26.12.2013 Views

Degenerate parabolic stochastic partial differential equations

Degenerate parabolic stochastic partial differential equations

Degenerate parabolic stochastic partial differential equations

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

M. Hofmanová / Stochastic Processes and their Applications 123 (2013) 4294–4336 4333<br />

where σ is an (F t )-progressively measurable L 2 (U; H)-valued <strong>stochastic</strong>ally integrable<br />

process, i.e.<br />

T<br />

E ∥σ ∥ 2 L 2 (U;H) dr < ∞,<br />

(A.2)<br />

0<br />

then<br />

M(t) =<br />

t<br />

0<br />

σ dW,<br />

∀t ∈ D, P-a.s.<br />

In particular, M can be defined for all t ∈ [0, T ] such that it has a modification which is a<br />

continuous (F t )-martingale.<br />

Proof. The crucial point to be shown here is the following: for any (F t )-progressively<br />

measurable L 2 (U; H)-valued process φ satisfying (A.2) and any s, t ∈ D, s ≤ t, j ≥ 1, it<br />

holds, P-a.s.,<br />

M(t) t<br />

t<br />

<br />

E − M(s), g j φ dW, g j − ⟨σ ∗ g j , φ ∗ g j ⟩ U dr<br />

F s = 0. (A.3)<br />

s<br />

We consider simple processes first. Let φ be an (F t )-adapted simple process with values in<br />

finite-dimensional operators of L(U; H) that satisfies (A.2), i.e.<br />

φ(t) = φ 0 1 {0} (t) +<br />

I<br />

φ i 1 (ti ,t i+1 ](t), t ∈ [0, T ],<br />

i=0<br />

where {0 = t 0 < t 1 < · · · < t I = T } is a division of [0, T ] such that t i ∈ D, i = 0, . . . , I . Then<br />

the <strong>stochastic</strong> integral in (A.3) is given by<br />

t<br />

s<br />

s<br />

<br />

φ dW = φ m−1 W (tm ) − W (s) n−1<br />

<br />

+ φ i W (ti+1 ) − W (t i ) <br />

+ φ n W (t) − W (tn ) <br />

i=m<br />

= <br />

φm−1 k βk (t m ) − β k (s) n−1<br />

+<br />

k≥1<br />

i=m<br />

+ φn<br />

k <br />

βk (t) − β k (t n ) <br />

φ k i<br />

<br />

βk (t i+1 ) − β k (t i ) <br />

provided t m−1 ≤ s < t m , t n ≤ t < t n+1 , φi k = φ i f k . Next, we write<br />

M(t) − M(s) = M(t m ) − M(s) n−1<br />

<br />

+ M(ti+1 ) − M(t i ) + M(t) − M(t n ) <br />

i=m<br />

and conclude<br />

M(t) t<br />

<br />

E − M(s), g j φ dW, g j F s<br />

s<br />

φm−1 <br />

= E W (tm ) − W (s) <br />

, g j M(tm ) − M(s), g j

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!