22.12.2013 Views

Averaged Modeling of Non-ideal Boost Converter Operating ... - ijcee

Averaged Modeling of Non-ideal Boost Converter Operating ... - ijcee

Averaged Modeling of Non-ideal Boost Converter Operating ... - ijcee

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

International Journal <strong>of</strong> Computer and Electrical Engineering, Vol.3, No.1, February, 2011<br />

1793-8163<br />

di dTv ( D+ dˆ<br />

) ( V+<br />

vˆ<br />

) T<br />

d d 2L 2L<br />

d vap<br />

d d vap<br />

D dˆ<br />

Vap<br />

vˆ<br />

1<br />

+ 1−<br />

1<br />

−<br />

2<br />

=<br />

1<br />

+<br />

1<br />

+<br />

⎡ 2L( IL<br />

+ iˆ<br />

L<br />

) ⎤<br />

+ ⎢1<br />

−<br />

( Vzp<br />

+ vˆ<br />

zp)<br />

( D d )( Vi<br />

vˆ<br />

⎥<br />

⎣ 1<br />

+<br />

1<br />

+<br />

i<br />

) Ts<br />

⎦<br />

2 2<br />

1 L<br />

1<br />

s i 1 1 i i s<br />

= =<br />

1 2<br />

+ (3)<br />

( ) ( )( )<br />

ap<br />

(4)<br />

C. AC Small-Signal Model<br />

If we suppose that, the small-signal component is much<br />

less than the direct component, make the direct component is<br />

zero, and neglect the secondary small-signal product term.<br />

Then the (3) and (4) can be predigested to the (5) and (6). So<br />

we can get the small-signal linear equivalent model <strong>of</strong><br />

non-<strong>ideal</strong> <strong>Boost</strong> converter in discontinuous conduction<br />

model, shown in fig.2.<br />

( )<br />

2<br />

2<br />

d i d T v D + dˆ<br />

( V + vˆ<br />

)<br />

1<br />

1 L<br />

d + d<br />

1<br />

2<br />

2<br />

1<br />

= a vˆ<br />

+ a dˆ<br />

i<br />

=<br />

2L<br />

1<br />

s<br />

i<br />

=<br />

dv 1 ap + (1 −d1−d2)<br />

vzp<br />

= −<br />

⎡<br />

⎢1<br />

−<br />

⎢⎣<br />

( D + dˆ<br />

)( V + vˆ<br />

)<br />

1<br />

( I + iˆ<br />

)<br />

L L<br />

( D + dˆ<br />

)( V + vˆ<br />

)<br />

1<br />

2L<br />

[( V − V − V − I R ) + ( vˆ<br />

− vˆ<br />

− R iˆ<br />

)]<br />

i<br />

1<br />

1<br />

E<br />

1<br />

2 L<br />

1<br />

o<br />

o<br />

i<br />

L<br />

o<br />

i<br />

E<br />

+<br />

T<br />

∧ ∧ ∧ ∧<br />

= b vi<br />

+ b2<br />

d1+<br />

b3<br />

iL<br />

+ b4<br />

vo<br />

s<br />

⎤<br />

⎥<br />

⎥⎦<br />

1<br />

(6)<br />

Fig.2. small-signal model <strong>of</strong> <strong>Boost</strong> converter in DCM<br />

Form fig.2, we can calculate the input-to-output transfer<br />

function<br />

Gvi( s)<br />

and the control-to-output transfer function<br />

Gvd( s)<br />

are<br />

vˆ o( s)<br />

Gvi( s)<br />

=<br />

vˆ i( s )<br />

dˆ1( s ) = 0<br />

i<br />

i<br />

o<br />

i<br />

T<br />

s<br />

E<br />

L<br />

(5)<br />

1 −b1− a1( sL+ RE<br />

+ b3)<br />

E 3 C<br />

=<br />

( sL + R + b )( sR C + sRC + 1)<br />

1+ b4<br />

+<br />

RsRC ( C + 1)<br />

tt 1 4 (1 + swz1)(1 + swz2)<br />

= ⋅<br />

tt 2 3+<br />

tt 0 4 s s 2<br />

1 + + ( )<br />

Qw0 w0<br />

(7)<br />

G<br />

vd<br />

vˆ () s<br />

() s =<br />

o<br />

dˆ 1 ()ˆ s v i () s = 0<br />

b2+ a2( sL+ RE<br />

+ b3)<br />

=−<br />

( sL + RE+ b3)( sRCC + sRC + 1)<br />

1+ b4<br />

+<br />

RsRC ( C + 1)<br />

tt 4 5 (1 + swz2)(1 −swz3)<br />

= ⋅<br />

tt 2 3+<br />

tt 0 4 s s 2<br />

1 + + ( )<br />

Qw0 w0<br />

(8)<br />

The parameters <strong>of</strong> the actual <strong>Boost</strong> converter as following:<br />

input-voltage Vi<br />

= 5V<br />

, output-voltage Vo<br />

= 10V<br />

, Load<br />

current Io<br />

= 0.2A<br />

, R = 50Ω ,<br />

L=<br />

19.2μH<br />

,<br />

RL<br />

= 3.6mΩ ,<br />

C = 1000μF<br />

, RC<br />

= 2mΩ . The model<br />

number <strong>of</strong> the MOSFET which we used in this paper is<br />

2SK2690. Ron<br />

= 10mΩ , for Schottky diode RF<br />

= 1mΩ ,<br />

switching frequency<br />

fs<br />

= 50kHz<br />

, PWM outputs the Peak<br />

voltage is Vm<br />

= 1V<br />

. Then there parameters are put into the<br />

formulas as following<br />

R<br />

V<br />

E<br />

4 DR 1 on DR 2 F<br />

= ( RL+ + )<br />

3( D1+ D2)<br />

D1+ D2 D1+ D2<br />

,<br />

ap =− Vo<br />

,<br />

2LIL<br />

2= −D1<br />

1 s i<br />

IO<br />

D<br />

IL<br />

= ( D1+<br />

D2)<br />

DTV and D2<br />

R is the total equivalent resistance <strong>of</strong> the three parasitic<br />

E<br />

resistances which were calculated to branch <strong>of</strong> inductance.<br />

Then we can get<br />

D1 ≈ 0.35 , RE<br />

≈22.69mΩ , VE<br />

≈ 0.184V<br />

,<br />

IL<br />

≈ 0.43A<br />

.<br />

Put the four parameters into formula(7)and (8), then we<br />

can get formula (9) and (10).<br />

s s<br />

(1 + )(1 − )<br />

G ( ) 2.112 500000 913333<br />

vi s = ×<br />

2<br />

s ⎛ s ⎞<br />

1+ + ⎜ ⎟<br />

58.42 ⎝ 4502 ⎠ (9)<br />

s s<br />

(1 + )(1 − )<br />

G ( ) 23.696 500000 307433<br />

vd s = ×<br />

2<br />

s ⎛ s ⎞<br />

1+ + ⎜ ⎟<br />

58.42 ⎝ 4502 ⎠ (10)<br />

80

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!