25.12.2013 Views

Job Market Paper - Personal Web Pages - University of Chicago

Job Market Paper - Personal Web Pages - University of Chicago

Job Market Paper - Personal Web Pages - University of Chicago

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Kim: Endogenous Choice <strong>of</strong> a Mediator<br />

Let v i (d, t, λ, α, β) = [(λ(t i ) + ∑ s i ∈T i<br />

α(s i |t i ) + β(t i ))u i (d, t) − ∑ s i ∈T i<br />

α(t i |s i )u i (d, (t −i , s i ))]/¯p(t i ).<br />

This v i (d, t, λ, α, β) is called the virtual utility pay<strong>of</strong>f to player i from outcome d, when the type<br />

pr<strong>of</strong>ile is t, with respect to the utility weights λ and the Lagrange multipliers α and β. With<br />

this setup, I arrive at the most tractable conditions for computing the interim incentive efficient<br />

mediators, which are used to prove Proposition 1 and Corollary 1. Without loss <strong>of</strong> generality, I can<br />

focus on i = 1.<br />

Theorem (Theorem 10.1, Myerson (1991)). An incentive feasible mediator who mediates according<br />

to an incentive compatible and individually rational mediation mechanism µ is incentive efficient<br />

if and only if there exist vectors λ = (λ(t i )) ti ∈T i<br />

, α = (α(s i |t i )) si ∈T i ,t i ∈T i<br />

, and β = (β(t i )) ti ∈T i<br />

such that<br />

λ(t i ) > 0, α(s i |t i ) ≥ 0, β(t i ) ≥ 0, ∀t i ∈ T i , ∀s i ∈ T i<br />

∑<br />

d∈D<br />

µ(d|t) ∑ i∈N<br />

α(s i |t i )(U i (µ|t i ) − U ∗ i (µ, s i |t i )) = 0, ∀t i ∈ T i , ∀s i ∈ T i ,<br />

β(t i )U i (µ|t i ) = 0, ∀t i ∈ T i ,<br />

∑<br />

v i (d, t, λ, α, β) = max v i (d, t, λ, α, β), ∀t ∈ T.<br />

d∈D<br />

i∈N<br />

(7.1)<br />

Lemma (Thresholds). There exists nonnegative p ′ , p ∗ , and p ∗∗ such that<br />

p ′ ≡<br />

p ∗∗ > p ∗ , and p ∗∗ > p ′ .<br />

−u 1 (d 1 , sw)<br />

u 1 (d 1 , ss) − u 1 (d 1 , sw) =<br />

−u 2 (d 1 , ws)<br />

u 2 (d 1 , ss) − u 2 (d 1 , ws) ,<br />

p ∗ u 1 (d 1 , ww)<br />

≡<br />

u 1 (d 1 , ww) + u 1 (d 1 , ws) = u 2 (d 1 , ww)<br />

u 2 (d 1 , ww) + u 2 (d 1 , sw) ,<br />

p ∗∗ u 1 (d 1 , ss)u 1 (d 1 , ww) − u 1 (d 1 , sw)u 1 (d 1 , ws)<br />

≡<br />

u 1 (d 1 , ss)u 1 (d 1 , ww) − u 1 (d 1 , sw)u 1 (d 1 , ws) + u 1 (d 1 , ss)u 1 (d 1 , ws)<br />

u 2 (d 1 , ss)u 2 (d 1 , ww) − u 2 (d 1 , ws)u 2 (d 1 , sw)<br />

=<br />

u 2 (d 1 , ss)u 2 (d 1 , ww) − u 2 (d 1 , ws)u 2 (d 1 , sw) + u 2 (d 1 , ss)u 2 (d 1 , ws) ,<br />

Pro<strong>of</strong> <strong>of</strong> Lemma 1. p ′<br />

is computed such that the participation constraints bind for the strong type<br />

given a mediator µ 0,0 , where µ 0,0 (d 1 |t) = 1 for all t, that is: U 1 (µ 0,0 |s)|¯p(s)=p<br />

′ = 0<br />

←→p ′ µ 0,0 (d 1 |ss)u 1 (d 1 , ss) + (1 − p ′ )µ 0,0 (d 1 |sw)u 1 (d 1 , sw) = 0,<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!