26.12.2013 Views

Degenerate parabolic stochastic partial differential equations

Degenerate parabolic stochastic partial differential equations

Degenerate parabolic stochastic partial differential equations

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4310 M. Hofmanová / Stochastic Processes and their Applications 123 (2013) 4294–4336<br />

t <br />

−→ E g(y, y, s)div σ (y) dy ds<br />

0 T N<br />

so it remains to verify<br />

t <br />

<br />

<br />

−E g(x, y, s) σ (x) − σ (y) (∇ϱ τ )(x − y) dx dy ds<br />

0 (T N )<br />

2 t <br />

−→ E g(y, y, s)div σ (y) dy ds.<br />

0 T N<br />

Here, we employ again the arguments of the commutation lemma of DiPerna and Lions (see<br />

[10, Lemma II.1], cf. Lemma 2.5). Let us denote by g i the ith element of g and by σ i the ith<br />

row of σ . Since τ|∇ϱ τ |(·) ≤ Cϱ 2τ (·) with a constant independent of τ, we obtain the following<br />

estimate<br />

<br />

t <br />

<br />

<br />

E<br />

g<br />

0<br />

T i (x, y, s) σ i (x) − σ i (y) (∇ϱ τ )(x − y) dx<br />

dy ds<br />

N T N σ i (x ′ ) − σ i (y ′ )<br />

T <br />

≤ C ess sup<br />

x ′ ,y ′ ∈T N τ E g i (x, y, s) ϱ2τ (x − y) dx dy ds.<br />

0 (T N ) 2<br />

|x ′ −y ′ |≤τ<br />

Note that according to [14,28], the square-root matrix of A is Lipschitz continuous and therefore<br />

the essential supremum can be estimated by a constant independent of τ. Next<br />

T <br />

<br />

E g i (x, y, s) ϱ2τ (x − y) dx dy ds<br />

0 (T N ) 2<br />

T <br />

<br />

≤ E<br />

g i (x, y, s) 1 <br />

2 1<br />

2<br />

2 ϱ 2τ (x − y) dx dy ds ϱ 2τ (x − y) dx dy<br />

0 (T N ) 2 (T N ) 2<br />

T <br />

≤ E (∇x u 1 )<br />

T ∗ σ (x) <br />

1<br />

2<br />

2 ϱ 2τ (x − y) dy dx ds<br />

N T N<br />

0<br />

≤ (∇x u 1 ) ∗ σ (x) <br />

L 2 (Ω×T N ×[0,T ]) .<br />

So we get an estimate which is independent of τ and δ. It is sufficient to consider the case when<br />

g i and σ i are smooth. The general case follows by the density argument from the above bound.<br />

It holds<br />

t <br />

<br />

<br />

−E g i (x, y, s) σ i (x) − σ i (y) (∇ϱ τ )(x − y) dx dy ds<br />

0 (T N ) 2<br />

= − 1 t 1<br />

τ N+1 E g<br />

0<br />

(T i (x, y, s) Dσ i y + r(x − y) (x − y)<br />

N ) 2 0<br />

x − y<br />

<br />

·(∇ϱ) dr dx dy ds<br />

τ<br />

t 1<br />

= −E<br />

g<br />

(T i (y + τ z, y, s) Dσ i (y + rτ z)z · (∇ϱ)(z) dr dz dy ds<br />

N ) 2<br />

−→ −E<br />

0<br />

t<br />

0<br />

<br />

0<br />

(T N ) 2 g i (y, y, s) Dσ i (y)z · (∇ϱ)(z) dz dy ds.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!