2 9<br />

4<br />

4<br />

4<br />

4<br />

3<br />

3<br />

3<br />

3<br />

Data from quadratic functions show a different pattern. For linear data, the first<br />

differences are the same. For quadratic data, the second differences are the same.<br />

If data have a common second difference, then you can model them with a<br />

quadratic function.<br />

x<br />

y<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1 16<br />

0 2<br />

1 2<br />

2 4<br />

3 20<br />

4 46<br />

14<br />

4<br />

6<br />

16<br />

26<br />

<strong>10</strong><br />

<strong>10</strong><br />

<strong>10</strong><br />

<strong>10</strong><br />

first differences<br />

second differences<br />

The y-coordinates have a common second difference of <strong>10</strong>. A quadratic<br />

model fits the data.<br />

598 Chapter <strong>10</strong> Quadratic Equations and Functions<br />

598<br />

Advanced Learners L4<br />

Have students describe what the graph in Example 3<br />

would look like if the frog population were<br />

increasing, rather than decreasing.<br />

learning style: verbal<br />

English Language Learners ELL<br />

Be sure students understand that when they are<br />

modeling data they are finding a function that will<br />

enable them to predict data points that are not<br />

provided.<br />

learning style: verbal


x y<br />

1 20<br />

0 8<br />

1 3.2<br />

2 1.28<br />

3 0.512<br />

2<br />

EXAMPLE<br />

Modeling Data<br />

a. Which kind of function best models the data at the left? Write an equation to<br />

model the data.<br />

Step 1 Graph the data.<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

O<br />

y<br />

x<br />

1 2 3 4 5 6 7 8 9<br />

1<br />

1<br />

1<br />

1<br />

Step 2 The data appear to suggest an<br />

exponential model. Test for a<br />

common ratio.<br />

x<br />

1<br />

0<br />

1<br />

2<br />

3<br />

20<br />

8<br />

There is a common ratio, 0.4.<br />

y<br />

3.2<br />

1.28<br />

0.512<br />

8 20 0.4<br />

3.2 8 0.4<br />

1.28 3.2 0.4<br />

0.512 1.28 0.4<br />

To determine if a quadratic or<br />

exponential function best models<br />

the data, use the calculator to<br />

find each equation that best fits<br />

the data. Press 5<br />

Y= 5 .<br />

The quadratic model will appear<br />

on the graph. To find the<br />

exponential model, follow the<br />

same steps except press 0 instead<br />

of the first 5, and scroll to Y 2 =<br />

after you press Y= . Now the<br />

exponential model will appear.<br />

The exponential model passes<br />

through more of the data<br />

points. Press Y= and write<br />

the exponential equation after<br />

Y 2 as y = 8 ? 0.4 x .<br />

Step 3 Write an exponential model. Step 4 Test two points other than (0, 8).<br />

Relate y = a ? b x y = 8 ? 0.4 1 y = 8 ? 0.4 3<br />

PowerPoint<br />

Additional Examples<br />

x y<br />

0 0<br />

1 0.3<br />

2 1.2<br />

3 2.7<br />

4 4.8<br />

Define Let a = the initial value, 8. y = 8 ? 0.4 y = 8 ? 0.064<br />

Let b = the decay factor, 0.4. y = 3.2 y = 0.512<br />

Write y = 8 ? 0.4 x (1, 3.2) and (3, 0.512) are both data points.<br />

The equation y = 8 ? 0.4 x models<br />

the data.<br />

b. Which kind of function best models the data at the left? Write an equation to<br />

model the data.<br />

Step 1 Graph the data.<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

2 O<br />

2<br />

y<br />

x<br />

1 2 3 4 5 6 7 8<br />

Step 2 The data appear to be quadratic.<br />

Test for a common second<br />

difference.<br />

1<br />

1<br />

1<br />

1<br />

x<br />

0<br />

1<br />

0<br />

y<br />

0.3<br />

2 1.2<br />

3 2.7<br />

4 4.8<br />

0.3<br />

0.9<br />

1.5<br />

2.1<br />

0.6<br />

0.6<br />

0.6<br />

There is a common second difference, 0.6.<br />

1 Graph each set of points.<br />

Which model is most appropriate<br />

for each set?<br />

a. (-2, 1.45), (0, 3), (1, 4) (2, 6)<br />

exponential<br />

b. (-2, -2), (0, 2), (1, 4), (2, 6)<br />

linear<br />

c. (-2, 11), (-1, 5), (0, 3), (1, 5),<br />

(2, 11) quadratic<br />

6.<br />

2<br />

page 598 Quick Check<br />

1a. y linear<br />

6<br />

y<br />

4<br />

2<br />

O<br />

x<br />

2<br />

Step 3 Write a quadratic model. Step 4 Test two points other than<br />

(2, 1.2) and (0, 0).<br />

y = ax 2 y = 0.3(3) 2 y = 0.3(4) 2<br />

1.2 = a(2) 2 Use a point other<br />

than (0, 0) to find a.<br />

y = 0.3 ? 9 y = 0.3 ? 16<br />

y = 2.7 y = 4.8<br />

1.2 = 4a Simplify.<br />

0.3 = a Divide each side by 4. (3, 2.7) and (4, 4.8) are both data points.<br />

y = 0.3x 2 Write a quadratic The equation y = 0.3x 2 models the data.<br />

function.<br />

4<br />

2<br />

O<br />

2<br />

b. y quadratic<br />

4<br />

x<br />

2<br />

2<br />

<strong>Lesson</strong> <strong>10</strong>-8 Choosing a Linear, Quadratic, or Exponential Model 599<br />

O<br />

x<br />

2<br />

page 597 Check Skills You’ll Need<br />

1. y 2. y<br />

3. y<br />

4. y 5.<br />

2<br />

O x<br />

1 1<br />

1<br />

2 O 2<br />

x<br />

2<br />

8<br />

4<br />

O<br />

2<br />

x<br />

2<br />

8<br />

4<br />

O<br />

x<br />

1<br />

2<br />

y<br />

8<br />

4<br />

O<br />

x<br />

2<br />

c. y exponential<br />

4<br />

2<br />

x<br />

O 2<br />

599


PowerPoint<br />

Additional Examples<br />

2 Which kind of data best<br />

models the data below? Write<br />

an equation to model the data.<br />

a.<br />

x y<br />

0 0<br />

1 1.4<br />

2 5.6<br />

3 12.6<br />

4 22.4<br />

b.<br />

quadratic; y ≠ 1.4x 2<br />

x<br />

-1 4<br />

0 2<br />

1 1<br />

exponential; y ≠ 2 ? 0.5 x<br />

3 Suppose you are studying deer<br />

that live in an area. The data<br />

below were collected by a local<br />

conservation organization. It<br />

indicates the number of deer<br />

estimated to be living in the area<br />

over a five-year period. Determine<br />

which kind of function best<br />

models the data. Write an<br />

equation to model the data.<br />

exponential; y ≠ 90 ? 0.77 x<br />

Resources<br />

• Daily Notetaking Guide <strong>10</strong>-8<br />

L3<br />

• Daily Notetaking Guide <strong>10</strong>-8—<br />

Adapted Instruction L1<br />

Closure<br />

y<br />

2 0.5<br />

3 0.25<br />

Estimated<br />

Year Population<br />

0 90<br />

1 69<br />

2 52<br />

3 40<br />

4 31<br />

Real-World<br />

Quick Check<br />

Connection<br />

Frog populations around the<br />

world have been declining<br />

over the past 20 years.<br />

2<br />

3<br />

Which kind of function best models the data in each table? Write an equation to<br />

model the data.<br />

a.<br />

x y<br />

b.<br />

x y<br />

c.<br />

x y<br />

0 4<br />

1<br />

0<br />

0 0<br />

2<br />

1 4.4<br />

1 1<br />

1 0.5<br />

2 4.84<br />

1<br />

2 2<br />

2 1<br />

2<br />

3 5.324<br />

3 4.5<br />

3 2<br />

4 5.8564<br />

4 8<br />

exponential; y ≠ 4 ? 1.1 x 1 1<br />

linear; y ≠ x ± quadratic; y ≠– 1 x 2<br />

2 2<br />

2<br />

While real-world data seldom fall exactly into linear, exponential, or quadratic<br />

patterns, you can find a best-possible model.<br />

EXAMPLE Real-World Problem Solving<br />

Zoology Suppose you are studying frogs that live in a<br />

nearby wetland area. The data at the right were collected by<br />

a local conservation organization. They indicate the number<br />

of frogs estimated to be living in the wetland area over a<br />

five-year period. Determine which kind of function best<br />

models the data. Write an equation to model the data.<br />

Step 1 Graph the data to decide which model is<br />

most appropriate.<br />

Population<br />

Step 2 Test for a common ratio.<br />

1<br />

1<br />

1<br />

1<br />

120<br />

80<br />

40<br />

0<br />

1 2 3 4 5 6<br />

Year<br />

Year<br />

0<br />

1<br />

2<br />

3<br />

4<br />

Estimated<br />

Population<br />

120<br />

<strong>10</strong>1<br />

86<br />

72<br />

60<br />

The graph curves, and it does not look<br />

quadratic. It may be exponential.<br />

The population of frogs is roughly 0.84 times its value the previous year.<br />

Step 3 Write an exponential model.<br />

Relate y = a ? b x<br />

Define Let a = the initial value, 120.<br />

Let b = the decay factor, 0.84.<br />

Write y = 120 ? 0.84 x<br />

<strong>10</strong>1 120 0.84<br />

86 <strong>10</strong>1 0.85<br />

72 86 0.84<br />

60 72 0.83<br />

Year<br />

0<br />

1<br />

2<br />

3<br />

4<br />

The common ratio is<br />

roughly 0.84.<br />

Estimated<br />

Population<br />

120<br />

<strong>10</strong>1<br />

86<br />

72<br />

60<br />

Ask students how to choose a<br />

linear, quadratic, or exponential<br />

model for data. First graph the<br />

data to see if the graph is linear<br />

or if it curves. Then look for a<br />

best fit model.<br />

600 Chapter <strong>10</strong> Quadratic Equations and Functions<br />

600


Quick Check<br />

EXERCISES<br />

Practice and Problem Solving<br />

A<br />

GO<br />

Practice by Example<br />

for<br />

Help<br />

Example 1<br />

(page 597)<br />

Step 4 Test two points other than (0, 120).<br />

y = 120 ? 0.84 3 y = 120 ? 0.84 4<br />

y < 71 y < 60<br />

The point (3, 71) is close to the data point (3, 72). The predicted value (4, 60)<br />

matches the corresponding data point. The equation y = 120 ? 0.84 x models<br />

the data.<br />

Year Profit (dollars)<br />

3 The profits of a small company are shown<br />

0<br />

0<br />

in the table at the right. Let x = 0 correspond<br />

1 5,000<br />

to the year 2000.<br />

2 20,000<br />

a. Determine which kind of function best models<br />

the data. quadratic<br />

3 44,000<br />

b. Write an equation to model the data. y ≠ 5000x 2 4 79,000<br />

For more exercises, see Extra Skill and Word Problem Practice.<br />

1–6. See<br />

Graph each set of points. Which model is most appropriate for each set? back of<br />

book.<br />

1. (-2, -3), (-1, 0), (0, 1), (1, 0), (2, -3) 2. (-2, -8), (0, -4), (3, 2), (5, 6)<br />

3. (-3, 6), (-1, 0), (0, -1), (1, -1.5) 4. (-2, 5), (-1, -1), (0, -3), (1, -1), (2, 5)<br />

5. Q-2, 25<br />

8<br />

, -1, 25<br />

2<br />

9<br />

R Q<br />

3<br />

R, (0, -5), (2, 3) 6. (-3, 8), (-1, 6), (0, 5), (2, 3), (3, 2)<br />

3. Practice<br />

Assignment Guide<br />

1<br />

A B 1-27<br />

C Challenge 28-29<br />

Test Prep 30-33<br />

Mixed Review 34-48<br />

Homework Quick Check<br />

To check students’ understanding<br />

of key skills and concepts, go over<br />

Exercises 8, 14, 17, 18, 20.<br />

Error Prevention!<br />

Exercises 1–6 Be sure students do<br />

not quickly determine that the<br />

best model is exponential as soon<br />

as they see that the graph is not<br />

linear. They need to graph all<br />

points to see if the graph is a<br />

quadratic model.<br />

Example 2<br />

(page 599)<br />

Example 3<br />

(page 600)<br />

Which kind of function best models the data in each table? Write an equation to<br />

model the data.<br />

7. x y<br />

8. x y<br />

9. x y<br />

0 0<br />

0 5<br />

0 0<br />

1 1.5<br />

1 3<br />

1 2.8<br />

2 6<br />

2 1<br />

2 11.2<br />

3 13.5<br />

3 1<br />

3 25.2<br />

4 24<br />

4 3<br />

4 44.8<br />

quadratic; y ≠ 1.5x 2 linear; y ≠ 2x – 5 quadratic; y ≠ 2.8x 2<br />

<strong>10</strong>. x y 11. x y 12. x y<br />

0<br />

1<br />

1 1.2<br />

2 1.44<br />

3 1.728<br />

0<br />

5<br />

1 2<br />

2 0.8<br />

3 0.32<br />

4 2.0736<br />

4 0.128<br />

4 0<br />

exponential; y ≠ 1 ? 1.2 x exponential; y ≠ 5 ? 0.4 x 1<br />

linear; y ≠– 2 x ± 2<br />

13. The table at the right shows the end-of-themonth<br />

balance in a checking account.<br />

Month Balance (dollars)<br />

a. Graph the data. Does the graph suggest a<br />

linear, exponential, or quadratic model?<br />

1<br />

2<br />

58<br />

123<br />

b. Find the differences of consecutive terms.<br />

3<br />

187<br />

Are they roughly the same? 65, 64, 64; yes<br />

c. Estimate a common difference based on<br />

4<br />

251<br />

your answer to part (b). 64<br />

d. Write an equation to model the data. y ≠ 64x – 5<br />

a. See back of book.<br />

0<br />

2<br />

1 1.5<br />

2 1<br />

3 0.5<br />

<strong>Lesson</strong> <strong>10</strong>-8 Choosing a Linear, Quadratic, or Exponential Model 601<br />

GPS<br />

Enrichment<br />

Guided Problem Solving<br />

Reteaching<br />

Adapted Practice<br />

Practice<br />

© Pearson Education, Inc. All rights reserved.<br />

Name Class Date<br />

Practice <strong>10</strong>-9<br />

Choosing a Linear, Quadratic, or Exponential Model<br />

Which kind of function best models the data? Write an equation to model<br />

the data.<br />

1. (-1, 3), (1, 3), (3, 27), (5, 75), (7, 147) 2. (-2, 4), (-1, 2), (0, 0), (1, -2), (2, -4)<br />

3. ¢ 22, ≤, ¢ 21, 1 ≤, (0, 1), (1, 4), (2, 16) 4. (-6, -1), (-3, 0), (0, 1), (3, 2), (6, 3)<br />

16<br />

1 4<br />

5. ¢ 22, 1 3<br />

≤,(-1, 1), (0, 3), (1, 9), (2, 27) 6. (-4, -32), (-2, -8), (0, 0), (2, -8), (4, -32)<br />

7. 8. 9.<br />

x y<br />

x y<br />

-3<br />

9<br />

2<br />

-2 2<br />

1<br />

-1<br />

2<br />

0 0<br />

<strong>10</strong>. 11. 12.<br />

x y<br />

x y<br />

0 -2<br />

1 -8<br />

2 -32<br />

3 -128<br />

13. ¢ 22, ≤, ¢ 21, ≤, ¢ 0, 1 ≤, ¢ 1, 1 ≤, ¢ 2, 1 ≤<br />

3<br />

1 1 3 3 3 3<br />

14. ¢ 21, 2 1 ≤, ¢ 0, 2 1 ≤, (1, -1), (2, -2), (3, -4)<br />

4 2<br />

15. The cost of shipping computers from a warehouse is given in the table below.<br />

Number of Computers 50 75 <strong>10</strong>0 125<br />

Cost (dollars) 1700 2500 3300 4<strong>10</strong>0<br />

a. Determine which kind of function best models the data.<br />

b. Write an equation to model the data.<br />

-1 -2<br />

0 -4<br />

1 -6<br />

2 -8<br />

-7 -245<br />

-5 -125<br />

-3 -45<br />

-1 -5<br />

c. On the basis of your equation, what is the cost of shipping 27 computers?<br />

d. On the basis of your equation, how many computers could be shipped for $5500?<br />

16. During a scientific experiment, the bacteria count was taken at 5-min intervals.<br />

The data shows the count at several time periods during the experiment.<br />

Time Interval 0 1 2 3<br />

Count 1<strong>10</strong> 132 159 190<br />

a. Determine which kind of function best models the data.<br />

b. Write an equation to model the data.<br />

c. On the basis of your equation, what is the count 1 hr, 45 min after the start<br />

of the experiment?<br />

x<br />

y<br />

-4 -4<br />

-2 -1<br />

x<br />

-2<br />

0 0<br />

2 -1<br />

0<br />

y<br />

3<br />

2<br />

1<br />

2<br />

1<br />

2 -<br />

2<br />

4 -<br />

2<br />

3<br />

L4<br />

L1<br />

L3<br />

L2<br />

L3<br />

601


Math Tip<br />

Exercises 19–24 Remind students<br />

that r is the correlation coefficient.<br />

The nearer r is to 1 or -1, the<br />

more closely the data cluster<br />

around the model. The closer r is<br />

to 1 or - 1, the greater r 2 is.<br />

Also, the TI-83 Plus does not<br />

automatically show r-values for<br />

regressions. This feature, under<br />

catalog, is called DiagnosticsOn,<br />

and needs to be highlighted and<br />

switched on for this to happen.<br />

pages 563–566<br />

16a. p<br />

602<br />

Exercises<br />

linear<br />

18. Answers may vary.<br />

Sample: Linear data<br />

have a common first<br />

difference, quadratic<br />

data have a common<br />

second difference, and<br />

exponential data have a<br />

common ratio.<br />

25a. i. x y<br />

29f.<br />

Population<br />

ii.<br />

iii.<br />

Sales (billions of dollars)<br />

6000<br />

4000<br />

2000<br />

O<br />

1 –2<br />

2 1<br />

3 6<br />

4 13<br />

5 22<br />

x y<br />

1 3<br />

2 12<br />

3 27<br />

4 48<br />

5 75<br />

x y<br />

1 –1<br />

2 6<br />

3 21<br />

4 44<br />

5 75<br />

y<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

<strong>10</strong>0<br />

O<br />

t<br />

4 8 12 16<br />

Year<br />

)3 )2<br />

)5 )2<br />

)7 )2<br />

)9<br />

) 9 )6<br />

)15 )6<br />

)21 )6<br />

)27<br />

) 7 )8<br />

)15 )8<br />

)23 )8<br />

)31<br />

x<br />

5 <strong>10</strong> 15 20<br />

Year<br />

Age<br />

(years)<br />

B<br />

Value<br />

(dollars)<br />

0 16,500<br />

1 14,500<br />

2 12,750<br />

3 11,200<br />

4 9900<br />

Apply Your Skills<br />

16c. 600, 600, 600;<br />

120, 120, 120<br />

Population<br />

Year (millions)<br />

0 4457<br />

5 4855<br />

<strong>10</strong> 5284<br />

15 5691<br />

20 6080<br />

SOURCES: U. S. Census Bureau.<br />

Go to www.PHSchool.com<br />

for a data update.<br />

Web Code: atg-9041<br />

GO<br />

nline<br />

Homework Help<br />

Visit: PHSchool.com<br />

Web Code: ate-<strong>10</strong>08<br />

14. Car Value The value of a car over several years is shown in the table at the left.<br />

a. Determine which model is most appropriate for the data. exponential<br />

b. Write an equation to model the data. y ≠ 16,500 ? 0.88 x<br />

15. Physics Your class collected the data in the table<br />

at the right by rolling a ball down a ramp. The<br />

ramp had the same angle throughout. a. 41, 123, 206<br />

a. Find the differences of consecutive terms.<br />

b. Find the second differences. 82, 83<br />

c. Write an equation to model the data. Let t<br />

be the time in seconds and d be the distance<br />

in centimeters. d ≠ 41t 2<br />

d. Based on your equation, how far would the ball have rolled down the ramp<br />

in 2.5 seconds? 256.25 cm<br />

16. The table below shows the projected population of a small town. Let t = 0<br />

correspond to the year 2020. a. See margin.<br />

a. Graph the data. Does the graph suggest a<br />

linear, exponential, or quadratic model?<br />

Year Population<br />

b. What is the difference in years? 5 years<br />

0 5<strong>10</strong>0<br />

c. Find the differences of consecutive terms.<br />

5 5700<br />

Divide by the difference in years to find<br />

<strong>10</strong> 6300<br />

possible common differences. See left.<br />

15 6900<br />

d. Write a linear equation to model the data<br />

based on your answer to part (c). p ≠ 120t ± 5<strong>10</strong>0<br />

17. Population The table at the left shows the world population in millions from<br />

GPS 1980 to 2000. The year t = 0 corresponds to 1980.<br />

a. What is the difference in years? 5<br />

b. Find the differences of consecutive terms. Divide by the difference in years<br />

to find possible common differences. 398, 429, 407, 389; 79.6, 85.8, 81.4, 77.8<br />

c. Find the average of the common differences you found in part (b). about 81.2<br />

d. Write a linear equation to model the data based on your answer to part (c).<br />

e. Use your equation to predict the world population in 20<strong>10</strong>.<br />

d. p ≠ 81.2t ± 4457 e. 6893 million, or about 6.9 billion<br />

18. Writing Explain in writing to a classmate how to decide whether a linear,<br />

exponential, or quadratic function is the most appropriate equation to model<br />

a set of data. See margin.<br />

Use LinReg, ExpReg, or QuadReg to find an equation to model the data.<br />

The greatest value of r 2 indicates the best model for the data.<br />

19. x y 20. x y 21. x y<br />

0 1.7<br />

1 1.4<br />

2 4.7<br />

3<br />

y ≠ 0.875x 2 – 0.435x ± 1.515 y ≠ 1.987 ? 0.770 x y ≠ 2.125x 2 – 4.145x ± 2.955<br />

22. x y 23. x y 24. x y<br />

1<br />

7.9<br />

4.3<br />

0 5.1<br />

1 4.3<br />

2 2.2<br />

0 2.0<br />

1 1.5<br />

2 1.2<br />

3<br />

1<br />

0 3.5<br />

3 1.3<br />

3 0.2<br />

3 1.76<br />

y ≠–0.336x 2 – 0.219x ± 4.666 y ≠–1.1x ± 3.5 y ≠ 0.<strong>10</strong>2 ? 2.582 x<br />

602 Chapter <strong>10</strong> Quadratic Equations and Functions<br />

0.9<br />

4.6<br />

1 2.4<br />

2 1.3<br />

Time<br />

(seconds)<br />

0 0<br />

1 41<br />

2 164<br />

3 370<br />

0 2.8<br />

1 1.4<br />

2 2.7<br />

3<br />

1<br />

Distance<br />

(centimeters)<br />

9.8<br />

0.04<br />

0 0.<strong>10</strong><br />

1 0.26<br />

2 0.68


25b. The second<br />

common difference<br />

is twice the<br />

coefficient of x 2 .<br />

25c. When second<br />

differences are the<br />

same, the data are<br />

quadratic. You can<br />

determine the<br />

coefficient of x 2 by<br />

dividing the second<br />

difference by 2.<br />

26. Answers may vary.<br />

Sample: x y<br />

0 5<br />

2 13<br />

4 29<br />

6 53<br />

C<br />

Challenge<br />

29c. –54, 89, 66<br />

d. 1.85; the ratio is<br />

much greater than<br />

the other ratios.<br />

e. Yes; if consecutive<br />

first differences<br />

decrease, a second<br />

difference will be<br />

negative.<br />

25. a. Make a table of five points using consecutive x-values for each function.<br />

Find the common second difference. See margin.<br />

i. f(x) = x 2 - 3 ii. f(x) = 3x 2 iii.f(x) = 4x 2 - 5x<br />

b. What is the relationship between the common second difference and the<br />

coefficient of x 2 ? See left.<br />

c. Critical Thinking Explain how you could use this relationship to help you<br />

model data if the function were not given. See left.<br />

26. Open-Ended Write a set of data you could model with a quadratic function.<br />

See left.<br />

27. Physics A group of students dropped ping-pong balls and found the distance<br />

the balls traveled, given a certain amount of time. The diagram below shows<br />

their results.<br />

a. Determine which<br />

model is most<br />

appropriate for<br />

the data. quadratic<br />

b. Write an equation to<br />

model the data. If<br />

necessary, round to<br />

the nearest tenth.<br />

c. Use your equation to<br />

predict the distance a<br />

ping-pong ball would<br />

fall in 2 s. 54.5 ft<br />

Answers may vary.<br />

Sample: d ≠ 13.6t 2<br />

0.2 s<br />

0.5 ft<br />

0.4 s<br />

2.2 ft<br />

28. Data Collection Complete the chart at the right for<br />

your town. a–c. Check students’ work.<br />

a. Use ExpReg or QuadReg to find an equation to<br />

model the data.<br />

b. Use the equation you found in part (a) to predict<br />

the current population of your town.<br />

c. Use the equation you found in part (a) to predict<br />

the population of your town in 20<strong>10</strong>.<br />

0.6 s<br />

4.9 ft<br />

29. Data Analysis There are times when data show trends but not consistent ratios<br />

or differences. The data in the table below show the total U.S. retail auto sales<br />

for the years 1980 through 2000.<br />

The value t = 0 corresponds to the<br />

United States Retail Auto Sales<br />

year 1980. 1.85, 1.28, 1.45, 1.43<br />

$802<br />

a. Find the ratios of consecutive<br />

entries in the sales columns.<br />

Round to the nearest hundredth.<br />

b. Find the differences of<br />

1 car = $1 billion $562<br />

consecutive entries in the sales<br />

in sales<br />

columns. 139, 85, 174, 240<br />

$388<br />

c. Find the second differences<br />

of consecutive entries in the<br />

$164<br />

sales column. c–e. See left.<br />

d. Which ratio is most different<br />

from the others? Explain.<br />

0 5 <strong>10</strong> 15 20<br />

e. Critical Thinking If sales data<br />

Year<br />

increase every year, can a second<br />

difference be negative? Explain.<br />

f. Graph the data. Draw a curve to show the trend. See margin.<br />

lesson quiz, PHSchool.com, Web Code: ata-<strong>10</strong>08 <strong>Lesson</strong> <strong>10</strong>-8 Choosing a Linear, Quadratic, or Exponential Model 603<br />

$303<br />

0.8 s<br />

8.7 ft<br />

1.0 s<br />

13.6 ft<br />

Population<br />

Year (thousands)<br />

1970 7<br />

1980 7<br />

1990 7<br />

2000 7<br />

4. Assess & Reteach<br />

<strong>Lesson</strong> Quiz<br />

Which kind of function best<br />

models the data in each table?<br />

Write an equation to model the<br />

data.<br />

1.<br />

x y<br />

-1 15<br />

2.<br />

PowerPoint<br />

0 3<br />

1 0.6<br />

2 0.12<br />

3 0.024<br />

exponential; y ≠ 3 ? 0.2 x<br />

x y<br />

-1 -5<br />

0 -3<br />

1 -1<br />

2 1<br />

3 3<br />

linear; y ≠ 2x – 3<br />

3.<br />

x y<br />

-1 2.2<br />

0 0<br />

1 2.2<br />

2 8.8<br />

3 19.8<br />

quadratic; y ≠ 2.2x 2<br />

Alternative Assessment<br />

Have each student graph either a<br />

linear, quadratic, or exponential<br />

function, and then write four<br />

points that are on the graph.<br />

Instruct students to exchange the<br />

set of points with a classmate. The<br />

classmate finds the function that<br />

best models the set of points, and<br />

then writes an equation to model<br />

the data. Direct students to<br />

exchange the set of points with<br />

another classmate and repeat.<br />

Students can compare their<br />

results.<br />

603


Test Prep<br />

Resources<br />

For additional practice with a<br />

variety of test item formats:<br />

• Standardized Test Prep, p. 611<br />

• Test-Taking Strategies, p. 606<br />

• Test-Taking Strategies with<br />

Transparencies<br />

Exercise 31 Remind students that<br />

the y-coordinates of an exponential<br />

model have a common ratio. After<br />

determining that the x-coordinates<br />

are written in sequential order<br />

with a common difference,<br />

students just need to check the<br />

first three y-coordinates of each<br />

set of data to find the set with a<br />

common ratio.<br />

pages 601–604 Exercises<br />

33. [4] a. linear<br />

b. d ≠–2.5n ± 43.5<br />

c. 18<br />

[3] appropriate methods,<br />

but with one<br />

computational error<br />

[2] part (c) not answered<br />

[1] no work shown<br />

37.<br />

O y<br />

2<br />

x<br />

2<br />

Standardized Test Prep Test Prep<br />

Multiple Choice<br />

Short Response<br />

Extended Response<br />

30. Which equation best<br />

models the data in the<br />

table at the right? B<br />

A. y = 4x<br />

B. y = 2x + 2<br />

C. y = 2 x<br />

D. y = 2x 2<br />

31. Which of the following sets of data is best described by an<br />

exponential model? H<br />

F. (-1, 16), Q2<br />

1<br />

2<br />

, 4 R, (0, 2), Q 1 2<br />

, -2 R, (1, 4) 32. [2] p ≠ 33,500(1.014) n ,<br />

G. (1, -7), (2, -4), (3, -1), (4, 2), (5, 5)<br />

33,500(1.014) <strong>10</strong> N<br />

H. (1, 1), (3, 3), (0, 0.5), (5, 8), (7, 14)<br />

38,497<br />

J. (-2, -4), (-1, 3), (0, 8), (1, 14), (2, 12) [1] correct formula,<br />

inaccurate evaluation<br />

32. The population of a town was 33,500 in 2000. The population is<br />

increasing by about 1.4% each year. Write an equation that will<br />

predict the population n years after 2000. Let 2000 correspond to n = 0.<br />

Predict the town’s population in 20<strong>10</strong>. See above.<br />

33. Suppose you put marbles into a cup hanging from an elastic band (spring).<br />

You measure the distance d from the floor in centimeters as the number n<br />

of marbles is increased.<br />

n 0<br />

d 43.5<br />

1<br />

41<br />

x<br />

0<br />

1<br />

2<br />

2<br />

38.5<br />

a. Which type of model best fits this data set? a–c. See margin.<br />

b. Write an equation for the data.<br />

c. Suppose the pattern shown above continues. Find the least number of<br />

marbles you need to make the cup rest on the floor.<br />

y<br />

2<br />

4<br />

6<br />

3 8<br />

4 <strong>10</strong><br />

3<br />

36<br />

4<br />

33.5<br />

5<br />

31<br />

3<br />

38.<br />

f(x)<br />

2<br />

Mixed Review<br />

39.<br />

2 O 2<br />

f(x)<br />

6<br />

2<br />

O x<br />

1 1<br />

x<br />

GO<br />

for<br />

Help<br />

<strong>Lesson</strong> <strong>10</strong>-7<br />

<strong>Lesson</strong> <strong>10</strong>-1<br />

<strong>Lesson</strong> 8-7<br />

Find the number of x-intercepts of each function.<br />

34. y =-x 2 1 35. y = x 2 + 3x + 4 0 36. y = 4x 2 - <strong>10</strong>x + 3 2<br />

Graph each function. 37–42. See margin.<br />

37. y =-2x 2 38. f(x) =<br />

1<br />

4<br />

x 2 39. f(x) = x 2 + 4<br />

40. y =-x 2 - 2 41. y = 3x 2 + 1 42. y =-<br />

1<br />

2<br />

x 2 + 1<br />

Evaluate each function rule for the given value.<br />

43. y = 2 x for x =-3 0.125 44. f(x) =-2 x for x = 5 –32<br />

40.<br />

O y x<br />

1 1<br />

45. g(t) = 2 ? 3 t 2<br />

for t =-3 46. f(t) = <strong>10</strong> ? 5 t 27<br />

for t = 2 250<br />

47. y = Q 1 2 Rt for t =-4 16 48. y = 9 ? Q 3 2 Rx for x = 3 30.375<br />

4<br />

604 Chapter <strong>10</strong> Quadratic Equations and Functions<br />

41.<br />

8<br />

4<br />

y<br />

42.<br />

y<br />

O<br />

1 1<br />

x<br />

x<br />

1O<br />

1<br />

2<br />

604

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!