26.12.2013 Views

Degenerate parabolic stochastic partial differential equations

Degenerate parabolic stochastic partial differential equations

Degenerate parabolic stochastic partial differential equations

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

M. Hofmanová / Stochastic Processes and their Applications 123 (2013) 4294–4336 4317<br />

<br />

≤ E ϱ τ (x − y)ψ δ (ξ − ζ ) f<br />

(T ε (x, t, ξ) f¯<br />

ε (y, t, ζ ) dξ dζ dx dy dt + δ<br />

N ) 2 R<br />

<br />

2<br />

≤ E ϱ τ (x − y)ψ δ (ξ − ζ ) f 0 (x, ξ) f¯<br />

0 (y, ζ )dξdζ dxdy + δ + I<br />

(T ε + J ε + K ε<br />

N ) 2 R<br />

<br />

2<br />

≤ E ϱ τ (x − y) f 0 (x, ξ) f¯<br />

0 (y, ξ) dξ dx dy + 2δ + I<br />

(T ε + J ε + K ε ,<br />

N ) 2 R<br />

where I ε , J ε , K ε are defined correspondingly to I, J, K in Proposition 3.2 but using the<br />

approximated coefficients B ε , A ε , Φ ε instead. From the same estimates as the ones used in the<br />

proof of Theorem 3.3, we conclude<br />

<br />

E ϱ τ (x − y) u ε (x, t) − u ε (y, t) + dx dy<br />

(T N )<br />

<br />

2<br />

≤ E ϱ τ (x − y) u 0 (x) − u 0 (y) + <br />

dxdy + 2δ + Ct δ −1 τ + δ −1 τ 2 + δ α + J ε .<br />

(T N ) 2<br />

In order to control the term J ε , recall that (keeping the notation from Theorem 3.3)<br />

t <br />

J ε = − E (∇ x u ε ) ∗ <br />

σ (x)σ (x)(∇ϱ τ )(x − y)Θ δ u ε (x) − u ε (y) dxdydr,<br />

0 (T N )<br />

2 t <br />

− E (∇ y u ε ) ∗ <br />

σ (y)σ (y)(∇ϱ τ )(x − y)Θ δ u ε (x) − u ε (y) dxdydr,<br />

0 (T N )<br />

2 t <br />

<br />

− E |σ (x)∇x u ε | 2 + |σ (y)∇ y u ε | 2 <br />

ϱ τ (x − y)ψ δ u ε (x) − u ε (y) dx dy dr<br />

0 (T N )<br />

2 t <br />

<br />

− ε E<br />

∇ x u ε − ∇ y u ε 2 <br />

ϱ τ (x − y)ψ δ u ε (x) − u ε (y) dxdydr<br />

0 (T N ) 2<br />

= J 1 + J 2 + J 3 + J 4 .<br />

The first three terms on the above right hand side correspond to the diffusion term div(A(x)∇u ε ).<br />

Since all u ε are smooth and hence the chain rule formula is not an issue here, J 4 is obtained after<br />

integration by parts from similar terms corresponding to εu ε . Next, we have<br />

J 1 = − E<br />

t<br />

0<br />

t<br />

(T N ) 2 (∇ x u ε ) ∗ σ (x)div y<br />

<br />

σ (y)Θ δ<br />

<br />

u ε (x) − u ε (y) ϱ τ (x − y)dxdydr<br />

<br />

<br />

<br />

+ E (∇ x u ε ) ∗ σ (x) σ (y) − σ (x) (∇ϱ τ )(x − y)<br />

0 (T N )<br />

2<br />

× Θ δ u ε (x) − u ε (y) dxdydr<br />

and<br />

t<br />

J 2 = E<br />

0<br />

t<br />

(T N ) 2 (∇ y u ε ) ∗ σ (y)div x<br />

<br />

σ (x)Θ δ<br />

<br />

u ε (x) − u ε (y) ϱ τ (x − y)dxdydr<br />

<br />

<br />

<br />

+ E (∇ y u ε ) ∗ σ (y) σ (x) − σ (y) (∇ϱ τ )(x − y)<br />

0 (T N )<br />

2<br />

× Θ δ u ε (x) − u ε (y) dxdydr;

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!