26.12.2013 Views

Degenerate parabolic stochastic partial differential equations

Degenerate parabolic stochastic partial differential equations

Degenerate parabolic stochastic partial differential equations

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4334 M. Hofmanová / Stochastic Processes and their Applications 123 (2013) 4294–4336<br />

n−1<br />

<br />

+ φi W (ti+1 ) − W (t i ) <br />

, g j M(ti+1 ) − M(t i ), g j<br />

i=m<br />

+ φ n<br />

<br />

W (t) − W (tn ) , g j<br />

<br />

M(t) − M(tn ), g j<br />

F s<br />

<br />

(A.4)<br />

as one can neglect all the mixed terms due to the martingale property of β k , k ≥ 1, and (A.1).<br />

Indeed, let i ∈ {m, . . . , n − 1} then<br />

<br />

φi <br />

(W (t i+1 ) − W (t i )), g j M(tm ) − M(s), g j |Fs<br />

E<br />

= E<br />

<br />

E<br />

<br />

k≥1<br />

φ<br />

k<br />

i<br />

<br />

βk (t i+1 ) − β k (t i ) , g j<br />

<br />

M(tm ) − M(s), g j<br />

<br />

F ti<br />

<br />

F s<br />

<br />

<br />

M(tm <br />

= E ) − M(s), g j ⟨φi k , g j⟩ E β k (t i+1 ) − β k (t i )|F ti F s = 0,<br />

k≥1<br />

where the interchange of summation with scalar product and expectation, respectively, is justified<br />

by the fact that<br />

<br />

φi<br />

k<br />

k≥1<br />

<br />

βk (t i+1 ) − β k (t i ) =<br />

ti+1<br />

t i<br />

φ i dW<br />

is convergent in L 2 (Ω; H).<br />

As the next step, we proceed with (A.4). If i ∈ {m, . . . , n − 1} then we obtain using again the<br />

martingale property of β k , k ≥ 1, and (A.1)<br />

φi <br />

E W (ti+1 ) − W (t i ) <br />

, g j M(ti+1 ) − M(t i ), g j |Fs<br />

= E<br />

= E<br />

= E<br />

<br />

E<br />

<br />

k≥1<br />

φ<br />

k<br />

i , g j<br />

<br />

βk (t i+1 ) − β k (t i ) M(t i+1 ) − M(t i ), g j<br />

<br />

F ti<br />

<br />

F s<br />

<br />

<br />

⟨φi k , g j⟩ E β k (t i+1 ) <br />

M(t i+1 ), g j − βk (t i ) <br />

<br />

M(t i ), g j |Fti F s<br />

k≥1<br />

<br />

⟨φi k , g j⟩<br />

k≥1<br />

ti+1<br />

<br />

ti+1<br />

= E ⟨ f k , φi ∗ g j⟩ U<br />

k≥1<br />

t i<br />

ti+1<br />

= E ⟨σ ∗ g j , φ ∗ g j ⟩ U dr<br />

t i<br />

t i<br />

<br />

fk , σ ∗ g j<br />

<br />

U dr <br />

F s<br />

<br />

<br />

fk , σ ∗ g j<br />

<br />

U dr <br />

F s<br />

<br />

F s<br />

<br />

.<br />

The remaining terms being dealt with similarly. As a consequence, we see that (A.3) holds true<br />

for simple processes and the general case follows by classical arguments using approximation.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!