26.12.2013 Views

Universlty of Manitoba, ln Partîal Fulfiìlment - MSpace at the ...

Universlty of Manitoba, ln Partîal Fulfiìlment - MSpace at the ...

Universlty of Manitoba, ln Partîal Fulfiìlment - MSpace at the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

E}4BRYOGENES IS OF EXPERIHENTALLY INDUCED NEURAL TUBE<br />

DEFECTS IN THE CH I CK EMBRYO<br />

A Thes i s<br />

Presented to <strong>the</strong> Faculty <strong>of</strong> Gradu<strong>at</strong>e Studies,<br />

<strong>Universlty</strong> <strong>of</strong> <strong>Manitoba</strong>, <strong>ln</strong> <strong>Partîal</strong> <strong>Fulfiìlment</strong><br />

. <strong>of</strong> <strong>the</strong> Requirements for <strong>the</strong> Degree <strong>of</strong><br />

Doctor <strong>of</strong> Ph i losophy<br />

by<br />

Ra I ph Aì I an l,lann<br />

September '1977


EMBRYOGENESiS OF FXPERII¡ENTALLY INDUCED NEURAL TUBE<br />

DEFECTS iN THE CHTCK EMBRYO<br />

BY<br />

RALPH ALLAN MANN<br />

A dissert<strong>at</strong>ion submitted to <strong>the</strong> Facutty <strong>of</strong> Gradu<strong>at</strong>e Studies <strong>of</strong><br />

ttre University <strong>of</strong> Manitobl in partial fulfillment <strong>of</strong> <strong>the</strong> requirements<br />

<strong>of</strong> <strong>the</strong> degree <strong>of</strong><br />

DOCTOR 'OF PHILOSOPHY<br />

ð rgzg'<br />

Permissio¡¡ h¡s l¡eon grantctl to th(} LIBRARY OF Tllti UNIvUR'<br />

SITY OIr MANITOITA to lcnd or scll copies <strong>of</strong> tlìis dissert tiolì' to<br />

thc NATIONAL LIBRAIìY OIr CANADA to microli<strong>ln</strong>r this<br />

dissert<strong>at</strong>ion and to lend or sell copies <strong>of</strong> <strong>the</strong> film, and UNlvtjRSITY<br />

MICROFILMS to publish <strong>at</strong>¡ abstract <strong>of</strong> this dissert tion'<br />

The ¿uthor reserves o<strong>the</strong>r pu¡lic<strong>at</strong>ion ìights, und nei<strong>the</strong>r ttre<br />

dissert<strong>at</strong>ion nor extensivo extructs tionr it tnay be printed or otlìerwise<br />

reproduced without tho author's writtcn ¡rertltission'<br />

ffi<br />

\1<br />

K<br />

or a{Ai¡roBA ll<br />

\\<br />

\¡ansnrrsl<br />

-\>n-:#1,Éc_


MY PARENTS<br />

c.J.H.<br />

G. M.


. ACKNOl4lLEDGEMENTS<br />

l',lany peopie have given me <strong>ln</strong>valuable help <strong>ln</strong> carry<strong>ln</strong>g out <strong>the</strong><br />

work for this <strong>the</strong>sls. I would lîke to thank:<br />

Èis. l"larlene Stoddart, 1,1s. Susan pylypas an¿ Mr. David Gray for<br />

technlcal asslstance; lrs. Brenda Bell and Ms. Jean Hay for prepar<strong>at</strong>îon<br />

<strong>of</strong> <strong>the</strong> photographs; Mr. Glen Reld, Ms. Lauri Rlchardson and l,ls. Karen<br />

selcho for <strong>the</strong> l<strong>ln</strong>e illustr<strong>at</strong>îons; Mr. üralter Jones for construction <strong>of</strong><br />

equipment; Dr. l/.H. Tþurlbeck, 11r. l,layne Gal lagher and l,ls. El izabeth<br />

tJaskîewicz for <strong>the</strong> use <strong>of</strong> <strong>the</strong> Lei tz lmage Analyser; Dr. K,L. Moore,<br />

Dr. F.R. Tucker, Dr. R.K. Greenlaw, Dr. J.B. Hyde, Dr. K. Nagy,<br />

Dr. A.1.1. llaI lbank, Dr. D.V. Cormack, Dr. Helen B<strong>at</strong>tle, Dr. A.F. Holoway,<br />

and Dr. J. Hoogstr<strong>at</strong>en for advlce and assistance; t4r. Tim Ful lerton<br />

for st<strong>at</strong>istical consult<strong>at</strong>fon; and Hs. Frances Kas,per for typíng <strong>the</strong><br />

mênuscr¡pt.<br />

Above all I am gr<strong>at</strong>eful to Dr. J.C. Haworth and <strong>the</strong> Research<br />

Committee <strong>of</strong> <strong>the</strong> Chíldrenrs Centre for contÍnued financial supportrand<br />

Dr' T.v.N' Persaud for his unfairing encouragement and enthusrasm through<br />

so many vl ciss i tudes.


lt<br />

Congenital malformêtlons <strong>of</strong> <strong>the</strong> ðentral nervous system may be open<br />

or closed. 0pen defects involve <strong>the</strong> braîn or <strong>the</strong> spinal cord, or both.<br />

<strong>ln</strong>vestîg<strong>at</strong>ion <strong>of</strong> <strong>the</strong> etiology <strong>of</strong> <strong>the</strong>se defects involves epìdemiological<br />

stud¡es <strong>of</strong> <strong>the</strong>ir distribution in human populaiions and embryological<br />

studies <strong>of</strong> <strong>the</strong>ir development in experimental animals and human abortuses.<br />

For this investig<strong>at</strong>ion <strong>the</strong> chick embryo was ¡nìtíâl ly selected,<br />

because <strong>of</strong> its accessibil ¡ty to tre<strong>at</strong>ment and observ<strong>at</strong>ion through a<br />

wíndow in <strong>the</strong> overìyìng shell; <strong>the</strong> use <strong>of</strong> an 4n o7)o system al lowed<br />

culture <strong>of</strong> <strong>the</strong> embryos to 12 days <strong>of</strong> incub<strong>at</strong>ion. <strong>ln</strong> addition, early<br />

neurogenesÌs in avian and human embryos is very similar, wÌth development<br />

<strong>of</strong> <strong>the</strong> spÌnal cord from neural pl<strong>at</strong>e and tai l-bud m<strong>at</strong>erials, which<br />

fuse in an overlap zone.<br />

Prel iminary experiments, in which early chîcl< enrb ryos were exposed<br />

to several known ter<strong>at</strong>ogenic agents through a window în <strong>the</strong> shell, revealed<br />

th<strong>at</strong> windowing alone was highly ter<strong>at</strong>ogenic. By using a standard<br />

windowing technic <strong>at</strong> 26 - l0 hours <strong>of</strong> incub<strong>at</strong>ion a range <strong>of</strong> neurôl ånd<br />

non-neural mal form<strong>at</strong>ions were obtained.<br />

The morial ity and malform<strong>at</strong>ions produced by windowîng <strong>at</strong> l4 hours<br />

<strong>of</strong> incub<strong>at</strong>¡on were gre<strong>at</strong>er than those <strong>at</strong> 26 hours, but by lB houis <strong>the</strong><br />

ter<strong>at</strong>ogenic effect was less pronounced. 0bl íter<strong>at</strong>¡on <strong>of</strong> <strong>the</strong> introduced<br />

air space,by <strong>the</strong> addition <strong>of</strong> albumen or F 12 medîum or by reexpansion <strong>of</strong><br />

<strong>the</strong> air celì, almost abol ished <strong>the</strong> ter<strong>at</strong>ogenic effect <strong>of</strong> wíndowing if<br />

performed immedi<strong>at</strong>ely.<br />

Skeletal staining <strong>of</strong> 11 - 12 day embryos showed th<strong>at</strong> vertebral<br />

lesions increased in severîty in a cranio-caudal sequence, spina bifida occuì ta


ii¡<br />

occurred in <strong>the</strong> cerV¡cal and upper thoracic regions¡spina bifida manifesta<br />

(associ<strong>at</strong>ed wiih opeá cord defects) from <strong>the</strong> lower thoracic to sacral<br />

regÎons, whlle vertebral deletionswere almost confirmed to <strong>the</strong> caudal '<br />

r.eg ion ,<br />

Examîn<strong>at</strong>ion <strong>of</strong> a closely-spaced series <strong>of</strong> embryos recovered wíthin<br />

42 hours <strong>of</strong> window<strong>ln</strong>g revealed open braîn and cord defects. These<br />

occurred <strong>at</strong> every Stage after <strong>the</strong> expected closure <strong>of</strong> <strong>the</strong> anterior<br />

neuropore and rhomboid sinus, suggesting a process <strong>of</strong> non-closure.<br />

Fur<strong>the</strong>rmore, <strong>ln</strong>cípient non-closure <strong>of</strong> <strong>the</strong> spinal cord could be predicted ..<br />

from <strong>the</strong> abnormal triangular shape <strong>of</strong> <strong>the</strong> rhomboíd sinus.<br />

Serial sectioning <strong>of</strong> selected early.embryos revealed two types<br />

<strong>of</strong> open cord defects. HyeloschisÌs arose by eversÌon <strong>of</strong> <strong>the</strong> neural<br />

folds <strong>at</strong> <strong>the</strong> rhomboid sinus, and formed regular defects w¡th separ<strong>at</strong>ion<br />

between <strong>the</strong> neural pl<strong>at</strong>e and taÌl-bud sources <strong>of</strong> neural tissue. The<br />

development <strong>of</strong> myeloschisis was associ<strong>at</strong>ed wi th local separ<strong>at</strong>ion <strong>of</strong><br />

<strong>the</strong> notochord from <strong>the</strong> open neural tissue, but not with trovergrowthr¡<br />

<strong>of</strong> neural tíssue.<br />

<strong>ln</strong> myelodysplasia neural pl<strong>at</strong>e m<strong>at</strong>erial was absent from <strong>the</strong> êrea<br />

<strong>of</strong> <strong>the</strong> open defect, and <strong>the</strong> spinal cord u¡as derived from tail-bud<br />

m<strong>at</strong>erial êlone. Myelodysplasia was characterized by a local reduction<br />

in neural volume, and assocî<strong>at</strong>ed wîth cystic and hemorrhagic changes<br />

in mesoderm and reductìon in <strong>the</strong> volume <strong>of</strong> adjacent somites.


TABLE OF CONTENTS<br />

SECT ION<br />

PAGE<br />

1 INTRODUCT ION 1<br />

1 .1 TERATOLOGY 2<br />

I . 2 CL IN I CAL IHPORTANCE OF B I RTH DEFEETS 2<br />

1.3 INCIDENCE OF BIRTH DEFECTS 3<br />

1.4 coNGENITAL ¡IALFORI'IATIONS OF<br />

THE CENTRAL NERVOUS SYSTEM 3<br />

1.5 SPINA BIFIDA 4<br />

1.5.t Spina Bîfida Occul ta .and<br />

Cystica 5<br />

1 .5 .2 l4en i ngoce I e 5<br />

1 .5 .3 l,lye I omen i ngoce I e 5<br />

1.5.4 l4yelocystocele :<br />

6<br />

1.5,5 Anterlor Spina Bifida 7<br />

1.6 CRANIUI,IBIFIDUM 7<br />

1.6..l Anencephaly, Exencephaly 7<br />

1.6.2 Heningocele,Encephalomenìngocele. . . . I<br />

. 1.6.3 Cranium Bifídum Occul tum. B<br />

1 .7 DYSRAPH IC STATES 8<br />

1.8 PRoGNoSts. 9.<br />

2 REVIEI.I OF LITERATURE 12<br />

2,1 ETIOLOGY OF THE DYSRAPHIC STATES 13<br />

2.2 EPIDEI.1I0LoGICAL STUDIES. 13<br />

2.2.1 <strong>ln</strong>cidence . 13<br />

2.2.2 . Temporal Fl uctu<strong>at</strong> ions<br />

2.2,3 Seasonal Vari<strong>at</strong>,îon, 15


2.2.4 Sex R<strong>at</strong>io 15<br />

2.2.5 Geograph i c Dlstributîon 15<br />

2.2.6 Ethnlc Distrîbution. . 16<br />

2.2t7 Famlly Studles ' . 16<br />

2,2.9 l4<strong>at</strong>ernal Age and Parì ty .. 17<br />

2.2.g soc io-Econornic St<strong>at</strong>us. 17<br />

2.2.10 Urban i z<strong>at</strong>lon 17<br />

2.2.11 Concluslons 17<br />

t2<br />

EI4BRYOLOGICAL STUDIES 18<br />

2.3.1 Human Specìmens. . . 18<br />

2.3.2 Exper¡mental Oysraphism in Animals 19<br />

2.3.3 Heredi tary Dysraphîsm. 21<br />

2-l+<br />

HYPOTHESES OF THE EMBRYOGENESIS<br />

OF DYSRAPHISM 22<br />

2,\.1 Slmple Non-Closure . . :-. 22<br />

2.\,2 Overgrowth and Non-Closure ' . . 22<br />

2,4.3 Rupture <strong>of</strong> <strong>the</strong> Closed.Neural Tube 22<br />

2.1!,\ Abnormal Braîn Growth . , .23<br />

2.,\,5 Abnormal Spínal Flexion . . . 23<br />

2.\.6 Primary Vascular Defects 73<br />

2,4.7 Amniotlc Adhes ions 24<br />

2.4.8 Abnormal Development <strong>of</strong> <strong>the</strong> Tail-Bud 2\<br />

2.4.9 Trauma 2\<br />

2.4. t 0 <strong>ln</strong>fection 25<br />

2.4.11.. Summary 25


},I.ATE R I ALS<br />

3.1 THE CHICK EI4BRYO,<br />

3.2 SoURCE 0F ËûGS AND tNCUBATi0N<br />

3.3 oTHER EqUlPl4ENr<br />

GENERAL ¡4ETHODS<br />

4.I SELECTION OF EGGS<br />

4.f.1<br />

d.1.2<br />

<strong>ln</strong>cub<strong>at</strong> î on<br />

candl ing<br />

\.2 TECHNIc OF OPENING AND cLoSIIIG EGGS<br />

\,2.1 Prel lminary Exper¡ments<br />

\.2.2 Standard Techn i c<br />

4.2.3 Exami n<strong>at</strong>ion <strong>of</strong> Embryos<br />

\.2.4 Closure <strong>of</strong> Eggs<br />

4.2.5 Effect <strong>of</strong> Embryonic Age.<br />

4.3 RE rNcuBATr0N AFTER r,JiNDor,/rNc .<br />

4.+ TERAToGENtc EFFECT 0F opENtNG THE SHELL<br />

4.4.1 Vibr<strong>at</strong>ion<br />

4,4.2 Parafi lm and Plasticine . . . .<br />

4;4.3 Art if ic ia I Air Space<br />

\.5 BACTERIOLOGIcAL CULTURE<br />

4.6 EXAI'iINATION: OF EARLY EI'IBRYOS<br />

4.6.1 Fix<strong>at</strong>ion and Staging<br />

\.6.2 Problems in Examin<strong>at</strong>îon. . . .<br />

4.7 EXAt.lINATION OF OLDER EMBRYOS<br />

\,7,1 Five Day Emb rYos<br />

\,7,2 Eleven and Twelve DaY EmbrYos<br />

z6<br />

27<br />

27<br />

2B<br />

32<br />

33<br />

33<br />

33<br />

12<br />

33<br />

34<br />

3\<br />

35<br />

35<br />

3B<br />

38<br />

3B<br />

38<br />

\5<br />

\t<br />

45<br />

\5<br />

\6<br />

t+6<br />

\6<br />

46


4.8 H ISTOLOûI CAL EXAMINATION<br />

4.8.<br />

1<br />

Ser ia l Sectloning<br />

4.8.2 Group ing <strong>of</strong> Embryos<br />

4.8.3 Subd ivi s ion ¡nro Regions<br />

4.8.4 Histo¡ogical Descriptions<br />

\.9 ANALYSIS oF NEURAL CLOSURE<br />

4.lo Rruelysts oF NEURAL voLuMEs<br />

RESULTS OF TERATOLOGICAL PROCEDURES<br />

5.1 TERATOGENIC EFFECT OF t.,INDOWING<br />

5.2 HALFOR}IATIONS PRODUCED BY I,'INDOWING<br />

5.3 INVEST¡GATION OF EFFECT OF WINDOI^'ING<br />

5.3.1 Vibr<strong>at</strong>îon <strong>of</strong> Unopened Eggs<br />

5.3,2 Parafi lm and Plasticine Alone<br />

5.3.3 0bl iter<strong>at</strong>ion <strong>of</strong> <strong>ln</strong>troduced Air Space . . .<br />

5.\ BACTERIOLOGICAL CULTURE<br />

RESULTS OF EMBRYOLOGICAL STUDIES<br />

6.1 EI"IBRYoGENESIS oF OPEN NEURAL DEFECTS<br />

L-l<br />

47<br />

47<br />

4B<br />

5\<br />

54<br />

55<br />

56<br />

57<br />

65<br />

69<br />

69<br />

'72<br />

75<br />

92<br />

95<br />

96<br />

6.1.1 Embryoníc Sízes <strong>at</strong> 26 Hours<br />

6.1.2 Mortal i ty wi th Varying periods<br />

<strong>of</strong> <strong>ln</strong>cub<strong>at</strong>ion after l/ïndowing -102<br />

6.1.3 Neural Closure and Neural Defects lO9<br />

6.1.4 Development <strong>of</strong> open Neural Defects ll4<br />

6.1.5 Dlstribution <strong>of</strong> 0pen Cord Defects 144<br />

6.2 SPINAL LEVELS OF oPEN CORD DEFECTS IN 12-DAY E}4BRYos 154<br />

6.3 DESCRIPTIoN oF HISTOI.OGIcAL APPEARANCES 165<br />

6.3.1 Stage l0 controt Embryos 165<br />

96


vt I I<br />

6.3.2 Stage 10 Experímentel Embryos 166<br />

6.3.3 Stage Il-12 Control Embryos 167<br />

63.\ Stage 1l-12 Experimental Embryos 168<br />

6.3.5 Stage 1l-16 Control Embryos 171<br />

6.3.6 Stege f3-16 Experìmental. Embryos 172<br />

6.3.7 Stage 1/-20 Contro¡ Embryos 175<br />

6.3.8 Stage t7-20 Experimental Embryos 176<br />

. 6.3.9 Review <strong>of</strong> Hîstologïcal Changes 180<br />

6.3.10 Sequentîal ll lustr<strong>at</strong>Îons 199<br />

6.4 DETAILED REVIE}¡ OF HISTOLOGIcAL FINDINGS. . 212<br />

6.5 col'lpARtsoN oF HtsroloctcAL FtÑDtNGs<br />

!úlTH APPEARANCE 0F I,,HOLE E}4BRY0S 253<br />

6.6 DEVELOPMENT OF THE RHOMBIC RoOF 262<br />

6.7 HtSToLoGIcAL CHANGES AssoctATED<br />

WITH NEURAL DEFECTS 276<br />

6.8 EXTENT OF THE OVERLAP ZONE . 302<br />

6.9 ANALYSIS OF NEURAL VOLUMES 318<br />

Dtscuss toN 340<br />

Animal |lodels 341<br />

lJindowing <strong>of</strong> Eggs 342<br />

open Neural Defects in Chick Embryos , 3\2<br />

Spinal Defects <strong>at</strong> 11-12 Days. . 3\3<br />

. Somíte and Vertebral Levels . 3\4<br />

Process ing Art i facts 3\6<br />

No rrna I Neurul<strong>at</strong>îon. 3\6<br />

l,lyeloschisis 347<br />

l,lye I odyspl as ia 3\B


tx<br />

Rhombic Ro<strong>of</strong> 3\9<br />

Notochord 349<br />

Som i rês 351<br />

Cystic Changes ...<br />

35tt<br />

Ectoderm 355<br />

Ta i l -B ud<br />

Overlap Zone 356<br />

Neura I Vol ume 357<br />

Neural l4itosis ... 355<br />

Hypo<strong>the</strong>ses <strong>of</strong> Human Dysraphîsm 359<br />

Slmple Non-C l os ure<br />

. Overgrowth and Non-Closure 361<br />

Closure and Rupture 362<br />

0<strong>the</strong>r Hypo<strong>the</strong>ses 363<br />

Spina Bifida occul ta .....-¡. 363<br />

' Chíck Embryo as a Hodel 365<br />

I'lechanisms <strong>of</strong> Neurul<strong>at</strong>ion . . . 365<br />

Neural <strong>ln</strong>ductîon .. 367<br />

Ce.l I De<strong>at</strong>h 369<br />

Regul<strong>at</strong>ive Ab¡ ¡ í ry 3'69<br />

'370<br />

. . Principles <strong>of</strong> Ter<strong>at</strong>ogenesis .<br />

Phys ical Ter<strong>at</strong>ogenic Agents 371<br />

Chenlcal Ter<strong>at</strong>ogen i c Agents 372<br />

Windowi¡g as a Ter<strong>at</strong>ogenlc Agent 373<br />

SUMHARY AND C0NCLUSI0NS . 375


9 APPENDTCES 378<br />

APPENDIX A .<br />

379<br />

1 Prepar<strong>at</strong>lon <strong>of</strong> Earìy Chick Embryos for<br />

APPENDIX B<br />

Ser ia I Sectioning<br />

Staining <strong>of</strong> Carti laginous Skeleton <strong>at</strong> ll-12 Days<br />

l0 B |BLI0GRAPHY 382


I NTRODUCT I ON


1.1 TERATOLOGY<br />

Birth defects have <strong>at</strong>tracted popular curîosity from <strong>the</strong> earlìest<br />

tlmes, and scientífic <strong>at</strong>tentìon more recently. Thei r study constitutes<br />

<strong>the</strong> specÌal ity <strong>of</strong> Ter<strong>at</strong>ology, whîch combines many dîscipl¡nes with¡n <strong>the</strong><br />

areas <strong>of</strong> Developmental Bíology and Cl inical l4edicine. Ter<strong>at</strong>ology originally<br />

implled <strong>the</strong> study <strong>of</strong> rmonstersr, but has now expanded to embrace <strong>the</strong><br />

whole fleld <strong>of</strong> structurâl and functional defects present <strong>at</strong> birth.<br />

Three degrees <strong>of</strong> structural abnormal í tíes may be defîned:<br />

a) \,ari<strong>at</strong>ions are slight devi<strong>at</strong>ions from <strong>the</strong> range <strong>of</strong> normal, such as<br />

<strong>the</strong> delayed appearance <strong>of</strong> an ossific<strong>at</strong>¡on centre.<br />

b) Anomalies are minor structural defects which may remain undetected<br />

and do not produce marked functionaì disability, Examples in <strong>the</strong> vertebral<br />

column are sacral iz<strong>at</strong>îon <strong>of</strong> a lumbar vertebra or a symptomless spina bifida<br />

occu I ta .<br />

c) Malform<strong>at</strong>ions are more extensive defects present <strong>at</strong> birth. They may<br />

be major, as in anencephaly (which ís uniformly f<strong>at</strong>al) or more mînor, as in<br />

<strong>the</strong> congenital fusíon <strong>of</strong> two vertebral bodies.<br />

1.2 CLtNICAL il'1PoRTANCE q!: BrRTH pEFECTS<br />

<strong>ln</strong> recent years congenital malform<strong>at</strong>ions have become increasingly<br />

important in cl inical prêctice. Appl ic<strong>at</strong>ion <strong>of</strong> <strong>the</strong> prînciples oi publ ic<br />

health and preventive medicîne, followed by <strong>the</strong> introductlon <strong>of</strong> antimicroblal<br />

êgents, have produced a steady decl ine in nrortality from acute<br />

infections. Thus a rel<strong>at</strong>lvely hîgher proportion <strong>of</strong> de<strong>at</strong>hs in înfancy and<br />

childhood are now <strong>at</strong>tributable to congenital nalform<strong>at</strong>ions. Horeover,


improvements in <strong>the</strong> quality <strong>of</strong> anten<strong>at</strong>al carg and in <strong>the</strong> tre<strong>at</strong>ment<br />

<strong>of</strong> certâ1n deformîtles after birth have produced an absolute increase<br />

<strong>ln</strong> <strong>the</strong> popul<strong>at</strong>ion <strong>of</strong> affected children.<br />

1.3 tNctpENcE oF B!¡I!_!!!!!I!<br />

There is an extensivc Iiter<strong>at</strong>ure on <strong>the</strong>'incidence <strong>of</strong> bi ¡-ih defects<br />

but <strong>the</strong> st<strong>at</strong>istics are subject to mâny sources <strong>of</strong> error, such as:<br />

a) <strong>the</strong> unknov<strong>ln</strong> r<strong>at</strong>e <strong>of</strong> pren<strong>at</strong>al loss<br />

b) incomplete d i agnos is<br />

c) under-reporting <strong>of</strong> defects<br />

d) vâri<strong>at</strong>ions în recordíng methods<br />

è) <strong>the</strong> preponderãnce <strong>of</strong> dâta from hospital series,<br />

<strong>ln</strong> addition, <strong>the</strong> figures are gre<strong>at</strong>ly êltered by <strong>the</strong> inclusîon or<br />

exclusìon <strong>of</strong> stillbirths (Keonedy, l!6/; Persaud , 1g7il. <strong>ln</strong> an intern<strong>at</strong>ional<br />

survey <strong>of</strong> two huridred and thirty-eight reports,covering twenty<br />

million b¡rths, congenital defects occurred ¡n one to five per cent <strong>of</strong><br />

líve births according to <strong>the</strong> cr¡teria used (Kennedy, 1!6/).<br />

one <strong>of</strong> <strong>the</strong> most meticulous investig<strong>at</strong>ions <strong>of</strong> <strong>the</strong> incidence <strong>of</strong><br />

bîrth defects by <strong>the</strong> World Heal th Organiz<strong>at</strong>ion has achieved a high degree<br />

<strong>of</strong> comparabil'ity between twenty-four centres in sixteen countries, by<br />

uniform recording methods and standardiz<strong>at</strong>ion <strong>of</strong> frequencies for,m<strong>at</strong>ernal<br />

age (Stevenson et al ., 1966).<br />

t.4 coNer¡!!rA!_lALroRr{nloHs or rú¡ cr¡lrRnl NeRvous sysreil<br />

Abnormal development <strong>of</strong> <strong>the</strong> central nervous system may produce a<br />

wide range <strong>of</strong> malform<strong>at</strong>ions <strong>of</strong> <strong>the</strong> bra<strong>ln</strong> and spinal cord. A simple<br />

class¡fic<strong>at</strong>ion <strong>of</strong> <strong>the</strong>se defects, however, ís difficult to achieve because


4<br />

<strong>of</strong> <strong>the</strong> complexity <strong>of</strong> normal development (t/arkany, 1971). Thus <strong>the</strong><br />

sp<strong>ln</strong>al coid may be asymmetrical, double (d¡plonyelìa), or even ôbsent<br />

(arnyeìia). These cord defects are col lectively known as myelodysplasias.<br />

The brain nay be enlarged (macrencephaly) or reduced în size<br />

(microcephaly) , or show more locallzed enclosed defects <strong>of</strong> <strong>the</strong> cerebel lum,<br />

corpus caìlosum, cerebral cortex (porencephaly) or <strong>the</strong> whole forebrain<br />

(arhinencephal.les). Dil<strong>at</strong>ion <strong>of</strong> <strong>the</strong> central canal <strong>of</strong> <strong>the</strong> cord or <strong>of</strong> <strong>the</strong><br />

bra<strong>ln</strong> ventrì cles consti tute hydromyel ia and hydrocepha ly respective'ly.<br />

Hydrocephaly, however, is not a single disease, but <strong>the</strong> end resul t <strong>of</strong> many.<br />

dlfferent and <strong>of</strong>ten unreì<strong>at</strong>ed processes.<br />

<strong>ln</strong> a r<strong>at</strong>her separ<strong>at</strong>e group <strong>of</strong> malform<strong>at</strong>ions neural tlssue is eî<strong>the</strong>r<br />

exposed or herní<strong>at</strong>ed. <strong>ln</strong>volvement <strong>of</strong> <strong>the</strong> spine produces spína bifida<br />

(<strong>of</strong> several distinct types), and involvement <strong>of</strong> <strong>the</strong> skull c¡-anium blfidum.<br />

<strong>ln</strong> some câses ân extensíve open lesion called craniorachischisis (fig. 2)<br />

involves both skull and spine, suggesting a close rel<strong>at</strong>ionship between<br />

<strong>the</strong> tv'ro defects.<br />

As a fur<strong>the</strong>r compl ic<strong>at</strong>ion spina bifida is very frequently accompanied<br />

by hydrocephalus (Fol tz and Shurtleff, 1972), usually in <strong>the</strong> presence<br />

<strong>of</strong> an Arnold ChíarÍ malform<strong>at</strong>ion (Russell and Donald, 1935) Emery and<br />

llacken z ie, 1971 ) .<br />

1.5 SPINA BIFIDA<br />

The tern spina bifida rvas ¡ntroduced by Nicolas Tulp (1652), and<br />

lrnplles a nidl<strong>ln</strong>e defect <strong>of</strong> <strong>the</strong> vertebral column.


5<br />

1.5.1 SÞlri¿i B_!ll i dê Occúl rå ând Cysr¡ca<br />

<strong>ln</strong> spina blfîda occulta <strong>the</strong>re ls no open neural lesion,but ro_<br />

en tgenog rans revda I a defect <strong>of</strong> or¡e or more spinous processes or raminae.<br />

The site <strong>of</strong> this bony defect may occasionar ry be marked by abrrormar ities<br />

<strong>of</strong> overlying skin, such as pigmented or. hairy p<strong>at</strong>ches. Though <strong>of</strong>ten<br />

undetected, spína bifida occulta is sometimes accompanied by symptoms<br />

suggesting ínvolvement <strong>of</strong> <strong>the</strong> spinal cord or cauda equina. This could be<br />

caused by ê tight filum terminale, fibrous bands, ¡ntr<strong>at</strong>hecal I ipomas,<br />

or frank myelodysplasia (¡ames and Lassman, ,|967). The symptomless and<br />

symptom<strong>at</strong>ic forms <strong>of</strong> spina bífida occulta may represent two distinct<br />

leslons, <strong>the</strong> former being prima,r.iry a skeretar defect and <strong>the</strong> r<strong>at</strong>ter<br />

secondary to cord or cauda equ¡na defects,<br />

By contrast, ân external ly visible defect is called a spina bifida<br />

manífesta, or apertâ, or cystica (if cystíc). Several types may be distínguished.<br />

I.5.2 Men!!rgoce I e<br />

A meningocele invorves defects <strong>of</strong> severar neurar arches wrth herní<strong>at</strong>ion<br />

<strong>of</strong> meninges but not <strong>of</strong> neural tissue, though <strong>the</strong> underlying cord may be<br />

dysplastíc. For this reason a meningocete cannot always be diagnosed<br />

w¡th certa¡nty, and may prove on explor<strong>at</strong>ion to be myelocele (Laurence,<br />

1964',).<br />

1,5.3. Myelomeningocele<br />

An open lesion consisting <strong>of</strong> neural tissue, accumul<strong>at</strong>ed fluld,<br />

abnormal vasular tíssue, and a variable amount <strong>of</strong> epi<strong>the</strong>l íumrwith <strong>the</strong><br />

loss <strong>of</strong> several neural arches is tradítionar ry calred a myeromeningocere<br />

(fig.3 ¡. However, it is now bel ieved th<strong>at</strong> <strong>the</strong> tesion origin<strong>at</strong>es as a


6<br />

fl<strong>at</strong>, exposed plaque <strong>of</strong> neural tissue (a m'¡,e¡6t"¡¡rts or neuroschlsls).<br />

<strong>ln</strong> most èases thls open plaque undergoes secondary changes. Accumul<strong>at</strong>ion<br />

<strong>of</strong> fluld (which elev<strong>at</strong>es and disrupts <strong>the</strong> plaque) leads to form<strong>at</strong>ion <strong>of</strong> a<br />

cyst which ís progressívely covered by squamous epi<strong>the</strong>l îum and scar<br />

tissue, suggesting ên ¡ncorrect diagnosis <strong>of</strong> ulcer<strong>at</strong>ing rmyelomeningocelet<br />

(Cameron, 1956). <strong>ln</strong> a few cases <strong>the</strong> exposed neural plaque is still<br />

evident <strong>at</strong> <strong>the</strong> tíme <strong>of</strong> birth.. Some authors, <strong>the</strong>refore, call any lesion<br />

with cord involvement a myelocele (Cameron, 1!!6; Laurence, 1964).<br />

Roentgenograms <strong>of</strong> a typical mye I omen i ngoce I e <strong>at</strong> birth show absence<br />

<strong>of</strong> spinous processes and reduction <strong>of</strong> <strong>the</strong> laminaeuextending from <strong>the</strong><br />

upper end <strong>of</strong> <strong>the</strong> lesíôn ¡nto <strong>the</strong> sacrum. The pedicles <strong>of</strong> affected<br />

vertebrae are splayed out i¡n an oval shape, with <strong>the</strong> distances between<br />

art¡culãr processes increasíng to a maximum <strong>at</strong> <strong>the</strong> centre <strong>of</strong> <strong>the</strong> lesion.<br />

The intervertebral disc spaces are reduced, and <strong>the</strong>re may be abnorr,ral<br />

verticaì bars between <strong>the</strong> l<strong>at</strong>eral masses <strong>of</strong> involved vertebrae (FiS.. 4).<br />

<strong>ln</strong> many myelomeningoceles <strong>the</strong> vertebrôl bodies are well formed,<br />

but some cases may show associ<strong>at</strong>ed skeletal defects such as:<br />

a) hemivertebrae with congenital scol ìosis<br />

b) anteríor. wedging with congenital kyphosîs<br />

c) partial or complete sacral agenesîs (Sharrard, l97l).<br />

1.5.4 Myeloqlllqqele<br />

A much rarer form <strong>of</strong> spina bifída cystica (representing ano<strong>the</strong>r<br />

form <strong>of</strong> myelocele) is <strong>the</strong> myelocystocele, ín which <strong>the</strong> leston contê<strong>ln</strong>s<br />

both meninges and dil<strong>at</strong>ed spinal cord, Thís is associ<strong>at</strong>ed with local<br />

enlargement <strong>of</strong> <strong>the</strong> centrai canal <strong>of</strong> <strong>the</strong> ¡ntact spìnal cord (hydromyelia),<br />

so thêt <strong>the</strong> sac is not traversed by spínal nerves.


7<br />

1.5.5 Anter ìor Spina _Bif idg<br />

F<strong>ln</strong>ally, defects <strong>of</strong> <strong>the</strong> vertebral bodies r<strong>at</strong>her than <strong>the</strong> neural<br />

arches may occur. These anterior spina blfidas appear to be <strong>of</strong> two<br />

dist<strong>ln</strong>ct types ;<br />

a) lsol<strong>at</strong>ed anter¡or meningoceles in <strong>the</strong> thgracic cr lumbar region<br />

are very <strong>of</strong>ten associ<strong>at</strong>ed w¡th cutaneous neur<strong>of</strong>ibrom<strong>at</strong>osis, and may be<br />

a complic<strong>at</strong>îon <strong>of</strong> von Reckr inghausenrs disease (ta viene and campber r,<br />

1958; Sammons and Thomas, '|959).<br />

b) <strong>ln</strong> ano<strong>the</strong>r group varying degrees <strong>of</strong> connection may occur between<br />

<strong>the</strong> gastro¡ntestinal tract or an enteric cyst,ând <strong>the</strong> spina.l cord or<br />

even overlying skin. These connect.ions pass through <strong>the</strong> anterior spina<br />

blfida, which may be accompanied by dupl ic<strong>at</strong>íon óf <strong>the</strong> notochord or even<br />

<strong>of</strong> <strong>the</strong> spinal cord (Bremer, 1952; Fal lon et el., 1954).<br />

<strong>ln</strong> some cases <strong>the</strong> neuro-ente¡¡c connectícn and.anterior spina<br />

bífida are combîned with an open posterior spina bíf¡da (Saunders, 1943).<br />

1.6 CRANIUM BIFIDUM<br />

The term cranium bifidum may be used to embrace a comparable group <strong>of</strong><br />

open defects <strong>of</strong> <strong>the</strong> skul l.<br />

1.6,I Anencepha,b¡, Exenqeph¡¡ Ly<br />

The commonest <strong>of</strong> <strong>the</strong>se malform<strong>at</strong>ions involving both skult Ur"in<br />

ls "n¿<br />

known as anencephaly, though <strong>the</strong> term is misleading as <strong>the</strong> brain is<br />

rarely completely absent. riost fut term fetuses show ross <strong>of</strong> a variabre<br />

amount <strong>of</strong> braín tissue and replacement by abnormal neuro-vascular m<strong>at</strong>eriar,<br />

sometlmes called pseudencephaly (<br />

Ge<strong>of</strong>froy_St. Hílaire, t836).(Fis. l).


8<br />

However, several early embryos in <strong>the</strong> I iter<strong>at</strong>ure show wellpreserved<br />

brain tlssue protruding through <strong>the</strong> cranial defect, formîng<br />

an exencephaly r<strong>at</strong>her thên <strong>the</strong> anencephaly <strong>of</strong> l<strong>at</strong>er stages (Huntet, 1|g34-?¡51 .<br />

1 ,6 .2 t4en î njc!:e I e , Enrephq I gmed rìgoce I e<br />

<strong>ln</strong> ano<strong>the</strong>r group <strong>of</strong> lesions cranium bifidum is accompanied by<br />

hernî<strong>at</strong>ion <strong>of</strong> cranial contents,without direct exposure <strong>of</strong> <strong>the</strong> brain tissue.<br />

A cranial meningocele involves. herni<strong>at</strong>ion <strong>of</strong> meninges through <strong>the</strong> skull<br />

defect, and may be compared to a meningocele <strong>of</strong> <strong>the</strong> spine.<br />

Protrusion <strong>of</strong> brain tlssue as wel I as meninges through a cranium<br />

blfidum constîtutes an encepha I omen i ngoce I e. This is perhaps nÌo re comparable<br />

to â myelocystocele than to a mye I omen i ngoce I e în <strong>the</strong> spine,<br />

as <strong>the</strong> herni<strong>at</strong>ed brain is invariably enclosed by meninges and sometimes<br />

covered by normal skin (Bal lantyne, l!04).<br />

1.6.3 Cran ium Bifidum Occultum<br />

Finally, examples <strong>of</strong> cranium bifîdum occultum,without -hern¡<strong>at</strong>ion <strong>of</strong><br />

<strong>the</strong> underlying brain or meninges,are occasional ly seen (Caffe)r, 1972)..<br />

1.7 DYSRAPHIC STATES<br />

The dîversity <strong>of</strong> neural malform<strong>at</strong>ions reflects <strong>the</strong> complexity <strong>of</strong><br />

neural development. However, ê fundamental áistinction may be made between<br />

open and closed defects <strong>of</strong> <strong>the</strong> central nervous system. .Spina biîida and<br />

cranium bifidum constitote <strong>the</strong> open defects (or dysraphic conditîons),<br />

and are <strong>of</strong> considerable clinical împortance.<br />

Open defects have been described in both human and experimental<br />

embryos <strong>at</strong> stages <strong>of</strong> development as early as <strong>the</strong> perîod <strong>of</strong> normal neural<br />

closure. Any experimental study <strong>of</strong> <strong>the</strong> p<strong>at</strong>hogenesis <strong>of</strong> spina bifida and


cranlum bifidum thus involves <strong>the</strong> establ ishment <strong>of</strong> a regular serles <strong>of</strong><br />

speclmens between pre-neurul<strong>at</strong>ion and I<strong>at</strong>e fetal stages.<br />

1.8 PROGNOS tS<br />

The current emphasis on early surgical correct¡on, facilit<strong>at</strong>ed by<br />

<strong>the</strong> development <strong>of</strong> antibiotics and <strong>the</strong> control led drainage <strong>of</strong> hydrocephal<br />

ic fluîd, l^:s gre<strong>at</strong>ly increased <strong>the</strong> survivar <strong>of</strong> dysraphic infants<br />

(Sharrard et al., 1967) . However where neural tissue ís involved <strong>the</strong><br />

damage is irreversible, so th<strong>at</strong> anencephaly is always f<strong>at</strong>al vrhí le myelcmen<strong>ln</strong>gocele<br />

invariably produces some degree <strong>of</strong> neurological impairment,<br />

The survival <strong>of</strong> an increasing number <strong>of</strong> affected infants poses serrous<br />

social and economic problems (Tizard, l968; Lîghtowler, 1971). These<br />

wîll only be avoíded when <strong>the</strong> dysraphic st<strong>at</strong>es <strong>the</strong>mselves are preventable<br />

through a fuller understanding <strong>of</strong> <strong>the</strong>ir etio¡ogy.


.1-<br />

5


REV IEW OF L ITERATURE


l2<br />

2.1 ErI0L0rL!! fïE qYs34t!1!!jrArEs<br />

<strong>ln</strong>vestlg<strong>at</strong>îon <strong>of</strong> <strong>the</strong> etîology <strong>of</strong> neural defects falls into <strong>the</strong> two<br />

separ<strong>at</strong>e fîelds <strong>of</strong> Epídemiology and Embryology. Ëp l clem i o log i ca l studies<br />

descrìbe <strong>the</strong> distribution <strong>of</strong> defects within a defined popul<strong>at</strong>ion,and<br />

<strong>at</strong>tempt to analyse <strong>the</strong> factors producing this distrîbution. Embryologîcal<br />

studies involve both human m<strong>at</strong>erial and experimental lesions in animal<br />

models.<br />

The lack <strong>of</strong> unÍform termínology to describe <strong>the</strong> dysraphic conditions._<br />

complic<strong>at</strong>es any review <strong>of</strong> <strong>the</strong> I iter<strong>at</strong>ure, Host authors exclude <strong>the</strong> occult<br />

I es ions and refer to:<br />

a) anencephaly, pseuclen cepha I y, cranioschisis, meningocele or menîngoencepha<br />

locele cran ial ly;<br />

b) spîna bifida, rachischisis, meningocele, mye I omen i ngoce I e , myelocystocele,<br />

or myeloceIe caudal ly.<br />

<strong>ln</strong> addition, <strong>the</strong> lesions seen in experimental animals may bê called:<br />

a) exencephaly, brain hernia, cleiencephaly, or acleiencephaly cranially;<br />

b) myeloschisis or neuroschisis caudal ly.<br />

2.2 E!_LDExlqror!!êL_gM t Es<br />

2.2.1 <strong>ln</strong>c idencq<br />

L'arge vari<strong>at</strong>ions in <strong>the</strong> estim<strong>at</strong>ed incidence <strong>of</strong> neural malform<strong>at</strong>ions<br />

are found in different publ ic<strong>at</strong>ions. A compar<strong>at</strong>ive review <strong>of</strong> fifteen<br />

hospital seríes (Alter, 19621 showed a frequency per l,OOO.births varying<br />

between :<br />

0.5 and 5.9 for anencephaly<br />

0.2 and ).2 for spina bifida manifesta<br />

0.J and 4.2 for hydrocephalus


t3<br />

The value <strong>of</strong> such col lected series is limited by heterogeneìty <strong>of</strong> <strong>the</strong><br />

d<strong>at</strong>a,gnd correl<strong>at</strong>ion wìth n<strong>at</strong>ernal age and parlty. Stevenson et al.<br />

(1966) <strong>the</strong>refore collected d<strong>at</strong>a from twenty-four centres simultaneously<br />

and appl ied a correction for m<strong>at</strong>ernal age per thousand births. They<br />

found th<strong>at</strong> anencephaly, spîna bifida, encephalocele and hydrocephalus<br />

occu!- th!'eughout <strong>the</strong> vlorld, though <strong>at</strong> very dî'fferent frequenc?es. The<br />

hÌghest values were shown by Belfast and Alexanclría,with high levels<br />

<strong>ln</strong> Helbourne, Bombay and Mexico City. Some towns in eastern lJales have<br />

recently been shown to have an incidence as high as 12 per thousand<br />

births <strong>of</strong> anencephaly and spina bîfida cystica combined (Laurence, 1976) .<br />

2.2.2 Temporal Fluctu<strong>at</strong>¡ons <strong>ln</strong> <strong>ln</strong>cidence<br />

<strong>ln</strong> areas where records are available for a long periodr,gradual<br />

changes in incídence mây be detectable. Rogers and Morris (197.|) found<br />

th<strong>at</strong> mortal íty from spina bifida in England and kales showed a steady<br />

<strong>ln</strong>crease between 1848 and 1920, wirh a sharper r.ise between lgZO and ,l942,<br />

followed by a declíne until <strong>the</strong> present (apart from rr"l i". peak in<br />

"<br />

1954 ).The recent fall in mortal ity might partly result from <strong>the</strong> improved<br />

prognosis due to early closure, but <strong>the</strong> peaks must have some sepa!.<strong>at</strong>e<br />

significancå. A dram<strong>at</strong>îc epidemic <strong>of</strong> anencephaly and spina bifida<br />

occurred in Birl in between 1946 and 1950 (Gesenius, 1952). These postwar<br />

European peaks, however, were not seen in New England.where a r+<strong>the</strong>r<br />

uníform incidence <strong>of</strong> anencephaly and spìna bif¡da between 1890 and 1920,<br />

and sharp increase between 1920 and 1932,have been followed by a ãteady<br />

decl ine (Macl'lahon and Yen, 1!/t).<br />

Edwards (1958) found th<strong>at</strong> <strong>the</strong> overall reductîon in anencephaly and<br />

spina biflda <strong>ln</strong> Bl rmingham and in Scotland since 1939 has not been<br />

accompanîed by a similar fall in <strong>the</strong> íncÍdence <strong>of</strong> congenital hydrocephalus,


4<br />

which has rema¡ned fairly constant.<br />

2,2,3 Seasgna I Vari<strong>at</strong>ion<br />

<strong>ln</strong> Br'ltain durÌn9 <strong>the</strong> 1940ts and 1950rs thè r<strong>at</strong>e <strong>of</strong> anencephalic<br />

births was higher in winter than in summer (McKeown and Record, l95t;<br />

Edwards, l95B; Record, 196t), Allowi.ng for prem<strong>at</strong>urlty (commonly found<br />

In anencephaly) <strong>the</strong> highest conception ,."r", to occur between<br />

"OOu".ud<br />

l4arch and July. This seasonal vari<strong>at</strong>ion, however, was not apparent in<br />

New England (HacMahon, Pugh and <strong>ln</strong>galfs, 1953) and has subsequently disappeared<br />

în Britain (Leck and Record, 1!66).<br />

2.2,4 Sex R<strong>at</strong> io<br />

<strong>ln</strong> both anencephaly and spina bïfida females predomin<strong>at</strong>e. The sex<br />

r<strong>at</strong>¡o for spina bifida is around 1.2 (MacMahon, pugh and <strong>ln</strong>gal.ls, 1953),<br />

but r<strong>at</strong>ios quoted for anencephaly vary between .I.1 (Sea.rle, .l959) and<br />

4.2 (C<strong>of</strong>fey and Jessop, 1957). The reason for this disproportion is<br />

not clear, though a hígher loss <strong>of</strong> male fetuses is <strong>of</strong>ten suggested.<br />

Correl<strong>at</strong>ion <strong>of</strong> sex chrom<strong>at</strong>in with sex. fe<strong>at</strong>ures shows concordance<br />

in âlmost every case (Benirschke, 1966).<br />

¡n contrast with dysraphism,<strong>the</strong> sex r<strong>at</strong>ío for congenital hydrocephâlus<br />

shows a slight excess <strong>of</strong> maìes (Record and McKeown, 1!4!;<br />

Alter, 1!62), probably due to a group <strong>of</strong> sex-l inked cases (Shannon<br />

and Nadler, 1968).<br />

2.2.5 GeograÞh ic Di str î but ion<br />

The ì,/.H.0. survey (Stevenson et al, 1966) allowing direct comparison<br />

<strong>of</strong> hospital del iveries in different centres,shows wide variàtions between<br />

different countries. Hany o<strong>the</strong>r studies <strong>of</strong> individual popul<strong>at</strong>ions have<br />

also shown local vari<strong>at</strong>ions wlthin a country or region.


t5<br />

<strong>ln</strong> general <strong>the</strong> <strong>ln</strong>cldence <strong>of</strong> dysraphlsm shows an east-west cl<strong>ln</strong>e,<br />

whlch decreases across Nôrth Amer¡ca (Hewitt, 1963) and increases across<br />

<strong>the</strong> British lsles (Elwood, 1970). Th¡s p<strong>at</strong>tern could be due to genetic<br />

or envlronmental factors, or both.<br />

2.2.6 Ethnìc DistributîoL<br />

There are deÍlonstrable differences in incidence between different<br />

ethnic ArouPs. living within <strong>the</strong> same region (Naggan and t4acHahon, 1967) '<br />

<strong>ln</strong> <strong>the</strong> sou<strong>the</strong>rn U.S'A. and in South Africa, Negroes show a much<br />

I ot¡er incidence <strong>of</strong> dysraphism than whites (Alter, 1962; Penrose, 1957) '<br />

Thls may partly be due to under-rePort¡ng.r ðs <strong>the</strong> ínc¡dence among<br />

Negroes in Kenya is comparable to th<strong>at</strong> in <strong>the</strong> white Popul<strong>at</strong>ion (Khan,<br />

1965). A similar paradox is seen in <strong>ln</strong>dia where reported dysraphism<br />

ls uncommon except êrnong Sikhs, who show one <strong>of</strong> <strong>the</strong> h¡ghest r<strong>at</strong>es in<br />

<strong>the</strong> vrorld th<strong>at</strong> persists after emigr<strong>at</strong>ion (Searle, 1959) '<br />

These ethnic differences within a community might also reflect<br />

genet¡c or envîronmental variables, though some insìght into <strong>the</strong>ir<br />

rel<strong>at</strong>lve roles is <strong>of</strong>fered by studies <strong>of</strong> imrnigr<strong>at</strong>ion. l-ect (t969)<br />

found th<strong>at</strong> immigrant groups in Birmingham showed a change toward <strong>the</strong><br />

nBlform<strong>at</strong>ion .r<strong>at</strong>es<br />

<strong>of</strong> <strong>the</strong> host commun î ty, though marked ethnlc differences<br />

were st¡ll âpparent. Th¡s suggests an envi rorimental modiflc<strong>at</strong>lon<br />

<strong>of</strong> underlying genetic d i fferences.<br />

2.2.7 Fami ly Studïes<br />

Neural defects tend to be repe<strong>at</strong>ed in a slbship,but <strong>the</strong> recurrence<br />

pâtterns <strong>of</strong> dysraphism and congenital hydrocephalus differ from each<br />

o<strong>the</strong>r (!4acHahon, Pugh and <strong>ln</strong>gal ls, 1950). The recurrence risk for<br />

dysraphism has been calcul<strong>at</strong>ed as about 53 after oi¡e affected slbl<strong>ln</strong>g


6<br />

and about 112 after two (Laure,nce, 1969). These r<strong>at</strong>es fall well short<br />

<strong>of</strong> <strong>the</strong> 257. level suggesti,,,e <strong>of</strong> recessive inheiîtance (Pen'rose, l!å$) .<br />

Twîn studies show a lower concordance than might be expected, with<br />

a risk to <strong>the</strong> co-twin <strong>of</strong> about lt% (Record and l"lcKeown, 195]). When a<br />

woman remarries <strong>the</strong> recurrence risk for m<strong>at</strong>ernal half-síbl ings is <strong>at</strong><br />

¡east ês gre<strong>at</strong> as for fuii sibiings (Yen and l"iact4ahon, 1968).<br />

2.2.8 M<strong>at</strong>ernal Age and Parity<br />

M<strong>at</strong>ernal age and parÍty are difficult to anâlyse separ<strong>at</strong>ely. Dysraphic<br />

pregnancies are commoner ín primipara and grand multipara than <strong>at</strong> inter- ..<br />

medì<strong>at</strong>e parities (Record and McKeown, ,|949). Some (though not all)<br />

¡nvest¡g<strong>at</strong>ors êlso report a higher frequency in older mo<strong>the</strong>rs as an<br />

independent effect (Edwards, t95B; Record, l96l).<br />

2.2,9 Soc io- Ecojgdqlta tus<br />

Poorer fami I íes show a higher incidence <strong>of</strong> dysraphism (Ceffey and<br />

Jessop, 1957; Edwards, l95B; Pleydell, 1960) though nor <strong>of</strong> -o<strong>the</strong>r<br />

lethal<br />

bîrth defects (Anderson, BaÍrd and Thomson., I95B). This social gradient<br />

however is not shown by Jewish famil ìes (Naggan and HacMahon, i967) and<br />

does not apply to <strong>the</strong> Negro, popul<strong>at</strong>íon <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn U.S.A. (Alter,<br />

1962) .<br />

2.2.10 Urbanîz<strong>at</strong>ion<br />

u".,1* ,JJreport<br />

ê hígher incidence <strong>of</strong> dysraphísm in industri<strong>at</strong><br />

and urban communities, especially among poor familíes (Anderson, Baird<br />

and Thomson, 1958; Edwards, .t958; Pleydelt, f960).<br />

2.2.11 0o0c Llq íons_<br />

Epidemiological studíes have thus revealed many assocî<strong>at</strong>ions but<br />

no clear etîology for neural tube defects. lmportant environmental


t7<br />

factors êre suggested by <strong>the</strong> correl<strong>at</strong>ion w¡th m<strong>at</strong>ernal age, parity,<br />

economic st<strong>at</strong>us and urbaniz<strong>at</strong>ion, as well as by temporal fluctu<strong>at</strong>îons<br />

and <strong>the</strong> discordance <strong>of</strong> most twins.<br />

Genetic factors are suggested by <strong>the</strong> marked dìfferences between<br />

ethnîc groups (only slov¡ly modified by ìmmigr<strong>at</strong>ion), and perhaps by <strong>the</strong><br />

famîl ial trend and high proportion <strong>of</strong> affected females. However, if<br />

a genet¡c component is ínvolved it is likely to be polygenic (Penrose,<br />

l)jf; Carter, 1969).<br />

2.3 EMBRYOLOGrcAl STUDIE!<br />

The I iter<strong>at</strong>ure contains many descriptions <strong>of</strong> dysraphic human<br />

înfants or abortuses, and many hypo<strong>the</strong>ses to explain <strong>the</strong>ir development.<br />

Unfortun<strong>at</strong>ely, <strong>the</strong> dearth <strong>of</strong> very early human m<strong>at</strong>er¡al.limits <strong>the</strong><br />

extent <strong>of</strong> embryological studies. Experirnental ter<strong>at</strong>ology however can<br />

partly compens<strong>at</strong>e for this deficiency by producing simi lar,.malform<strong>at</strong>ions<br />

in many animal nrodels, though <strong>the</strong> lesions.induced may not be strictly<br />

comparable to <strong>the</strong> human defects.<br />

2.3.1 Human Spec i mens<br />

Anencephalic human fetuses are ei<strong>the</strong>r stiìlborn or die soon after<br />

birth. Most specimens show an open cranial vault with abnormal vascular<br />

tissue- replacing <strong>the</strong> cerebral and cerebel tar hemispheres, but tÈe midbrain<br />

and pons are usually present. The eyes, olfactory bulbs and cranial<br />

nerves are <strong>of</strong>ten well developed, showing th<strong>at</strong> different¡<strong>at</strong>îon <strong>of</strong> <strong>the</strong><br />

forebrain preceded <strong>the</strong> loss <strong>of</strong> cerebral and cerebel lar tissue. However,<br />

this degree <strong>of</strong> differenti<strong>at</strong>íon is not ¡n itself evidence th<strong>at</strong> <strong>the</strong> brain<br />

had developed normally until <strong>the</strong> onset <strong>of</strong> <strong>the</strong>se secondary changes.


l8<br />

<strong>ln</strong> some very early human embryos wlth cranioschisís an exposed<br />

mass <strong>of</strong> well-preserved brain tissue is seen, forming an exencephaly<br />

r<strong>at</strong>her than an anencephaly (Hunter, 1934-,35; van der Zrrran,..195l). Thts<br />

suggests th<strong>at</strong> exencephaly gives rise to anencephaly by necrosis and<br />

sloughing <strong>of</strong> <strong>the</strong> exposed mass <strong>of</strong> brain tîssue, followed by vasculariz<strong>at</strong>ion<br />

<strong>of</strong> <strong>the</strong> open area.<br />

<strong>ln</strong> spina bifida cystica a comparable process wâs demonstr<strong>at</strong>ed<br />

by Cameron (1956) who found th<strong>at</strong> <strong>the</strong> basic dêfect was probably an open<br />

neural plaque. Secondary overgrowth by squamous ep¡<strong>the</strong>lium and scar<br />

tissue with accumul<strong>at</strong>ion <strong>of</strong> fluid suggested an încorrect diagnosis <strong>of</strong><br />

ul cer<strong>at</strong> i ng meningocele or rrmyelomeningocele't.<br />

Several early human embryos with establ ished spina bif¡da cystica<br />

do indeed show an exposed neural plaque and open ependymal cana! wíth<br />

no covering <strong>of</strong> epi<strong>the</strong>l ial or vascular tissue (<strong>ln</strong>galls, 1932i p<strong>at</strong>ten,<br />

1953; Lemire et al,, 1965).<br />

2,3.2 Productíon <strong>of</strong> Experimental Dysraphis¡n in AnÍmal Molþls<br />

The belief th<strong>at</strong> external factors may influence embryonic development<br />

is an ancîent concept common to many cul tures. <strong>ln</strong> <strong>the</strong> nineteenth<br />

century congenital malform<strong>at</strong>ions were frequently produced in lower<br />

animals, but <strong>the</strong> mammalian embryo was thought to be protected by its<br />

uterine envlronment. During <strong>the</strong> present century, however, experimental<br />

terêtology has produced many defects in mammalian embryos, and demonstr<strong>at</strong>ed<br />

many malform<strong>at</strong>ion syndromes in man due to environmental êgents.<br />

Agents whích have been reported to produce experîmental dysraphism<br />

in mammalian embryos by m<strong>at</strong>ernal tre<strong>at</strong>ment are shown in Table l.


9<br />

TABLE l._<br />

EXPERTHENTAL pySRApH_t SM tN MAMi"1ALt4N E}4BRYO_S<br />

Agent Species Refe rences<br />

X-rays rêt t{arkany a Schraffenberger, l!4/; Hicks, f954<br />

. mouse Rugh ê Grupp, 1959<br />

Hypoxla<br />

mouse <strong>ln</strong>gal ls et al., f953<br />

Trypan blue r<strong>at</strong> Gillman et al,, l94B¡ 1951; ütarkany et al., l!!B<br />

. mouse Hamburgh, 1952; l9I\<br />

. hamster Ferm, l !!B<br />

Hypervi taminosis A rêt Cohlan, 1954: Giroud Ê l,lartin et, 1957<br />

hamster Marin-padilla o Ferm, l!6!<br />

Dimethyl sulfoxide harnster Ferm, .l966<br />

Sal icyl<strong>at</strong>es îìouse tJarkany ê Takacs, 1.959<br />

Urethane mouse Sinclair, l9!0<br />

Morphine mouse Harpel ê Gautieri, 1!68<br />

Sodium arsen<strong>at</strong>e hamster Ferm 6 Carpenter, 1968<br />

Avian embryos are usuaìly tre<strong>at</strong>ed dírectly, ei <strong>the</strong>r in ouo or .ín uitro,<br />

and may be observed directly. Agents whích have produced experímental<br />

dysraphism in chick embryos are shown ín Table 2.<br />

TABI-E 2 . -<br />

EXPERIHENTAL DYSRAPHISI,I IN THE CHICK EMBRYO .<br />

Agent<br />

References<br />

X-rays Reyss-Bríon, 1956<br />

Ultrasound Lutz et al., 1955<br />

Ul traviolet-l ight Davis, 1!44<br />

Vl ruses lJi I I iamson et al . , 1953<br />

Robertson et al., 1960<br />

Hypoxia Gàl lera, 1951<br />

Hypercarbîa Gallera, 1951 , Lutz s Lepy, 1958


2l<br />

and kinky-ta¡l as disorders <strong>of</strong> segment<strong>at</strong>ion<br />

c) congenital hydrocephalus and screw-têil as dlsorders <strong>of</strong> <strong>the</strong> membrenous<br />

ske leton<br />

d) diminutive, blebs, and disorganiz<strong>at</strong>ion as more generêl dîsorders.<br />

This classific<strong>at</strong>ìcn emphasizes <strong>the</strong>. diversity <strong>of</strong> processes causing<br />

heredÎtary neural defects .in<br />

a single experimental animal. The rel<strong>at</strong>ïonship<br />

<strong>of</strong> hereditary lesions to experimental dysraphism in <strong>the</strong> mouse is<br />

not clear.<br />

2.\ HYP0.rHEgEs_!E JIE !t4!|RYoGENEslg 0F qlqRAPHIs¡,t<br />

Many <strong>at</strong>tempts have been made to explain <strong>the</strong> embryological mechanisms<br />

producíng dysraphism, though some <strong>of</strong> <strong>the</strong>se hypo<strong>the</strong>ses are <strong>of</strong> only<br />

h i stor ica I ¡nterest.<br />

2.4.1 Sìmple Non-elosu[e<br />

Von Recklinghausen (l886) suggested th<strong>at</strong> â primary defect <strong>of</strong> neurul<strong>at</strong>ion<br />

led to non-closure <strong>of</strong> <strong>the</strong> anterior poster¡or neuropore, followed<br />

_or<br />

by <strong>the</strong> invasion <strong>of</strong> epi<strong>the</strong>lial and vascular tissuE,to produce anencephaly<br />

or spína b îf ida manifesta.<br />

2.4,2 OvergrowtLand Ncn-Closure<br />

P<strong>at</strong>ten (1952; 1953) described a marked infolding or excess <strong>of</strong> neural<br />

tissue in several embryos, some <strong>of</strong> whîch had no external defect.. He<br />

suggested th<strong>at</strong> local rrovergrowthrr <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e might prevent closure<br />

and lead to dysraphism. More extensive overgrowth might be responsíble<br />

for development <strong>of</strong> an associ<strong>at</strong>ed hydroceph<strong>at</strong>us and <strong>the</strong> Arnòld-Chiari malform<strong>at</strong>ion<br />

(Barry, Pêtten and Stewart, 1957).<br />

2,4,3 Rupture <strong>of</strong> <strong>the</strong> Closgd_lleural Tubg<br />

More recently Gardner (l9Sg; t964; 1972) and padger (1968; 1970)<br />

have revived an altern<strong>at</strong>ive hypo<strong>the</strong>sis, first proposed by I'lorgagn i (176Ð,


22<br />

suggest¡ng th<strong>at</strong> dysreph¡sm resul ts from di i<strong>at</strong>ion and rupture <strong>of</strong> a<br />

previous ly closed neura l tube.<br />

Gardner maintains th<strong>at</strong> dil<strong>at</strong>ion <strong>of</strong> <strong>the</strong> closed neural tube could<br />

êccount for hydrocepha I us, encepha locel e, hydromye I i a, syr ì ngomye loce I e<br />

and <strong>the</strong> Arnold-chiarl malform<strong>at</strong>îon. Dil<strong>at</strong>ion and rupture <strong>of</strong> <strong>the</strong> neural<br />

tube,followed by varying degrees <strong>of</strong> heal ing could account for exencephaly"<br />

anencephaly, mye I omen i ngoce I e , meningocele, spína bifìda occulta, distem<strong>at</strong>omyelia,<br />

anterior spina bifida and various neuro-enteric connections.<br />

2.4.4 AbnormAL-:Lrain G rowth<br />

Because <strong>of</strong> <strong>the</strong> íntact hindbrain and well developed eyes and craníal<br />

nerves' several authors have argued th<strong>at</strong> anencephaly results from degener<strong>at</strong>Îon<br />

with¡n a fully-formed braïn.<br />

Frazer (1921-22) suggested th<strong>at</strong> ¡nadequ<strong>at</strong>e flexion <strong>of</strong> <strong>the</strong> enlarging<br />

braîn shears <strong>of</strong>f <strong>the</strong> major arteries <strong>at</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> brain, producing<br />

ischemic necrosîs and sloughing <strong>of</strong> brain tissue and <strong>the</strong> ovérlyíng cranial<br />

vault.<br />

2.\.5 Ab¡orEl *spinal Fl ex ion<br />

Browne (1934; 1967) maintained th<strong>at</strong> a variety <strong>of</strong> malform<strong>at</strong>íons,<br />

including spina bifida, were produced by embryoníc compress-ion in uteto-<br />

He suggested th<strong>at</strong> rtundue sp<strong>at</strong>ial pressurerr might cause hyperflexion<br />

<strong>of</strong> <strong>the</strong> primitive trunk and trinterfere w¡th <strong>the</strong> fusing oi <strong>the</strong> ridge<br />

which should form <strong>the</strong> spinal canalr'.<br />

2.\.6 Primary Vqscular Defects_<br />

Anencephalîcs typically show a dÍsorganîzed network <strong>of</strong> sinusoîds<br />

and anomalous pêttern <strong>of</strong> larger vessels ãt <strong>the</strong> exposed brain surface,<br />

combined with rel<strong>at</strong>ively normal development <strong>of</strong> brainstem and midbraín.


23<br />

Vogel and McClenahan (1952) tnus s.uggested thðt a prîmary defect <strong>of</strong> <strong>the</strong><br />

cerebral vessels produces local hypoxia and degener<strong>at</strong>ion <strong>of</strong> <strong>the</strong> involved<br />

area <strong>of</strong> <strong>the</strong> bra i n.<br />

2,4,7 Amn i ot ic- Adhesions<br />

During <strong>the</strong> nineteenth century fetal constriction by amniotic bands or<br />

adhesîons was held to be responsîble for' many'congenital malform<strong>at</strong>ions<br />

(Dareste, 1877). Certainl¡i amnÌotic adhesion to open.brain defects does<br />

occur ín man (Torpin, 1968) as well as in experimental animals. However<br />

this is now usually regarded ês <strong>the</strong> resul t rã<strong>the</strong>r than <strong>the</strong> cause <strong>of</strong><br />

anencepha I y.<br />

2.4.8 Abnormal Development <strong>of</strong> <strong>the</strong> Tai l-Bud<br />

The origîn <strong>of</strong> <strong>the</strong> most caudal part <strong>of</strong> <strong>the</strong> spinal cord must differ<br />

from th<strong>at</strong> <strong>of</strong> <strong>the</strong> rest <strong>of</strong> <strong>the</strong> neuraxis, as <strong>the</strong> posterîor neuropore closes<br />

before <strong>the</strong> definitive length <strong>of</strong> <strong>the</strong> embryonic axis has been achieved. The<br />

terminal section <strong>of</strong> <strong>the</strong> cord is apparently developed by growth <strong>of</strong> <strong>the</strong> undífferenti<strong>at</strong>ed<br />

taíl bud, <strong>at</strong> least in <strong>the</strong> chick (Roman<strong>of</strong>f, 1960; Hami ìton,<br />

1952), <strong>the</strong> r<strong>at</strong> (Benrl iff and Gordon, .l965) and perhaps in man (Lemire, 1969).<br />

Crlley (1969) demonstr<strong>at</strong>ed an area <strong>of</strong> overlap and fr,lsìon between <strong>the</strong>se two<br />

sources <strong>of</strong> neural m<strong>at</strong>erial in <strong>the</strong> chick embryo.<br />

tenire (1969) suggests th<strong>at</strong> some neuraì malform<strong>at</strong>ions în <strong>the</strong> lower<br />

lumbar and sacral regíons (especial ly those covered by skin) mig[t arise<br />

by abnormal development <strong>of</strong> <strong>the</strong> tail bud m<strong>at</strong>erial.<br />

2.4.9 Trauma<br />

Reviewing <strong>the</strong> co¡ lection <strong>of</strong> embryos studied by Sternberg fi929),<br />

Pol ltzer (1954) note¿ th<strong>at</strong> some narrow mídline braîn or cord defect'showed<br />

a break in continuity between neural tissue and <strong>the</strong> skìn. He suggested th<strong>at</strong><br />

<strong>the</strong>se particular lesíons m¡ght be trãum<strong>at</strong>ìc in origin.


24<br />

2,4.10 <strong>ln</strong>fect ion<br />

FInally, some <strong>of</strong> thè earlier authors such as Brouwer (1916) conãidereC<br />

th<strong>at</strong> <strong>the</strong> marked disturbance <strong>of</strong> neural tissue in anencephaly might be<br />

due to embryonic infectionrcausing an extensive encephalomyel itis.<br />

2.lt.11 Surlma rL<br />

Many <strong>of</strong> <strong>the</strong>se conflicting hypo<strong>the</strong>ses are based on <strong>the</strong> study <strong>of</strong><br />

establ ished Iesions in human specímens collected <strong>at</strong> random. Assessment<br />

<strong>of</strong> <strong>the</strong>ir validity requíres fur<strong>the</strong>r stud¡es <strong>of</strong> early human embryos, and<br />

experimental studies <strong>of</strong> <strong>the</strong> development <strong>of</strong> dysraphism in a range <strong>of</strong><br />

animal ¡nodels.


I'IATE R IALS<br />

25


26<br />

3.1 THE CHTCK EMBRYo<br />

The chlck embryo was se¡ected as <strong>the</strong> expêrimental model in <strong>the</strong><br />

present study for <strong>the</strong> fol lowîng reasons (H<strong>at</strong><strong>the</strong>ws et al., 1974):<br />

a) fertile eggs êre cheap and avaìlable throughout <strong>the</strong> yeâr<br />

b) avian embryology has a long history añd.an extensive I iter<strong>at</strong>ure,<br />

with a well defined system <strong>of</strong> Staging based on simple morphological<br />

criteria (Hamburger and Hamilton, 1951)<br />

c) <strong>the</strong> developing chick embryo is more readily accessible than <strong>the</strong><br />

mammalîan embryo to dìrect observ<strong>at</strong>ion and manipul<strong>at</strong>îon th.rough<br />

a window in <strong>the</strong> shell (though thìs has certaîn concomitant disadvantages)<br />

d) whole embryos as well as ísol<strong>at</strong>ed fragments can be cul tured in oityo<br />

or 4n uiuo, with direct observ<strong>at</strong>ion <strong>of</strong> <strong>the</strong> embryo by ei<strong>the</strong>r technic.<br />

Despîte <strong>the</strong> advantages <strong>of</strong>fered by <strong>the</strong> varÍous in oitro techirics, an<br />

in oi¡to (in ouo) method was finally chosen because:<br />

a) it provided a method <strong>of</strong> producing open neural defects by <strong>the</strong> use <strong>of</strong><br />

a simple physical procedure<br />

b) it allowed prolonged culture <strong>of</strong> embryos with various congenîtal malform<strong>at</strong>ions<br />

to advanced stages <strong>of</strong> developmeni.<br />

3.2 souRcE oF Ëqq ¿N!__!xlrjBiqll0N<br />

The eggs used for this work were obtained from a second gener<strong>at</strong>ion<br />

hybrid tfhite Leghorn flock c.ontainíng one colored and three pure Leghorn<br />

línes, maintained by <strong>the</strong> Department <strong>of</strong> Animal Science <strong>of</strong> <strong>the</strong> Uníversity<br />

<strong>of</strong> I'lanítoba. The incidence <strong>of</strong> spontaneous malfornr<strong>at</strong>ions in this flock<br />

cannot be establ îshed because <strong>of</strong> <strong>the</strong> reluctance <strong>of</strong> <strong>the</strong> oríginal commerc!<strong>at</strong><br />

suppl iers <strong>of</strong> <strong>the</strong> stock to supply appropri<strong>at</strong>e inform<strong>at</strong>ion.


27<br />

lf necessary, eggs were stored <strong>at</strong> 10oC for up to four days before use.<br />

The two incub<strong>at</strong>ors used were both suppl ìed by <strong>the</strong> Blue M Electric<br />

company (Blue lsland, ll l.). The larger convection model (2004) measured<br />

48 cm. x f6 cn. x 4! cm.,and contained a 15 cm. x lB cm. x 5 cm. dísh <strong>of</strong><br />

w<strong>at</strong>er for regul<strong>at</strong>ion <strong>of</strong> humidîty. lt was used maînly for reincub<strong>at</strong>lon<br />

<strong>of</strong> eggs after some form <strong>of</strong> tre<strong>at</strong>ment, especially in experiments involving<br />

prolonged culture. S<strong>at</strong>isfactory regul<strong>at</strong>ion <strong>of</strong> temper<strong>at</strong>ure (37.50 t loC)<br />

and humidity(60?. t 4%) was achieved.<br />

The smal ler forced-draught model (VP-1004T-1) consigted <strong>of</strong> a 42 cm.'<br />

x \2 cn. x 30 cm. plexiglass contaìner above a humidifier, wlth a fan<br />

provídîng a continuous airflow <strong>at</strong> wel l-control led tenper<strong>at</strong>ure (37.50 t<br />

0.5oc) and humidity (60Z ! 1Zl. lt was used mainly for short term<br />

exper¡ments and for <strong>the</strong> ¡nitial incub<strong>at</strong>¡on <strong>of</strong> eggs before tre<strong>at</strong>ment<br />

(Fis. 5).<br />

The work descrîbed in thîs <strong>the</strong>sîs was performed ín a single room<br />

facing south, with large windows and no air-condítioning. Regul<strong>at</strong>ion<br />

<strong>of</strong> he<strong>at</strong>ing and ventil<strong>at</strong>ion gave partial control <strong>of</strong> <strong>the</strong> ambient env¡ronmentrand<br />

<strong>the</strong> two incub<strong>at</strong>ors used provided stable incub<strong>at</strong>ion conditions.<br />

Exper¡ments were performed throughout <strong>the</strong> yeâr.<br />

J.3 OTHER EQUIPI4ENT<br />

All oper<strong>at</strong>ions were performed under steríle or semi-steriÌá<br />

conditions in a dust-free plexiglass cabinet cleaned with 70% alcohol<br />

before each exper iment.<br />

stainless steel instruments, such as forceps, were steril ized<br />

before use and passed through <strong>the</strong> flame <strong>of</strong> an alcohol burner several<br />

tlmes during an oper<strong>at</strong> ¡ on.


2B<br />

To expose each embryo a w<strong>ln</strong>dow was cut in <strong>the</strong> shell rvith a 1.5 cm.<br />

dental separ<strong>at</strong>íng dlsc on a 5 cm. mandrel,mounted in a hand_held<br />

electrlc drîll (B¡ãck and Decker, model /010).<br />

Albumen was removed from opened eggs wíth disposable sterile 5 ml .<br />

syi'inges artd #16 gauge urrpointed needles (Bec.ton Dickinson e Co.).<br />

After tre<strong>at</strong>ment, those eggs cultured with an artificial air_space<br />

above <strong>the</strong> embryo were sealed with a J cm. circle <strong>of</strong> ster¡le parafilm<br />

(American Can Co., Neenah, t^/is. ),<strong>at</strong>tached to <strong>the</strong> shell by a ring <strong>of</strong><br />

plasticîne-l ike m<strong>at</strong>eriar (caurking cord, gtop Hardware products, ttontrear,<br />

Ouá.¡. These eggs were not turned during subsequent íncub<strong>at</strong>îon (Fîg. 6).<br />

O<strong>the</strong>r eggs, from whích <strong>the</strong> introduced aír was removed (ei<strong>the</strong>r by<br />

re-expansion <strong>of</strong> <strong>the</strong> punctured air cell or by filiing <strong>the</strong> eggs rvith<br />

albumen or Fl2 medium) were closed with â I cm. circle <strong>of</strong> sterile para_<br />

film, sealed to <strong>the</strong> shet with a square <strong>of</strong> frexibre Erastoprast(product<br />

1211; Smith E Nephew Ltd., Hull, England)


FÍg. 5.<br />

<strong>ln</strong>cub<strong>at</strong>or allowing precise controi <strong>of</strong> temperâture<br />

and humidity. Chamber contains a b<strong>at</strong>ch <strong>of</strong><br />

windowed eggs.<br />

Fís. 6.<br />

Windowed eggs seen frorn above,


GENERAL I.,IETHODS


3l<br />

4. r sELEcr I oN !F EGGq<br />

4.1,1 . lricub¿it i on<br />

Experlmental and controì .eggs were rout¡nely cul tured from <strong>the</strong><br />

beg<strong>ln</strong>ning <strong>of</strong> <strong>ln</strong>cub<strong>at</strong>ion <strong>at</strong> 37.54C and 60? humidlty, lying on <strong>the</strong>lr<br />

sldes wlth <strong>the</strong> long axls horizontal.<br />

At 26 hours <strong>of</strong> incub<strong>at</strong>lon (al low<strong>ln</strong>g one extra hour for rewarmìng<br />

after remova l from <strong>the</strong> refríger<strong>at</strong>or) candl ing "ras perfo¡:med în <strong>the</strong> dark,<br />

by layîng each egg horizontal ly over a 4 cm. x 3 cm. lîght-source and<br />

marking <strong>the</strong> shell with a penci I <strong>at</strong> <strong>the</strong> site <strong>of</strong> <strong>the</strong> embryo<br />

\ .1 .2 Cand I ïng<br />

Ëmbryos were graded (accord<strong>ln</strong>g to an êrbitrêry scale determined<br />

by previous experience) ¡nto three sizes -small, medium and largewhîle<br />

infertile eggs were rejected. <strong>ln</strong> this study only <strong>the</strong> eggs with<br />

medlum-sized embryos were used. Eggs with large-sized embryos were<br />

rejected, while those wîth smal l-sized embryos wåre al lowed to deveìop<br />

for a fur<strong>the</strong>r two to four hours and <strong>the</strong>n used only if <strong>the</strong>y had reached<br />

medium size.<br />

\.2 TECHNtq 0F_Q!!¡r!NG ANp cl0stNq EGGS<br />

4.2,1 PreliminqllExperiments<br />

<strong>ln</strong> ê ser¡es <strong>of</strong> prel iminary experiments, <strong>at</strong>tempts were,made to produce<br />

open defects <strong>of</strong> <strong>the</strong> central nervous system by <strong>the</strong> use <strong>of</strong> several proven<br />

ter<strong>at</strong>ogenic agents introduced through a shall window. These experiments"<br />

however th<strong>at</strong> <strong>the</strong> well-known technic <strong>of</strong> openíng a wíndow in <strong>the</strong><br />

"showed<br />

shel I above <strong>the</strong> embryo and removing 1 - 2ml . <strong>of</strong> albumen (to prevent adheslon<br />

<strong>of</strong> <strong>the</strong> embryo to <strong>the</strong> cut edges <strong>of</strong> shell),was in itself highly<br />

ter<strong>at</strong>ogenic <strong>at</strong> early stages <strong>of</strong> avian development. ll<strong>ln</strong>dowed but o<strong>the</strong>rwise


7.2<br />

untre<strong>at</strong>ed embryos showed almost as hÌgh an incidence <strong>of</strong> de<strong>at</strong>hs and malform<strong>at</strong>ions<br />

as windowed and tre<strong>at</strong>ed embryos. l,loreover <strong>the</strong> defects produced<br />

<strong>ln</strong>volved predom<strong>ln</strong>antly <strong>the</strong> central nervous system.<br />

4.2.2 Standard Techn îc<br />

From thîs observ<strong>at</strong>ion a standard experimental method was developed<br />

which produced a high incídence <strong>of</strong> open neural defects. Each egg wíth<br />

an embryo <strong>of</strong> medlum-size on candl ing <strong>at</strong> 26 to 30 hours <strong>of</strong> incub<strong>at</strong>ion<br />

was wiped wíth a gauze square <strong>of</strong> 702 alcohol and cuts made in <strong>the</strong> shell.<br />

During <strong>the</strong> oper<strong>at</strong>ion <strong>the</strong> egg was held obliquely to avoid damaging <strong>the</strong><br />

embryo, and <strong>the</strong> shell membrane careful ly preserved. A short cut was<br />

made over <strong>the</strong> air cell and a 1.0 cm. x 1.5 cm. hexagonal or rectangular<br />

window made over <strong>the</strong> embryo. The egg was cleaned with 7Oy" alcohol and<br />

transferred to a holder in tlre experimental cabinet, with <strong>the</strong> shell<br />

window uppermost. The shelI membrane was <strong>the</strong>n punctured gently with<br />

sterile forceps, first over <strong>the</strong> air cell and <strong>the</strong>n over <strong>the</strong>-embryo, allowíng<br />

air to be drawn into <strong>the</strong> egg with col lapse <strong>of</strong> <strong>the</strong> air cell. 2 ml . <strong>of</strong><br />

albumen were <strong>the</strong>n carefulìy withdrawn with a sterile syringe and widebore<br />

unpoînted needle. E99s in which <strong>the</strong> vitelline membrane was damaged or<br />

those where <strong>the</strong> embryo was not îmmedi<strong>at</strong>ely bene<strong>at</strong>h <strong>the</strong> shell window were<br />

rej ected .<br />

By this means embryos <strong>of</strong> quite a narrow range <strong>of</strong> developmenial stages<br />

were exposed to <strong>the</strong> act¡on <strong>of</strong> an artíficial. air space, with no protect¡on<br />

from an overlying layer <strong>of</strong> albumen but Iittle distortion from excessive<br />

f l<strong>at</strong>teníng or stretching.<br />

\.2.3 Examin<strong>at</strong>íon <strong>of</strong> Embryo.s<br />

As each blastoderm was fully exposed by this technic <strong>of</strong> windowing,<br />

It was <strong>ln</strong>spected and its diameter measured 1n nillimeters with a plast¡c


uler. Accur<strong>at</strong>e Staging (Hamburger and Hamllton, t95l) <strong>at</strong> <strong>the</strong> tlme <strong>of</strong><br />

w<strong>ln</strong>dow<strong>ln</strong>g was not <strong>at</strong>tempted,as thls necessltêtes vltal sta<strong>ln</strong><strong>ln</strong>g, whlch<br />

has several disadvantages:<br />

a) <strong>the</strong> tlme cluring whîch <strong>the</strong> egg rs out <strong>of</strong> <strong>the</strong> incub<strong>at</strong>or rs increased<br />

b) dlrect manipul<strong>at</strong>ion <strong>of</strong> <strong>the</strong> embryo ls unavoídable<br />

c) ter<strong>at</strong>ogeníc effects bave been demonstrèted for several <strong>of</strong> <strong>the</strong> vltal<br />

stains commonly used such as Nl le blue sulf<strong>at</strong>e and neutr<strong>at</strong> red (Menkes,<br />

et al., 1964).<br />

For...lhese reâsons embryonic age êt <strong>the</strong> time <strong>of</strong> tre<strong>at</strong>ment was assessed in ":<br />

terns <strong>of</strong> sîze r<strong>at</strong>her than Stage.<br />

\.2.\ Closure <strong>of</strong> Eggs<br />

After measurement <strong>of</strong> <strong>the</strong> blastoderm, each e99 was sealed with a 3 cm.<br />

clrcle <strong>of</strong> sterile parafilm applied to <strong>the</strong> shell with a 2 cm. ring <strong>of</strong><br />

plastícine, leaving ên artîfícial air space above <strong>the</strong> embryo (FÌS.7 ).<br />

The eggs were reíncub<strong>at</strong>ed in a horizontar positíon without being turned.<br />

' Thls technîc <strong>of</strong> wíndowing eggs with medium-sized embryos <strong>at</strong> 26 to 30<br />

hours <strong>of</strong> incub<strong>at</strong>ion was found to produce open neurar defects ín about 502<br />

<strong>of</strong> <strong>the</strong> tre<strong>at</strong>ed ernb ryos .<br />

4.2.5 Effec! <strong>of</strong> gmbryolíc Age<br />

The rel<strong>at</strong>ionshíp between embryonìc êge <strong>at</strong> <strong>the</strong> time <strong>of</strong> wrndow<strong>ln</strong>g and<br />

<strong>the</strong> development <strong>of</strong> neural defects rvas investig<strong>at</strong>ed by perforring'thu ,"r"<br />

procedure on eggs <strong>at</strong> f4 and J8 hours <strong>of</strong> incub<strong>at</strong>ion.<br />

l{here appl icabie, <strong>the</strong> significance <strong>of</strong> differences between experímentar<br />

and control values in windowing experîments was determined Uy <strong>the</strong> Cni<br />

Square test.


Ëigs.<br />

t4. Human neurcr*sp ina I d)¡sraphism:<br />

Fis. t.<br />

Anencephal ic înfarit with typîcal facies and<br />

a cap <strong>of</strong> neurovascular tìssue (pseudencephaly)<br />

Fig. 2.<br />

Craniorachischisis involving <strong>the</strong> bra¡n and<br />

spinal cord. No external defect in <strong>the</strong> sacral<br />

regîon.<br />

Fis. 3"<br />

Child with a healcd myclomenìngoccle lesion<br />

and paralysis <strong>of</strong> <strong>the</strong> lower ìimbs.<br />

Fis. 4.<br />

Rad iograph <strong>of</strong> myelr:meningocele extending<br />

from thoracic to sacral regions. Shows<br />

l.<strong>at</strong>eral dìsplacement <strong>of</strong> pedicles, a l<strong>at</strong>eral<br />

bar, wedging <strong>of</strong> <strong>the</strong> body <strong>of</strong> L. 5, and<br />

reduct i on <strong>of</strong> <strong>the</strong> sacrum


.\lz<br />

'?.<br />

t


JO<br />

,\.3<br />

REIN!UBATION AFTER. li,INDOh,Illc<br />

A large humber <strong>of</strong> experimental and control embryos were fixed <strong>at</strong><br />

<strong>the</strong> tlme <strong>of</strong> opening (O hours) or 6, lB, 30, or 42 hours after wíndowing.<br />

These embryos (design<strong>at</strong>ed Oc,6E,6c, lgE, lBc, 30E, 3oc, \28, and 42C)<br />

were exam<strong>ln</strong>ed, drawn by camera iucida, and selected for serial sect¡oning.<br />

' o<strong>the</strong>r embryos were curtured for severar days to estabrish <strong>the</strong> fu<br />

range <strong>of</strong> external malform<strong>at</strong>ions produce! by this techníc. Some were<br />

fixed after five days, when <strong>the</strong> externar embryonic form was fuly estabr ished.<br />

0<strong>the</strong>rs were cultt¡red for ereven or twerve days to assess <strong>the</strong> rer<strong>at</strong>ionship<br />

<strong>of</strong> neural de fects to skeletal development in <strong>the</strong> spine.<br />

\.4 FURTHER tNVEsflçAIr0N 0J THE TERAToGENtc EFFECT 0F 0pENtNG THE SHELL<br />

The ter<strong>at</strong>ogenic effect <strong>of</strong> <strong>the</strong> standard windowing technic might be due to3<br />

a) vibr<strong>at</strong>ion <strong>of</strong> <strong>the</strong> embryo by <strong>the</strong> dentð¡ separ<strong>at</strong>¡ng disc during windowing<br />

b) toxicíty <strong>of</strong> <strong>the</strong> plasticine or parafîlm used to crose <strong>the</strong> window<br />

c) <strong>the</strong> ¡ntroduction <strong>of</strong> infectíon<br />

d) a direct effect <strong>of</strong> <strong>the</strong> art¡f ¡ål air ipace above <strong>the</strong> embryo.<br />

These possible factors vúere system<strong>at</strong>ícal ry investig<strong>at</strong>ed by fur<strong>the</strong>r experîments.<br />

4.4. t V ibr<strong>at</strong> ion Alone<br />

One group <strong>of</strong> eggs was subjected to vibrêtíon <strong>of</strong> <strong>the</strong> shelr above <strong>the</strong><br />

embryo for thîrty seconds(without opening a window) <strong>at</strong> 0,26 and-33 hours <strong>of</strong><br />

incub<strong>at</strong>ion.<br />

4,4.2 Parafilm and plasticÍne Alone<br />

<strong>ln</strong> ano<strong>the</strong>r group <strong>the</strong> plasticine ring and parafîlm clrcle were appl ied to<br />

<strong>the</strong> areas <strong>of</strong> shell overrying each embryo <strong>at</strong> 1,26, and 33 hours <strong>of</strong> incub<strong>at</strong>ion,<br />

wi thout openíng <strong>the</strong> shell.


Fis. I AsB,<br />

Windowìng followed by obl iterâtìon <strong>of</strong> <strong>the</strong><br />

ïntroduced air space by adding albumen or<br />

F 12 med i um.


IÆ<br />

6


Fis. 9 Aã8.<br />

t/indow?ng followed by oblìter<strong>at</strong>ion <strong>of</strong> rhe<br />

introduced air space by reexpansion <strong>of</strong> <strong>the</strong><br />

air-cel ¡.


4ì<br />

,'ä:<br />

1<br />

Æ(o)<br />

\/u<br />

I


42<br />

( \--l /)<br />

^<br />

)<br />

t0


43<br />

\,\.3 Effect <strong>of</strong> Artìficial Aìr S<br />

The role played by <strong>the</strong> artificîal air space was thus fur<strong>the</strong>r examined<br />

by ei<strong>the</strong>r restor<strong>at</strong>îon <strong>of</strong> <strong>the</strong> originâl stête <strong>of</strong> <strong>the</strong> eggs, or by modific<strong>at</strong>ions<br />

<strong>of</strong> <strong>the</strong> external envíronment <strong>of</strong> unwindowed eggs during incub<strong>at</strong>îon.<br />

Experiments designed to avoid exposure <strong>of</strong> <strong>the</strong> developing embryo<br />

to <strong>the</strong> air space took two forms. After closure <strong>of</strong> <strong>the</strong> window with ê 3 cm,<br />

circle <strong>of</strong> parafilm and a squaqe <strong>of</strong> elastoplast, a second 5 mm. x 5 mm,<br />

window was made near <strong>the</strong> pointed end <strong>of</strong> <strong>the</strong> egg. <strong>ln</strong> some cases <strong>the</strong> egg vJas<br />

fll ted with F, culture medíum (Ham, 1!6!),<br />

cr with ålbumen from '<br />

an egg <strong>of</strong> <strong>the</strong> same developmental age (fig, Bn ¿ s) .<br />

Altern<strong>at</strong>îvely <strong>the</strong> introduced air was removed by re-expansion <strong>of</strong> <strong>the</strong><br />

collapsed air cell (with air from a rubber bal loon) before seal ing <strong>the</strong><br />

second window. (Pig. 9n a g) .<br />

4.5 BACTERIOLoGIcAL CULTURE<br />

The sterility <strong>of</strong> <strong>the</strong> oper<strong>at</strong>ive techn¡c was assessed by making<br />

bacteriological cul tures <strong>of</strong> albumen on bldod-agar pl<strong>at</strong>es <strong>at</strong> <strong>the</strong> time <strong>of</strong><br />

wîndowîng and <strong>at</strong> fix<strong>at</strong>ion <strong>of</strong> <strong>the</strong> embryos.<br />

\.6 ExAMtNAT|oN oF EARLY EMBRyQ!<br />

4.6.1 Fi x<strong>at</strong> ïon and Stagíng<br />

,^oñto-;ãr,<br />

embryos recovered 0 tq 4z.hours afrer windowins<br />

were washed in Howardrs salÍne, fixed in Bouints fluid, and bleached in 702<br />

alcohol contaíning 22 ammonia solution. Curl ing during fix<strong>at</strong>lon was prevented<br />

by includîng a square <strong>of</strong> filter paper in <strong>the</strong> dish above <strong>the</strong> embryo.<br />

For full details <strong>of</strong> <strong>the</strong> method see Appendíx A.<br />

After bìeaching, all <strong>the</strong> embryos were examined for defects and Staged<br />

(Hamburger and Hanilton, t95t)'. To Preserve a permênent record. before


44<br />

serîal sectlon<strong>ln</strong>g a camera lucida drawi.ng was made <strong>of</strong> every embryo.<br />

4.6.2 Problems in Exam<strong>ln</strong><strong>at</strong>ion<br />

Exam<strong>ln</strong><strong>at</strong>ion.<strong>of</strong> <strong>the</strong>se early embryos presented severê'l problems:<br />

a) Staging by somîte counts was not always easy because <strong>of</strong> necrosis or<br />

cyst-form<strong>at</strong>lon in <strong>the</strong> somite regíons, and torsôon or opacity <strong>of</strong> older<br />

embryos<br />

b) <strong>the</strong> same processes <strong>of</strong>ten involved <strong>the</strong> neural folds, making assessment<br />

<strong>of</strong> neural closure diffîcult<br />

even de<strong>at</strong>h was not always obvious because some embryos showed<br />

")<br />

excessîve. necrosís when still alive, whereas o<strong>the</strong>r embryos without a be<strong>at</strong>ing<br />

heart mîght be well-preserved though technically dead.<br />

\.7 EXAMtNATIoN oF oLDER EMBRYoS<br />

defects.<br />

0lder embryos were fixed in Carnoyrs fluid and exdm<strong>ln</strong>ed for external<br />

\.7.1 F ive Day Embryos<br />

'<br />

Some embryos were recovered <strong>at</strong> a totâl <strong>of</strong> fíve days incub<strong>at</strong>ion, with<br />

<strong>the</strong> externâl configur<strong>at</strong>ion establ ished but well before <strong>the</strong> second peak <strong>of</strong><br />

embryonic mortal ity (Hamilton, 19!2).<br />

\.7.2 Eleven - Twelve Day Embryo:<br />

To correl<strong>at</strong>e skeletal defects <strong>of</strong> <strong>the</strong> spine with spinal cord lesions,<br />

however, a fur<strong>the</strong>r period <strong>of</strong> development was necessary, "f,i"t'<br />

resulted in<br />

fur<strong>the</strong>r mortal ity. As windowing produced some growth retardêtion, experîmenta¡<br />

embryos were recovered <strong>at</strong> twelve days and control embryos <strong>at</strong> èleven<br />

days <strong>of</strong> total incub<strong>at</strong>ion. After examin<strong>at</strong>ion and measurement <strong>of</strong> all open<br />

neural defects, <strong>the</strong> cartîlaginous skeleton was stained with alcian blue<br />

(O;eda et al, 1970) and <strong>the</strong> embryos cleâred <strong>ln</strong> xylol and benzyl benzo<strong>at</strong>e


4S<br />

or 22 KOH. Three types <strong>of</strong> skeleta¡ defects were recc¡rded în <strong>the</strong> spine:<br />

a) part¡al or conplete deletions <strong>of</strong> vertebrae<br />

b) sp<strong>ln</strong>a biflda manifesta in <strong>the</strong> region <strong>of</strong> an open neural defect<br />

c) and spina bifida occulta.<br />

Detalls <strong>of</strong> skeletal stainÌng and clearance <strong>of</strong> <strong>the</strong>se older embryos are given<br />

in Appendix B .<br />

4.8 HISTOtOG¡cAt FEATURES OF. NEURAL cLosURE AND NEURAL DEFEcTS<br />

u.r.,|<br />

A representôtlve series <strong>of</strong> experirnental and control embryos (from<br />

Sectlon 4.6), in good condition <strong>at</strong> fix<strong>at</strong>ion 0 to 42 hours after windowing,<br />

were selected for serial sectioning. 0nly those control embryos showing<br />

normal development and little necrosís were included.<br />

After light staining with eosin in 702 alcohol, embryos were dehydr<strong>at</strong>ed<br />

<strong>ln</strong> 802, 902 and 952 alcohols, processed wíth amyl acet<strong>at</strong>e, and embedded in<br />

pa raff í n wax.<br />

Some !0,000 seríal sect¡ons were cut, gach <strong>at</strong> a thicknèss <strong>of</strong> 10 microns,<br />

and stained with hem<strong>at</strong>oxyl ìn and eosin.<br />

4.8,2 Group<strong>ln</strong>lqf E¡Þq¿os<br />

Because <strong>of</strong> <strong>the</strong> rapid progress <strong>of</strong> <strong>the</strong> early part <strong>of</strong> neurul<strong>at</strong>ion (after<br />

Stage B), exper¡nental and control embryos could only be compared ât identical<br />

Stages. <strong>ln</strong> l<strong>at</strong>er neurul<strong>at</strong>ion several Stages were combinäd.<br />

As no experimental embryos were available <strong>at</strong> Stage 9, <strong>the</strong> four groups<br />

cons ¡ sted <strong>of</strong>:<br />

Group 1 Stage 10<br />

Group 'l 1 Stages 1 1- l2<br />

Qroup 111 Stases tr3-16<br />

Group 1V Stages I /-20


46<br />

Thus <strong>the</strong> embryos selected for serial sectioning were rearranged<br />

and examined by developnentar stages r<strong>at</strong>her than hours <strong>of</strong> incub<strong>at</strong>ion,<br />

4.8.3 súbdivislón lrirö Rédións<br />

Exam<strong>ln</strong><strong>at</strong>ion <strong>of</strong> <strong>the</strong> serial sectrons reveared marked differences in<br />

<strong>the</strong> development <strong>of</strong> <strong>the</strong> neural tube, notqchord., and somites <strong>at</strong> dìfferent<br />

levels <strong>of</strong> al I embryos.<br />

Each group <strong>of</strong> embryos was thus subdivîded into regions <strong>of</strong> neurar<br />

development on <strong>the</strong> basls <strong>of</strong> non-neural morphological markers. These<br />

markers were - found to correspond quite closely to developmental changes<br />

along <strong>the</strong> length <strong>of</strong> <strong>the</strong> neural tube.<br />

Because <strong>of</strong> <strong>the</strong> striking changes between Stage 10 and Stage 20 <strong>the</strong><br />

regîons werê not identîcal in each group, but were ¿rranged to encomp¿rss<br />

<strong>the</strong> same developmental areas. For this reason <strong>the</strong> rela.tive size <strong>of</strong> each<br />

region varied in <strong>the</strong> embryos <strong>of</strong> different groups.<br />

The most important non-neural marker was somite mesoderm, divided by<br />

reg lons in to:<br />

a) presomite regîon: grouped w¡th <strong>the</strong> brain region,because after rot<strong>at</strong>Ìon<br />

<strong>of</strong> <strong>the</strong> head fotd <strong>the</strong> two areas courd not be separ<strong>at</strong>ed rrn obr ique sections<br />

b) upper and lower somite regions: grouped toge<strong>the</strong>r for lack <strong>of</strong> çlear<br />

morphol og i ca I separ<strong>at</strong>îon<br />

c) protosom¡te regîon: with club-shaped protosomites showing líttle<br />

separ<strong>at</strong>ion into derm<strong>at</strong>ome, myotome, and sclerotome<br />

d) unsegmented mesoderm region: with loosely arranged mesoderm not con_<br />

densed into protosot¡î te s<br />

e) posterlor region: with developing notochord ( p rotonotocho rd) still<br />

continuous wlth developing mesoderm and neural t¡ssue.


47<br />

I'leurul<strong>at</strong>ion showed a comparable series <strong>of</strong> changes characterîstìc<br />

<strong>of</strong> each region în each group <strong>of</strong> control embryos. These changes Ìn <strong>the</strong> crosssectîonal<br />

shape <strong>of</strong> neural tissue were described as:<br />

a) closed neural tube O<br />

b) closíng neural rube C)<br />

c) inverted neural folds (-)<br />

d) elev<strong>at</strong>ed neural folds tJ<br />

e) everted neural folds --.\ñ<br />

f) fl<strong>at</strong>tened neural pl<strong>at</strong>e<br />

-v<strong>ln</strong><br />

thís way <strong>the</strong> normal progress <strong>of</strong> neurul<strong>at</strong>ion could be closely<br />

def<strong>ln</strong>ed for each group <strong>of</strong> embryos in terms <strong>of</strong> six regions,<br />

(Tabtes 3 -6 ).


48<br />

TABLE 3. srAGE t0 El,tBRyos (cnoue | ¡<br />

Reg.i ons<br />

l4a rke rs<br />

A) forebrain (short)<br />

opt ic veslcle J<br />

midbra<strong>ln</strong><br />

I<br />

h<strong>ln</strong>dbra<strong>ln</strong><br />

t<br />

presomlte area (short) f<br />

1 no notochord<br />

J<br />

I<br />

neural tube closed or closìng,<br />

notochord, pharynx, heart, head<br />

mesenchyme, anterior intestinal<br />

Porta I '<br />

B) upper somite area I neural folds closing or inverted,<br />

lower somite area<br />

Þ<br />

J<br />

notochord, somites.<br />

C) protosomî te a reê neuraI folds înverted, notochord,<br />

protósom i tes .<br />

D) anteríor rhomboid sinus neural .folds elev<strong>at</strong>ed, notochord, unsegmented<br />

mesoderm.<br />

E) poster¡or rhomboid sinus neural folds elev<strong>at</strong>ed or fl<strong>at</strong>tened,<br />

protonotochord, fused mesoderm.<br />

F) Hensenrs node deep primîtive pit, developinþ neural<br />

t i ssue.<br />

prlmitive s t reak<br />

shal low primitive groove, no neural<br />

t l ssue,


49<br />

TABLE 4.<br />

. .STAGE. t 1:l2. .EtrtBRYoS. . (GR0UP. il)<br />

Reg l onsr ...... . . . . . . . l-4arkers .<br />

A) forebra in<br />

optic ves¡cle<br />

mldbrain<br />

h<strong>ln</strong>dbrain<br />

p resom i te area<br />

]<br />

l<br />

no notochord<br />

neurql tube closed, notochord, pharynx,<br />

dorsal aortae.<br />

neural tube closed, notochord, pharynx,<br />

heart, dorsal êortâe, anterior intesti¡al<br />

portá I .<br />

B) upper somi te area<br />

Iower somi te a rea<br />

C) protosomi te a reê<br />

neural tube closed, notochord, somites,<br />

heart, dorsal aortae.<br />

neural folds closed or closîng, notochord,<br />

p rotosom I tes.<br />

D) anterior rhomboid sinus neural folds ¡nverted or elev<strong>at</strong>ed, notochord,<br />

.upper overlap zone without accessory<br />

cana I s, unsegmented mesoderm.<br />

E) posterior rhomboid sinus neural folds elev<strong>at</strong>ed, protonotochord,<br />

'<br />

overlap zone with accessory canals, fused<br />

mesoderm.<br />

F) Hensen¡s node<br />

prim¡t¡ve s t reak<br />

deep primitive pit, developing neural tissue.<br />

shallow primitive groove, no neural tissue.


50<br />

TABLE 5 ,<br />

Reg i ons<br />

srAGE 13:16' EMBRYOS (enour ttt¡<br />

l'larkers<br />

A) forebra í n<br />

mldbra in<br />

h<strong>ln</strong>dbrain<br />

presomîte a rea<br />

(åbsent by st. 16)<br />

B) upper somite area<br />

lower somi te a rea<br />

c) protosomi te a rea<br />

-t<br />

)<br />

no notochord<br />

overlappîng mî dbra i n and hînclbrain,<br />

otocysts, notochord , pharynx, heart,<br />

dorsa I aor Èae.<br />

notochord, pharynx, heart, dorsal aortae<br />

neural tube closed, notochord, somîtes,<br />

anterior intestinal porta I .<br />

neural tube closed, notochord, protosomites,<br />

upper overlap zone.<br />

D) unsegmented mesoderm area closed neural tube dorsal to accessory<br />

canals, notochord, unsegmented mesoderm.<br />

E) caudal a rea<br />

closed or closing neural tube dorsal to<br />

accessory cana I s, protonotochord, fused<br />

mesoderm.<br />

f) anterior tai t-bud<br />

(absent by St. 16)<br />

posterior tai I -bud<br />

short primitive streak<br />

sha I low surface pit,<br />

no notochord.<br />

no surface pit.<br />

prîrnitive groove,<br />

(absent by st. 16)


5l<br />

TABLE 6,<br />

%<br />

STAGE lT-20 EHBRyos lcRo p tvl ... ... . ..<br />

Reglons Markei.s.. .......<br />

B) prebrachial cord -l overlapping brain and cord, notochord,<br />

forebrain<br />

brachial cord<br />

forebra<strong>ln</strong><br />

postbrachla¡ cord<br />

J<br />

1<br />

J<br />

It<br />

somltes, foregut, heart, dorsal aortðe.<br />

overlapp<strong>ln</strong>g bra<strong>ln</strong> and cord, notochord,<br />

somltes, wîng b,uds, single dorsal aorta.<br />

cord, notochord, somites, midgut, dorsal<br />

aortae, mesonephroi , Wolffian ridges.<br />

C) crural cord cord, notochord, somites, leg buds,<br />

mesonephroi , mesonephric- ducts, cloaca.<br />

D) postcrural cord cord, notochord, somites or unsegmented<br />

rnesoderm, cloaca, developing tail .<br />

F) tail tip no cord, no somites,<br />

E) caudal cord cord, taÍl-bud, caudal somites or unsegmented<br />

mesoderm, protonotochord, caudal gut.


52<br />

4.8.4 HistologÌcal_De:plþtÍons<br />

To test <strong>the</strong> hypo<strong>the</strong>sis th<strong>at</strong> delãyed onset <strong>of</strong> <strong>the</strong> passage <strong>of</strong> cerebrosp<strong>ln</strong>al<br />

fluíd across <strong>the</strong> rhombic ro<strong>of</strong> might produce rupture <strong>of</strong> <strong>the</strong> closed<br />

neural tube, <strong>the</strong> progressive thinning <strong>of</strong> <strong>the</strong> rhombìc ro<strong>of</strong> was tabul<strong>at</strong>ed<br />

for each group <strong>of</strong> embryos (Tables 113-46<br />

).<br />

The possìble contributicn <strong>of</strong> excessive cãvit<strong>at</strong>ion <strong>of</strong> <strong>the</strong> tail-bud to<br />

abnormal neurul<strong>at</strong>ion was assessed by tabul<strong>at</strong>ing <strong>the</strong> nunbers <strong>of</strong> accessor¡.<br />

canals in <strong>the</strong> overlap zone and tai l-bud <strong>of</strong> each group (Tables 5l - 54).<br />

However, a detal led .ieview<br />

<strong>of</strong> <strong>the</strong> histological changes during neurul<strong>at</strong>ion<br />

revealed varlous dífferences between experimentâl and control embryos<br />

(Section 6.4.). These differences were thus analysed ín terms <strong>of</strong> <strong>the</strong><br />

reprèsent<strong>at</strong>ive ãppearance <strong>of</strong> Regions A-E in each group <strong>of</strong> embryos, to<br />

determine whe<strong>the</strong>r <strong>the</strong>y were significant (Tables 35-38).<br />

4,9 ANALYStS oF NEURAL cLosuRE<br />

From <strong>the</strong> results <strong>of</strong> <strong>the</strong> histological studieè (section-6,4)<br />

several aspects <strong>of</strong> neurul<strong>at</strong>ion were analysed quantÌt<strong>at</strong>ively, as percentages<br />

<strong>of</strong> each regilon and percentages <strong>of</strong> each embryo (Tables. 47-50),<br />

Histological fe<strong>at</strong>ures analysed ín this manner were:<br />

a) progress. <strong>of</strong> neural closure<br />

b) extents <strong>of</strong> myeloschisis<br />

c) extents <strong>of</strong> myelodysp I as ia<br />

d) length <strong>of</strong> <strong>the</strong> overlap zone<br />

e) cover <strong>of</strong> neural tissue by ectoderm<br />

f) contact <strong>of</strong> neural tissue with notochord<br />

S) contâct <strong>of</strong> neural tlssue wîth somîtes<br />

h) possible reduction <strong>of</strong> somìte volume with cystic changes.


53<br />

Because <strong>of</strong> <strong>the</strong> difficulty in separ<strong>at</strong>íng <strong>the</strong> brain from <strong>the</strong> upper<br />

cord this analysis was confined to <strong>the</strong> spinal cord and tail-bud (Regions B,<br />

C, D and E).<br />

4. to ANALYS ts !r ],IEURAL voLUt4Es<br />

F<strong>ln</strong>ally, an <strong>at</strong>tempt was made to compäre <strong>the</strong> volumes <strong>of</strong> neural tíssue<br />

în embryos with and without neural lesions over regions C and D. To<br />

el imin<strong>at</strong>e vari<strong>at</strong>ions due to dífferent sizes <strong>of</strong> indivídual embryos,and<br />

dîffering lengths <strong>of</strong> regions C and D, values were expressed in <strong>the</strong> form<br />

<strong>of</strong> r<strong>at</strong>ios <strong>of</strong> mean neural tissue to mean notochord (which showed little<br />

fluctu<strong>at</strong>ion), and analysed by multiple T-tests.


5 RESULTS OF TERAÎOLOGICAL PROCEDURES<br />

54


55<br />

5.1 TERAToGEN!! !FFECT 0F,WtNp0I{1!Nq<br />

Tt¡e effect <strong>of</strong> windowîng 999s in <strong>the</strong> early developmental period<br />

ls closely rel<strong>at</strong>ed to embryonic age. To învestig<strong>at</strong>e this effect, <strong>the</strong><br />

standard w<strong>ln</strong>dowing. technîc was performed on eggs <strong>ln</strong>cub<strong>at</strong>ed for l\, 26<br />

and 38 hours. After windowi.ng, enbryos were reincub<strong>at</strong>ed to a tot¡l <strong>of</strong><br />

/2 hours.<br />

Eggs <strong>ln</strong> <strong>the</strong> control group were not opened, but were removed from<br />

<strong>the</strong> <strong>ln</strong>cub<strong>at</strong>or for a simîlar length <strong>of</strong> time to <strong>the</strong> experimentâl groups.<br />

None <strong>of</strong> <strong>the</strong> eggs were turned.<br />

4t.72 hours all <strong>the</strong> embryos were fixed and examined under a<br />

dissect<strong>ln</strong>g mlcroscope. Table 7 and Fîg. l0 show <strong>the</strong> mortal lty and<br />

overall malform<strong>at</strong>ion r<strong>at</strong>es for experrmentar embryos windowed <strong>at</strong> r4, 26,<br />

and l8 hours, toge<strong>the</strong>r wlth <strong>the</strong> control embryos.<br />

Hany experlmental embryos, especially those windowed <strong>at</strong> l4 hours,<br />

showed early de<strong>at</strong>h and such complete degener<strong>at</strong>ìon th<strong>at</strong> embryonic<br />

structures were.unrecognizab,le within <strong>the</strong>_smal I nodule <strong>of</strong> necrotic tissue.<br />

For this reason, individual malform<strong>at</strong>ion r<strong>at</strong>es are not given as percentages<br />

<strong>of</strong> <strong>the</strong> number <strong>of</strong> embryos whìch continued to develop after windowing.<br />

survivî.ng embryos deveroped to stages 13-20 and were recovered dead<br />

or al ive, w¡th or without malform<strong>at</strong>ions, <strong>at</strong> 72 hours. Fig.l0 ¿s¡q¡strâtes<br />

a decrease in early de<strong>at</strong>hs betv,reen <strong>the</strong> four groups, and.an increãse in<br />

survival wlthout defects âmong <strong>the</strong> embryos which contínued to develop.<br />

St<strong>at</strong>lstical analysls reveals slgnificant dlfferences in:<br />

(a) early de<strong>at</strong>hs and survivrng embryos between <strong>the</strong> combrned experimenta¡<br />

groups and <strong>the</strong> control group (p < O.Ol)<br />

(b) early de<strong>at</strong>hs and survlving embryos in each experimentêl group<br />

(p < o.ot)


(c) de<strong>at</strong>hs and defects in <strong>the</strong> surviving embryos <strong>of</strong> each experimental group<br />

(p < o.o5) .<br />

56


Numbers <strong>of</strong> Eggs 31 73 31 135 47<br />

Eârly De<strong>at</strong>hs 28 (90.32) zo (27.40) 2 (6,4Ð 50 .2 (\.26)<br />

Developing Ernbryos 3 53 29 gS<br />

45<br />

38 (80.85)<br />

1 ( 2.13')<br />

r ( 2.13)<br />

5 (10.64)<br />

TABLE 7. MORTALITY AFTER l,/lNpOwtNG AT 14, 26.and 38 HoURS<br />

. llindow ì./indow l,/îndow Ëxperimentêl No VJindow<br />

<strong>at</strong> l4 Hrs. (%) <strong>at</strong> 26 Hrs.(?) <strong>at</strong> !8 Hrs. (%) 'iot"ilcontràrr<br />

tzl<br />

Al ive wíth No Defects<br />

Al ive wi th Defects<br />

Dead wi th No Defects<br />

Dead wi th Defects<br />

0 (0)<br />

1 (3.26)<br />

0 (b)<br />

2 (6.\5)<br />

21 (28.77)<br />

25ß\.25)<br />

1 ( r.37)<br />

6(8.22)<br />

17 ß4.84)<br />

I (25.81)<br />

2 (6.4r)<br />

2 (6.45)<br />

38<br />

34<br />

?<br />

10<br />

Stages <strong>at</strong> Fix<strong>at</strong> ion 13-17<br />

15-20<br />

13-'t9<br />

13-20<br />

14-20


Fi g.<br />

Percentagcs <strong>of</strong> early de<strong>at</strong>hs and l<strong>at</strong>er de<strong>at</strong>hs<br />

and deformitîes after windowing aL 14, 26 and<br />

JB hours. Embryos recovered <strong>at</strong> 72 hours.


14 HRS" 2ó HRS. 38 HRS. CONTROLS<br />

:<br />

Nl Eorly Deoths<br />

N=182<br />

N Al¡ve, No Defecfs<br />

Nl Alive, Defects<br />

Nl Deod, No Defects<br />

N Deod, Defecis<br />

tn<br />

o<br />

cô<br />

t, ''<br />

tu<br />

u-<br />

o<br />

Èe<br />

MORTALITY AFTER WINDOWING AT .14,26 & 38 HOURS


6o<br />

MoRTALtTY, AFTER ì,'tNpowtNq,AT t¡;26; AND 38 H0uRS<br />

. Analysís <strong>of</strong> early de<strong>at</strong>hs and developing embryos in <strong>the</strong> combîned<br />

experimental groups and <strong>the</strong> control group:<br />

Observed Va I ues 50 2<br />

85 .4s<br />

D.eg rees <strong>of</strong> Freedom<br />

t<br />

Chi Square (Y<strong>at</strong>es Correction)' 16.7g<br />

P < 0.01<br />

Analysls <strong>of</strong> early de<strong>at</strong>hs and develop<strong>ln</strong>g embryos ¡n <strong>the</strong> experlmental<br />

I roups :<br />

0bserved Val ues<br />

Degrees <strong>of</strong> Freedom<br />

Chl Square<br />

P<br />

28202<br />

35329<br />

2<br />

53.09<br />

< 0.01<br />

Analysls <strong>of</strong> l<strong>at</strong>er de<strong>at</strong>hs and defects in developing embryos <strong>of</strong> each<br />

expêr lmenta I group:<br />

Observed Va I ues<br />

Degrees <strong>of</strong> Freedom<br />

Ch i Sq ua re<br />

P<br />

021 17<br />

1258<br />

012<br />

262<br />

6<br />

14.46<br />

< 0.05


6t<br />

0n exam<strong>ln</strong>ing. <strong>the</strong> survivi.ng embryos (table I ), <strong>the</strong> commonest malform<strong>at</strong>ions<br />

were found to <strong>ln</strong>volve <strong>the</strong> central nervous system and <strong>the</strong> eyes.<br />

The bra<strong>ln</strong> was <strong>of</strong>ten reduced în slze Ìn <strong>the</strong> experlmental embryos, as well<br />

as ¡n some controls. Two embryos windowed <strong>at</strong> 26 hours, and one control<br />

enbryo showed an open anterlor neuropore. As. <strong>the</strong> bráin normally closes by<br />

Stage 12 (Haml I ton, 1965),. <strong>the</strong>se embryos were regarded as showìng open<br />

bra<strong>ln</strong> defects after Stage 12. Closure <strong>of</strong> <strong>the</strong> rhomboid sinus, which is<br />

normal ly complete by Stage 15 (Haml t ton, t965), was êssessed in <strong>the</strong> four<br />

groups. <strong>ln</strong> many embryos w<strong>ln</strong>dowed <strong>at</strong> 26 hours <strong>the</strong> neural folds proximal<br />

Éo <strong>the</strong> rhomboîd s<strong>ln</strong>us were st¡ll open. At Stãges 13 and 14 <strong>the</strong>se open<br />

areas were adjacent to <strong>the</strong> rhombold s<strong>ln</strong>us, but after Stage 1! <strong>the</strong>y<br />

extended up <strong>ln</strong>to <strong>the</strong> somlte reglon. As <strong>the</strong>se defects were ín continuity<br />

wlth <strong>the</strong> rhombold sinus <strong>the</strong>y appeared to aríse through non-closure <strong>of</strong> <strong>the</strong><br />

neural folds. <strong>ln</strong> embryos older than stage l6 <strong>the</strong>y are <strong>the</strong>refore recorded<br />

as open defects <strong>of</strong> <strong>the</strong> neural tube.<br />

Many embryos, especially those dead by /2 hours, showed hemorrhages<br />

and cysts <strong>of</strong> <strong>the</strong> trunk, sometimes causîng gre<strong>at</strong> distorsion, and obscuring<br />

<strong>the</strong> structures in this region. There were few non-neural defects apparent<br />

by 72 hours.


TABLE B.'DEVEIOPI{ENT'AFTER'WINDOIiIING AT 14;'26:IAND' 38'HOURS<br />

W<strong>ln</strong>dowing Windowing l,/î ndow Î ng No<br />

<strong>at</strong>..14 hr;. .. . <strong>at</strong> 26 hr.s, . <strong>at</strong>..38 hrs. \Jindowing<br />

Developing Emb ryos<br />

53<br />

45<br />

open Anterior Neuropore<br />

tJ<br />

2<br />

¡<br />

0pen Rhomboìd S inus<br />

?<br />

5<br />

2<br />

\<br />

Open Neural Tube Defects<br />

I<br />

25<br />

3<br />

0<br />

Mlcrocephal y<br />

3<br />

t4<br />

5<br />

4<br />

Eye Defects<br />

1<br />

4<br />

3<br />

2<br />

Facia I Defects<br />

1<br />

0<br />

2<br />

0<br />

Cardiac Deiects<br />

2<br />

3<br />

0<br />

0<br />

Trunk Cys ts<br />

0<br />

6<br />

3<br />

0<br />

Limb Bud Defects<br />

0<br />

0<br />

0<br />

0


63<br />

5.2 MALFoRMAT I 0NS .P¡OpUCEp BY \ir l ND0Vill NG .<br />

Analysîs <strong>of</strong> <strong>the</strong> nalform<strong>at</strong>lons produced by <strong>the</strong> windowing technic<br />

required culture <strong>of</strong> tre<strong>at</strong>ed embryos to <strong>the</strong> perìod when <strong>the</strong> external embryonic<br />

form had been establ lshed. By this time, however, <strong>the</strong> mortal ity among<br />

developing embryos was substantial, and many <strong>of</strong> <strong>the</strong> dead embryos were so<br />

necrotlc th<strong>at</strong> full examìn<strong>at</strong>lon was impossible.<br />

For thîs reason, embryos w<strong>ln</strong>dowed <strong>at</strong> 26 hours and developing to<br />

5 days or 12 days were compared to <strong>the</strong> 72 hour (3 days) group in Section<br />

5.1.<br />

-<br />

Rs ihis was an analysis <strong>of</strong> <strong>the</strong> external malform<strong>at</strong>îons produced by<br />

<strong>the</strong> w<strong>ln</strong>dowing technlc, it includetl only well-preserved experimental embryos<br />

showing con'tinued dèvelopment after windowìng. Table 9<br />

and Fi9.11<br />

show <strong>the</strong> external defects recorded <strong>at</strong> 3,5 and 12 days <strong>of</strong> incub<strong>at</strong>ion,<br />

expressed âs percentages <strong>of</strong> those develop<strong>ln</strong>g embryos which could be examined<br />

fully. These values do not represent <strong>the</strong> ou..ull malformadion r<strong>at</strong>es in<br />

tre<strong>at</strong>ed embryos but, r<strong>at</strong>her, reflect <strong>the</strong> changing p<strong>at</strong>tern <strong>of</strong> malform<strong>at</strong>ions<br />

wi th prolonged g rowth .<br />

<strong>ln</strong> Fi9. Il <strong>the</strong> most striking finding is <strong>the</strong> uniformly high incidence<br />

<strong>of</strong> open cord defects in all three groups.<br />

0f <strong>the</strong> non-neural ma I fo rma t,îions , def ects învolving <strong>the</strong> face-and beak,<br />

trunk, rump and ta¡1, anterior body wall,and lower I imbs appear with íncreasing<br />

frequency <strong>at</strong> progressively l<strong>at</strong>er stages <strong>of</strong> development.


TABLE 9. ¡4ALFORMATIONS PRODUCED'BY [TINDO\iING'AT'26'HOURS<br />

?:?:v: {ll::: ¡ ?ly: {Tì<br />

l2 Days (Z)<br />

Develop<strong>ln</strong>g Emb ryos<br />

53<br />

109<br />

69<br />

open Cord Defects<br />

25&7.12')<br />

ç3 (57 .8)<br />

41(59.42)<br />

0pen Bra <strong>ln</strong> Defects<br />

2(3,77)<br />

4 (3.671<br />

6 (8.70)<br />

Ml crocepha I y<br />

14(26.\z',)<br />

1o (9. r 7)<br />

6 (8.70)<br />

Eye Defects<br />

\0.55)<br />

\2(38.53)<br />

19Q7.5\)<br />

Face E Beak Defects<br />

0 (0)<br />

1l (10.09)<br />

21(30.43',)<br />

Trunk Defects<br />

6(11.32)<br />

8 (7.34)<br />

lo(14.49)<br />

' Rump e Tail Defects<br />

0 (0)<br />

30(27.521<br />

31(44.93)<br />

Ectopia V I sce rum<br />

0 (0)<br />

0 (0)<br />

27 ß9.13)<br />

Lowe r Llmb Defects<br />

0 (0)<br />

\ß.67',)<br />

17 Q\.6\)<br />

Upper Llrnb Defects<br />

0 (0)<br />

1(0.92)<br />

0 (0)


Fis.<br />

Percentages <strong>of</strong> neural arrd non-neural defects<br />

in survîvìng experimental embryos windowed<br />

êt 26 hours. Embryos recovered <strong>at</strong> 3, 5 ancl<br />

12 days.


N=231 ffil e ooyi<br />

ffi s oays<br />

[il t2 ooys<br />

OPEN CORD ÞETECTS<br />

OPEN BRA¡N DEFECTS<br />

MICROCEPHALY<br />

EYE DEFECTS<br />

FACE & BE.AK DEFECTS<br />

TRUNK DEFECTS<br />

RUMP & T,AIL DEFECTS<br />

ECTOPIA VISCERUM<br />

LOWER LIMB DEFECTS<br />

0r020304050ó0<br />

EXTERNAT MATFORMATTONS (%) AFTER WtNDOW|NG<br />

(2ó HOURSI


67<br />

5.3 INVFSïIGATtON 0F THE TERAToGENTC EFFECT:0F t;/lNpor,ilNG<br />

<strong>ln</strong> an <strong>at</strong>tempt to define some <strong>of</strong> <strong>the</strong> factors leading to abnorrnal<br />

development after windowing, several experiments were performed to<br />

investig<strong>at</strong>e varlous aspects <strong>of</strong> <strong>the</strong> windowi.ng technic, <strong>ln</strong> one group <strong>of</strong><br />

experiments eggs were trear:ed bv vîbr<strong>at</strong>ion, <strong>of</strong> by <strong>the</strong> applic<strong>at</strong>íon <strong>of</strong><br />

parafî lm and a plasticine iing, wÌthout windowîng. <strong>ln</strong> o<strong>the</strong>r experiments<br />

<strong>the</strong> ¡ntroduced air space was obl iter<strong>at</strong>ed <strong>at</strong> <strong>the</strong> time <strong>of</strong> windowing.<br />

5.3.1 Vibf¡itiori óf UnoÞened Eggs,<br />

,.m;r<strong>at</strong>ÎonProducedby<strong>the</strong>dentalsandIngdiscusedto<br />

cut <strong>the</strong> shell w<strong>ln</strong>dows, unopened eggs were vlbr<strong>at</strong>ed for J0 seconds wlth a<br />

carborundum ball mounted on <strong>the</strong> dr¡ll. Thls procedure was performed ât<br />

0, 26 and 33 hours <strong>of</strong> încub<strong>at</strong>lon, and <strong>the</strong> eggs <strong>the</strong>n re<strong>ln</strong>cub<strong>at</strong>ed to a total<br />

<strong>of</strong> / days without be<strong>ln</strong>g turned.<br />

Tables 10 and tt show <strong>the</strong> mortal ìty and malform<strong>at</strong>ion r<strong>at</strong>es for <strong>the</strong><br />

three experîmental groups and <strong>the</strong> controls. Bêcause <strong>of</strong> <strong>the</strong> rel<strong>at</strong>ively<br />

small numbers ín each group, values are not converted to percentages.<br />

Desplte <strong>the</strong> small numbers ît is clear thðt V¡br<strong>at</strong>¡on by itself is not<br />

responsîble for <strong>the</strong> ter<strong>at</strong>ogenic effect <strong>of</strong> <strong>the</strong> windowíng techníc. There<br />

werè no open èord defects in any <strong>of</strong> <strong>the</strong> experimentêl or control groups.


6B<br />

TABLEt loj lloRTALtTy AFTER VtBRAT|0N ALoNË AT 0; 26 AND 33 H0URS<br />

Vi bra t ìon Vl br<strong>at</strong> ion Vibr<strong>at</strong> i on No<br />

<strong>at</strong> 0 Hrs. <strong>at</strong> 26 Hrs. <strong>at</strong> 33 Hrs. Vibr<strong>at</strong>ion<br />

Number <strong>of</strong> Eggs<br />

12<br />

22<br />

10<br />

22<br />

Early De<strong>at</strong>hs<br />

0<br />

1<br />

0<br />

1<br />

Develop<strong>ln</strong>g Emb ryos<br />

Al ive wlth No Defc.cts<br />

12<br />

II<br />

21<br />

r5<br />

10<br />

9<br />

21<br />

18<br />

Al lve wîth Defects<br />

1<br />

3<br />

1<br />

2<br />

Dead with No Defects<br />

0<br />

0<br />

0<br />

I<br />

Dead wîth Defects<br />

0<br />

3<br />

0<br />

0


69<br />

ÏABLE 1 I. MALFORMATIONS AFTER' V I BRATI ON'AIONE'AT O ; . 26' ärid' 33 HOURS<br />

Vi br<strong>at</strong> ion Vìbr<strong>at</strong>ion Vibr<strong>at</strong>ion No<br />

<strong>at</strong> 0..Hrs. . .. <strong>at</strong>.26..Hrs,......<strong>at</strong>..33..Hrs.... Vibr<strong>at</strong>ion<br />

Numbers <strong>of</strong> Emb ryos<br />

12<br />

22<br />

10<br />

22<br />

0pen Cord Defects<br />

0<br />

0<br />

0<br />

.0<br />

Open Brain Defects<br />

1<br />

I<br />

0<br />

0<br />

Ml crocepha ly<br />

0<br />

2<br />

0<br />

1<br />

Eye Defects<br />

0<br />

3<br />

0<br />

t<br />

Face E Beak Defects<br />

I<br />

0<br />

0<br />

0<br />

Trunk Defects<br />

1<br />

3<br />

0<br />

0<br />

Rump e Tai I Defects<br />

2<br />

0<br />

0<br />

0<br />

Ectop la Vlscerum<br />

0<br />

0<br />

I<br />

0<br />

Limb Defects<br />

0<br />

0<br />

0<br />

0


70<br />

5,3.2 Pa-rôf i Idì ¿irid PIèsticIrie l,Jìthoút 1^1î ridoli,î n9<br />

Chemical agents ¡n <strong>the</strong> plasticÌne or parafi lm used to seal rv i ndowed<br />

eggs, r<strong>at</strong>her than vîbr<strong>at</strong>îon by <strong>the</strong> dental disc, might altern<strong>at</strong>îvely be<br />

responsible for <strong>the</strong> ter<strong>at</strong>ogenîc effect <strong>of</strong> window<strong>ln</strong>g. This possibil ity<br />

was tested by apply<strong>ln</strong>g a parafílm circle and.plasticìne ring to <strong>the</strong><br />

intact shell overty<strong>ln</strong>g three groups <strong>of</strong> embryos.<br />

Eggs were first candled to locête <strong>the</strong> postion <strong>of</strong> <strong>the</strong> embryos,<br />

and <strong>the</strong> plasticîne,/parafl lm covers applìed <strong>at</strong> 0,26, and 33 hours <strong>of</strong><br />

incub<strong>at</strong>ion. Embryos were recovered after a total <strong>of</strong> / days.<br />

Tables 12 and 13' show th<strong>at</strong> <strong>the</strong> mortal ity and overall malform<strong>at</strong>ion<br />

r<strong>at</strong>es are lowest <strong>ln</strong> <strong>the</strong> control group and hlghest in embryos tre<strong>at</strong>ed<br />

from <strong>the</strong> begînning <strong>of</strong> incub<strong>at</strong>ion. Because <strong>of</strong> <strong>the</strong> smaìl numbers in each<br />

group values are not converted to percentages. The results, however,<br />

show th<strong>at</strong> <strong>the</strong>re ls no obvious ter<strong>at</strong>ogenic factor eman<strong>at</strong>îng from <strong>the</strong> parafilm/<br />

plastic<strong>ln</strong>e covers alone. <strong>ln</strong> <strong>the</strong> control group <strong>the</strong>re was onu ,pont"nou,<br />

open cord defect.


71<br />

TABLE I2;},IORTALITY AFTE-R PLASTICINE,/PARAFILH ALONE AT O; 26 AND.33 IIOURS<br />

' Cover Cover Cover No<br />

<strong>at</strong> 0 Hrs. <strong>at</strong> 26 Hrs. <strong>at</strong> 33 Hrs. Cover<br />

Number <strong>of</strong> Eggs<br />

Early De<strong>at</strong>hs<br />

Develop<strong>ln</strong>g Emb ryos<br />

Al lve wlth No Defects<br />

lt<br />

2<br />

?<br />

r<br />

2<br />

18<br />

1<br />

17<br />

12<br />

12<br />

0<br />

12<br />

t0<br />

32<br />

0<br />

32<br />

26<br />

Al ive with Defects<br />

3<br />

I<br />

4<br />

Dead wi th No Defects<br />

1<br />

0<br />

1<br />

I<br />

Dead wl th Defects<br />

1<br />

2<br />

0<br />

t


TABLE 13; MALFORI4ATIONS AFTER PLASTICINE/PARAFILl:I'AtOi{E<br />

Cover Cover Cover<br />

<strong>at</strong> 0 Hrs. <strong>at</strong> 26 Hrs. <strong>at</strong> 33 Hrs.<br />

No<br />

Cover<br />

Numbers <strong>of</strong> Emb ryos<br />

0pen Cord Defects<br />

0pen Brain Defects<br />

Mi c rocepha I y<br />

Eye Defects<br />

Face ê Beak Defects<br />

Trunk Defects<br />

Rump € Ta 1l Defects<br />

Ectopla Visceru¡h<br />

Limb Defects<br />

11<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

2<br />

1<br />

0<br />

12


73<br />

5.3.3 .o¡liter<strong>at</strong>ion,l<strong>of</strong><br />

lt¡tro¿u¿¿¿<br />

eir space<br />

There fs llttle evidence th<strong>at</strong> vibr<strong>at</strong>ion <strong>of</strong> <strong>the</strong> eggs or m<strong>at</strong>erials<br />

<strong>ln</strong> <strong>the</strong> p!astîcine/parafilm covers are responslble for <strong>the</strong> malform<strong>at</strong>ions<br />

produced by wÌndowÌng. Thîs suggesb th<strong>at</strong> <strong>the</strong> presence <strong>of</strong> an introduced<br />

alr space above <strong>the</strong> developing embryos may be <strong>the</strong> causa¡ agent. To<br />

test this posslbilîty <strong>the</strong> <strong>ln</strong>troduced alr space was oblíter<strong>at</strong>ed in three<br />

dlfferent ways <strong>at</strong> varying ìntèrva¡s after windowing <strong>at</strong> 26 hours <strong>of</strong><br />

<strong>ln</strong>cub<strong>at</strong>lon. <strong>ln</strong> each experlment eggs were sealed wîth parafilm and re<strong>ln</strong>cub<strong>at</strong>ed<br />

to 72 hours wlthout turn<strong>ln</strong>g but w¡th <strong>the</strong> sealed lirindow facing<br />

downwards (figs. 8n and B and 9A and B),<br />

' <strong>ln</strong> <strong>the</strong> first experiment <strong>the</strong> <strong>ln</strong>troduced aîr space was filled with<br />

albumen from unwindowed eggs <strong>of</strong> <strong>the</strong> same b<strong>at</strong>ch, <strong>at</strong> 26,32,38, 44 and 50<br />

hours <strong>of</strong> încub<strong>at</strong>ion (or 0, 6, 12, l8 and 24 hours after wîndowing).<br />

Tables 14 and 15 and Fig.12, show th<strong>at</strong> mortal ity and <strong>the</strong> overall malform<strong>at</strong>ion<br />

r<strong>at</strong>es decl ined with earlier obl iter<strong>at</strong>íon <strong>of</strong> <strong>the</strong> air space.<br />

<strong>ln</strong> <strong>the</strong> second experiment F 12 culture medium (ttam, I965).<br />

was used to obl îter<strong>at</strong>e <strong>the</strong> introduced air space êt <strong>the</strong> same intervals<br />

after windowing. Tables l6 and 17 and Fi9. l3 also reveal a<br />

reduction in.mortality and overal I malform<strong>at</strong>ion r<strong>at</strong>es with earlier<br />

obliter<strong>at</strong>¡on.<br />

Finally, reexpansion <strong>of</strong> <strong>the</strong> air cell with a rubber ¡al loon,to<br />

dlsplace <strong>the</strong> introduced air space, was performed <strong>at</strong> 26, 38 and 50 hours<br />

<strong>of</strong> íncub<strong>at</strong>ion (or 0, 12 and 24 hours after windowing). Tables 18 and<br />

19 and FiS. l¡r show th<strong>at</strong> aîr cell reexpansion also reverses <strong>the</strong> terâtogenic<br />

effect <strong>of</strong> wîndowing, especlal ly when performed Ímmedi<strong>at</strong>ely.


41<br />

13<br />

0<br />

23<br />

No l^l i ndow<br />

Control s (Z)<br />

l1<br />

l1<br />

o (o)<br />

9 (81 .82)<br />

2(18.18)<br />

0 (0)<br />

0 (0)<br />

TABLE 14. I4ORTALITY FOLLO}'ING INTRODUCTION OF ALBUMEN AT,VARIOUS INTERVALS AFÎER WINDOT,.IING<br />

Al bumen<br />

<strong>at</strong><br />

50 Hrs. (?)<br />

Al bumen<br />

<strong>at</strong><br />

44 Hrs. (Z)<br />

Al bumen Al bumen<br />

<strong>at</strong> <strong>at</strong><br />

JB Hrs. (l) 32 Hrs. (%l<br />

Albumen Tota I s<br />

<strong>at</strong> with<br />

26 Hrs. (?) Albumen<br />

Number <strong>of</strong> Eggs 17 27<br />

Earfy De<strong>at</strong>hs 4(23.53) 2(7.41')<br />

Developing Embryos 13 25<br />

17 15<br />

,+(23,531 2(13,33)<br />

13 13<br />

13 89<br />

o(o) 12<br />

13 77<br />

Al ive w¡th No Defects<br />

Al Íve wi th Defects<br />

5Q9 .\1) 1 1 (40. 74)<br />

2(11.76) 4(14.81)<br />

9$2.94') 5ß3.33)<br />

2(11.76) \(26.67)<br />

1 1 (84.62)<br />

1(7 .69)<br />

Dead wl th No Defects<br />

0 (0) 0 (0)<br />

0 (0) 0 (0)<br />

0 (0)<br />

Dead wî th Defects<br />

6(35.29 10(37.04)<br />

2(11.76',) \(26.67)<br />

1(7 .69)


No t'i i ndow<br />

Controls<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

TABLE I5. I'{ALFORHATIONS FOLLOI"'ING INTRODUCTION OF ALBUMEN AT VARIOUS INTERVALS AFTER I,JINDOl^'ING<br />

Albumen Albumen Albumen Albumen Albumen<br />

êt 50 Hrs. <strong>at</strong> 44 Hrs. <strong>at</strong> 38 Hrs. êt 32 Hrs. <strong>at</strong> 26 Hrs.<br />

Open tord Defects<br />

'5<br />

0<br />

1<br />

0<br />

Open Brain Defects<br />

I<br />

2<br />

I<br />

I<br />

0<br />

Microcephaly<br />

6<br />

5<br />

1<br />

4<br />

0<br />

Eye Defects<br />

5<br />

1<br />

2<br />

6<br />

1<br />

Facl al Defects<br />

1<br />

2<br />

2<br />

0<br />

0<br />

Trunk Defects<br />

0<br />

0<br />

0<br />

0<br />

n<br />

Trunk Cys ts<br />

t<br />

?<br />

0<br />

2<br />

t<br />

Limb Bud Defects<br />

0<br />

0<br />

0<br />

2<br />

0


Fíg.<br />

Percentages <strong>of</strong> early de<strong>at</strong>hs and l<strong>at</strong>er de<strong>at</strong>hs<br />

and deformities fol lowing ìntroduction <strong>of</strong> albumen<br />

<strong>at</strong> varying perïods after windowing <strong>at</strong> 26 hours.<br />

Embryos recovered ðt 72 hours.


N Eorly Deoths<br />

N=100<br />

.n<br />

9óo<br />

d<br />

co<br />

=!r¡<br />

lJo40<br />

ñ<br />

N<br />

N<br />

N<br />

N<br />

Alive, No Defects<br />

Alive, Defects<br />

Deod, No Defects<br />

Deod, Defects<br />

5O HRS.<br />

44 HRS. 3B HRS. 32 HRS. 2ó HRS. CONTROLS<br />

MORTATITY AFTER INTRODUCTION OF ALBUMEN<br />

AT VARYTNG PERIODS AFTER WINDOWING {2ó HOURS}


78<br />

ALBUMEN INTRODUCTION<br />

Analysís <strong>of</strong> early de<strong>at</strong>hs and developing embryos ín <strong>the</strong> combined<br />

experîmental groups and <strong>the</strong> control group:<br />

Observed Val ues 12 0<br />

77 lt<br />

Degrees <strong>of</strong> Freedom 1<br />

Chî Square (Y<strong>at</strong>es Correction) 0.65<br />

P<br />

groups:<br />

N.S.<br />

Analysís <strong>of</strong> early de<strong>at</strong>hs and developing embryos ¡n <strong>the</strong> experimental<br />

observed Values 4 2 4 2 0<br />

13 25 13 13 13<br />

Degrees <strong>of</strong> Freedom 4<br />

Chi Square 5,82<br />

P<br />

N.S.<br />

Analysis <strong>of</strong> ì<strong>at</strong>er de<strong>at</strong>hs and defects' în develop<strong>ln</strong>g embryos <strong>of</strong><br />

each experimental group cannot be performed because <strong>of</strong> 0 vˡlues for<br />

embryos classified as Dead w¡th No Defects.


F 12 I'IEDIUH AT VARIOUS INTERVALS AFTER WINDOI,/ING<br />

97<br />

8<br />

89<br />

33<br />

33<br />

4<br />

r9<br />

9<br />

0 (0)<br />

9<br />

7 07 .78)<br />

1(11.11)<br />

1(11.1f)<br />

0(0)<br />

\l<br />

\o<br />

. F12 F12 F12<br />

ât <strong>at</strong> <strong>at</strong><br />

50 Hrs. (t) 44 Hrs. (Z) 38 Hrs. (?)<br />

F12 F12<br />

<strong>at</strong> <strong>at</strong><br />

32 Hrs . (Z) 26 H rs . (%)<br />

Totals wî th No Window<br />

F12 Control s (Z)<br />

Numbers <strong>of</strong> Eggs<br />

Êarly De<strong>at</strong>hs<br />

Deve lop ing Emb ryos<br />

16<br />

2(12.501<br />

l4<br />

32 ?o<br />

4(r2.50) 1(5)<br />

28 19<br />

14<br />

13<br />

r(7.r4)<br />

15<br />

15<br />

o(o)<br />

Al ive wlth ¡¡o Defects<br />

2(12.501<br />

11(34.38) 6(30)<br />

5ß5.71)<br />

e (60)<br />

Al îve wîth Defects<br />

Dead wÌth No Defects<br />

3fi9.75)<br />

0 (0)<br />

9þ8.13, 10(50)<br />

4(12.50) 0(0)<br />

6 (42.86)<br />

0 (0)<br />

5ß3.331<br />

0 (0)<br />

Dead wìth Defect s<br />

9G6.25')<br />

4(12.50) 9(ì5)<br />

2(14.29)<br />

t (6.67)<br />

.,,.


0<br />

1<br />

0<br />

0<br />

a<br />

o<br />

TABLE 17. I'lALF0RÌ1ATi0NS F0LL0l/lNG INTRODUCTI0N 0F F 12 MEDIUM AT VARI0US INTERVALS AFTER !/INDO!/ING<br />

F12 F12 F12 F12 F12 No \^l indow<br />

<strong>at</strong> 50 Hrs. <strong>at</strong> 44 Hrs. <strong>at</strong> 38 Hrs, <strong>at</strong> 32 Hrs. <strong>at</strong> 26 l1rs. Controls<br />

open Cord Defects<br />

Open Brain Defects<br />

6<br />

0<br />

I<br />

I<br />

0<br />

1<br />

2<br />

1<br />

1<br />

1<br />

0<br />

0<br />

Microcephaìy<br />

10<br />

5<br />

E<br />

2<br />

3<br />

Eye Defec t s<br />

B<br />

3<br />

2<br />

1<br />

2<br />

FacÌal Defects<br />

2<br />

0<br />

1<br />

0<br />

1<br />

Trunk Defects<br />

I<br />

I<br />

0<br />

4<br />

0<br />

Trunk Cys ts<br />

L imb Bud Defects


Fis.<br />

13.<br />

Percentages <strong>of</strong> early de<strong>at</strong>hs and lâter de<strong>at</strong>hs<br />

and deformÌties following ìntroduction <strong>of</strong><br />

F 12 medium <strong>at</strong> varying periods after windowing<br />

<strong>at</strong> 26 hours. Ernbryos recovered <strong>at</strong> 7Z hours.


N Eorly Deothi<br />

N=10ó<br />

N<br />

a<br />

ú,<br />

o<br />

d,<br />

cô<br />

=¡t¡<br />

u-<br />

o<br />

Èe<br />

ó0<br />

N Al¡re, No Defects<br />

N Al¡ve, Defects<br />

Nl Deod, No Defects'<br />

Nl Deod, Defects<br />

50 HRS.<br />

44 HRS. 3B HRS. 32 HRS. 2ó HRS. CONTROLS<br />

MORTATITY AFTER INTRODUCTION OF FI2 AT VARY¡NG PERIODS<br />

AFTER WINDOWING (2ó HOURS)


B3<br />

Fl2 INTR0DUCTtqN<br />

Analysis <strong>of</strong> early de<strong>at</strong>hs and developing embryos in <strong>the</strong> combined<br />

experimental groups and <strong>the</strong> control group:<br />

Observed Va I ues 8 0<br />

899<br />

Degrees <strong>of</strong> Freedom<br />

I<br />

Chì Square (Y<strong>at</strong>es Correction) 0.06<br />

P<br />

N.S.<br />

i<br />

group:<br />

Analysls <strong>of</strong> eorly de<strong>at</strong>hs and developing embryos în experimental<br />

0bserved Values 2 4 1 1 0<br />

Degrees <strong>of</strong> Freedom<br />

14 28 19 13 15<br />

lr<br />

Chi Square 2.80<br />

P<br />

N.S.<br />

Analysls <strong>of</strong> l<strong>at</strong>er de<strong>at</strong>hs and defects in developing embryos <strong>of</strong><br />

each experimental g roup:<br />

Observed Va I ues<br />

Degrees <strong>of</strong> Freedom<br />

Chi Square<br />

P<br />

211 659<br />

3glo65<br />

04000<br />

94321<br />

12<br />

30. 44<br />

< 0.01


103<br />

51<br />

52<br />

28<br />

14<br />

4<br />

6<br />

No W î ndow<br />

Control s (2)<br />

11<br />

tt<br />

0 (0)<br />

r0(90.91)<br />

1 (9 .09)<br />

0 (0)<br />

0 (0)<br />

CELL REEXPANS iON AT<br />

Not Reexpand. Reexpand. Reexpand.<br />

Reexpand.(8) <strong>at</strong> êt ar<br />

50 Hrs. (*) 38 Hrs. (B) 26 Hrs. (%)<br />

l/lNDol.,lNG<br />

Tota l s<br />

Reexpanded<br />

I'lumber <strong>of</strong> Eggs \7<br />

23<br />

23<br />

10<br />

Early De<strong>at</strong>hs 29ß1 .7ol<br />

1 1 (47.83)<br />

1 1 (47.83)<br />

0 (0)<br />

Developing Embryos lB<br />

12<br />

12<br />

t0<br />

Al Íve with No Defects 8(17.02)<br />

5þ1.741<br />

5Q1.74)<br />

1o(1oo)<br />

Al îve with Defects 5(10.64)<br />

501.7\)<br />

4(17.39)<br />

0 (0)<br />

Dead with No Defects 1(2,13)<br />

1 (4.35)<br />

2 (8. 70)<br />

0 (0)<br />

Dead wi th Defecrs 4(8.51)<br />

I (4 .35)<br />

1 (4.35)<br />

0 (0)


No Wi ndow<br />

Control s<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

co<br />

Not Reexpand.<br />

Reexpand. <strong>at</strong> 50 Hrs.<br />

ANS ION AT VAR I<br />

Reexpand.<br />

ãt 38 Hrs.<br />

Reexpan d .<br />

<strong>at</strong> 26 Hrs.<br />

Open Cord Defects<br />

7<br />

2<br />

1<br />

ll<br />

open Bra in Defects<br />

2<br />

0<br />

2<br />

0<br />

Mi c rocepha I y<br />

2<br />

0<br />

I<br />

0<br />

Eye Defects<br />

5<br />

1<br />

2<br />

0<br />

Facial Defects<br />

4<br />

0<br />

2<br />

0<br />

Trunk Defects<br />

0<br />

1<br />

0<br />

0<br />

Trunk Cys ts<br />

0<br />

3<br />

1<br />

0<br />

Lîmb Bud Defects<br />

0<br />

0<br />

0<br />

0


Fi g. 14. Percentages <strong>of</strong> early de<strong>at</strong>hs and ì<strong>at</strong>er de<strong>at</strong>hs<br />

and deformÍtìes fol lowÌng reexpansion <strong>of</strong> <strong>the</strong><br />

air-ceìl <strong>at</strong> varying periods after windowing <strong>at</strong><br />

26 hours. Embryos recovered êt 72 hours.


NOT REEXP. 50 HRS. 38 ¡-IRS. 2ó HRS. CONTROTS<br />

¡.\<br />

oo<br />

N Eorly Deothi<br />

Nl Aliue, No Defects<br />

Nl Alive, Defects<br />

N beod, Nlo Defects<br />

N Deod, Defects<br />

MORTATITY AFTER REEXPANSION OF AIR CEIL AT..VARYING<br />

pERroDs AFTER WTNDOW¡NG 12ó HOURS)


88<br />

AtR qELL, REEXPANSI0N<br />

Analysls <strong>of</strong> early de<strong>at</strong>hs and developing ernbryos in <strong>the</strong> combined<br />

experímental groups and <strong>the</strong> control group:<br />

Observed Val ues Sl 0<br />

Degrees <strong>of</strong> Freedom<br />

52 tl<br />

Chi Square (Y<strong>at</strong>es Correction) 7.g5<br />

p<br />

. O.OI<br />

l<br />

groups:<br />

Analysis <strong>of</strong> early de<strong>at</strong>hs and deveroping embryos in <strong>the</strong> experimentar<br />

Observed Values 29 lt ll 0<br />

18 12 12 rO<br />

Degrees <strong>of</strong> Freedom 3<br />

Ch i Square n.65<br />

P < 0..01<br />

Analysis <strong>of</strong> l<strong>at</strong>er de<strong>at</strong>hs and defects in developing embryos <strong>of</strong> each<br />

experimental group:<br />

Observed Val ues<br />

Degrees <strong>of</strong> Freedom<br />

Chi Sq ua re<br />

P<br />

8 5 5 ro<br />

5540<br />

r120<br />

41 o<br />

9<br />

14.05<br />

N.S.<br />

\


Ro<br />

Comparison <strong>of</strong> Figs. 12, lJ and 14 shows thät obliter<strong>at</strong>ion <strong>of</strong> <strong>the</strong><br />

introduced air space reduces its ter<strong>at</strong>ogenic effect, part¡cularly when<br />

performed immedi<strong>at</strong>ely after windowíng. comparlson <strong>of</strong> <strong>the</strong> st<strong>at</strong>isticêl<br />

analyses, however, shows some incons¡stencies between <strong>the</strong> three<br />

expe r¡ ments 3<br />

(") early de<strong>at</strong>hs and deveroping embryos in <strong>the</strong> combined experimental<br />

groups and <strong>the</strong> control group:<br />

albumen ¡ n troduct ¡on<br />

F12 înt roduct i on<br />

air cell reexpanslon<br />

N.S.<br />

N.S.<br />

P < 0.01<br />

(b) early deêths and developing embryos in each experimental group:<br />

albumen introduction<br />

F12 i nt roduct i on<br />

aír cell reexpansion<br />

N.S.<br />

N.S.<br />

P < 0.01<br />

(") de<strong>at</strong>hs and defects in developíng embryos <strong>of</strong> each developing group<br />

<strong>of</strong> experimental emb ryos<br />

albumen ¡ntroduction<br />

F12 introduction<br />

air cel.l reexpansion<br />

P < 0.01<br />

N.S.<br />

0bl iter<strong>at</strong>ion <strong>of</strong> <strong>the</strong> introduced air space thus reduces <strong>the</strong> early<br />

deãth r<strong>at</strong>es within and between <strong>the</strong> experímental groups when albumen or<br />

F12 (but not air cell reexpansion) are emproyed. A more subtre reduction<br />

<strong>ln</strong> l<strong>at</strong>er de<strong>at</strong>hs and malform<strong>at</strong>íons is achieved by air cerr reexpansion<br />

(but not by albumen or Fl2), Despite <strong>the</strong>se difference <strong>the</strong> experiments<br />

confirm th<strong>at</strong> <strong>the</strong> presencè <strong>of</strong> an artìf ical. air space above.<br />

chick embryos <strong>at</strong> early developmental stages is hlghly ter<strong>at</strong>ogenic.


90<br />

5.4 BACTERt4L CUTTURE 0F UlNpohrEp EGGS<br />

One <strong>of</strong> <strong>the</strong> hazards <strong>of</strong> <strong>the</strong> windowing technic is <strong>the</strong> possibîlity <strong>of</strong><br />

acquired infection, which might play a role Ín <strong>the</strong> ter<strong>at</strong>ogen¡c action<br />

<strong>of</strong> ân introduced air space. Fur<strong>the</strong>rmore, one <strong>of</strong> <strong>the</strong> hypo<strong>the</strong>ses to<br />

account for <strong>the</strong> p<strong>at</strong>hogenes¡s <strong>of</strong> anencephaly s.uggests thât it may result<br />

from an extensive întra-uterine encephalomyel îtis (Brouwer, t9l6).<br />

For both <strong>the</strong>se reasons <strong>the</strong> sterility <strong>of</strong> <strong>the</strong> standard wîndowing<br />

techníc was assessed by making aerobic cultures <strong>of</strong> albumen on bloodagar<br />

ât <strong>the</strong> times <strong>of</strong> windowing (26 hours) and <strong>of</strong> fix<strong>at</strong>ion (72 hours).<br />

Bacterial cultures were taken from experimentêl eggs wíth embryos<br />

shovring early de<strong>at</strong>h and necrosis, as wel I as those developing to l<strong>at</strong>er<br />

stages' The control eggs were only cultured <strong>at</strong> <strong>the</strong> time <strong>of</strong> fix<strong>at</strong>ion.<br />

Examín<strong>at</strong>ion <strong>of</strong> <strong>the</strong> pl<strong>at</strong>es after A days growth <strong>at</strong> 3go0 reveôled<br />

some colonies on <strong>the</strong> track smeared by <strong>the</strong> wire loop,and some on background<br />

areas <strong>of</strong> <strong>the</strong> medium (which were regarded "a<br />

contaminants).<br />

"¡a-uoan.<br />

Tables 20 e 2_1: show th<strong>at</strong> <strong>the</strong> rnortal ity and malform<strong>at</strong>ions rêtes in<br />

experîmental (windowed) and control embryos <strong>at</strong> 72 hours correspond to<br />

those in o<strong>the</strong>r exper¡ments. <strong>ln</strong> Table 22 a number <strong>of</strong> blood-agar pl<strong>at</strong>es<br />

show Oorynebacterium colonies as background contam¡nants. There is no<br />

evídence <strong>of</strong> significant ínfection in wíndowed eggs.


9l<br />

TABLE 2P" MORTALITY AFTER Ii'INDOl,,'ING AT 26 HOURS..(FOR BACTERI{L CULTURE)<br />

Exper ¡ men ta l s<br />

Control s<br />

Number <strong>of</strong> Egg s<br />

Early De<strong>at</strong>hs<br />

Developing Emb ryos<br />

34<br />

7<br />

27<br />

l0<br />

0<br />

10<br />

Al ive wîth No Defecrs<br />

Al ive wi th Defecrs<br />

Deâd wi th No Defects<br />

Dead wi th Defects<br />

9<br />

t0<br />

1<br />

7<br />

9<br />

1<br />

0<br />

0<br />

TABLE 21. l"lALFoRI4ATtl<br />

I,,IALFORI4ATI ONS AFTER Ì,'I NDOhII NG AT<br />

(FOR BACTERIAL<br />

Exper í menta I s<br />

Control s<br />

Numbers <strong>of</strong> Emb ryos<br />

0pen Cord Defects<br />

open Brain Defects<br />

llî crocepha I y<br />

Eye Defects<br />

Facial Defects<br />

Trunk Defects<br />

Trunk Cys ts<br />

Limb Bud Defects<br />

27<br />

l0<br />

0<br />

tl<br />

t0<br />

3<br />

1<br />

4<br />

D<br />

10<br />

0<br />

0<br />

I<br />

1<br />

i<br />

0<br />

0<br />

0


92<br />

TABLE 22. ¡¡UI'ISELTS OF PLATES {ITH COLONIES AFTER,,¡[,DAYS GROWTH<br />

Bacl I I us<br />

Staph. albus Corynebâct.<br />

Exp erlmenta I s 0n Track<br />

0<br />

1<br />

f<br />

(2.6 Hrs. ) Backg round<br />

t<br />

2<br />

2<br />

Experimentaìs 0n Track<br />

(72 Hrs. ), Backg round<br />

Controls<br />

(72 Hrs. )<br />

0n Track<br />

Background


6 RESULTS OF EMBRYOLOG I cAL STUD I Es


94<br />

6.1 EMBRY0ûIIES I s 0L 0!!\- NEUR4L lErElrs<br />

To study <strong>the</strong> development <strong>of</strong> open neural defects, embryos were<br />

recovered <strong>at</strong> various intervals after windowing <strong>at</strong> 26-30 hours. Large<br />

groups <strong>of</strong> experímental and control embryos were fixed êt thê tíme<br />

<strong>of</strong> windowing, or 6, 18, _32<br />

and 42 hours l<strong>at</strong>eÉ (groups 0C,6E, 6C,!BE,l8C,<br />

30E, 30C, \2E \ZC). Excluding embryos showing early de<strong>at</strong>h and necrosis,<br />

each embryo was Staged, examîned for defects, and drawn with a camera<br />

I ucida <strong>at</strong>tachment.<br />

'<br />

Embryos in good condîtion <strong>at</strong> fix<strong>at</strong>ion were selected for serial<br />

sectîoning. Their histological changes were l<strong>at</strong>er compared to <strong>the</strong>lr<br />

appearance as whole embryosoas recorded in <strong>the</strong> camera lucída drawings<br />

(see Section 6.5 ) .<br />

6.1.1 Embryoníc- 9izes <strong>at</strong> 26 Houri.<br />

Because <strong>of</strong> diffîculty în Staging early emb,ryos without vîtal<br />

sta<strong>ln</strong>ing, development <strong>at</strong> <strong>the</strong> t¡me <strong>of</strong> windowing *", "r."r."1<br />

in terms <strong>of</strong><br />

blastoderm diameter (measured with a miliimeter ruler). <strong>ln</strong> embryos<br />

recovered <strong>at</strong> <strong>the</strong> time <strong>of</strong> windowing (OC), tneir sízes could be compared<br />

to <strong>the</strong> range <strong>of</strong> Stages, to índic<strong>at</strong>e <strong>the</strong> Stages <strong>of</strong> all <strong>the</strong> o<strong>the</strong>r exper¡-<br />

mental and cdntrol groups <strong>at</strong> 26 hours. The embryos recovered <strong>at</strong> <strong>the</strong> t¡me<br />

<strong>of</strong> wîndowín9 (OC) provided a base line for all <strong>the</strong> experimental ,groups<br />

(6E, tBE, 30E,428) and conrrol groups (6C, tBc,30c,42c).<br />

The sizes and Stages <strong>of</strong> group 0C embryos are given in Table 2l ,<br />

ênd <strong>the</strong> sizes <strong>of</strong> all o<strong>the</strong>r windowed groups are shown in Table 24.<br />

The range <strong>of</strong> sizes in group 0C is compared with sizes <strong>of</strong> group 6E, lBE,<br />

JOE, and 42E embryos <strong>ln</strong> Fig.l5A bB,and with <strong>the</strong> range <strong>of</strong> Stages ín Fig. 16A e B.


95<br />

TABLE 2?, SI,ZES AND STAGES OF DEVqIOIINC GLOUP OC EMBRYOS<br />

Slzes (mm)<br />

Stages (H¿H)<br />

1i<br />

1Z<br />

13<br />

5 6 7 8 9 t0 Totals (2)<br />

I<br />

2<br />

3<br />

3<br />

4<br />

7 ¡3.\6'<br />

7 (13.46)<br />

I (15.38)<br />

14<br />

4<br />

5<br />

I r (21.15)<br />

15<br />

l6<br />

1<br />

1<br />

2<br />

3<br />

2<br />

I<br />

7 u3.\6,<br />

7 (3.46)<br />

17<br />

1<br />

1<br />

2 (3.85)<br />

18<br />

1<br />

2<br />

3 ß.77)<br />

rotårs 3ß.77) 2(3.85)lo(19.23)13QÐ 18(34.62) 6(11.54152<br />

TABLE 24. SIZES OF DEVELOPING GROUP 6E. 18E. 3OE Ê 42E EMBRYOS<br />

S izes (mm)<br />

Groups<br />

r8Ê Tota I s (?)<br />

il<br />

3<br />

0<br />

1<br />

I<br />

5 Q'1t+)<br />

12<br />

13<br />

2<br />

,7<br />

3<br />

11<br />

2<br />

7<br />

7<br />

3<br />

14 (5.98)<br />

28(11.97)<br />

14<br />

15<br />

1'<br />

17<br />

15<br />

62(26 50)<br />

15<br />

16<br />

13<br />

4<br />

14<br />

t4<br />

r5<br />

2\<br />

14<br />

I<br />

56(23.93)<br />

50(21,37)<br />

17<br />

t<br />

3<br />

5<br />

5<br />

14( 5.98)<br />

r8<br />

t<br />

2<br />

2<br />

0<br />

5( 2.14)<br />

Tota I s<br />

\6<br />

73<br />

53<br />

23,9.


Fis. I5 A¿8, Range <strong>of</strong> s izes (mm.)<br />

68, tBE, 3cE and 42E<br />

<strong>of</strong> embryos in g roups<br />

conpared to group 0C.


97<br />

N=234<br />

ttt<br />

o<br />

d,<br />

ao<br />

ã<br />

t¡¡<br />

llo<br />

bq<br />

Ir t2 13 14 15 16 17 l8<br />

SIZES (mm) lN GROUPS óE,l8E,308,42E<br />

N=52<br />

il1213 14 15 ló17 18<br />

SIZES (mm) tN GROUP OC<br />

stzEs tN GRouPs oc,óE,l8E,3oE,42E


Figs. 16 AaB.. Range <strong>of</strong> sizes (mm. ) and Stages (UaH) ¡n<br />

group 0C.


N=52<br />

56789r0<br />

STAGES (H.&H.) rN GROUP rOC<br />

an<br />

o<br />

d<br />

co<br />

ñro<br />

IL<br />

o<br />

bq<br />

It 12 t3 t4 t5 ló t7 t8<br />

SIZES (mm) !N GROUP OC<br />

SIZES AND STAGES IN GROUP OC


100<br />

6.1.2 f4ortal í!y with Vsrying Periods <strong>of</strong> <strong>ln</strong>cub<strong>at</strong>ion _Af<br />

ter"}jindowin-9.<br />

The experimental embryos recovered 0, 6, 18, 30 and 42 hours after<br />

w<strong>ln</strong>dowing showed an increasing mortal íty with longer periods <strong>of</strong> incub<strong>at</strong>ìon<br />

(Table 25A and Fis. 17 ). The controls, by contrast, showed very<br />

few early de<strong>at</strong>hs. (ta¡le Z5S and Fig. l/i.<br />

St<strong>at</strong>istical analysis revealed a signÌficant dìfference in early<br />

de<strong>at</strong>hs between <strong>the</strong> combined experímental groups and <strong>the</strong> combined controls<br />

(P . 0.01). There were also signîficant dífferences in de<strong>at</strong>hs ênd defects<br />

betwêen (P


\28<br />

73<br />

20(27 .40)<br />

53<br />

21 (28.77')<br />

25ß4.25)<br />

1(1 .37)<br />

6(B,zz)<br />

15.20<br />

TABLE 2<br />

I'tO RTAL I TY<br />

URS AFTER I,J I N<br />

(EXPERIMENTAL GROUPS)<br />

qc<br />

Expe !'i men ta I<br />

6E<br />

Groups (%)<br />

188 308<br />

Number <strong>of</strong> Eggs<br />

iz<br />

h7<br />

66<br />

77<br />

Early De<strong>at</strong>hs<br />

0 (0)<br />

1 (2.13)<br />

4 (6.06)<br />

4(5.19)<br />

Develop<strong>ln</strong>g Emb ryos<br />

52<br />

46<br />

62<br />

73<br />

Al ive with No Defects<br />

48(92.31)<br />

350\.47)<br />

19Q8.79)<br />

20 (25.97)<br />

Al ive with Defects<br />

3ß.77)<br />

6(12.77)<br />

17 Q5.76)<br />

26(33.77)<br />

Dead with No Defects<br />

1(1.92)<br />

3 (6.38)<br />

16 (z\.2\)<br />

8 ( 10.39)<br />

Dead wi th Defects<br />

0 (0)<br />

z(4,26)<br />

10(15.15)<br />

19 (24 .68)<br />

Stages <strong>at</strong> F Í x<strong>at</strong> ìon<br />

5 -10<br />

5.- 12<br />

9-15<br />

11 -17


421..<br />

26<br />

25<br />

I (3.85)<br />

20 (76 .92)<br />

1 (3.85)<br />

0 (0)<br />

4(15.38)<br />

r4-20<br />

25 S. t'loRTALtrY' O. 6. 18. 30; e 42 HOURS AFTER lllND0WlNG (CoNTRoL ûRoUPS)<br />

0c<br />

cont rol<br />

6c<br />

eroups (E)<br />

18C 30c<br />

N¡rmbe rs <strong>of</strong> Eggs<br />

52<br />

22<br />

27<br />

25<br />

Early De<strong>at</strong>hs<br />

0 (0)<br />

0 (Ò)<br />

1 (3.70)<br />

0 (0)<br />

Developing Embryos<br />

52<br />

22<br />

26<br />

25<br />

Al ive with No Defects<br />

48(92.31)<br />

20 (90. 91 )<br />

20 (74.07)<br />

22 (88)<br />

Al ive with Defects<br />

3ß.77)<br />

0 (0)<br />

2(7.41)<br />

2 (8)<br />

Dead wl th No Defects<br />

1(r.92)<br />

1(4.55)<br />

0 (0)<br />

0 (0)<br />

Dead with Defects<br />

0 (0)<br />

1(4.55)<br />

4(14.81)<br />

1 (4)<br />

Stages <strong>at</strong> Fl x<strong>at</strong> ion<br />

5 - l0<br />

I - 11<br />

1t 13+<br />

13 - 1'Ì


Fig. 17.<br />

Percenteges <strong>of</strong> early de<strong>at</strong>hs and l<strong>at</strong>er de<strong>at</strong>hs<br />

and deformities 0, 6, 18, 30 and 42 hours after<br />

windowing <strong>at</strong> 26 hours.


00<br />

N Eorly Deoths<br />

,n<br />

-¡<br />

F-<br />

ô-<br />

xu.t<br />

Èa<br />

b\<br />

N<br />

N<br />

N<br />

N<br />

Alive, No Defects<br />

Alive, Defects<br />

Deod, No Defects<br />

Deod, Defects<br />

0c<br />

óE<br />

r8E<br />

30E<br />

428<br />

0c<br />

óc<br />

18C<br />

30c<br />

42C<br />

al,<br />

J<br />

L.'<br />

d.<br />

t-<br />

z<br />

o<br />

(J<br />

Ès<br />

100<br />

MORTALITY O,ó,18,30&42 HOURS AFTER WINDOWING (2ó HOURS)


05<br />

I,IORTALITY O; 6; IB: 30 Ê.42'IIOURS AFTER WINDOI,/ING<br />

Analysls <strong>of</strong> de<strong>at</strong>hs and developing embryos in <strong>the</strong> combined experimentâl<br />

groups and <strong>the</strong> combined control groups:<br />

Observed Val ues 29 z<br />

286 l5o<br />

Degrees <strong>of</strong> Freedom 1<br />

Chí Square (Y<strong>at</strong>es Correction). 9.07<br />

P < 0.01<br />

Analysis <strong>of</strong> early de<strong>at</strong>hs and developing embryos in <strong>the</strong> experimental<br />

groups:<br />

. observed Values o t 4 4 20<br />

52 46 62 73 53<br />

Degrees <strong>of</strong> Freedom '4<br />

Chl Square 39.25<br />

P < 0.01<br />

Analysîs <strong>of</strong> early de<strong>at</strong>hs and developing embryos ¡n <strong>the</strong> control groups:<br />

Observed Values O O I 0 l<br />

,2 22 26 25 25<br />

Degrees <strong>of</strong> Freedom 4<br />

Chi Square 3.79<br />

P<br />

N.s.<br />

Analysís <strong>of</strong> l<strong>at</strong>er de<strong>at</strong>hs and defects in developing embryos <strong>of</strong> each<br />

experlmental g roup :<br />

0bserved Vâ I ues 48 35 19 20 21<br />

36172625<br />

1 3 11 8 1<br />

0210196


ì06<br />

Degrees <strong>of</strong> Freedom 12<br />

Chi Square 102.\7<br />

P < 0.01<br />

Analysls <strong>of</strong> l<strong>at</strong>er de<strong>at</strong>hs and defects in developîng embryos <strong>of</strong> each control<br />

g roup:<br />

observed Values 48 Zo 20 Zz zO<br />

30221<br />

11000<br />

0l4tt1<br />

Degrees <strong>of</strong> Freedom 12<br />

Chi Square 15.15<br />

P<br />

¡1.s.


107<br />

6.1.3 l:legral Cþ;ure and Neglq I qe!e!:ts<br />

By exam<strong>ln</strong><strong>ln</strong>g and drawing such large numbers <strong>of</strong> embryos, normal and<br />

abnormal neural closure could be followed ín detall. The anteríor neuro,<br />

pore, normally closed by Stage 12 (Hami lton, 1965), hras still open in some<br />

experìmental and control ernbryos <strong>at</strong> Stailes 13 - ZO. Such a contînuous<br />

series <strong>of</strong> embryos showing an open anterior neuropore <strong>at</strong> Stâges immedi<strong>at</strong>ely<br />

after normal closure suggests th<strong>at</strong> <strong>the</strong> establ ished open brain defects seen<br />

În groups 3OE, l+28, € 42C ar¡se by non-closure (Table 26; Fi9s. tg €. 20)..<br />

During normal development, <strong>the</strong> rhomboid sinus assumes an oval shape<br />

and closes by Stage 15 .(Hami lton, 1965), though fÌnal closure cannot be<br />

fully confirmed until Stage 16 in whole embryos. <strong>ln</strong> sonie embryos with<br />

ên open rhomboid sínus, <strong>the</strong> neural folds formed an inverted triangular<br />

outl íne r<strong>at</strong>her than <strong>the</strong> normal oval shape (F¡gs. 24 ê 29. <strong>ln</strong> groups lgE,<br />

t8C, 30E 6 JOC open neural defects were present just craniaì to <strong>the</strong><br />

rhomboîd sinus, sometimes showing contînuity with <strong>the</strong> neu.al fold, <strong>of</strong> a<br />

triangular rhomboid sinus. This suggests th<strong>at</strong> establ ished open cord<br />

defects aríse by non-closure <strong>of</strong> <strong>the</strong> rhomboid sinus, whose neural folds<br />

form a trìangular r<strong>at</strong>her than an oval contour during non-closure<br />

(Flss. 19 È 2A.<br />

Ar<br />

.<br />

slightly l<strong>at</strong>er Stages (30E, 3OC, \zE, 42c) <strong>the</strong> additíon- <strong>of</strong> more<br />

somític mesodern in <strong>the</strong> caudal region resulted in open cord defects beíng<br />

loc<strong>at</strong>ed in <strong>the</strong> somite regîon. lJhen <strong>the</strong>se lesíons were examîned careful ly<br />

some formed a regular open area while o<strong>the</strong>rs showed an irregular contour<br />

(F¡s . 20).<br />

The histological appearances <strong>of</strong> regular and irregular<br />

open defects were l<strong>at</strong>er found to be quite d¡stinct (see Section 6.3 ).


hzE<br />

53<br />

42C<br />

z5<br />

51(96.4)2\(96)<br />

2(3.77) r (4)<br />

14(26.\2) 3(2)<br />

\0.55) 4(16)<br />

1(1.89) o(o)<br />

48 (90. 57) z r (84)<br />

r3(24.53) 0(o)<br />

12(22.64) 1(\l<br />

15-20 1\-20<br />

co<br />

TABLE 26. NEURAL CLOSURE O, 6, 18" 30 E 42 HOURS AFTER I,/INDOI,,IING (BY GROUPS) (Z)<br />

0c 6E<br />

18E 18C<br />

308<br />

30c<br />

Numbers <strong>of</strong> Eggs 49<br />

45<br />

22<br />

62<br />

26<br />

73<br />

25<br />

Open Ánter¡or Neuropore 40(81.63)<br />

25 (55. 56) 1 1 (50)<br />

7 (1.29)<br />

3 (1r .54)<br />

Closed Anterior Neuropore 9(1r8.37')<br />

20 (44.44) il (50)<br />

55 (88. 71 )<br />

23 (88.46)<br />

68(93.15) 25(1oo)<br />

open Brain Defects<br />

Hiçrocephaly 0 (0)<br />

2 (4.44) o(o)<br />

2(3.23)<br />

0 (0)<br />

5 (6.85) 0 (0)<br />

23ß1.5Jt 2 (8)<br />

Oval Rhomboid Sinus 49(100)<br />

4\(97 .78)22(1oo)<br />

42(67 .7\l<br />

26(roo)<br />

\2(57.531 19Q6)<br />

Triangul ar Rhombold Sînus 0(0)<br />

Closed Rhomboid Sinus 0(0)<br />

Regular Cord Defects 0 (0)<br />

1(2.22) 0(0)<br />

o(o) o(o)<br />

o(o) o(o)<br />

19 (30. 65)<br />

1(1.61)<br />

r (1 .61)<br />

0 (0)<br />

o (o)<br />

1 (3.85)<br />

18(24.66) o(o)<br />

13(17.81) 6(2\l<br />

26(35.62',) 1 (4)<br />

lrregular Cord Defects 0 (0)<br />

0 (0) 0 (0)<br />

1 (r .61)<br />

0 (0)<br />

5 (6.85) o (o)<br />

Stages <strong>at</strong> Fìx<strong>at</strong>lon 7-10<br />

7-12 8-11<br />

9-15<br />

t1-t3'<br />

11- -17 13-17<br />

)


Fig'<br />

18.<br />

Percentages <strong>of</strong> experimental ancl conirol embryos<br />

showing closure <strong>of</strong> <strong>the</strong> anterior neuropore 0, 6,<br />

18, J0 and 42 hours after windowing <strong>at</strong> 26 hours.


ffil Op"n Anterior Neuropore<br />

I I0<br />

N=38o<br />

f] Closed Anteiior Neuropore<br />

i-i Opun Broin Defecl<br />

,n<br />

F<br />

o-<br />

xt¡¡<br />

ñ<br />

óc<br />

r8E<br />

GROUPS<br />

lBc<br />

30E<br />

30c<br />

42Ê<br />

V'<br />

o üFz<br />

o()<br />

bq<br />

CLOSURE OF ANTERIOR NEUROPORE BY GROUPS


Fi g'<br />

19.<br />

Percentages <strong>of</strong> experimental and control embryos<br />

showing closure <strong>of</strong> <strong>the</strong> rhomboid sínus 0, 6, 18,<br />

30 and 42 hours after wìndowîng <strong>at</strong> 26 hours.


N=380<br />

El Ovol Rhonnboid 'Sinus ì<br />

looun<br />

ffi Triongulor Rhomboid SinusJ<br />

I Closed Rhomboid Sinus<br />

lD<br />

t-<br />

o-<br />

xu¡<br />

ÈE<br />

óc<br />

r8E<br />

GROUPS<br />

t8c<br />

30E<br />

30c<br />

428<br />

tn<br />

o<br />

ü,<br />

F.<br />

z<br />

o<br />

U<br />

Èq<br />

CLOSURE OF RHOMBOID S¡NUS BY GROUPS


lig. 20. Development <strong>of</strong> open brain and cord defects<br />

0, 6, 18, 30 and 42 hours after wíndowing <strong>at</strong><br />

26 hours.


Øl Open Broin Defecls<br />

N=384<br />

ffi F"sulor Cord oefects I<br />

Iopen<br />

El lrregulor Cord DefectsJ<br />

t,<br />

t-<br />

È<br />

x¡¿¡<br />

Èe<br />

30E<br />

428<br />

30c<br />

42C<br />

<strong>at</strong>,<br />

o<br />

æ,<br />

z.<br />

o<br />

u<br />

Èq<br />

OPEN NEURAT DEFECTS BY GROUPS


I l5<br />

l'/hen neural closure was assessed, only embryos with neural tissue<br />

(after St¿ge 6) could be incìuded (Hamilton, 1952). <strong>ln</strong> Table 26 and<br />

Flgs, 18 ê 19, closure <strong>of</strong> <strong>the</strong> anteríor neuropore and rhomboîd sìnus can be<br />

followed from 26 to 72 hours (Stages 7 - 2O'). The open braîn defects,:.regarded<br />

as arÌsing by non-closure <strong>of</strong> <strong>the</strong> anterior neuropore, were only clearly<br />

establ ¡shed in groups 30E g 42E, with one ,pont"n.ou, defect <strong>ln</strong> group 4ZC<br />

(nig. zo)<br />

Regular cord defects, regarded as arising from a tr¡angular rhomboid<br />

s<strong>ln</strong>us, coexist with an open rhomboid sînus as <strong>the</strong> position <strong>of</strong> <strong>the</strong> rhombold .l<br />

s<strong>ln</strong>us changes wlth <strong>ln</strong>creasing growth <strong>of</strong> <strong>the</strong> embryo. Open cord defects were<br />

recognlsable in groups 18E, 30E, ê q2E, with spontaneous exarñples in groups<br />

18C, 30C, E 42Ci in Fig. 20 <strong>the</strong>y are subdivided inro regular and irregular<br />

les lons.<br />

Figures 21-J0 show camera lucida drawíngs <strong>of</strong> <strong>the</strong> typical changes in<br />

embryos <strong>of</strong> <strong>the</strong> collected series:<br />

St. 9 - <strong>at</strong> <strong>the</strong> time <strong>of</strong> windowing (0C 15)<br />

St. 11 - open anterior neuropore and cysts (l8E 9)<br />

St. 1B - open brain defect and anophthalmia (42E'20)<br />

St. 13 i normal oval rhomboid sinus (l8c zo)<br />

St. l3 - abnormal triangular rhomboîd sinus (l8E 6l)<br />

st. 15 - early regular cord defect (30E 25)<br />

St. 19 - l<strong>at</strong>er regular cord defect (4iE l)<br />

St. 16 - early lrregular cord defect (lOt 73¡<br />

St. 17 - l<strong>at</strong>er irregular cord defect (4ze 52¡<br />

St. f5 - large cyst <strong>of</strong> caudal resion (3Og 3Z).


ligr. 21 - 30. Camera lucida drawings <strong>of</strong> a series <strong>of</strong> whole<br />

embryos (1 mm scaìe indic<strong>at</strong>ed) :<br />

FiS. 21 ,<br />

Normal St, 9 - embryo <strong>at</strong> <strong>the</strong> time <strong>of</strong><br />

windowing <strong>at</strong> 26 hou rs .


117<br />

lmm<br />

AT WINDOWING<br />

2ó-30 HOURS<br />

STAGE 9'<br />

octS


Fi s.<br />

22.<br />

lrregular open anteríor neuropore and trunk<br />

cysts in St. 11 embryo 1B hours after windowing.<br />

Fi g.<br />

23.<br />

Establ ished open braîn defect and anophthalmia<br />

in St. 1B embryo 42 hours after windowing.


lmm<br />

OPEN ANTERIOR NEUROPORE<br />

TRUNK CYSTS<br />

48 HOURS<br />

STAGE II<br />

l8E9


lmm<br />

OPEN BRAIN DEFECT<br />

Á,NOPHTHALMIA<br />

72 HOURS<br />

STAGE I8<br />

42820


Fis.<br />

2l+ .<br />

Normal oval shape <strong>of</strong> <strong>the</strong> rhomboid sinus in<br />

St. 13 control embryo lB hours after <strong>the</strong><br />

t i me <strong>of</strong> w i ndowi rrg.<br />

Fis.<br />

tE,<br />

Abnormal tr¡angular shape <strong>of</strong> <strong>the</strong> rhonboid<br />

sÍnus in St" 1l embryo 1B hours after windowing,


lmm<br />

OVAL RHOMBOID S¡NUS<br />

48 HOURS<br />

STAGE I3<br />

r8c20


123<br />

t1<br />

lmm<br />

TRIANGUTAR RHOMBOID SINUS<br />

48 HOURS<br />

STAGE 13<br />

18EóI


FiS. 26,<br />

Open neural folds extending from <strong>the</strong> rhomboid<br />

. sinus into <strong>the</strong> somite region, forming an early<br />

egulirr open cord defect, in St. 15 embryo<br />

J0 hours after wÌnciowìng.<br />

FiS, 27.<br />

Establ ished regular open cord defect in<br />

St. 19 embryo 42 hours after wíndowing.


t--J<br />

lmm<br />

EARLY OPEN CORD DEFECT<br />

REGUTAR TYPE<br />

óO HOURS<br />

STAGE I5<br />

30 E2s


t-l<br />

lmm<br />

IATER OPEN CORD DEFECT<br />

.<br />

REGULÁ,R TYPE<br />

72 HOURS<br />

STAGE 19<br />

42Et


Fìs. 28.<br />

lrregular neural folds without an open rhomboìd<br />

sinus, forming an early irregular open cord<br />

defect, ¡n St, 16 embryo 30 hours after windowîng.<br />

FiS. 29.<br />

Estãbt ¡shed i rregular op.n "o.d<br />

defect in<br />

St. l7 embryo 42 hours after windowing.


l2B<br />

t--l<br />

lmm<br />

EARLY OPEN CORD DEFECT<br />

IRREGULAR TYPE<br />

óO HOURS<br />

STAGE Ió<br />

30E73


129<br />

lmm<br />

LA,TEROPEN CORDDEFECT<br />

¡RREGULAR TYPE<br />

72 HOURS<br />

STAGE 17<br />

42E 52


Fis.<br />

30.<br />

Large caudal cyst Ìn an o<strong>the</strong>rwise normal<br />

St. 15 enbryo 30 hours after wÍndowing.


3ì<br />

lmm<br />

CAUDAL CYST<br />

óO HOURS<br />

STAGE 15,<br />

30E32


132<br />

6.1 .4 DeveloÞñent <strong>of</strong> oÞen Neúr¿il Deþslq<br />

l,lhen embryos are analysed in experlmental and control groups<br />

(Section 6.1.3) <strong>the</strong> exact tlmîng <strong>of</strong> neural closure cannot be assessed<br />

because each group incorpor<strong>at</strong>es a range <strong>of</strong> Stages. Analysîs <strong>of</strong> <strong>the</strong><br />

comb<strong>ln</strong>ed experímental groups and <strong>the</strong> coribined control groups ¡n terms<br />

<strong>of</strong> indlvÌdual Stages. (including group 0C ín both c<strong>at</strong>egories), provides<br />

more Inform<strong>at</strong>ion about neural closure after Stage 6.<br />

<strong>ln</strong> Table 2l and Fis. 3t , closure <strong>of</strong> <strong>the</strong> ânterîor neuropore is ._ "i<br />

complete in <strong>the</strong> control embryos by Stage .l3, so th<strong>at</strong> an open neuropore<br />

after thís Stêge cên be regarded as an open brain defect.<br />

Closure <strong>of</strong> <strong>the</strong> rhomboid sinus (taUle Z8 e Fig,32 ) occurs <strong>at</strong><br />

Stages l!:.l6 ¡n both experimental ênd control groups. A triangular<br />

rhomboid sînus is seen only in experimental embryos between Stages 11<br />

and 16. Open cord defects first appear <strong>at</strong> Stage i3 (Table 29 and FiS. 33 ),<br />

and occur <strong>at</strong> all Stages in <strong>the</strong> experímental group, as well as in three<br />

control embryos. The first appearance <strong>of</strong> open cord defects <strong>at</strong> Stage 13<br />

ls consístent w¡th <strong>the</strong> suggest¡on th<strong>at</strong> <strong>the</strong>y are preceded by a triangular<br />

rhomboid s i nus.


133<br />

TABLE 27, ANTERIOR NEUROPORE CLOSURE BY STAGES<br />

S tages Expe r I men ta I s (?)<br />

Open<br />

C I osed<br />

controts(%)<br />

Open e I osed<br />

7<br />

I<br />

12(4.26)<br />

15ß.32)<br />

0 (0)<br />

0 (0)<br />

¡2(8.16) o(o)<br />

16(1o.BB) o(o)<br />

9<br />

24 (8.5 r)<br />

0 (0)<br />

21(1t+.2-9) 0 (0)<br />

10<br />

tl<br />

12<br />

13<br />

l3 (4. 61 )<br />

6(2.13)<br />

2(o .71,<br />

2(0.71)<br />

r I (3.90)<br />

23 (8. 16)<br />

10 (3. 55)<br />

21(7 .45)<br />

2(1.36') l1(7.48)<br />

2(1.36) 12(8.16)<br />

1(0.68) 8(5.44)<br />

o(o) r3(8.84)<br />

r4<br />

15<br />

16<br />

1 (0.35)<br />

2(0.71)<br />

0 (0)<br />

40(r4.18)<br />

23ß.16')<br />

20(7.09)<br />

o(o) 2(1.36)<br />

0(0) 7$.76)<br />

o(o) r3(8.84)<br />

17<br />

18<br />

19<br />

1 (0. 35)<br />

r (0. 35)<br />

o (o)<br />

23 (8. 16)<br />

21(7.45)<br />

8 (2. 84)<br />

I (0.68) 8(5.44)<br />

0(0) 5(3.40)<br />

0(0) 10(6.80)<br />

20<br />

0 (0)<br />

3(r.06)<br />

0 (0) 3 (2.04)<br />

Totals Numbers<br />

<strong>of</strong> Embryos


Fig.<br />

31 .<br />

Percentêges <strong>of</strong> experinental and control embryos<br />

with an open or cìosed anterior neuropore <strong>at</strong><br />

each Stage. Open anterior neuropore after<br />

Stage 12 regarded as an open braìn defect,


ffi Opàn Anterior Neuropore<br />

135<br />

I Closed Anlerior Neuropore<br />

lrl = 3Bo<br />

[-Ì Op"n B¡'oin Defects<br />

EXPERIMENTATS<br />

gi ro<br />

À<br />

xtf,¡<br />

Àe5<br />

0<br />

0<br />

sT.7 I 9 r0 il 12 t3 14 15 tó 17 18 19 20<br />

.n<br />

.J.<br />

oa'<br />

e,<br />

z<br />

o(,<br />

E<br />

Èe l0<br />

coNTROTS<br />

CLOSURE OF ANTERIOR NEUROPORE BY STAGES


36<br />

TABLE ?8. RH0I4B0lD stNUs ctôs RF Ry ç-rarìF(<br />

Stages Experìmentals (?) Controls (%)<br />

Ova I Trìangu I ar Cl.osed Ova I Tr Iangul ar C I osed<br />

7<br />

I<br />

9<br />

10<br />

t1<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

12(4.26)<br />

15ß32)<br />

29 ( 1 0.28)<br />

24(8.5t)<br />

22(7.8o)<br />

15$32')<br />

12(4.26)<br />

27 ß.57)<br />

23ß.16)<br />

2(0.7r)<br />

o (o)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

2 (o.71')<br />

t (0.35)<br />

g(r. rg)<br />

14 (4.96)<br />

5(.77¡<br />

I (2. 84)<br />

0.(0)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

1 (0.35)<br />

4(1 .t+2)<br />

24(8.5t)<br />

22(7.80<br />

8 (2. 84)<br />

r2(8.16)<br />

,16 ( 10.88)<br />

25fi7)<br />

l3 (8. B4)<br />

1o (6.80)<br />

9ß.12)<br />

13 (8.84)<br />

2(1.361<br />

1 3 (8. 84)<br />

7 G.76)<br />

0 (0)<br />

0 (0)<br />

o (o)<br />

o(o) o(o)<br />

0 (0) 0 (0)<br />

o(o) o(o)<br />

o(o) o(o)<br />

o(o) o(o)<br />

0(0) o(0)<br />

o(o) o(o)<br />

0(0) 0(0)<br />

0(0) 5(3.40)<br />

o(o) 3(2.04)<br />

o(o) 6(4.08)<br />

-o(o)<br />

5(3.40)<br />

o(o) 5(3.40)<br />

20<br />

0 (0)<br />

0 (0)<br />

3(1.06)<br />

0 (0)<br />

o (o) 32.o\l<br />

Total! Numbers<br />

<strong>of</strong> Emb ryos


Fì s.<br />

32.<br />

Percentages <strong>of</strong> experImental and control embryos<br />

with an open or closed rhomboid sinus <strong>at</strong> each<br />

Stage. Open rhomboid sìnus divìded into oval<br />

and tríangular types.


N=38o<br />

H ovol Rhomboid sinus l^ r38<br />

ffi Triongrlor Rhomboid Sinusl<br />

fl Closed Rhomboid Sinus<br />

l(Jpen<br />

:i to<br />

t-<br />

o-<br />

xu¡<br />

ñ5<br />

sT.7 I<br />

9 l0 rr t2 '¡3 t4 15 ló 17 18 19 20<br />

CLOSURE OF RHOMBOID SINUS BY STAGES


t39<br />

DEFECTS BY STAGES<br />

Experimentals .(Z)<br />

Regular lrregular<br />

Control s (Z)<br />

Regular lrregular<br />

13<br />

r4<br />

15<br />

7 Q.48',)<br />

5(.77)<br />

B (2. 84)<br />

0 (0)<br />

I (0. 35)<br />

r (0. 35)<br />

I (0.68) o(o)<br />

0(0) 0(0)<br />

0(0) 0(0)<br />

16<br />

17<br />

IB<br />

19<br />

20<br />

I (2. 84)<br />

4(1 . \z)<br />

\(1.\2)<br />

2(o .71')<br />

2(0.711<br />

5u.77)<br />

6(2.13)<br />

56.tt',t<br />

0 (0)<br />

0 (0)<br />

I (0.68) o(o)<br />

0(0) 1(0.68)<br />

0(0) o(o)<br />

0(0) o(0)<br />

0(0) 0(0)<br />

Total Numbers<br />

Emb ryos


F¡ S. 33. Percentages Õf open cord defects <strong>at</strong> each Stage<br />

after St. 13. Defects divíded into regular<br />

and i rregul a r types.


4l<br />

N=38o<br />

ffi! Regulcr Cord<br />

ffil lrregulcr Cord<br />

O"f".t, l<br />

Iop*n<br />

DefecrsJ<br />

.J'<br />

o-<br />

xl¡.¡<br />

Èe<br />

.n<br />

o<br />

É<br />

t-<br />

z<br />

o<br />

L'<br />

Be<br />

OPEN CORD DEFECTS BY STAGES


142<br />

6.1.5 Distríbution <strong>of</strong> 0pen CorrJ Defects<br />

Thé condtant addition <strong>of</strong> somltes during embryonic growth results<br />

<strong>ln</strong> open corcl defects being found <strong>at</strong> a gre<strong>at</strong>er distance from Hensenrs node i¡<br />

older embryos. This is demonstr<strong>at</strong>ed by dividing <strong>the</strong> trunk into somite<br />

and post-soml te reglons,<br />

Table 30 and Fig.J4 show <strong>the</strong> numbers <strong>of</strong> embryos with regular and<br />

irregular cord defects ín each <strong>of</strong> <strong>the</strong>se two regions, <strong>ln</strong> <strong>the</strong> experímental<br />

embryos, lesíons occur <strong>at</strong> <strong>the</strong> post-somite region in group l8E, <strong>at</strong> both<br />

regíons in group 30E, and <strong>at</strong> <strong>the</strong> somite region in group 42E,<br />

When <strong>the</strong> experimental and control groups êre rearranged in terms <strong>of</strong><br />

Stêges, experimental embryos show lesions in both regions êt Stages<br />

t3-16, but only in <strong>the</strong> som¡te region by Stages 1/-20 (taUle 3l and Fi9.35 ).<br />

lf <strong>the</strong> mid-point <strong>of</strong> each lesion în experinental embryos <strong>of</strong> Stages<br />

17-20 is determined in <strong>the</strong> camera lucida drawings, <strong>the</strong> distribution <strong>of</strong><br />

open cord defects can be expressed in terms <strong>of</strong> <strong>the</strong>ír somite levels.<br />

Table 32 and Fig.36 show th<strong>at</strong> <strong>the</strong> mid-poínts <strong>of</strong>most lesions ¡ie between<br />

somítes 21 and ll, with little difference between <strong>the</strong> regular and i rregular<br />

defects.


143<br />

TR IBUTION OF<br />

D DEFECT5<br />

N umbe rs<br />

<strong>of</strong><br />

Embryos<br />

Regular<br />

Somî te<br />

level<br />

Q)<br />

Below<br />

somitgs<br />

lrregular (?)<br />

Somite<br />

level<br />

Below<br />

som i tes<br />

18E<br />

62<br />

0 (0)<br />

1(0.53)<br />

o(o) r (0.53)<br />

3oE<br />

4zE<br />

73<br />

53<br />

eþ.7e)<br />

13,(6.91)<br />

19(10.1r)<br />

0 (0)<br />

3 (l .60) 2 (1 .06)<br />

r2(6.38) o(0)<br />

r8c<br />

30c<br />

42c<br />

26<br />

25<br />

25<br />

0 (0)<br />

1(1 .32)<br />

0 (0)<br />

1(r.32)<br />

0 (0)<br />

0 (0)<br />

0(0) o(o)<br />

0(0) o(o)<br />

1(132) o (o)


Fi s.<br />

"l!<br />

Percentage distrìbution <strong>of</strong> open cord defects<br />

<strong>at</strong> somÌte or post-somite levels 18, 30 and<br />

42 hours after windowing. Defects divided<br />

into regular and irregular types.


145<br />

ffit Regulor Cord Defects<br />

ñ=2ó4<br />

El lrregulor Cord Defects<br />

SOMITE<br />

ar)<br />

o<br />

æ<br />

cô<br />

ã<br />

It¡<br />

Dq<br />

BELOW SOMITES<br />

t8E 30E 428 ,t8C 30C 42C<br />

DISTRIBUTION OF OPEN CORD DEFECTS AT SOMITE<br />

oR POST-SOMTTE LEVELS (BY GROUPS)


lrregul ar (Z)<br />

somi te be low<br />

level somites<br />

0(0) 0(0)<br />

0 (0) 0 (0)<br />

o(o) o(o)<br />

o(o) o(o)<br />

l(1.32) o(o)<br />

o (o) o (o)<br />

0 (0) 0 (0)<br />

0(0) 0(0)<br />

o\<br />

TABLE 31 . DISTRIBUTION OF OPEN CORD DEFECTS BY STAGES<br />

Stage<br />

Regu l.a r<br />

somi te<br />

level<br />

Exper i men ta I s<br />

&) lrregular (?)<br />

below som ï te below<br />

somites level somi tes<br />

Controls<br />

Regular (%)<br />

somi te below<br />

level somites<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

3(r.60) 5Q.66) o(o)<br />

2(r.06) \(2.13) o(o)<br />

2(1.06) 52.66]. 1 (0.53)<br />

2(t.06) 6(3.19) 3(r.60)<br />

5Q.66) o (o) 6(3.19)<br />

4(2.13) o(o) 5Q.661<br />

2(1.06) o(o) o(o)<br />

2(r.06) 0(0) 0(o)<br />

o (o) o (o)<br />

1(0.53) 0(0)<br />

0 (0) 0 (o)<br />

2(1.06) 1(1.32)<br />

o(o) o(o)<br />

0(0) 0(0)<br />

o(o) o(o)<br />

0(0) 0(0)<br />

1(1.32)<br />

o (o)<br />

0 (0)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

0 (0)<br />

0 (o)<br />

Numbers <strong>of</strong> Emb ryos<br />

188<br />

76


Fis.<br />

35.<br />

Percentage d¡stribution <strong>of</strong> open cord defects<br />

<strong>at</strong> somlte or pcst-somite ìeveìs <strong>at</strong> each<br />

Stage after St. 13. Defects divíded into<br />

regular and irr:egular types"


ì48<br />

N=2ó4<br />

ffi<br />

m<br />

Regulor Cord Defects<br />

trregulor Cord Defects<br />

,t;<br />

l--<br />

A-<br />

X<br />

¡¡l<br />

ñ<br />

5<br />

5<br />

tn<br />

o<br />

&L<br />

'20<br />

o<br />

I<br />

ñ.<br />

sr. t3<br />

SOMITE LEVEL<br />

BELOW SOMITES<br />

t8 19j 20<br />

SOMITE IEVEt<br />

BELOW SOM¡TES<br />

D¡STRIBUTION OF<br />

OR POST.SOMITE<br />

OPEN CORD DEFECTS AT SOMITE<br />

TEVELS (BY STAGES)


149<br />

TABLE 32. SOI4ITE LEVELS OF l4ID;POINTS.OF OPEN NEURAL DEFETTS<br />

Som i tes Resular (%) I rr"eg u I ar (Z)<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

2l+<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

3l<br />

1(0.53)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

0 (0)<br />

I (0.53)<br />

2(1.06)<br />

2(f.06)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

6(3.19)<br />

I (0.53)<br />

2(1.06)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

r (0.53)<br />

r (0.53)<br />

0 (0)<br />

0 (0)<br />

2Il .06)<br />

7 ß.72')<br />

3(r.60)<br />

1(0.53)<br />

r (0.53)<br />

0 (0)<br />

r (0.53)<br />

_.<br />

Total Number <strong>of</strong><br />

Experimental Embryos<br />

188


Fis.<br />

36.<br />

Percentage distrîbution <strong>of</strong> <strong>the</strong> somite level.s<br />

<strong>of</strong> mid points <strong>of</strong> open neural defects ¡n<br />

experimental embryos <strong>of</strong> Stages 1/-20,


SOMITE LEVELS OF MID-POINTS OF OPEN NEURAL DEFECTS<br />

ffil Regulor Cord Defects<br />

N =188<br />

I lrregulor Cord Defects<br />

<strong>at</strong>,<br />

F<br />

Â-<br />

X<br />

l¡J<br />

ÈR<br />

soM.r7.<br />

t8<br />

19<br />

20 2'l 22 ¿3 24 25 26 27 28 29 30 3r<br />

¡N EXPTAI. EMBRYOS AT STAGES 17.20


152<br />

6.2 sPtIA! LFVELS 0F oPEN CORp DEF.ECTS rN 12 pAY EMBRYoS<br />

The range <strong>of</strong> malform<strong>at</strong>ions produced by windowing <strong>at</strong> 26 hours încreases<br />

wlth prolonged embryonic growth. Embryos recovered <strong>at</strong> 72 hóurs show neural<br />

defects and trunk cysts. At 5 days non-neural defects are apparent, and <strong>the</strong>se<br />

êre more widespread by f2 days (Sect.ion j.2)..<br />

The group <strong>of</strong> experimental embryos th<strong>at</strong> survîved to 12 days were<br />

examîned for external .malform<strong>at</strong>ions, and <strong>the</strong>n :ubjected to cartìlage<br />

staining with alcian blue .(Ojeda et aì., 1970) to display any skeletal .. .:<br />

defects. This revealed <strong>the</strong> level and extent <strong>of</strong> <strong>the</strong> vertebral abnormal ities<br />

associ<strong>at</strong>ed with each open neural defect.<br />

Because <strong>the</strong> distinction between myeloschisis and myelodysplasia was<br />

not absolutely clear <strong>at</strong> 12 days, <strong>the</strong> two are combined în Table 33 and Figs.3?a38.<br />

Control embryos (with no growth retârd<strong>at</strong>ion) were recovered <strong>at</strong> 11 days,<br />

to provide a comparable range <strong>of</strong> Stages.<br />

Figs. 39 and 40 demonstr<strong>at</strong>e <strong>the</strong> difference in grosa appeârance between<br />

<strong>the</strong> two types <strong>of</strong> open cord defects in <strong>the</strong>ir extreme forms. Myelosch,î.sis<br />

consists <strong>of</strong> an exposed, regular neural plaque, while myelodysplasia<br />

involves a more irregular defect, part¡ally covered by skin.<br />

A coìlection <strong>of</strong> four embryos with open neural defects (Fig. 41)<br />

demonstr<strong>at</strong>es <strong>the</strong> fairly uniform level <strong>of</strong> <strong>the</strong> defects, with reduc.t¡on <strong>of</strong> <strong>the</strong><br />

rump and tail in two embryos.<br />

Non-neural malform<strong>at</strong>ions (Fig. À2 ) consist <strong>of</strong>:<br />

a) ectopia v i s cerum<br />

b) uni l<strong>at</strong>eral anophthalmia (wlth a crossed beak)<br />

c) bil<strong>at</strong>eral anophthalmia (wíth a short but central upper beak)<br />

d) reduction <strong>of</strong> <strong>the</strong> rump and tail


t53<br />

TABLE- 33,.VER,TE-BRAL qEFqcTs AT 11' 12 DAYS FOLLqvJING.l¡/INDOT.¡ING-<br />

4T 26 tIOUBs<br />

Numbers <strong>of</strong> Emb ryos<br />

Spina<br />

.Bifida Occul ta<br />

Spîna Bifida Manífesta<br />

Vertebra I Del et i ons<br />

Lengths <strong>of</strong> S. B. 0cculta<br />

Lengths <strong>of</strong> S.B. l4anifesta<br />

69<br />

t8<br />

42<br />

30<br />

1-11 verteb rae<br />

3-15 vertebrae<br />

62<br />

0<br />

1<br />

l1<br />

0 verteb rae<br />

6 verteb rae<br />

Lengths <strong>of</strong> vertebrar Deretions 1-1g vertebrae 6-t5 vertebrãe<br />

Range <strong>of</strong> S tages 35-39 35-39


Fìgs. 37'38,<br />

Vertebral defecrs in Ìndividual experimenral<br />

and control embryos <strong>at</strong> 1Z.and ll days. Each<br />

bar represents one embryo.


CERVICAL<br />

THORACIC<br />

LUMBAR<br />

FUSED<br />

CAUDAL<br />

FREE<br />

CAUDAL<br />

PYGOSTYTE<br />

N=ó9<br />

ø Spino Bifido Occulto<br />

n Vertebrql Deletions<br />

tr Spino Bifidq Monifesto<br />

I Open Cord Defect<br />

.n<br />

l¡¡<br />

lt¡<br />

J<br />

d.<br />

cô<br />

t¡l<br />

t-<br />

æ,<br />

1¡¡<br />

w<br />

VÅ øt<br />

wm<br />

w<br />

!ND|VIDUAL EXPER|MENTAI EMBRYOS (12 DAYS)<br />

VERTEBRAL DEFECTS IN EXPERIMENTAT EMBRYOS


CERVICAT<br />

THORACIC<br />

LUMBAR<br />

FUSED<br />

CAUDAL<br />

FREE<br />

CAUDAT<br />

PYGOSTYTE<br />

\o<br />

N=ó2<br />

@<br />

@<br />

Spino Bifidq Oèculto<br />

Verîebrol Deletions<br />

tr<br />

I!<br />

Spino Bifido Monifesto<br />

Open Cord Defects<br />

.u,<br />

t¡¡<br />

u¡<br />

d.<br />

co<br />

t¡¡<br />

l-<br />

É,<br />

t¡¡<br />

INDIVIDUAL CONTROT<br />

,VERTEBRAT DEFECTS IN<br />

EMBRYOS {il DAYS}<br />

CONÏROL EMBRYOS


Figs. 39 - 42. Malform<strong>at</strong>ions ¡n exper¡rneñtal embryos êt i2 ciays:<br />

Fis. 39. Oþen cord defect (probably regular type) .<br />

FîS. 40,<br />

Unil<strong>at</strong>eral anophthalmia, crossecl beak, rumplessness,<br />

and open cord defect (probabîy írregular type) .<br />

FiS. 41.<br />

0pen cord defects and varying degrees <strong>of</strong> rumplessness<br />

ìn four emb ryos .<br />

Fig. 42,<br />

Ectopìê vìscerum, open brain ¿efect and short upper<br />

beakrbil<strong>at</strong>eral anophthalmîa and short upper beak,<br />

un¡l<strong>at</strong>erâl anophthalmiã and crossed beak.


---l<br />

r<br />

r'I<br />

*<br />

40


ì58<br />

One embryo shows ðn open brain (with a short upper beak), which can be<br />

compa red to rhe same defect <strong>at</strong> 72 hours (f¡g. Z3 ).<br />

Skeletal stain<strong>ln</strong>g <strong>of</strong> <strong>the</strong> experimental and control embryos revealed<br />

three types <strong>of</strong> vertebral defects:<br />

a) sp<strong>ln</strong>a biflda occulta (with no external neural defect)<br />

b) sp<strong>ln</strong>a bifida mênîfesta (associ<strong>at</strong>ecl with myeloschisis and myelodysplasia)<br />

c) reduction oi irregularíty.<strong>of</strong> <strong>the</strong> lumbar, sacral and caudal<br />

vertebrae. F.igs.43-46 demonstràte spîna bifida occul ta, spina blflda<br />

manifesta, rumplessness, and lumbo-sacral irregularity in four cleared<br />

emb ryos .<br />

There is not full agreement on <strong>the</strong> number <strong>of</strong> vertebrae in each<br />

region <strong>of</strong> <strong>the</strong> chick spine, because <strong>of</strong> <strong>the</strong> difficulty in assigning<br />

transitional vertebrêe to a particulãr region. The control embryos in<br />

this study general ly possessed:<br />

l4<br />

cervi ca I vertebrae<br />

7 thorac i c vertebrae<br />

4 I umbar verteb rae<br />

2 sacral verteb räe<br />

6 (5-7) fused caudal vertebrae<br />

6 (5-7) free caudal vertebrae<br />

4 (3-5) pygostyle segmenrs.<br />

Table ll<br />

and Figs. 37 and JB show <strong>the</strong> numbers <strong>of</strong> experimental<br />

and control embryos with three recognisable vertebral defects -spina<br />

bifida occulta, spina bifida manifesta (enclosing <strong>the</strong> Open neural defects),<br />

and deletîons <strong>of</strong> whole vertebrae. From Fí9.J/ ît is apparent th<strong>at</strong>:


t59<br />

a) spîna bif¡da occulta is seen mainly in <strong>the</strong> cervical region<br />

b) sp<strong>ln</strong>a b.ifida manifesta occurs from <strong>the</strong> rower thoracic to <strong>the</strong> upper<br />

caudal reg ions<br />

c) vertebral deletions are almost conf<strong>ln</strong>ed to <strong>the</strong> caudal region.<br />

The control embryos show a simílar p<strong>at</strong>tern <strong>of</strong> spontâneous vertebral<br />

deletions, and one spontêneous spîna bifida manlfesta(Fig; 38 ).


FÌgs. 43 - 46, Vertebral defects in <strong>the</strong> lumbo*sacral region<br />

<strong>of</strong> 12 day embryos I<br />

Fis.. tú.<br />

Spina bifìda manìfesra.<br />

FiS. 144.<br />

Spina bifída manifestâ and rumplessness.<br />

Fig. 45.<br />

Spina bifida occul ta (only rarely seen in lumbosacral<br />

region).<br />

Fig. 46,<br />

Spina bÌfida manifesta, rumplessness, and extensîve<br />

vertebral i rregulari ty <strong>of</strong> cauilal region.


:al .<br />

'**Ç- 4<br />

ff,<br />

À(,)<br />

ftø 9-' o-<br />

,.¡å ,S,<br />

À<br />

o


t6l<br />

6.3 DESCRIPTION OF HISTOLOGICAL APPEARANCES<br />

Embryos recovered 0 to lt2 hours after wíndowing (Section 6.1)<br />

were exam<strong>ln</strong>ed hîstological ly in serlal sections. Because <strong>the</strong> neural<br />

defects observed after dífferent perìods <strong>of</strong> incub<strong>at</strong>ìon showed a progresslon<br />

<strong>of</strong> changes, <strong>the</strong> embryos were examined <strong>ln</strong> four groups <strong>of</strong> Stages<br />

(see Sect ion 4.8.2) .<br />

The general description <strong>of</strong> <strong>the</strong> histology typical <strong>of</strong> Group I - lV<br />

embryos ís based on <strong>the</strong> appeêrance <strong>of</strong> each embryonic system.<br />

<strong>ln</strong> some embryos <strong>the</strong>re was dorsal splitting <strong>of</strong> <strong>the</strong> closed neural tube<br />

(<strong>at</strong> l<strong>at</strong>er s tages ) ,...or- sepa ra t î on <strong>of</strong> notochord and somites from <strong>the</strong> neural<br />

tissue (<strong>at</strong> earl ier stages). Both were caused by shrinkage <strong>of</strong> <strong>the</strong> embryos<br />

during processing and were quíte different from <strong>the</strong> appearance <strong>of</strong> open<br />

neural defects (figs. 89 - 94).<br />

6.3.1 Stage !0 Control Embryos (Group l)<br />

The neural pl<strong>at</strong>e was closed or closing cver <strong>the</strong> brain-and presomite<br />

areas, closing or inverted in <strong>the</strong> somite area, inverted <strong>ln</strong> <strong>the</strong> protosomlte<br />

area, elev<strong>at</strong>ed <strong>at</strong> <strong>the</strong> anter¡or rhomboid s<strong>ln</strong>us, and elev<strong>at</strong>ed or<br />

fl<strong>at</strong>tened <strong>at</strong> <strong>the</strong> posteiior rhomboid sinus,<br />

The neural folds about to close showed swell ing and rounding <strong>of</strong><br />

<strong>the</strong> free edges, which were <strong>of</strong>ten inverted into <strong>the</strong> future neural- canal.<br />

At thê rhomboid sinus differentî<strong>at</strong>¡on <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e was revealed<br />

by marginal foldîn9 and elev<strong>at</strong>ion above <strong>the</strong> level <strong>of</strong> <strong>the</strong> adjacent<br />

ectoderm. This region <strong>of</strong> neural pl<strong>at</strong>e showed a regular êrrangement <strong>of</strong><br />

cells perpendicular to <strong>the</strong> exposed dorsal surface. After neural closure<br />

(<strong>at</strong> more cranial levels), <strong>the</strong>se cells retaîned <strong>the</strong> same orîent<strong>at</strong>ion to<br />

each o<strong>the</strong>r and to <strong>the</strong> surface (which <strong>the</strong>n enclosed <strong>the</strong> lumen <strong>of</strong> <strong>the</strong> neural<br />

tube).


162<br />

lmnedi<strong>at</strong>ely after closure, separ<strong>at</strong>ion <strong>of</strong> neural crest tissue was<br />

apparent: Cránially <strong>the</strong>. rhombîc ro<strong>of</strong> was seen to be closing <strong>at</strong> Stage lO,<br />

and thìckened by Stage 10. Caudal ly <strong>the</strong>re were no âccessory neural canals,<br />

and no o<strong>the</strong>r signs <strong>of</strong> an overlap zone. Differenti<strong>at</strong>ion <strong>of</strong> neural tissue<br />

from ectoderm was alreâdy apparent, though <strong>the</strong> ectoderm was cont¡nuous<br />

w¡th <strong>the</strong> neural folds <strong>at</strong> unclosed areas and ¡n contact v,r¡th <strong>the</strong> neural<br />

tube <strong>at</strong> closed areas.<br />

The notochord was <strong>ln</strong> close contact with neural tissue from <strong>the</strong> future<br />

midbra<strong>ln</strong> down to <strong>the</strong> protonobchord. Somitic mesoderm was general ly in .. ":<br />

contact with neural t¡ssue <strong>at</strong> <strong>the</strong> level <strong>of</strong> <strong>the</strong> somites, but not in <strong>the</strong> areas<br />

<strong>of</strong> unsegmented and fused mesoderm <strong>at</strong> <strong>the</strong> rhomboid sinus. The somìtes were<br />

all well formed, with no evidence <strong>of</strong> reduced volume and no cyst¡c or<br />

hemorrhag i c changes .<br />

The prîmitive streak and Hensenrs node were prominent, with no form<strong>at</strong>ion<br />

<strong>of</strong> a ta¡l-bud <strong>at</strong> thîs Stage.<br />

63,2 Stage l0 Experimental Embryos (Gtoup l)<br />

The histologícal appearances <strong>of</strong> <strong>the</strong>se embryos were similar to those <strong>of</strong><br />

Stage 10 control s for:<br />

a) neural cJosure<br />

b) neural foldins<br />

c) form<strong>at</strong>îon <strong>of</strong> neural crest<br />

d) development <strong>of</strong> <strong>the</strong> rhombic ro<strong>of</strong><br />

e) absence <strong>of</strong> an overlap zone<br />

f) continulty <strong>of</strong> neural folds with ectoderm<br />

S) close contact <strong>of</strong> notochord with neural tissue<br />

h) contact <strong>of</strong> somites with neural tïssue<br />

î) no cyst¡c or hemorrhagic changes


t63<br />

j) ênd prom¡nence <strong>of</strong> Hensenrs node and <strong>the</strong> primltive streak.<br />

Howéver in two embryos (68 4l , 6E 45) <strong>the</strong>re was a defînite appeêr_<br />

ance <strong>of</strong> sllght eversion <strong>of</strong> <strong>the</strong> neurar fords <strong>at</strong> <strong>the</strong> posteríor rhomboid sinus,<br />

r<strong>at</strong>her than <strong>the</strong> wlde erev<strong>at</strong>ron or fr<strong>at</strong>tenrng seen in <strong>the</strong> contro¡ and o<strong>the</strong>r<br />

experlmental embryos. These two embryos still showed an orderly arrange_<br />

ment <strong>of</strong> cells perpendicular to <strong>the</strong> well-preserved dorsal surface <strong>of</strong> <strong>the</strong><br />

open neural pl<strong>at</strong>e (Fi9. 47 and 48).'<br />

6.3.3 Stage l1-.|2 Control Embryos (Grouo ll)<br />

Neural closure extended from <strong>the</strong> brain down to <strong>the</strong> antèrior rhomboid"<br />

s<strong>ln</strong>us, with closing or elev<strong>at</strong>ed neural folds <strong>at</strong> <strong>the</strong> posterior rhomboid<br />

sinus. The rhombic ro<strong>of</strong> was thinner by Stage ll+ than <strong>at</strong> Stage tO<br />

(rls. lo3).<br />

The first signs <strong>of</strong> accessory neural canars were seen <strong>at</strong> <strong>the</strong> rhomboid<br />

sinus. The overlap zone could in fact be traced up as far as <strong>the</strong> proto_<br />

somite area when asymmetry <strong>of</strong> <strong>the</strong> neurar tube r<strong>at</strong>her than <strong>the</strong> presence <strong>of</strong><br />

accessory canals was taken as a criterion..<br />

As în Stage lO <strong>the</strong> areas <strong>of</strong> unclosed neura.l pl<strong>at</strong>e were continuous<br />

wlth, but sharply distinguishable from, adjacent ectoderm, .<strong>ln</strong> <strong>the</strong> bra<strong>ln</strong><br />

regign, ectoderm was separ<strong>at</strong>ed from <strong>the</strong> underlying neural tube by neural<br />

crest cells,but not <strong>at</strong> this stage by migr<strong>at</strong>ing somit¡c mesoderm,<br />

The notochord was in close contact with <strong>the</strong> neurêl tube or neural<br />

pl<strong>at</strong>e over <strong>the</strong> somite, protosomíte, and anterior rhomboid sinus areês, but<br />

was general ly not in contact with <strong>the</strong> midbrain and hindbrain. somites and<br />

protosom¡tes were also in contact with <strong>the</strong> neurar tube,but this contact was<br />

not maintained with unsegmented and fused mesoderm <strong>of</strong> <strong>the</strong> rhomboid sinus.<br />

The somltes showed a normal sequence <strong>of</strong> changes, wlth no cyst¡c or hemo_<br />

rrhagic areas and no reduction .in volume.


164<br />

Hensenrs node and <strong>the</strong> primitive streak were stil I prominent, w¡th<br />

no eví de¡ice <strong>of</strong> ta I I -bud form<strong>at</strong> Ìon.<br />

6.1.t+ Stagé 1l-12 Exöéf irhérital Embivos (Groun I l)<br />

All experimental embryos showed retard<strong>at</strong>ion <strong>of</strong> neural closure.<br />

<strong>ln</strong> general, <strong>the</strong> braÌn region was closed but <strong>the</strong> neural pl<strong>at</strong>e wss still<br />

clos<strong>ln</strong>g over <strong>the</strong> somite and protosomlte areas, inverted or elev<strong>at</strong>ed <strong>at</strong><br />

<strong>the</strong> anter¡or rhomboid s<strong>ln</strong>us, and elev<strong>at</strong>ed or fl<strong>at</strong>tened <strong>at</strong> <strong>the</strong> posterior<br />

rhombold s inus .<br />

One embryo (6E 34) showed definite eversion <strong>of</strong> <strong>the</strong> neural folds <strong>at</strong><br />

<strong>the</strong> posterîor rhomboid s<strong>ln</strong>us, similar to <strong>the</strong> appearance <strong>of</strong> <strong>the</strong> two stage to<br />

experimental embryos. Toge<strong>the</strong>r with <strong>the</strong> retarded closure <strong>of</strong> <strong>the</strong> neural<br />

folds was an appêrent delay ín appearânce <strong>of</strong> <strong>the</strong> overlap zone, as no<br />

accessory canals were visible (f¡gs. 49 and 50)<br />

<strong>ln</strong> o<strong>the</strong>r respects <strong>the</strong> appearances <strong>of</strong> <strong>the</strong>se experîmental embryos resembled<br />

those <strong>of</strong> <strong>the</strong> contro¡s, in th<strong>at</strong>:<br />

a) <strong>the</strong> rhombic ro<strong>of</strong> was thîckened<br />

b) ectoderm was in continuity with <strong>the</strong> neural folds<br />

c) <strong>the</strong>rê were no somitic mesoderm and few neural crest cells between<br />

areas <strong>of</strong> cìosed neural tube and <strong>the</strong> overlyîng ectoderm<br />

d) notochord was in close contact with <strong>the</strong> neurar tube over <strong>the</strong> somite,<br />

protosomite, and anterior rhomboid sìnus areas, but not generally in <strong>the</strong><br />

brain regîon<br />

e) somitic mesoderm was usually in contact ur¡th <strong>the</strong> neural tube in <strong>the</strong><br />

somite and protosomite areas, but not <strong>at</strong> <strong>the</strong> levels <strong>of</strong> unsegmented and<br />

fused mesoderm<br />

f) <strong>the</strong> somîtes were well-developed, wíth no cysts or hemorrhages and no<br />

reduct ion in vo I ume.


Figs. l+7 ^ 5A, Ëversic¡n <strong>of</strong> <strong>the</strong> neuraT foÏds as <strong>the</strong> first sígn oi'<br />

non-closure <strong>of</strong> <strong>the</strong> rhomboîd sinus. Developing protonotqchord<br />

(l ¿ r; x4o) :<br />

Fíg. l+7.<br />

Control St. 10 embryo, 6 hours af ter <strong>the</strong> tîr'le <strong>of</strong><br />

windor,ring, with clevaied neuraì folds <strong>at</strong> <strong>the</strong> posterior<br />

rhomboi d s i nus (6C Z1) .<br />

Fig. 48.<br />

Experimental St. t0 embryo, 6 hours after windowing,<br />

with everted neural folds êt <strong>the</strong> posterior rhomboid<br />

sinus (61 45) .<br />

FiS. 49.<br />

ContrÕl St, l1+ embryo, 18 hours after <strong>the</strong>. time <strong>of</strong><br />

windowing, wi th fur<strong>the</strong>r differenti<strong>at</strong>ion <strong>of</strong> elev<strong>at</strong>ed<br />

neural folds ar <strong>the</strong> posrerior rhomboid sinus (18C 4).<br />

FiS. 50.<br />

Experìmental St. f l-F embryo, 6 hours after wîndowing,<br />

w¡th fur<strong>the</strong>r differenti<strong>at</strong>îon <strong>of</strong> everted neural folds<br />

<strong>at</strong> <strong>the</strong> posrerior rhomboid sinus (6E 34).


-l<br />

::<br />

l<br />

48<br />

I<br />

49<br />

i<br />

:.<br />

t:<br />

.lì<br />

50 ì:


166<br />

6.3.5 staEe 13-16 córitról Embryos (Qroup lll)<br />

All stage l6 control embryos showed complete neural closure, whereas<br />

<strong>the</strong> stage l3 cont!'ol embryos were stlr crosing ât <strong>the</strong> posterior rhomboid<br />

sinus. The overlap zone was fuly deveroped, with êccessory canals <strong>at</strong> <strong>the</strong><br />

unsegmented mesoderm and caudal areas, and recognizabre overrapping w¡thout<br />

canals in <strong>the</strong> protosomite area. rhe rhombic ro<strong>of</strong> was th¡n <strong>at</strong> stage rJ and<br />

very thin <strong>at</strong> Stage f6.(Figs. 104 and 105).<br />

The neural tube wâs separ<strong>at</strong>ed from overlying ectoderm by neural<br />

crest ceìls in <strong>the</strong> bra<strong>ln</strong> region <strong>at</strong> stage rJ, and by somitîc mesoderm and<br />

neural crest cells over <strong>the</strong> braìn and somite areas by stage 16. The notochoid<br />

was in contact with neurar tube în <strong>the</strong> regions <strong>of</strong> <strong>the</strong> somites,<br />

protosomites and unsegmented mesoderm but not in <strong>the</strong> brain or caudal<br />

âreas.<br />

Somite development was normal,<br />

.<br />

with no reductlon ín volume and no<br />

cys ts or hemorrhages.<br />

Posteríorly, Hensenrs node had given way to a recognizable taìl_<br />

bud. This was associ<strong>at</strong>ed with <strong>the</strong> form<strong>at</strong>ion <strong>of</strong> <strong>the</strong> protonotochord,<br />

fused mesoderm, and <strong>the</strong> tail-bud contribution to <strong>the</strong> neural tissue <strong>of</strong><br />

<strong>the</strong> caudal region. The primitive streak was much shorter than în<br />

Stage .11-f2.<br />

. In Stage 1l embryos, with an open posterior neuropore, an" iup".-<br />

ficíal neural folds (deríved from neural pl<strong>at</strong>e) could be traced down<br />

from above,othrough continuity <strong>of</strong> <strong>the</strong>ir future lumen with <strong>the</strong> lumen <strong>of</strong><br />

<strong>the</strong> closed neural tube. Deep to this was canaljzed neural tissue<br />

(derived from <strong>the</strong> tail-bud) with no singre rumen. There was however no<br />

clear l<strong>ln</strong>e <strong>of</strong> demarc<strong>at</strong>ion between <strong>the</strong>se two sources <strong>of</strong> neurar m<strong>at</strong>eriar.<br />

Neural tissue derived from <strong>the</strong> taîr-bud could be traced up to <strong>the</strong> proto*


t67<br />

somite area (through asymmetry <strong>of</strong> <strong>the</strong> neural tube) but lts fusion to<br />

<strong>the</strong> neural plåte m<strong>at</strong>erîa.l was so gradual th<strong>at</strong> <strong>the</strong> upper limit <strong>of</strong> <strong>the</strong><br />

overlap zone was difficult to determîne (Fîgs. !1-54 änd 55-66).<br />

t/here neurâl closure was st¡ll occurfing în <strong>the</strong> caudal region <strong>of</strong><br />

Stage 13 embryos, <strong>the</strong> exposed surface <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e was wellpreserved,<br />

with normal or¡ent<strong>at</strong>ion <strong>of</strong> cells perpendicular to thÍs surface.<br />

6.3.6 Staqe I3-16 Experîmental Embrvos. (Grouo I I t)<br />

<strong>ln</strong> this group <strong>of</strong> experimental embryos two types <strong>of</strong> establ ished<br />

defects were ev i den t.<br />

The majoríty <strong>of</strong> Stage ll-1! embryos showed elev<strong>at</strong>lon or eversîon<br />

<strong>of</strong> <strong>the</strong> neural folds in <strong>the</strong> protosom¡te, unsegmented mesoderm and caudal<br />

êreas, constitut<strong>ln</strong>g neural defects whích could be followed into Group lV<br />

embryos. The defects consisted <strong>of</strong> unclosed neural folds, showîng marked<br />

necrosis <strong>of</strong> <strong>the</strong> exposed surface and loss <strong>of</strong> cell orient<strong>at</strong>ion, lying dorsal<br />

to more normal neural tissue derived from <strong>the</strong> ta.i l-bud. <strong>ln</strong> many cases<br />

<strong>the</strong>re was some dist<strong>ln</strong>ction between <strong>the</strong> two sources <strong>of</strong> neural tissue <strong>at</strong><br />

some part <strong>of</strong> <strong>the</strong> lesions,though no clear line <strong>of</strong> separ<strong>at</strong>ion. As similar<br />

lesions were present <strong>ln</strong> a more advanced foim.in many Group lV experimental<br />

embryos, <strong>the</strong>se were regarded as <strong>the</strong> f¡rst stage <strong>of</strong> estêbl ished myeloschisis.<br />

<strong>ln</strong> experîmental embryos wìth and without myeloschísís <strong>the</strong> notochord<br />

was in contact with both closed and open sections <strong>of</strong> <strong>the</strong> neural .tube over<br />

<strong>the</strong> somite, protosom¡ìe, and unsegmented mesoderm areas, but not ¡n <strong>the</strong><br />

braîn or caudal areas. Areas <strong>of</strong> myeloschisis showed continuity with adjacent<br />

ectoderm, implying th<strong>at</strong> <strong>the</strong> neural folds <strong>at</strong> <strong>the</strong>se sítas had never<br />

c I osed. (r¡gs. 6S-Zo).<br />

Somltic mesoderm was generally ín contact with neural tube <strong>at</strong> <strong>the</strong><br />

somite level , but separ<strong>at</strong>ed from neural tube <strong>at</strong> <strong>the</strong> unsegmented mesoderm<br />

and caudal areas. <strong>ln</strong> <strong>the</strong> protosomite area <strong>the</strong> degree <strong>of</strong> cóntact varied,


t68<br />

with lack <strong>of</strong> contact in severar embryos showing myeroschisis. somite<br />

developmènt aþpeared to be normal, with no cysts or hemorrhages.<br />

0f <strong>the</strong> Stage 16 experlmental embryos several showed normal neural<br />

closure. Several o<strong>the</strong>rs showed rnyeloschisis <strong>at</strong> <strong>the</strong> lower somlte, protosom¡te,<br />

êrid unsegmented mesoderm areas, giving way to a closed neural tube<br />

(showing accessory canars and so derived from tair-bud m<strong>at</strong>eria¡) in <strong>the</strong><br />

caudal reg ion.<br />

Two <strong>of</strong> <strong>the</strong> Stage t6 embryos however (lOf 35, 3OE 76) showed a different<br />

type <strong>of</strong> neural defect in <strong>the</strong> lower somîte, protosomite, unsegmented meso-.<br />

derm, and caudal areas. <strong>ln</strong> <strong>the</strong>se embryos <strong>the</strong> neural tissue formed a<br />

V-shaped or U-shaped mass, open on <strong>the</strong> dorsal aspect. The total volume<br />

<strong>of</strong> neural tissue <strong>at</strong> <strong>the</strong> site <strong>of</strong> each lesion (but not <strong>at</strong> more cranîal levels)<br />

was reduced when compared to Stage 16 contror or normar experimentar embryos.<br />

0n fol lowing <strong>the</strong> canal <strong>of</strong> <strong>the</strong> neural tube down from <strong>the</strong> somite region<br />

în <strong>the</strong>se two embryos' it courd not be trêced con.tinuous¡y into <strong>the</strong> dorsar<br />

half <strong>of</strong> <strong>the</strong> lesions. The neurar pr<strong>at</strong>e m<strong>at</strong>eriar was progressivery reduced<br />

<strong>at</strong> <strong>the</strong> cran¡al end <strong>of</strong> each lesion, wh¡ch thus appeared to be composed<br />

entlrely <strong>of</strong> ta¡l-bud marerial.(F¡gs. 77-82).<br />

An absence <strong>of</strong> accessory canals, in contrast to <strong>the</strong> multiple canals <strong>of</strong><br />

Stage 16 control and normal experímental embryos, suggested an early<br />

m<strong>at</strong>ur<strong>at</strong>¡on <strong>of</strong> <strong>the</strong> tail-bud m<strong>at</strong>erial in <strong>the</strong> two resions. The defects were<br />

covered by ectoderm above end berow and open in <strong>the</strong> mîddre section, though<br />

not so smoothly contínuous with ectoderm as in <strong>the</strong> examples <strong>of</strong> myeloschisîs.<br />

<strong>ln</strong> <strong>the</strong> caudal region, each les,ic¡n gave wây to a ctosed neural tube covered<br />

by ectoderm and closely resembr in9 <strong>the</strong> caudar tube <strong>of</strong> Stage 16 control and<br />

normal experimental embryos, though slightly reduced ín size.


t69<br />

<strong>ln</strong> both embryos <strong>the</strong> volume <strong>of</strong> neural tÌssue was so reduced th<strong>at</strong><br />

somitic ñesoderm encroached on <strong>the</strong> midlìne, dorsal to <strong>the</strong> les¡ons where<br />

<strong>the</strong>y were covered by ectoderm. This again suggested th<strong>at</strong> <strong>the</strong> dorsal<br />

contrlbution to <strong>the</strong> neural tube (derived from neural pl<strong>at</strong>e m<strong>at</strong>erîal)<br />

was considerably reduced in <strong>the</strong> area <strong>of</strong> <strong>the</strong> lesions (Flg,. 77) .<br />

Exam<strong>ln</strong><strong>at</strong>ion <strong>of</strong> somitic mesoderm în one embryo (SOf lü revealed some<br />

reductlon in volume <strong>at</strong> <strong>the</strong> protosomíte and unsegmented mesoderm areas<br />

(though not elsewhere) with a diffuse arrangement <strong>of</strong> cells and some<br />

cystic spaces (f ígs. 77-8Zl ... "r<br />

Unsegmented mesoderm was in contact with neural tissue in one<br />

embryo (30E l!) because <strong>of</strong> <strong>the</strong> encroachment <strong>of</strong> somitic mesoderm across<br />

<strong>the</strong> midline dorsal to <strong>the</strong> lesîon<br />

The.lesions in <strong>the</strong>se two embryos thus appeared to show:<br />

a) reduction <strong>of</strong> total neural volume<br />

b) marked reduction in <strong>the</strong> neural pl<strong>at</strong>e contiibution, but faîrly normal<br />

ta I I -bud contribution<br />

c) early m<strong>at</strong>ur<strong>at</strong>îon <strong>of</strong> <strong>the</strong> tail-bud m<strong>at</strong>erial<br />

d) form<strong>at</strong>ion <strong>of</strong> normal cord from tail-bud m<strong>at</strong>erial in <strong>the</strong> caudal<br />

reg i on<br />

e) exposure <strong>of</strong> <strong>the</strong> central part <strong>of</strong> <strong>the</strong> lesion, but ectodermal cover<br />

above and below this<br />

f) encroachment by somitic mesoderm ôcross <strong>the</strong> dorsal aspect <strong>of</strong> <strong>the</strong><br />

lesion where ectodermal cover was preserved<br />

9) some reduction ín <strong>the</strong> local volume <strong>of</strong> postsomitic mesoderm<br />

h) <strong>the</strong> occurrence <strong>of</strong> cyst¡c areas within <strong>the</strong> local somitic mesoderm.


170<br />

These two lesions were clearly separable from myeloschisis and so<br />

were called myelodysplasias. Because <strong>of</strong> <strong>the</strong> U-shaped contour <strong>of</strong> <strong>the</strong><br />

defects and <strong>the</strong> apparent reduction <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e contrîbutìon,<br />

this form <strong>of</strong> myelodysplasla was called a hemÌmyel îa.<br />

<strong>ln</strong> all <strong>the</strong> experlmental embryos <strong>of</strong>.this group (Stages 1l-16)<br />

histologîcal appearances away from <strong>the</strong> a!'eas <strong>of</strong> neural defects closely<br />

resembled <strong>the</strong> findings ¡n Stages tJ-16 control embryos for:<br />

a): th<strong>ln</strong>ning <strong>of</strong> <strong>the</strong> rhombic ro<strong>of</strong><br />

b migr<strong>at</strong>ion <strong>of</strong> neural crest and somitic mesoderm cells<br />

c) reduction <strong>of</strong> <strong>the</strong> primîtive streak .<br />

6.3.7 Staqe 17-20 Control Embrvos (Group lV)<br />

As well as full neural closure <strong>the</strong>se control embryos showed complete<br />

fusion between <strong>the</strong> two sources <strong>of</strong> neural tissue in <strong>the</strong> overlap zone.<br />

There were no accessory canals,and it was imposslble to dîstinguish neural<br />

pl<strong>at</strong>e m<strong>at</strong>erial from taíl-bud m<strong>at</strong>erial"by any criterion (inCluding asymmetry<br />

<strong>of</strong> <strong>the</strong> closed tube). H¡toses were restr¡cted to cells lining <strong>the</strong> lumen.<br />

Llmb buds were cleaily distinguishable and provided boundarîes for<br />

subdivision <strong>of</strong> <strong>the</strong> embryonic spinal cord. <strong>ln</strong> <strong>the</strong>"caudal region <strong>the</strong> taílbud<br />

showed progressive reduction, with disappearance <strong>of</strong> <strong>the</strong> primitive<br />

streêk. By Stage l9 a differentî<strong>at</strong>ed notochord was replacing <strong>the</strong> protonoiochord<br />

and caudal somîtes were replacing unsegmented mesoderm in <strong>the</strong><br />

caudal regíon (figs. 6t - 64).<br />

The caudsl notochord preserved its close contact wíth .<strong>the</strong> spinal<br />

cord, whereas <strong>the</strong> caudal somites were not ¡n contact with <strong>the</strong> cord <strong>at</strong><br />

<strong>the</strong> lower postcrural and caudal areas. At <strong>the</strong> upper somite region,<br />

however, <strong>the</strong> neural tube was separ<strong>at</strong>ed from notochord by mesenchyme cells<br />

in one Stage 20 Embryo (42C 21),


171<br />

The rhomblc ro<strong>of</strong> became membranous by Stage 18, w¡th a choroid<br />

plexus developing in <strong>the</strong> fourth ventricle (F¡g.. 109 ).<br />

Between <strong>the</strong>.spìnal cord and overlying ectoderm somitic mesoderm<br />

cells were present in <strong>the</strong> brain and somite <strong>at</strong>eas, whereas neural crest<br />

cells were observed from <strong>the</strong> sonite region down to <strong>the</strong> caudal areâ by<br />

Stage 1!. Somîte dlspersal was well advancèd down to <strong>the</strong> postcrural<br />

region, whíle fully developed somltes (with no cystÍc areas) extended<br />

to <strong>the</strong> tip <strong>of</strong> <strong>the</strong> tail by Stage 20.<br />

6.3.8 Staqe 17-20 Experîmental Embrvos. (Grouo lV)<br />

These experîmentâl embryos could be divided înto three types -<br />

those wíth-no defects, those wíth myeloschisis, and those with myelodysplasia.<br />

A sinþle embryo (42E 21) showed both myeloschisis and<br />

myelodysplas í a.<br />

The embryos wlth no defects close¡y resembled Stage 1/-20 control<br />

embryos (Sectîon 6,3,71 . By Stage 20 <strong>the</strong> closed neural tube was sêparôted<br />

from notochord by mesenchyme cells <strong>at</strong> <strong>the</strong> somîte region in one case (t+ZE 73).<br />

The embryos with myeloschísis showed a progression <strong>of</strong> <strong>the</strong> Iesions<br />

seen in experimental embryos <strong>of</strong> Group llt (Secrîon 6.3.6r. llyeloschisis<br />

occurred in <strong>the</strong> êreas <strong>of</strong> postbrachîal, crural, and postcrural cord, giving<br />

way to an âpparently normal cord in <strong>the</strong> caudal region (Fi9s. 71-76).<br />

The cranial part <strong>of</strong> each defect consisted <strong>of</strong> a widely euurtåd pl"te<br />

<strong>of</strong> neural tissue, with <strong>the</strong> cells perpendîcular to <strong>the</strong> well-preserved dorsal<br />

surface. <strong>ln</strong> most cases <strong>the</strong> notochord was widely separ<strong>at</strong>ed from neural<br />

t¡ssue <strong>at</strong> this level by mesenchymal cells (Fig. 72).<br />

l,{ í toses were<br />

restrlcted to cells <strong>of</strong><strong>the</strong> exposed surface <strong>of</strong> <strong>the</strong> everted neural pl<strong>at</strong>e.


172<br />

The centraì part <strong>of</strong> each defect showed separ<strong>at</strong>ìon <strong>of</strong> neural m<strong>at</strong>erial<br />

<strong>ln</strong>to an open plaque (ly<strong>ln</strong>9 <strong>at</strong> <strong>the</strong> same level as adjacent ectoderm) dorsal<br />

to a closed tube (whlch was deficlent <strong>ln</strong> dorsal m<strong>at</strong>erlal). <strong>ln</strong> almost all<br />

cases <strong>the</strong>re was a clear ì <strong>ln</strong>e <strong>of</strong> demarc<strong>at</strong>ion between <strong>the</strong> superficlal plaque<br />

(apparently derived from unclosed neural pl<strong>at</strong>e m<strong>at</strong>erial) and <strong>the</strong> deeper<br />

tube (apparently derlved from taìl-bud m<strong>at</strong>erlal). The cells <strong>of</strong> <strong>the</strong> plaque<br />

were arranged perpendicular to <strong>the</strong> exposed dorsal surfacerwhi le those <strong>of</strong><br />

<strong>the</strong> tube were perpendiculâr to <strong>the</strong> lum<strong>ln</strong>al surface. llithín a few sections<br />

<strong>of</strong> <strong>the</strong> first appearance <strong>of</strong> <strong>the</strong> tail-bud m<strong>at</strong>erial <strong>the</strong> notochord was ìn close<br />

contêct wlth neural t¡ssue (Fi9. 73) . H¡toses were seen ín cells on<br />

<strong>the</strong> exposed surface <strong>of</strong> <strong>the</strong> dorsal plaque and ín cells ìîning <strong>the</strong> lumen <strong>of</strong><br />

<strong>the</strong> closed tube.<br />

At <strong>the</strong> caudal end <strong>of</strong> each defect <strong>the</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial dísappeared,<br />

leavîng a narrowly everted mass (whose cells were perpendicular to <strong>the</strong><br />

exposed surface) continous with <strong>the</strong> caudal cord. The notochord remained<br />

<strong>ln</strong> closè contaét with <strong>the</strong> neural tube (r¡g. 75).<br />

<strong>ln</strong> <strong>the</strong> lower postcrural and caudal regíons an apparently normal neural<br />

.<br />

tube reformed from tail-bud m<strong>at</strong>eríal (Fig, 76).<br />

Because <strong>of</strong> <strong>the</strong> clear<br />

separ<strong>at</strong>lon between neural pl<strong>at</strong>e and tail-bud m<strong>at</strong>erials <strong>the</strong> development <strong>of</strong><br />

myeloschîsîs thus revealed <strong>the</strong> true extent <strong>of</strong> <strong>the</strong> overlap zone <strong>at</strong> Stages<br />

17-20.<br />

<strong>ln</strong> myeloschisis <strong>the</strong> neural tlssue uras in contact, but no longer in<br />

continuity, with adjacent ectoderm by Stage 17. (F¡gs. 72-74). The rhombïc<br />

ro<strong>of</strong> in embryos wlth myeloschisis was membranous and indistinguishable from<br />

<strong>the</strong><br />

âppearance în both control and normal experimental embryos, w"ith<br />

a chorold plexus developing after Stage 17. (Fi9 111)'


173<br />

At areas <strong>of</strong> myeloschisîs contact between somitïc mesoderm and<br />

neuraì tissue was general ly lost, whereas contact was mainta<strong>ln</strong>ed <strong>at</strong> <strong>the</strong><br />

same levels in control and normal experimental embryos. . Somîte develop-<br />

'ment was general ly well mainta<strong>ln</strong>ed, wlth normal somite volume and no<br />

cysts or hemorrhages.<br />

The development <strong>of</strong> myeloschisis dîd not prevent <strong>the</strong> local form<strong>at</strong>ion<br />

<strong>of</strong> neural crest tissue (riss. 73-75 ). Migr<strong>at</strong>lon <strong>of</strong> neuraì crest and<br />

somitic mesoderm cells between neural tube and ectoderm in areas away<br />

from <strong>the</strong> defects however showed sl ight delay when compared to control<br />

embryos. Regression <strong>of</strong> <strong>the</strong> tail bud was almost complete by Stage 20.<br />

Embryos with myelodysplasia also showed progression <strong>of</strong> <strong>the</strong> lesions<br />

seen <strong>at</strong> Stage 16 (Section 6.3.6). Myelodysplasia occurred <strong>at</strong> a slîghtly<br />

more caudal level than myeloschisis, extending from thè postbrachial<br />

area înto <strong>the</strong> crural ênd posÈcrural regions and somet¡mes down to <strong>the</strong><br />

caudal reg i on<br />

llith only two exceptions myelodysplasia took <strong>the</strong> form <strong>of</strong> hemimyelía,<br />

One embryo however (428 561 showed two smal I and irregular masses <strong>of</strong><br />

neural tíssue wîth residual accessory canals in <strong>the</strong> caudal region<br />

(diplomyel ia).. The o<strong>the</strong>r exception was an embryo (\28 69) showing<br />

marked local necrosis associ<strong>at</strong>ed hrith complete absence <strong>of</strong> neural tîssue<br />

in <strong>the</strong> postcrural and caudal regions (amyel ia).<br />

Exam<strong>ln</strong><strong>at</strong>ion <strong>of</strong> <strong>the</strong> hemîmyálias revealed no obvious demarc<strong>at</strong>ion<br />

between neural pl<strong>at</strong>e and tal l-bud m<strong>at</strong>erials. The craníal end <strong>of</strong> each<br />

leslon was covered by ectoderm and marked by reduction in size <strong>of</strong> <strong>the</strong><br />

neural tube, w¡th <strong>the</strong> wide gap between ectoderm and neural tube filled<br />

by migr<strong>at</strong>ing mesenchyme cells. The reduction in neural volume affected<br />

ma<strong>ln</strong>ly <strong>the</strong> dorsal part <strong>of</strong> <strong>the</strong> closed tube, producing a r<strong>at</strong>her triangular


t74<br />

contour and an Irreguìar central canaì (F¡g ' 83)'<br />

<strong>ln</strong> <strong>the</strong> central part <strong>of</strong> each hemimyel îa neural tissue formed a<br />

V-shaped or U-shaped plaque in cont¡nuîty with <strong>the</strong> tall-bud m<strong>at</strong>erial<br />

<strong>of</strong> <strong>the</strong> caudal region. The volume <strong>of</strong> neural tissue was consíderably<br />

reduced and lay <strong>at</strong> a deoper level than <strong>the</strong> adjacent 6ctoderm' givìng <strong>the</strong><br />

lmpresslon <strong>of</strong> reduced neural pl<strong>at</strong>e m<strong>at</strong>erial (Figs' 84-85) '<br />

The mîd-zone<br />

<strong>of</strong> each plaque was exposed for a short distance but just cranial to thîs <strong>the</strong><br />

plaque was covered by ectoderm and <strong>of</strong>ten by mesoderm encroaching on <strong>the</strong><br />

mldl ine from <strong>the</strong> adjacent somites (fig 5. 84 , 85,88).Mìtoses were largely<br />

restrlcted to cells <strong>of</strong> <strong>the</strong> dorsal surface <strong>of</strong> <strong>the</strong> plaque but were not as<br />

numerous as in myeloschisls.<br />

<strong>ln</strong> <strong>the</strong> caudal part <strong>of</strong> each hemimyel ia a closed neural tube was reformed,<br />

though reduced in size when comparec to control and normal experimental<br />

embryos, and usualty covered by somìtic mesoderm across <strong>the</strong> midline<br />

( Frs. 88)<br />

The notochord was uniformly în contact with neural tÎssue <strong>at</strong> all<br />

levels <strong>of</strong> <strong>the</strong> myelodysplasias, in contrast to <strong>the</strong> wîde separ<strong>at</strong>ion <strong>of</strong> notochord<br />

from <strong>the</strong> cranial part <strong>of</strong> most myeloschisis lesions <strong>at</strong> stages l7-20.<br />

Accessory canals were present in <strong>the</strong> caudal regïon <strong>of</strong> three embryos<br />

wlth myelodysplasia, suggesting some deìay <strong>ln</strong> m<strong>at</strong>ur<strong>at</strong>îon <strong>of</strong> <strong>the</strong> tail-bud<br />

¡n <strong>the</strong>se embryos. The rhombic ro<strong>of</strong> in dysplastic embryos had a membranous<br />

appearance and an early choroîd pìexus, similar to thât in all o<strong>the</strong>r<br />

Stage 17-20 emb ryos .<br />

Somitic mesoderm adjacent to myelodysplasia was <strong>of</strong>ten'reduced În<br />

volume and loosely arranged, wlth cystic spaces in some areas and occasional<br />

hemorrhages from ìocal vessels (Figs' 83-88) '<br />

Contact <strong>of</strong>


175<br />

neurêl tîssue wíth mesoderm however was maintained <strong>at</strong> <strong>the</strong> sites <strong>of</strong><br />

myelodysplasias because <strong>of</strong> <strong>the</strong> encroachment <strong>of</strong> somitic mesoderm dorsaj<br />

to <strong>the</strong> I es ions .<br />

The most marked cystlc and hemorrhagic. changes extended from <strong>the</strong><br />

postbrachlal area to <strong>the</strong> caudal region and were a:íoci<strong>at</strong>ed with defective<br />

mâtur<strong>at</strong>îon <strong>of</strong> <strong>the</strong> tail-bud. The embryo wìth ãmyel ìa (4Zf 6!) provided<br />

<strong>the</strong> most extreme example <strong>of</strong> this process, with hemimyelia <strong>of</strong> <strong>the</strong> crural<br />

regîon, amyel ia <strong>of</strong> <strong>the</strong> postcrural region, and loss <strong>of</strong> all recognîzable<br />

structures în <strong>the</strong> cauda! region.<br />

The embryo with diplomyel ia (42E 56) simllarly showed hemimyelia in<br />

<strong>the</strong> postbrachiaì, crural and postcrural regions, giving way to d¡plonryel<br />

ia in <strong>the</strong> caudal region assocl<strong>at</strong>ed ùrith <strong>the</strong> persistence <strong>of</strong> accessory<br />

cana I s.<br />

<strong>ln</strong> <strong>the</strong> s<strong>ln</strong>gle embryo showing both myeloschlsis and myelodysplasia<br />

(428 21'r, ê r<strong>at</strong>her smal I cord în <strong>the</strong> postbrachial region gave bray to an<br />

everted myetoschisis (showing wide separ<strong>at</strong>ion from <strong>the</strong> notochord) and<br />

<strong>the</strong>n ên exposed dysplastîc plaque (in contact with notochord) <strong>at</strong> <strong>the</strong> crural<br />

region. There was a smal I irregular mass <strong>of</strong> uncanalized neural tlssue<br />

(covered by ectoderm and somitic mesoderm across <strong>the</strong> midline) ín <strong>the</strong> postcrural<br />

regfonl and amyelia in <strong>the</strong> caudal region. Neural. pì<strong>at</strong>e and taÌlbud<br />

m<strong>at</strong>erials were not clearly separ<strong>at</strong>ed <strong>at</strong> <strong>the</strong> êrea <strong>of</strong> myeloschisis.<br />

6.3.9 BgyjeU pt Histologîcal Changes in Experimenral Embrvos<br />

A review <strong>of</strong> <strong>the</strong> histological fe<strong>at</strong>ures descríbed in Sectíon 6.3<br />

revealed certain dlfferences between experimental and control embryos <strong>ln</strong><br />

each g roup.<br />

<strong>ln</strong> <strong>the</strong> regions <strong>of</strong> myeloschisîs or myelodyspìasia experimental embryos<br />

showed varlous changes which appeared to be assocl<strong>at</strong>ed consistently with<br />

\


t76<br />

<strong>the</strong> lesions. The interpret<strong>at</strong>ion <strong>of</strong> <strong>the</strong>se cha.nges was complic<strong>at</strong>ed by<br />

<strong>the</strong> artifactual distorsion <strong>of</strong> some embryos, which was assessed by a<br />

detaÌled tabul<strong>at</strong>îon <strong>of</strong> <strong>the</strong> appearance <strong>of</strong> each region in every embryo<br />

(see Sect ion 6.4) .<br />

Group I {Stajç ll0 Embryós)<br />

a) <strong>the</strong> neural pl<strong>at</strong>e în two experimena"l .rb.yo, showed slight eversion<br />

<strong>of</strong> <strong>the</strong> neural fo¡ds <strong>at</strong> <strong>the</strong> pos.terior rhomboid sinus, compared to <strong>the</strong><br />

elev<strong>at</strong>îon or fl<strong>at</strong>tening seen in control embryos.<br />

Group ll (Staqe 11-12 Embrvos)<br />

a) <strong>the</strong> neural pl<strong>at</strong>e in all experimental embryos showed some delay in<br />

closui'e, and in one case showed defînlte eversion <strong>of</strong> neural folds <strong>at</strong><br />

<strong>the</strong> posteríor rhomboid sinus<br />

b) <strong>the</strong> appearance <strong>of</strong> <strong>the</strong> overlap zone was retêrded in all experimental<br />

emb ryos .<br />

Group lll<br />

(Stagg t3-16 Embryos)<br />

a) early myeloschlsis (caudar to <strong>the</strong> somite region) consisted <strong>of</strong> wrdery<br />

everted neural folds in continuity wittr adjacent ectoderm, lying dorsal<br />

to more normal taîl-bud m<strong>at</strong>erîal<br />

b) several embryos wìth myeloschisis when compared to <strong>the</strong>ir controls<br />

showed loss <strong>of</strong> contact between protosomite mesoderm and neural tissue<br />

c) early myelodysplasla showed narrowly everted neural tissue 'in<br />

cont¡nuity with tail-bud m<strong>at</strong>erial, but apparently deficient in neural<br />

pl<strong>at</strong>e m<strong>at</strong>er i a I<br />

d) ectoderm wâs present over <strong>the</strong> cranial and caudal sections <strong>of</strong> myelodysplasia,<br />

but in <strong>the</strong> exposed middle sectíon was not in such smooth<br />

cont¡nuity wlth adjacent neural tissue as in myeloschisis


t77<br />

e) encroachment <strong>of</strong> somitîc mesoderm towards <strong>the</strong> mîdline dorsal to<br />

areas <strong>of</strong> myelodysplasiã was assocî<strong>at</strong>ed wíth reduced neural volume<br />

f) below <strong>the</strong> level <strong>of</strong> myelodysplasia rhere was slight reduction <strong>ln</strong><br />

<strong>the</strong> volume <strong>of</strong> protosomite and unsegmented mesoderm, wìth some local<br />

cystic changes but no loss <strong>of</strong> contact with neural tissue.<br />

Groúp lV (Staqe l7-20 Embrvos)<br />

a) myeloschisis showed clear demarc<strong>at</strong>ion between neurar pr<strong>at</strong>e m<strong>at</strong>eríal<br />

and tâ î I -bud m<strong>at</strong>erial<br />

b) <strong>ln</strong> most cases <strong>the</strong> notochord was wldely separ<strong>at</strong>ed from <strong>the</strong> upper<br />

thlrd <strong>of</strong> an area <strong>of</strong> myelosihisls (derived from neural pl<strong>at</strong>e m<strong>at</strong>erial)<br />

c) somite mesoderm showed loss <strong>of</strong> contact *lth nuur"l tissue <strong>at</strong> areas<br />

<strong>of</strong> myeloschisis when compa red to <strong>the</strong> contro.l s<br />

d) myelodysplasia occurred <strong>at</strong> a slightly more caudal .level than<br />

myeloschîsis, and consisted <strong>of</strong> hemimyel ia, diplomyel ia, or amyel ía<br />

e) in myelodysplasla <strong>the</strong>re hras no separêtÍon between neural plête ênd<br />

ta i I -bud m<strong>at</strong>er¡âls<br />

f) <strong>the</strong> myelodysplasias showed reduction in neural volume, and were<br />

pêrtly covered by ectoderm<br />

S) three embryos with myelodysplasia showed prolonged retention <strong>of</strong><br />

accessory canalsh)<br />

somitic mesoderm <strong>of</strong>ten encroached on <strong>the</strong> midrine dorsar to ãreas<br />

<strong>of</strong> myelodysplasîa and <strong>the</strong> caudêl cord<br />

¡) somitic mesoderm adjacent to myerodysprasia was in contact with<br />

neural tube, but <strong>of</strong>ten cyst¡c and reduced in volume.<br />

These histological findings were tabul<strong>at</strong>ed by regions for all control<br />

and experimental embyos (See Section 6.4).


Figs. 51 - 54, Normai de'¡elopment Ìn a St. l3 control enrb ryo shovring<br />

<strong>the</strong> overlap zone from above down (lBC 27) (H â Ë; x40):<br />

Fig. 51 .<br />

Protosomîtesi notochord; slightly. âsymmetrical neural<br />

canal marking upper end <strong>of</strong> overlap zone.<br />

FiS. 5?. Protosomí tes; notochord; one accessory canal .<br />

FiS. 53.<br />

.Unsegmented<br />

sornì.tic mesoderm; notochordl one accessory<br />

canel opening <strong>ln</strong>to neural canal.<br />

[¡s. 54, Unsegmented sonitic mesoderm; protonotochord; several<br />

accessory cânals.


ôt<br />

rf)<br />

, ,,. ì _ ^iiir¡:ù\. I r i.


Fí9s" 55 - 60. llcrmaI development in a St. I6 control embryo showing<br />

<strong>the</strong> overlap zone from above do¡in (30c Zz). Mitotic<br />

fîgures adjacent to lumina <strong>of</strong> neural canal and<br />

----^^ory canals. Ectodermal cöver. but no neuraì<br />

crest m<strong>at</strong>erial (H.a E; x4O) :<br />

FÎS. 55,<br />

Protosomites i notochord; asymmetrical neural canal<br />

reveals upper end <strong>of</strong> <strong>the</strong> o.¡erlap zone.<br />

FiS. 56.<br />

L<strong>ln</strong>segnented somitic mesoderml notochord; asymmetrical<br />

neura I tube.<br />

FiS. 57.- 60. Unsegmented somitic mesoderm; protonotochord; neural<br />

canal extending dor¡rn to caudal region; accessory<br />

canals extending up from caudál regîon.


l<br />

55<br />

56<br />

57<br />

58<br />

59<br />

ó0


F;gs 51 - 64. Normal devcìopn¿¡ii il a St. 1B controì etrìbiyu s¡rüia¡i¡,g<br />

<strong>the</strong> caudal regîon from above down (hZC 7) " NeuraÏ<br />

. canal symmetrical . Notôchord in close contact with<br />

neural tube. Large somitesshowing differentÌ<strong>at</strong>ion<br />

Neural crest present, Cl


Fiss. 65<br />

Early myeloschisis in a St. 14+ experimental embryo,<br />

1B hours after wincion,î¡g (tBe 36) . Open neural folds<br />

extending ciovr¡r to <strong>the</strong> cauciaì region anc{ overìying<br />

eccessory canals in <strong>the</strong> tail-bud m<strong>at</strong>erial. Extensive<br />

necrosis <strong>of</strong> cells on exposed surface <strong>of</strong> open neural<br />

pl<strong>at</strong>e. Normal protosomîtes. Notoch


:<br />

ó5<br />

66<br />

67<br />

69<br />

70


fiSr. 71 - 76. L<strong>at</strong>er myeloschisis in a St. i7 experîmentâl embryo,<br />

42 hours afrer windowins (428 3) (H s E; x4o) :<br />

FiS. 7.1 .<br />

'<br />

Synrmetrical neural canel with mï ios,es along ìu en.<br />

SomÌtes dîspers!ng. Notochord vácuol<strong>at</strong>ed,<br />

FiS. 72.<br />

llide eversion <strong>of</strong> neural pì<strong>at</strong>e m<strong>at</strong>erial with some<br />

mitótîc fïgures near exposed surface. l^lide separ<strong>at</strong>ion<br />

<strong>of</strong> notochord from neural pìaque. I'lo superficial<br />

ecros I s<br />

FiS. n ^ 7tt. Separ<strong>at</strong>ion <strong>of</strong> neural plut" *"t.ri"l from tail-bud<br />

m<strong>at</strong>erial. Neural crest present. Notochord in close<br />

contact wl th neural tissue. l"iitotic ì"ígures seen<br />

along lumen <strong>of</strong> neural tube (derived from tail-bud<br />

. m<strong>at</strong>erial). Sonites show dîfferenti<strong>at</strong>ion.<br />

Figs. 75 - 76. Neuraì tube composed <strong>of</strong> tail-bud m<strong>at</strong>e¡-¡al, with mit<strong>at</strong>ic<br />

figures along <strong>the</strong> lumen. SomÌtes slightly reduced in<br />

s ¡ze but well dîfferentÌ<strong>at</strong>ed.


\l\)<br />

ìr,jtr, r: : :;r:,irrliirqn<br />

^ù): I


Fiss. 77 -82.<br />

Early myelodysplesia in a St. 16 experinental ernbryo,<br />

J0 hours after windovqing (¡OE 76) . lleural tissue<br />

reduced irr rloìune and formíng a nårrow, open hemimyelia,<br />

partly covered by ectoderÍ.. Neural tube<br />

formed fronr taìl-bucl rn<strong>at</strong>erial in <strong>the</strong> caudal region.<br />

A few sc<strong>at</strong>terecl nitôt¡c f i5;ures. No neural crest.<br />

Notochord v¡e I I -fcrnreci a¡rd in contact with neui.êl<br />

tissue. Somites reduced ín volume and poorly<br />

differenti<strong>at</strong>ed <strong>at</strong> level <strong>of</strong> <strong>the</strong> lesion (H s. E; x40).


:<br />

F-<br />

77


FÌgs. B3 - BB. L<strong>at</strong>er myelodysplas Ìa in a St, lB experimental enbryo,<br />

42 hours after window!ns (tlzË 50) . Notochord ìnelI -<br />

formed and in coniact with neural.. tissue. l.lo neural<br />

crest (H s E; .x40) :<br />

,<br />

Figs. 83 - 85. Progressíve reduction in neural vôlurne to a small,<br />

fl<strong>at</strong> plaque covered by ectoderm and so¡¡itic mesoderm.<br />

Fig. 86,<br />

0pen hemÌmyel ia. Somîtes reduced in volume and poorly<br />

differenti<strong>at</strong>ed.<br />

Figs. 87 - 88. Smal I neural tube formed by tail*buc{ m<strong>at</strong>erial , and<br />

covered by fused somites in <strong>the</strong> midline. Vessels<br />

engorgàd with a probable local. hemorrhage.


''i<br />

l.l


Figs, 89 - 91. Processíng artifacts in experimental ûnd control embryos<br />

<strong>of</strong> different Stages (H a E; x40) :<br />

FiS. 89. Separ<strong>at</strong>ìon <strong>of</strong> neu¡-al tissue from sornites <strong>at</strong> St. 10-<br />

(oc 49) .<br />

FiS, 90,<br />

Separ<strong>at</strong>ion <strong>of</strong> neurai tissue from pfotosomites and<br />

notochord ar 5t. 1'l- (6E 28) .<br />

Fig. 91 .<br />

Reopening <strong>of</strong> neural tube with separ<strong>at</strong>ion from<br />

notochord and somites êr Sr. l3+ (1BE 25).<br />

FiS. 92.<br />

Separ<strong>at</strong>¡on <strong>of</strong> area <strong>of</strong> myeìoschisis from protosomites<br />

and norochord ar st. t4+ (lBE 54).<br />

Fis. 93 - 94. Reopening <strong>of</strong> ro<strong>of</strong> - pl<strong>at</strong>ê ar st. 19 (4zc lt; hzl 31).


B9<br />

90


ì86<br />

6.3.10 SequenJ¡¿il ll lúSti¡it¡on6 óf Sèléctéd Eríbryos<br />

To ¡l lustr<strong>at</strong>e <strong>the</strong> events <strong>of</strong> normal and abnormal neural closure a group<br />

<strong>of</strong>. sequent¡al. drawìngs <strong>of</strong> every tenth section are presented for eight<br />

embryos. Serlal sections under a Leltz Dialux microscrope were projected<br />

through a Sony DXC-1650 camera onto a Sony PYJ fO¡O micro-vìdeo monitor<br />

and traced <strong>at</strong> an in¡tial magnifîc<strong>at</strong>ion <strong>of</strong> x88. Embryos selected for<br />

illustr<strong>at</strong>ion are shown <strong>ln</strong> Table J4 and Fiç.95to 102.<br />

TABLE 34.<br />

SEOUENTIAL ILLUSTRATI ONS<br />

Embryo Stage Neural Ti ssue<br />

18C 4 lt+ elev<strong>at</strong>ed (normal) posterior rhomboíd sinus<br />

6f 34 1l+ everted (abnormal) posterior rhomboid sínus<br />

18C 27 13+ normal neural closure<br />

18E 36 14+ early myeloschlsis<br />

\28 8 17 l<strong>at</strong>er myeloschlsîs<br />

3OC 22 16 normal _neural closure<br />

3OE 76 16 early hemimyel ia<br />

428 50 18 larer hemlmyelia<br />

At Stâge. 1l+ non-closure <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e is first manifest as<br />

eversion <strong>of</strong> <strong>the</strong> neural folds (68 34,Fîg.96 ) r<strong>at</strong>her than elev<strong>at</strong>ion<br />

(18C 4iFig.95 ) <strong>at</strong> <strong>the</strong> posterior rhomboîd sinus. Nei<strong>the</strong>r embryo shows<br />

an overlap zone.<br />

slightly l<strong>at</strong>er, a control embryo (18C 27,Fis,97 ) shows <strong>the</strong> neural<br />

canaì traceable down to en open neural pl<strong>at</strong>e overlyîng one accessory<br />

canal <strong>at</strong> <strong>the</strong> poster¡or rhomboid sinus. <strong>ln</strong> a comparable embryo with<br />

early myeloschisis (l8e 36,Fig. 9B ) an open lrregular neural pl<strong>at</strong>e


187<br />

overl îes three accessory canals <strong>at</strong> <strong>the</strong> rhomboid sinus. Establ ished myeloschlsls<br />

(42E 8,f 19. 99) is assocî<strong>at</strong>ed with eversion <strong>of</strong> neural m<strong>at</strong>erîal<br />

<strong>at</strong> <strong>the</strong> upper and lower ends <strong>of</strong> <strong>the</strong> leslon, separ<strong>at</strong>¡on <strong>of</strong> neural sources<br />

wîth progresslve reduction <strong>of</strong> neural pl<strong>at</strong>e m<strong>at</strong>erlal, and separ<strong>at</strong>ion <strong>of</strong><br />

notochord from neural tÌssue <strong>at</strong> <strong>the</strong> cranial end <strong>of</strong> tbe leslon.<br />

<strong>ln</strong> hemlmyel¡a (30E 76 ,428 50,Fl9s. lot s 102)<strong>the</strong> open defecrs extend<br />

cranlally up from <strong>the</strong> ta¡l bud; <strong>the</strong>re is no sign <strong>of</strong> an overlap zone<br />

comparable to <strong>the</strong> control embryo (3OC ZZ,flg.100 ) showing accessory<br />

canals and a fully closed neural pl<strong>at</strong>e. The cross-sectlonal area <strong>of</strong><br />

':<br />

neural tîssue is reduced <strong>ln</strong> hemìmyel la and <strong>the</strong>re is no separ<strong>at</strong>ion<br />

<strong>of</strong> neural tissue from notochord.


Fígs. 95 - 102, Sequentiêl drawings <strong>of</strong> every tenth seriâl sectÌon <strong>of</strong> a<br />

group <strong>of</strong> control and experimental. embryos, to show <strong>the</strong><br />

development <strong>of</strong>. open cord defects. Drawings include<br />

only neuraì tissue and notochord, witir brain region<br />

ín first column, somite regíon <strong>of</strong> cord in seconcl<br />

column, and caudal region <strong>of</strong> cord Ín thírd column:<br />

Figs 95 - 96. Stage 11+ embryos (lBC 4; 6E 34) showing elev<strong>at</strong>ion<br />

<strong>of</strong> neural folds in control embryo (arrow) and<br />

eversion <strong>of</strong> neural folds in experímental embryo<br />

(a r row) .


189<br />

GoNTROL: STAGE ll+ (te c a)<br />

O<br />

G<br />

&<br />

@@<br />

I<br />

@<br />

Q@<br />

I<br />

@ q<br />

@<br />

a<br />

@<br />

@<br />

@<br />

@<br />

@e<br />

9U<br />

@u<br />

g<br />

a<br />

q 0-<br />

Eu<br />

et<br />

eV<br />

E<br />

ö{e<br />

.e<br />

e'I<br />

*<br />

0<br />

ø"@+<br />

---


l9o<br />

EVERsToN: srAGE rf (o r o+)<br />

o<br />

@<br />

@ v II<br />

a<br />

aeaIe<br />

@<br />

@<br />

q<br />

g<br />

@<br />

@<br />

I<br />

@<br />

q<br />

q<br />

q<br />

0<br />

I<br />

a<br />

I<br />

9.<br />

0<br />

0<br />

g<br />

0<br />

I<br />

g<br />

g


Fïgs. 97 " 99. Development <strong>of</strong> m)/eloschisis:<br />

Fî S. 97.<br />

Control embryo <strong>of</strong> 5t. 13+ (JrBC U) shor.,"ing an open<br />

neural pl<strong>at</strong>e and one accessory canal <strong>at</strong> <strong>the</strong> rhomboid<br />

sinus (arrow) but a closed neural tube above this<br />

level .<br />

FíS. 98,<br />

Early myeloschisis in St. l4+ experimental embryo<br />

(1BE 36) showing an open neural pl<strong>at</strong>e above <strong>the</strong><br />

rhomboid sínus (arrow) with several accessory canals.<br />

FiS. 99.<br />

L<strong>at</strong>er myeloschisis in a St. 17 experimental embryo<br />

(42E B) snowing ôn everted neural plaque separ<strong>at</strong>ed<br />

from notochord <strong>at</strong> <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> defect<br />

(arrow), separ<strong>at</strong>îon <strong>of</strong> neural m<strong>at</strong>erials <strong>at</strong> <strong>the</strong> lower<br />

. part <strong>of</strong> <strong>the</strong> defect (arron), and a normal neural tube<br />

i.n <strong>the</strong> caudal region.


@ @@<br />

"@ @<br />

e q<br />

q<br />

a<br />

a<br />

192<br />

CoNTROL: STAGE B+ (lBC27)<br />

o<br />

æ<br />

G?<br />

æ -:-,-Õ)<br />

GzY--<br />

@-@<br />

&-@<br />

43<br />

@


193<br />

MYELOSCHTSIS:STAGE ra.(re rea)<br />

b<br />

æ<br />

Æ<br />

fþe<br />

&'@<br />

@"@<br />

@<br />

@<br />

@<br />

Ø<br />

@<br />

@<br />

@<br />

Ø<br />

Ø<br />

Ø<br />

@<br />

Ø<br />

Ø<br />

.?<br />

ø<br />

e<br />

@<br />

aqq<br />

a<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q.<br />

q<br />

q<br />

q<br />

q<br />

ls<br />

s'<br />

æ<br />

õ<br />

#<br />

S , ltt<br />

,<br />

q q


MYELOSCHTSTS: STAGE tZ (tZeïl<br />

OOG<br />

194<br />

€ (t<br />

<<br />

o@<br />

@@@<br />

ê<br />

@<br />

go<br />

'@<br />

@ @@<br />

ø'<br />

ee<br />

ç<br />

ç<br />

9<br />

g<br />

quvvv<br />

IZ<br />

@&<br />

'o<br />

@<br />

e<br />

P<br />

ø<br />

p<br />

P<br />

e<br />

,a<br />

-@Y<br />

a< < o lmm<br />

<<br />

.t


Figs. 100 - 102, Development <strong>of</strong> myelodyspTasia:<br />

Fig. 100.<br />

Control embryo <strong>of</strong> St. 16 (30C ZZ), vtith a clcsed neural<br />

tube and âccessory canals in <strong>the</strong> caudai region<br />

(a r row) "<br />

Fig. 101.<br />

Early rnyelodysplasia in St. i6 experimental enib ryo<br />

ßOf n.<br />

Lower cord shows reduction in neural<br />

volume, close contact with notochord, and hemimyel ia<br />

in <strong>the</strong> caudal region (arrow).<br />

Fig. 102.<br />

L<strong>at</strong>er myelodysplas ia in St. 1B experimenta.l embryo<br />

(42E 50) w¡th reduction in neural volume, close<br />

contact with notochord, and hehimyelia in <strong>the</strong> caudal<br />

region (arrow). Taíl_bud has disappeared.


coNTRO[: STAGE tó (ro c zz) .<br />

a@<br />

Q=3<br />

a>9<br />

@<br />

%7<br />

% Ø<br />

V.@<br />

X'Q<br />

q<br />

Y'Ga<br />

e -G q<br />

@ Ð<br />

e<br />

æ"><br />

*2" g<br />

3<br />

qa<br />

ð@ö<br />

õ@&<br />

a<br />

q<br />

,a'¡----.....r..J<br />

q<br />

q<br />

a<br />

q<br />

q<br />

q<br />

q<br />

q<br />

a<br />

q<br />

ñ-<br />

a<br />

q<br />

a<br />

q<br />

196<br />

Q<br />

q'<br />

q<br />

q<br />

gè<br />

=/t-Ê<br />

f= z4<br />

. +._/<br />

tmm


HEMTMYELTA: STAGE ló (SO r ZA)<br />

@<br />

q<br />

q<br />

0<br />

0<br />

0<br />

0<br />

I<br />

g<br />

I I<br />

v vgI<br />

qt<br />

èaa<br />

-æ@ @ag<br />

p<br />

@<br />

@O<br />

@<br />

Õ<br />

a<br />

@


G<br />

(õ--==:<br />

\z--<br />

HEMTMYELIA: STAGE tA (+ZESO)<br />

ç--æ<br />

-@<br />

é<br />

@<br />

@<br />

e<br />

@<br />

@<br />

e<br />

@a<br />

@o<br />

eo<br />

e€<br />

@€<br />

@<br />

@e<br />

l9B<br />

øe<br />

- ç.<br />

ee<br />

Pv<br />

ps<br />

Øs q<br />

a<br />

g<br />

ø<br />

g , , t'e-,<br />

q<br />

9<br />

g<br />

o


6.4w<br />

t99<br />

The hlstologlcal study <strong>of</strong> neurui<strong>at</strong>ion (Section 6.3.9) revealed<br />

certa<strong>ln</strong> dlfferences between experímentar and contror embryos. The changes<br />

in <strong>the</strong> represent<strong>at</strong>lve appearance <strong>of</strong> each region in every embryo are shown<br />

<strong>ln</strong> Tables 35 -38,. The assessment <strong>of</strong> <strong>the</strong> separ<strong>at</strong>ion <strong>of</strong> neural tìssue<br />

from adjacent nobchord or somites was complic<strong>at</strong>ed by artifactual splittíng<br />

in some embryos. However, when experîmental (g) and control (C) embryos<br />

were compared in groups, some consîstent differences were evident.<br />

Each regíon <strong>of</strong> each embryo is presented cnanío-caudal ly, so th<strong>at</strong><br />

more than one description recorded for a region indic<strong>at</strong>es a change in<br />

<strong>the</strong> appearânce <strong>of</strong> th<strong>at</strong> region from above downwards (Tables 35 _ 3g ).<br />

Regions A,B,C,D and E <strong>of</strong> each embryo are described in terms <strong>of</strong>:<br />

(a) cond¡tion <strong>of</strong> embryo after processing<br />

(b) progress <strong>of</strong> neural closure<br />

(c) number <strong>of</strong> accessory canals<br />

(d) morphology <strong>of</strong> neural defects<br />

(") cover <strong>of</strong> neural tissue by ectoderm<br />

(f)<br />

cover <strong>of</strong> neural tissue by mesenchyme (neurar crest or somitic mesoderm)<br />

(s) contact.<strong>of</strong> notochord with neural tissue<br />

(h) contact <strong>of</strong> somitic mesoderm with neural tissue<br />

(l)<br />

abnormal ities <strong>of</strong> somitîc nesoderm.


Som i te<br />

Defects<br />

contact none<br />

sePa ra t ion none<br />

separ<strong>at</strong>ion none<br />

contact none<br />

contâct none<br />

separ<strong>at</strong>¡on none<br />

contact none<br />

contact none<br />

contact none<br />

contêct none<br />

contact none<br />

N'<br />

o<br />

Region Embryo Stage Condition Neural<br />

Cl osure<br />

Access.<br />

Cana I s<br />

Ectoderm Mesenchyme Notochord Somi te<br />

Cover Cover Contêct Contact<br />

6c 20 lo- good<br />

c I osed/<br />

closing<br />

covered/<br />

open<br />

contêct<br />

0C 49 t0- fai r<br />

clòsed/<br />

closing<br />

covered/<br />

oPen<br />

contact<br />

0C 52 10- good<br />

c I osed/<br />

cl os ing<br />

covered/<br />

open<br />

con têc t<br />

6c 21 10 good<br />

c I osed/<br />

closing<br />

covered/<br />

open<br />

con têct<br />

0C46 t0 fair<br />

closed/<br />

clos i ng<br />

covered/<br />

open<br />

contact<br />

6E 15 10' fair<br />

cl osed/<br />

closing<br />

.0<br />

covered/ none<br />

open<br />

contact<br />

6E 8 t0 fair<br />

c I osed/<br />

clos ing<br />

covered/ none<br />

oPen<br />

contact<br />

6E 30 i0 faîr<br />

c I osed/<br />

closing<br />

o<br />

covered/ none<br />

open<br />

con têct<br />

6E45 10 faìr<br />

cl osed/<br />

closîng<br />

covered/ none<br />

open<br />

con tact<br />

A<br />

6E 18 t0+ poor<br />

c I osed<br />

covered none<br />

contact<br />

6E 41 10+ fair<br />

c I osed<br />

covered nìone<br />

con tact


contact none<br />

contact none<br />

contact none<br />

contact none<br />

sepa ra t lon none<br />

contact<br />

contact<br />

contact<br />

con tac t<br />

con tact<br />

contact<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

NJ<br />

o<br />

6c 20 10- good<br />

clos i ngl<br />

i nverted<br />

open<br />

contact<br />

B<br />

0c 49 10- faîr<br />

i nverted<br />

0<br />

open<br />

none<br />

con tact<br />

B<br />

0C 52 10- gocd<br />

I nverted<br />

0<br />

open<br />

none<br />

contact<br />

B<br />

6c 21 10 sood<br />

c I osed/<br />

closing<br />

0<br />

cove redl<br />

open<br />

none<br />

contact<br />

0C46 10 fair<br />

clos i ngl<br />

i nverted<br />

open<br />

con tact<br />

6E 15 to- faír<br />

closing/<br />

i nverted<br />

open<br />

contact<br />

6E I l0 fair<br />

closing/<br />

i nverted<br />

open<br />

none<br />

con tact<br />

6e 3o to faîr<br />

closîng/<br />

i nverted<br />

open none<br />

contact<br />

6E 45 to fair<br />

c I osed/<br />

closing<br />

covered/ none<br />

op9n<br />

contact<br />

6E 18 lo+ poor<br />

c I osed/<br />

clos ing<br />

cove red,/ none<br />

open<br />

contact<br />

6E 4t lo+ fair<br />

closed/<br />

closîng<br />

covered,/ none<br />

open<br />

contact


Somite Som i te<br />

Contact Defects<br />

N'<br />

o<br />

N)<br />

TABLE 35B.STAGE.IO CoNTRO.L AND EXPERIMENTAL EMBRYoS (GRoUP I)<br />

Region Embryo Stage Condltlon Neural Access. Ectoderm Mesenchyme Notochord<br />

Closure Canals Cover Cover Contact<br />

c<br />

6C 20 'l 0- good<br />

i nverted<br />

0 open<br />

contact contact none<br />

c<br />

0c 49 10- fair<br />

i nverted<br />

0 open<br />

contact sepa r<strong>at</strong> ion none<br />

c<br />

OC 52 10- good<br />

inverted<br />

0 open<br />

none<br />

contact contact none<br />

c<br />

6C 21 10 good<br />

inverted<br />

0 open<br />

none<br />

contact contact none<br />

c<br />

0c 46 10 faír<br />

i nve rted<br />

0 open<br />

none<br />

contact sepa ra t Îon none<br />

6E 15 10- fair<br />

inverted<br />

,<br />

0<br />

open<br />

none<br />

contact separât¡on none<br />

6E 8 10 falr<br />

elev<strong>at</strong>ed<br />

0<br />

open<br />

none<br />

contact sepêr<strong>at</strong>¡on none<br />

6E 30 lo fair<br />

î nverted<br />

0<br />

open<br />

none<br />

con tact sepa r<strong>at</strong> ¡on none<br />

6E 45 10 fai r<br />

.closîng/<br />

inverted<br />

0<br />

oPen<br />

none<br />

sepa ra t ion separ<strong>at</strong>ion none<br />

6E 18 10+ poor<br />

inverted<br />

0<br />

oPen<br />

none<br />

contact contact none<br />

6E 41 10+ poor<br />

i nverted<br />

0<br />

open<br />

none<br />

contact contåct none<br />

D<br />

\<br />

6C 20 10' good<br />

i nverted<br />

0<br />

open<br />

none<br />

contact sepa ra t ion<br />

D<br />

0C 49 10- fair<br />

i nver ted<br />

0<br />

open<br />

none<br />

contâct separ<strong>at</strong>îon<br />

D<br />

OC 52 t0- sood<br />

I nverted<br />

open<br />

none<br />

eontact separ<strong>at</strong>¡on


none<br />

none<br />

N)<br />

o<br />

6c 21<br />

0c 46<br />

10<br />

10<br />

good<br />

fair<br />

¡ nverted<br />

i nverted<br />

0 open<br />

0 open<br />

none<br />

none<br />

contåct contact<br />

contact sepêr<strong>at</strong>ïon<br />

D<br />

6E 15 10- fal r<br />

i nverted<br />

0 open<br />

none<br />

cohtact<br />

separ<strong>at</strong>lon Rone<br />

D<br />

D<br />

D<br />

6E 8 to faîr<br />

6E 30 10 fair<br />

6E\5 to falr<br />

e I eva ted<br />

Înverted<br />

closing/<br />

inverted<br />

0 open<br />

0 open<br />

0 open<br />

none<br />

none<br />

none<br />

contact<br />

con tact<br />

sePär<strong>at</strong>¡on none<br />

separ<strong>at</strong>ion none<br />

separ<strong>at</strong>¡on sepa r<strong>at</strong> lon none<br />

D<br />

6E 18 10+<br />

POOr<br />

í nverted<br />

0 open<br />

none<br />

con tâct<br />

D<br />

6E 41 10+<br />

poor<br />

I nverted<br />

0 open<br />

nonè<br />

contact<br />

contact none<br />

sepa ra t lon none


Som i te<br />

Contact<br />

Som i te<br />

Defects<br />

contact none<br />

sepa ra t Ìon nonè<br />

contâct none<br />

separ<strong>at</strong>lon none<br />

sePa ra t Ion none<br />

separ<strong>at</strong>¡on none<br />

separ<strong>at</strong> ion nonè<br />

separ<strong>at</strong>ion none<br />

separ<strong>at</strong>ion none<br />

sepêr<strong>at</strong>ion none<br />

separ<strong>at</strong>¡on none<br />

¡\J<br />

o<br />

Regîon Embryo Stage Conditîon<br />

Neura I<br />

C losure<br />

Access.<br />

Ca na I s<br />

Ectoderm<br />

Cover<br />

Mesenchyme Notochord<br />

Cover Con têct<br />

E<br />

6c 20 10- good<br />

fl <strong>at</strong>tened<br />

0 open<br />

E<br />

0c 49 t0- fai r<br />

el ev<strong>at</strong>ed<br />

0 open<br />

E<br />

OC 52 10- good<br />

el ev<strong>at</strong>ed<br />

0 open<br />

none<br />

E<br />

6C 21 10 good<br />

e I eva ted<br />

0 open<br />

none<br />

E<br />

oc 46 10 faìr<br />

f I <strong>at</strong>tened<br />

0 open<br />

none<br />

E<br />

6E 15 10- fai r<br />

f I <strong>at</strong>tened.<br />

0<br />

open<br />

E<br />

6E I to fair<br />

fl <strong>at</strong> tened<br />

0<br />

open<br />

E<br />

6E 30 t0 falr<br />

fl<strong>at</strong>tened<br />

0<br />

oPen<br />

none<br />

E<br />

6E \5 10 faír<br />

everted<br />

0<br />

open<br />

none<br />

E<br />

6E t8 10+ poor<br />

el ev<strong>at</strong>ed<br />

0<br />

open<br />

none<br />

E<br />

6E 41 l0+ fai r<br />

e l eva ted/<br />

everted<br />

,0<br />

open<br />

none


Som i te<br />

Defects<br />

contact none<br />

contâct none<br />

contact none<br />

contâct none<br />

contâct none<br />

contact none<br />

contact none<br />

contact N)<br />

o<br />

AND EXPER I<br />

Region Embryo Stage Conditlon<br />

Neu ra I<br />

C I osure<br />

Acces s .<br />

Cana I s<br />

Ectoderm I'lesenchyme Notochord Somi te<br />

Cover Cover Contact Con tact<br />

lBc 4 t1+<br />

gqod<br />

cl osed<br />

covered none<br />

separ<strong>at</strong>ion contact none<br />

18C 23 12<br />

good<br />

c I osed<br />

covered crest/<br />

none<br />

seÞâ ra t ¡on contact none<br />

18c 7 1z+<br />

good<br />

c I osed<br />

covered cres t/<br />

none<br />

sepa r<strong>at</strong> íon contact none<br />

18C 22 12+<br />

good<br />

cl osed<br />

covered crest/<br />

none<br />

separ<strong>at</strong>íon contact none<br />

A<br />

6E t3 11- good<br />

closed<br />

0<br />

covered none<br />

separ<strong>at</strong> ion<br />

A<br />

6E 28 11- poor<br />

closed<br />

0<br />

covered none<br />

separ<strong>at</strong> ion<br />

A<br />

6E 31 11- fair<br />

c I osed<br />

0<br />

covered none<br />

sePa r<strong>at</strong> ¡on<br />

A<br />

6E 38 11- sood<br />

c I osed<br />

0<br />

covered none<br />

separ<strong>at</strong>¡on<br />

A<br />

6E 44 11- good<br />

closed<br />

0<br />

covered none<br />

sePar<strong>at</strong>ion<br />

A<br />

6E 2\ 11 sood<br />

c I osed<br />

0<br />

covered none<br />

sepa ra t ion<br />

A<br />

6E 34 l1+ good<br />

c I osed<br />

0<br />

covered none<br />

separ<strong>at</strong>ion<br />

18c 4 11+ good<br />

c I osed<br />

covered none<br />

6on tact


none<br />

none<br />

N)<br />

o<br />

o\<br />

B<br />

r8c 23<br />

12 good<br />

c I osed<br />

0<br />

covered none<br />

contêct contäct<br />

B<br />

18C 7<br />

12+ good<br />

c I osed<br />

0<br />

covered none<br />

contact con têc t<br />

B<br />

18C 22<br />

12+ g'ood<br />

closed<br />

0<br />

covered none<br />

contact contact<br />

6E 13 lt- good<br />

closed/<br />

closing<br />

covered<br />

contact contact none<br />

B<br />

6E 28 11- poor<br />

c I osed<br />

0<br />

covered none<br />

separ<strong>at</strong>ion separ<strong>at</strong>íon none<br />

B<br />

6831 n- faîr<br />

c I osed<br />

0<br />

covered none<br />

contact separ<strong>at</strong>ion none<br />

B<br />

6E 38 11- good<br />

closed/<br />

closing<br />

0<br />

covered none<br />

contâct sepa ra t ion none<br />

6E 44 11- good<br />

c i osed/<br />

closing<br />

covered none<br />

contact con tact none<br />

6E 24 rl<br />

good<br />

closed<br />

covered none<br />

contact contact non"<br />

6E 34 tl+<br />

good<br />

closed<br />

covered none<br />

contact contact none


contáct<br />

contact<br />

con tâc t<br />

contêct<br />

Som í te<br />

Defects<br />

sepa r<strong>at</strong> ion none N'<br />

o<br />

\<br />

TABLE 368. STAGE 11-12 CONTROL AND EXPERIMENTAL EMBRYOS (<br />

Regìon Embryo Stage<br />

Condl tîon Neural Access.<br />

Closure Cana I s<br />

Ectodêrm Mesenchyme Notochord Som i te<br />

Cover Cover Contact gon tact<br />

c<br />

18c 4 1t+<br />

good<br />

closed<br />

0<br />

covered none<br />

contact<br />

c<br />

18C 23 12<br />

good<br />

c I osed<br />

0<br />

covered none<br />

cùntact<br />

18c 7 12+<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

c<br />

18C 22 12+<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

/c<br />

6E 13 rr-<br />

6E 28 1.1-<br />

good<br />

poor<br />

clos<strong>ln</strong>g<br />

clos i ng<br />

0 open<br />

0 open<br />

nonè<br />

none<br />

contact contact none<br />

separ<strong>at</strong>ion separ<strong>at</strong>ion none<br />

c<br />

6E 31 11-<br />

falr<br />

clos<strong>ln</strong>g<br />

0 open<br />

contact separ<strong>at</strong>ion none<br />

c<br />

61 38 1r-<br />

good<br />

clos í ng<br />

0 open<br />

contâct separ<strong>at</strong>îon none<br />

c<br />

6E 46 11-<br />

good<br />

I nverted<br />

0 open<br />

contact sePar<strong>at</strong>ion none<br />

c<br />

6E 24 11<br />

good<br />

clos I ng<br />

0 open<br />

contact separ<strong>at</strong>ion none<br />

c<br />

6t 3\ il+<br />

good<br />

clos i ng<br />

0 open<br />

contêct separ<strong>at</strong>ïon none<br />

t8c 4 t1+<br />

goód<br />

clos<strong>ln</strong>g/<br />

<strong>ln</strong>verted<br />

covered/<br />

open<br />

con tact<br />

separ<strong>at</strong>lon<br />

18C 23 12<br />

good<br />

cl osed<br />

cove red none<br />

contact


separ<strong>at</strong> ion none<br />

contact/ none<br />

sepa rêt.¡ on<br />

none<br />

none<br />

NJ<br />

o<br />

oo<br />

D<br />

18C 7<br />

12+ good<br />

closed<br />

covered none<br />

con tact<br />

D<br />

t9c 22<br />

12+ good<br />

c I osed<br />

covered none<br />

contact<br />

D<br />

6E 13 11-<br />

good<br />

i nverted<br />

0<br />

oPen<br />

none<br />

separ<strong>at</strong>ion separ<strong>at</strong>Îon<br />

D<br />

6E 28 11-<br />

poor<br />

i nverted<br />

0<br />

open<br />

none<br />

separ<strong>at</strong>ion s epa ra t ion<br />

D<br />

6E 31 lt-<br />

faír<br />

i nverted<br />

0<br />

oPen<br />

none<br />

contaçt sepa rât ion<br />

D<br />

6E 38 r1-<br />

good<br />

i nverted<br />

el ev<strong>at</strong>ed<br />

0<br />

open<br />

none<br />

con tact sepa r<strong>at</strong> ion<br />

6E 4\ 11-<br />

good<br />

e ! eva ted<br />

open<br />

none<br />

contact sepa r<strong>at</strong> ¡ on<br />

6E 2\ 11<br />

good<br />

closing/'<br />

eIev<strong>at</strong>ed.<br />

open<br />

none<br />

contact sepê ra t ¡on<br />

6E 3\ 1r+<br />

good<br />

e I eva ted<br />

oPen<br />

none<br />

contact seParêt ion


Son i te<br />

Con têct<br />

sepa ra t ¡on<br />

sePa ra t ion<br />

separ<strong>at</strong>íon<br />

sepa ra t íon<br />

Som i te<br />

Defects<br />

sePe r<strong>at</strong> Íon none<br />

sepê r<strong>at</strong> ion none<br />

sepa r<strong>at</strong> lon none<br />

separ<strong>at</strong>îon none<br />

sepå rât îon none<br />

sepâr<strong>at</strong>ion none<br />

separ<strong>at</strong>ion none<br />

l\)<br />

\o<br />

TABLE ?6C- STAGE 1I-12 CONTROL AND EXPERTMENTAL E¡4BRYOS (GROUP II)<br />

Region Embryo Stage CondÎtion Neural Access. Ectoderm l'lesenchyme Notochord<br />

Closure Canals Cover Cover Contact<br />

l8c 4 11+<br />

good<br />

el ev<strong>at</strong>ed<br />

open none<br />

18C 23 12<br />

good<br />

closed/<br />

closing<br />

covered/ none<br />

open<br />

18C 7 12+<br />

good<br />

c I osed/<br />

closîng<br />

covered/ none<br />

open<br />

18C 22 12+<br />

good<br />

closed/<br />

clos<strong>ln</strong>g<br />

covered/ none<br />

open<br />

E<br />

6E 13 11- good<br />

è I eva ted<br />

0<br />

oPen<br />

E<br />

6E 28 11- poor<br />

e I eva ted<br />

0<br />

open<br />

E<br />

6E 31 il- fair<br />

e I eva ted<br />

0<br />

open<br />

E<br />

6E 38 tt- sood<br />

f I a t tened<br />

0<br />

open<br />

E<br />

6E 44 11- good<br />

fl <strong>at</strong>tened<br />

0<br />

open<br />

E<br />

6E 2\ 11 good<br />

e I eva ted<br />

0<br />

oPen<br />

none<br />

E<br />

6E 34 'l t + good<br />

everted<br />

0<br />

open<br />

none


Regíon Embryo Stage Conditîon Neural Access. Ectoderm Mesenchyme Notochord Somite<br />

Closure Canal s Cover Cover Contact Contact<br />

Som i te<br />

.Def ect s<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

n orie<br />

none<br />

none<br />

none<br />

NJ<br />

none ã<br />

TABLE 37A. STAGE 13-16 CONTROL AND EXPERIMENTAL EI'IBRYOS (GROUP III)<br />

A<br />

A<br />

A<br />

A<br />

A<br />

18C 11<br />

18C 10<br />

18c r4<br />

r8c 21<br />

18C 27<br />

30c 2<br />

13-<br />

13<br />

13<br />

l3+<br />

13+<br />

16<br />

30c 3 16<br />

30c 15 16<br />

30c 12 16<br />

good<br />

good<br />

good<br />

good<br />

good<br />

poor<br />

Poor<br />

good<br />

good<br />

c I osed<br />

c I osed<br />

c I osed<br />

cl osed<br />

c I osed<br />

cl osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

covered<br />

covered<br />

covered<br />

covered<br />

covered<br />

covered<br />

covered<br />

covered<br />

cove red<br />

crest<br />

crest<br />

crest<br />

crest<br />

crest<br />

mesoderm/<br />

crest<br />

mesoderm<br />

mesode rm<br />

mesoderm,/<br />

crest<br />

sepa ra t i on con tact<br />

sepa ra t ìon contact<br />

sepa r<strong>at</strong> ion con tact<br />

sêpar<strong>at</strong> ìon con tac t<br />

separ<strong>at</strong>¡on con tact<br />

separ<strong>at</strong>¡on/ con tact<br />

con tact<br />

sepâ r<strong>at</strong> ion/ con tact<br />

contact<br />

sePêr<strong>at</strong> iony' con tact<br />

contact<br />

sepa r<strong>at</strong> ion/ con tâct<br />

con tac t<br />

30c 22 16<br />

good<br />

closed<br />

covered<br />

mesode rm/<br />

crest<br />

separ<strong>at</strong> ion/ contact<br />

contact<br />

30c 25 16<br />

900q<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

separ<strong>at</strong>ion/ contact<br />

contâct<br />

18E 10 13- very poor closed<br />

covered cres t<br />

separ<strong>at</strong> ion con tact


none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

nonê<br />

none<br />

none<br />

none<br />

none<br />

none<br />

N)<br />

A<br />

r8E 6l<br />

13<br />

poor c losed<br />

0<br />

covered<br />

cres t<br />

sepa ra t ¡ Crn con tact<br />

A<br />

18E 25<br />

13+<br />

very poor c I osed<br />

0<br />

covered<br />

crest<br />

separ<strong>at</strong>¡on contact<br />

A<br />

A<br />

18E 13<br />

r8E 28<br />

14<br />

14<br />

Poor c I osed<br />

verv Door ' .<br />

c losed<br />

0<br />

0<br />

covered<br />

covered<br />

crest<br />

cres t<br />

sePar<strong>at</strong>ion con tact<br />

sepa ra t ion contact<br />

A<br />

1BE 35<br />

14<br />

poor c I osed<br />

0<br />

covered<br />

crest<br />

sepa ra t ion contact<br />

A<br />

18E 47<br />

14<br />

góod c I osed<br />

0<br />

covered<br />

crest<br />

sePar<strong>at</strong> ion con tact<br />

A<br />

18E 58<br />

14<br />

poor c I osed<br />

0<br />

covered<br />

cres t<br />

sePêr<strong>at</strong>íon con tact<br />

A<br />

18E 36<br />

14+<br />

good' c I osed<br />

0<br />

covered<br />

cres t<br />

sePa ra t iÕn contact<br />

A<br />

18E 53 14+<br />

poor c I osed<br />

0<br />

covered<br />

crest<br />

separ<strong>at</strong>îon contact<br />

r8E 54 14+<br />

very Poor c I osed<br />

0<br />

covered<br />

crest<br />

separ<strong>at</strong>ion. contact<br />

A<br />

tBE 59 14+<br />

good cl osed<br />

0<br />

covered<br />

crest<br />

separ<strong>at</strong>ion contact<br />

A<br />

18E 44 15-<br />

good cl osed<br />

0<br />

covered<br />

crest<br />

sepa r<strong>at</strong> ion con tact<br />

A<br />

30Ê 4 15<br />

good c I osed<br />

0<br />

covered<br />

mesoderm/<br />

crest<br />

separ<strong>at</strong> ion/ con tact<br />

con tact<br />

30E 25 15<br />

fa î r cl osed<br />

covered<br />

mesoderm/<br />

crest<br />

separ<strong>at</strong> Íon/ contêct<br />

con tact<br />

3oE 9 16<br />

gool c I osed<br />

covered<br />

mesoderm<br />

sePar<strong>at</strong>ion/ con têct<br />

con tac t<br />

308 26 16<br />

good c I osed<br />

cove red<br />

mesoderm<br />

separ<strong>at</strong>îon/ contêct<br />

con tact<br />

30E 35 16<br />

faí r c I osed<br />

covered<br />

mesodeim<br />

sepa ra t lon/ contact<br />

contact


none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

l'.J<br />

l\)<br />

3oE 56 16<br />

good<br />

c I osed<br />

cove red<br />

mesoderm<br />

separ<strong>at</strong>ion/ con tâct<br />

contact<br />

3or 59 16<br />

good<br />

c I osed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong>¡on/ con tact<br />

contact<br />

30E 69<br />

16<br />

good<br />

Cl osed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong> lon/ contâct<br />

rîon tact<br />

3oE 76<br />

16<br />

good<br />

closed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong>ìon/ contact<br />

contact<br />

3oE 52 16<br />

good<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

sepâ ra t l.pn/ contact<br />

contact<br />

3ot 77 16<br />

good<br />

closed<br />

covered<br />

mesoderm/<br />

crest<br />

sepa r<strong>at</strong> ion/ con tact<br />

contact


contact<br />

con tac t<br />

contact<br />

con tact<br />

contact<br />

contact<br />

contact<br />

contact<br />

con tact<br />

contact<br />

contact<br />

Somi te<br />

Defects<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

N)<br />

TABLE 378. STAGE I3-16 coNTRoL AND EXPERIHENTAL'EMBRYOS (GROUP III)<br />

Reg ì on Embryo Stage Cond I t lon Neural<br />

C I osure<br />

Access.<br />

Cana I s<br />

Ectoderm Mesenchyme Notochord Som I te<br />

Cover Cover Contact Contact<br />

B<br />

r8c 11<br />

13- good<br />

c I osed<br />

0<br />

covered<br />

none coñtact<br />

B<br />

r8c r0<br />

13 good<br />

closed<br />

0<br />

covered<br />

none con tac t<br />

B<br />

r8c 14<br />

13 good<br />

closed<br />

0<br />

covered<br />

none con tact<br />

B<br />

t8c 21<br />

13+ good<br />

c I osed<br />

0<br />

covered<br />

none con tâct<br />

B<br />

18C 27<br />

13+ good<br />

closed<br />

0<br />

covered<br />

none con tact<br />

B<br />

30c 2<br />

16 poor<br />

cl osed<br />

0<br />

covered<br />

crest/ con tact<br />

none<br />

30c 3 16<br />

POor<br />

c I osed<br />

covered<br />

mesoderm/ con tact<br />

crest<br />

3oc 15 16<br />

good<br />

c I osed<br />

covered<br />

mesoderm/ ccn tac t<br />

crest<br />

30c 12 16<br />

good<br />

c I osed<br />

0<br />

covered<br />

crest/ con tact<br />

none<br />

30c 22 16<br />

good<br />

c I osed<br />

10<br />

covered<br />

crest/ contact<br />

none<br />

3oc 25 16<br />

9o0d<br />

closed<br />

0<br />

covered<br />

crest/ contact<br />

none


18E 10 13- vëry poor<br />

closed 0<br />

covered none<br />

con tact<br />

contact/ none<br />

separ<strong>at</strong>îon<br />

B<br />

18E 61 13 poor<br />

closed 0<br />

covered none<br />

con tact<br />

contact none<br />

B<br />

tBE 25 13+ very poor<br />

closed 0<br />

covered none<br />

separ<strong>at</strong>¡on/ separ<strong>at</strong>ion none<br />

con tac t<br />

B<br />

B<br />

t8E 13 14 poor<br />

t8E 28 14 very poor<br />

closed 0<br />

closed 0<br />

covered none<br />

covered none<br />

contact<br />

con tâct<br />

contêct none<br />

contact none<br />

B<br />

l8E 35 14 poor<br />

closed 0<br />

covered none<br />

con tact<br />

contact none<br />

B<br />

18E 47 14 good<br />

closed 0<br />

covered none<br />

con tact<br />

contêct none<br />

B<br />

B<br />

18E 58 14 poor<br />

18E 36 14+ good<br />

closed 0<br />

closed 0<br />

covered none<br />

covered none<br />

contact<br />

con tac t<br />

contact none<br />

contact none<br />

B<br />

18E 53<br />

'I<br />

4+ poor<br />

closed 0<br />

covered none<br />

con tact<br />

B<br />

r8E 54<br />

14+ u.ry poor<br />

closed 0<br />

covered none<br />

contêct<br />

B<br />

18E 59<br />

14+ good<br />

closed 0<br />

covered none<br />

contact<br />

B<br />

188 44<br />

15- good<br />

closed 0<br />

covered none<br />

contact<br />

B<br />

30E 4<br />

15 good<br />

308 25 15 fai¡<br />

closed O<br />

closed/ 0/1<br />

myeloschisis<br />

J<br />

covered crest/<br />

none<br />

covered/ crest/<br />

open none<br />

contact<br />

con tact<br />

contact none<br />

contact none<br />

contâct none<br />

contâct none<br />

contact none<br />

contêct/ none<br />

sepa rê t ¡on<br />

30E 9 16 sood<br />

closed 0<br />

contact none<br />

covered mesoderm/ contêct<br />

crest N¡


Som i te<br />

Con tact<br />

Som i te<br />

Defects<br />

contact none<br />

contâct none<br />

contact none<br />

contact none<br />

contact none<br />

separ<strong>at</strong>ion none<br />

con tact none<br />

contact none<br />

contact none<br />

gepar<strong>at</strong>lon none<br />

contâct none<br />

EXPERIMENTAL EMBRYOS<br />

Region Embryo Stage Condltîon Neural<br />

C losure<br />

Access.<br />

Cana I s<br />

Ectoderm Mesenchyme Notochord<br />

Cover Cover Con tact<br />

¡^<br />

l8C 11 13- sood<br />

closed<br />

0<br />

covered none<br />

contêct<br />

c<br />

18C 10 13<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

c<br />

r8c 14 13<br />

good<br />

c I osed<br />

0<br />

covered none<br />

con ta ct<br />

c<br />

18C 2t 13+<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contâct<br />

c<br />

18C 27 13+<br />

good<br />

c I osed<br />

0<br />

covered none<br />

con tact<br />

c<br />

3oc 2 16<br />

POOr<br />

c losed<br />

covered none<br />

eon tact<br />

c<br />

3oc 3 16<br />

poor<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

c<br />

3oc 15 16<br />

good<br />

closed<br />

0<br />

covered none<br />

contact<br />

c<br />

30c t2 16<br />

good<br />

cìosed<br />

0<br />

covered none<br />

con tact<br />

c<br />

30c 22 16<br />

good<br />

c I osed<br />

0<br />

covered nonê<br />

contact<br />

c<br />

3oc 25. 16<br />

good<br />

c I osed<br />

0<br />

covered none<br />

con tact<br />

c<br />

18E 10<br />

13- very Poor cl osed<br />

0<br />

covered none<br />

separ<strong>at</strong>ion separ<strong>at</strong>ion<br />

c<br />

1BE 61<br />

13 poor c I osed<br />

0<br />

covered none<br />

contêct con tac t<br />

c<br />

188 25<br />

13+ very poor<br />

cl osed/<br />

everted<br />

0<br />

covered/ none<br />

open<br />

separ<strong>at</strong>ion separ<strong>at</strong> ¡on 19<br />

o\


separãtion none<br />

contact none<br />

contact none<br />

separ<strong>at</strong>ion none<br />

sepa ra t ion none<br />

contact none<br />

contact none<br />

separ<strong>at</strong>lon none<br />

contact none<br />

contêct none<br />

contact none<br />

separ<strong>at</strong>i,on/ none<br />

con ta ct<br />

contact none<br />

contact none<br />

sepa ra t ion none<br />

separêt ion/ none<br />

con tsct<br />

contact none<br />

NJ<br />

\<br />

l8E 13 14 poor<br />

c I osed/<br />

everted<br />

covered/ none<br />

' open<br />

con têct<br />

c<br />

18E 28 14 very poor<br />

c I osed<br />

0<br />

covered none<br />

con tact<br />

c<br />

18E 35 14 poor<br />

c I osed<br />

0<br />

covered none<br />

con ta ct<br />

c<br />

18E 47 14 sood<br />

closed<br />

0<br />

covered none<br />

contact<br />

c<br />

l8E 58 t4 poor<br />

closed/<br />

.myeloschlsls<br />

1<br />

covered/ none<br />

oPen<br />

con tê ct<br />

c<br />

tBE 36 14+ sood<br />

c I osed<br />

0<br />

covered none<br />

qon tact<br />

c<br />

18E 53 14+ poor<br />

c l'osed<br />

0<br />

covered none<br />

contact<br />

c<br />

18E 54 14+ very Poor<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

c<br />

18E 59 14+<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

t<br />

r8E 44 15-<br />

good<br />

cl osed<br />

0<br />

coveeed none<br />

con tact<br />

c<br />

308 4 15<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

30E 25 15<br />

fair<br />

myeloschisis<br />

2<br />

open none<br />

con tact<br />

c<br />

c<br />

30E 9 16 sood<br />

308 26 16 good<br />

closed<br />

c I osed<br />

0<br />

r0<br />

covered none<br />

covered none<br />

contact<br />

contact<br />

c<br />

3oE 35 16 fair<br />

hemi mye I ia<br />

0<br />

covered none<br />

contact<br />

c<br />

308 56 16 sood<br />

myeloschisis/'<br />

c I osed<br />

2<br />

open/ none<br />

covered<br />

con tact<br />

308 59 16 sood<br />

c I osed<br />

covered none<br />

con têct


sepa ra t lon none<br />

contact/ cys ts<br />

separ<strong>at</strong>îon<br />

separ<strong>at</strong>ion none<br />

contact none<br />

NJ<br />

@<br />

c<br />

3oE 69 16<br />

good<br />

myeloschîsîs<br />

1<br />

open none<br />

contact<br />

c<br />

30E 76 16<br />

good<br />

hem i mye I ia<br />

0<br />

oPen none<br />

con tact<br />

30Ê 52 16<br />

good<br />

mye I os ch I s 1sl<br />

c I osed<br />

open/ none<br />

covered<br />

con tact<br />

308 77 16<br />

good<br />

closed<br />

covered none<br />

con tact


Regíon Embryo Stage Condition Neural Access. Ectoderm Mesenchyme Notochord Somite<br />

, Closufe Canals Cover. Cover Contact Contact<br />

Soml te<br />

Defec t s<br />

separ<strong>at</strong>lon none<br />

sepa r<strong>at</strong> lon none<br />

sepa r<strong>at</strong> ion none<br />

separ<strong>at</strong>ion none<br />

sepâ ra t ion none<br />

sepa râ t lon none<br />

sepa r<strong>at</strong> ¡on none<br />

separ<strong>at</strong> ion none<br />

separ<strong>at</strong>ion none<br />

separ<strong>at</strong>ion none<br />

I<br />

\o<br />

TABLE 37D. slAGE 13-16 GONTRoL AND EXPERIMENTAL EMBRYoS (GROUP III)<br />

D<br />

18C 11 13- good c'losed<br />

0<br />

covered none<br />

contêct<br />

separât¡on .none<br />

D<br />

18C 10<br />

13<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

D<br />

l8c r4<br />

13<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

D<br />

18C 21<br />

13+<br />

good<br />

c I osed<br />

1<br />

covered none<br />

con tact<br />

D<br />

18c 27<br />

13+<br />

good<br />

c I osed<br />

1<br />

covered none<br />

con tåct'<br />

D<br />

30c 2<br />

16<br />

poor<br />

closed<br />

2<br />

covered none<br />

contact<br />

D<br />

30c 3<br />

16<br />

poor<br />

closed<br />

3<br />

covered none<br />

contact<br />

D<br />

30c 15<br />

t6<br />

good<br />

c ¡ osed<br />

1<br />

covered none<br />

contact<br />

D<br />

D<br />

30c 12<br />

30c 22<br />

16<br />

16<br />

good<br />

good<br />

c I osed<br />

c I osed<br />

2<br />

'0<br />

covered none<br />

covered none<br />

con tact<br />

con tact<br />

D<br />

3oc 25<br />

16<br />

good<br />

closed<br />

3<br />

covered none<br />

contact<br />

lBE 10 13- u..r<br />

:oo. ":;::ij,<br />

covered/<br />

open<br />

separêt¡on separ<strong>at</strong> ion none<br />

D<br />

18E 61 13 poor myeloschisls<br />

1<br />

open<br />

contact sepa ra t ¡on none<br />

D<br />

188 25<br />

13+<br />

very poor myeloschisis<br />

3<br />

open<br />

sepa r<strong>at</strong> ion sepêr<strong>at</strong>ion none<br />

D<br />

lBE 13<br />

14<br />

poor myeloschîsïs<br />

\<br />

open<br />

contâct sepä râ t Îon none


N)<br />

N)<br />

o<br />

r8E 28 14 very poor<br />

18E 36 14+ good<br />

r8E 35 18E 47 18E 58 14 r4 14 poor<br />

good<br />

poor<br />

c I osed/<br />

elev<strong>at</strong>ed<br />

c I osed/<br />

myeloschîsis<br />

closed<br />

myeloschîsîs<br />

cìosed/<br />

myeìoschisis<br />

2<br />

3<br />

covered/ none<br />

open<br />

covered/ none<br />

qpen<br />

covered none<br />

open nonè<br />

covered/ none<br />

open<br />

separ<strong>at</strong> ion separ<strong>at</strong>ion none<br />

contact separ<strong>at</strong>ion none<br />

contact sepa ra t ion none<br />

contact<br />

contact<br />

separ<strong>at</strong>ion ñone<br />

separ<strong>at</strong>ion none<br />

1BE 53 14+ poor<br />

c I osed/<br />

myeloschisis<br />

covered/ none<br />

open<br />

contact<br />

sepa ra t ion none<br />

t8E 54 l lt+ v¿¡t ooot<br />

c I osed/<br />

myeloschìsìs<br />

covered/ none<br />

open<br />

sePa rê t ¡on<br />

separ<strong>at</strong>lon none<br />

18E 59 14+ good<br />

cl osed/<br />

myeloschisis<br />

covered/ none<br />

open<br />

con tact<br />

cpntact none<br />

18E 44 15-<br />

good<br />

c I osed<br />

2<br />

covered none<br />

con têct<br />

3oE \ 15<br />

good<br />

c I osed<br />

2<br />

covered none<br />

contact<br />

30Ê 25 1, faÎr<br />

myeloschisis<br />

open/ none<br />

covered<br />

contact<br />

D<br />

308 9 16<br />

soo.d<br />

c I osed<br />

t<br />

covered none<br />

con tact<br />

D<br />

D<br />

30E 26 16<br />

30E 35 16<br />

good<br />

fair<br />

closed<br />

closed<br />

2<br />

0<br />

covered none<br />

covered mesoderm<br />

contact<br />

con tac t<br />

D<br />

3oE 56 16<br />

good<br />

c I osed<br />

1<br />

covered none<br />

contact<br />

contêct none<br />

coñtact/ none<br />

sepa ra t ion<br />

contact none<br />

sepa ra t îon none<br />

separ<strong>at</strong>ion none<br />

contact cysts<br />

contact none


separ<strong>at</strong>ion none<br />

sepâ ra t îon none<br />

separ<strong>at</strong> îon cys ts<br />

separãtÎon none<br />

separêtlon none<br />

N¡<br />

NJ<br />

308 59 16<br />

3oE 69 16<br />

good<br />

good<br />

closed<br />

myeloschisis<br />

covered<br />

open /<br />

covered<br />

contact<br />

con tact<br />

3oE 76 16<br />

good<br />

' hem î mye I îal<br />

closed<br />

open/<br />

covered<br />

contact<br />

3oE 52 16<br />

good<br />

c I osed<br />

0<br />

covered<br />

contact<br />

3oz 77 16<br />

good<br />

c I osed<br />

0<br />

covered<br />

contact


Som i te Som i te<br />

Contact Defects<br />

sepê ra t ion none<br />

separ<strong>at</strong>íon none<br />

separ<strong>at</strong>ion none<br />

sepa rê t Ion none<br />

sepa ra t ion none<br />

separât ion none<br />

sepêr<strong>at</strong>¡on none<br />

sepa ra t ion none<br />

separ<strong>at</strong>ion none<br />

sepa r<strong>at</strong> Íon none<br />

separ<strong>at</strong>ion none<br />

N)<br />

N)<br />

TABLE 378. STAGE t3-16 coNTRoL AND EXPERII'ÍENTAL EMBRYoS (GRoUP III)<br />

Regîon Embryo Stage Condí tion Neural Access.<br />

Closure Canals<br />

Ectoderm Hesenchyme Notochord<br />

Cover Cover Con tâc t<br />

18c 11 13- good<br />

c I osed/<br />

closing<br />

covered/ none<br />

open<br />

18C 10 13 good<br />

cùosed/<br />

closing<br />

covered/ none<br />

open<br />

18c 14 13 sood<br />

c I osed/<br />

closing<br />

covered/ none<br />

oPen<br />

t8c 21 13+ good<br />

c I osed/<br />

closing<br />

covered/ none<br />

open<br />

18c 27 t3+ good<br />

c lbsed/<br />

closing<br />

covered/ none<br />

open<br />

E<br />

30C 2 16 poor<br />

c I osed<br />

covered none<br />

E<br />

30C 3 16 poor<br />

closed<br />

4<br />

covered none<br />

E<br />

30C 15 16 sood<br />

closed<br />

1<br />

covered none<br />

E<br />

30C 12 16 good<br />

c I osed<br />

1<br />

covered none<br />

E<br />

3OC 22 16 good<br />

c I osed<br />

ll<br />

covered none<br />

E<br />

3OC 25 16 soo;<br />

closed<br />

3<br />

covered noné


separâtion none<br />

sepa ra t ion<br />

separ<strong>at</strong> ion none<br />

sepa ra t lon nonE<br />

sePar<strong>at</strong>íon none<br />

separ<strong>at</strong>ion none<br />

sePar<strong>at</strong>lon none<br />

sepê ra t ion nonè<br />

sePar<strong>at</strong>ion none<br />

separ<strong>at</strong>¡on none<br />

separ<strong>at</strong>ion none<br />

sePa ra t lon none<br />

sepa ra t ion none<br />

sePar<strong>at</strong> ion none<br />

sepa r<strong>at</strong> ion none<br />

sepa ra t íon none<br />

sepa r<strong>at</strong> ion none<br />

sepå ra t lon none<br />

I\J<br />

N<br />

E<br />

18E 10 13- very poor<br />

everted<br />

1<br />

open none<br />

E<br />

18E 61 13 poor<br />

myeloschisis<br />

1<br />

open none<br />

E<br />

188 25<br />

13+<br />

very poor<br />

myeloschisis<br />

0<br />

open none<br />

E<br />

18E 13<br />

r4<br />

poor<br />

myeloschisis<br />

0<br />

open none<br />

E<br />

18E 28<br />

r4<br />

very Poor<br />

elev<strong>at</strong>ed<br />

2<br />

open none<br />

E<br />

18E 35<br />

r4<br />

poor<br />

myeloschisis<br />

2<br />

open none<br />

E<br />

18E 47<br />

14<br />

good<br />

e I eva ted<br />

1<br />

open none<br />

E<br />

t8E 58 t4 poor<br />

everted<br />

0<br />

open none<br />

E<br />

18E 36 14+ sood<br />

myeloschisis<br />

2<br />

open none<br />

E<br />

18E 53 14+ poor<br />

myeloschisis<br />

3<br />

open none<br />

E<br />

18E 54 14+ very pôor<br />

myeloschisis<br />

0<br />

open none<br />

E<br />

18E 59 14+ good<br />

elev<strong>at</strong>ed<br />

-0<br />

open/ none<br />

covered<br />

E<br />

18E 44 15- sood<br />

closed<br />

3<br />

covered none<br />

E<br />

3oE 4<br />

15 good<br />

cl osed<br />

2<br />

covered none<br />

E<br />

30E 25<br />

15 fair<br />

c I osed<br />

3<br />

covered none<br />

E<br />

30E 9<br />

16 9ooà<br />

cl osed<br />

2<br />

covered none<br />

E<br />

3oE 26<br />

16 good<br />

closed<br />

t<br />

covered none<br />

E<br />

308 35<br />

16 fal r<br />

c I osed<br />

covered none


sePâr<strong>at</strong> Îon<br />

sepa ra t ¡on<br />

separ<strong>at</strong>Îon<br />

separ<strong>at</strong>ion<br />

sepa ra t ion<br />

sepa r<strong>at</strong> ion<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

N'<br />

N<br />

.È-<br />

E<br />

3oE 56<br />

16 good<br />

closed<br />

3<br />

covered<br />

none<br />

E<br />

30E 59<br />

16 good<br />

c I osed<br />

2<br />

covered<br />

none<br />

E<br />

30E 69<br />

16 good<br />

closed<br />

1<br />

covered<br />

none<br />

E<br />

3oE 76<br />

16 good<br />

c I osed<br />

I<br />

covered<br />

none<br />

E<br />

3OE 52<br />

16 good<br />

c I osed<br />

0<br />

covered<br />

none<br />

E<br />

30e 77<br />

16 good<br />

c I osed<br />

0<br />

covered<br />

none


Reglon Embryo Stagd cond¡t¡on Neural Access. Ectoderm Mesenchyme Notochord Somite<br />

Closure Canals Cover Cover Contact Contact<br />

Somi te<br />

Defects<br />

none<br />

none<br />

none<br />

none,<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

N'<br />

¡\'<br />

TABLE 38A. STAGE f7-20 CONTROL AND EXPERIMENTAL EHBRYOS (GROUP IV)<br />

42C 4 18<br />

POor<br />

c i osed<br />

covered<br />

mesoderm<br />

sePa ra t ion/ contact<br />

con tact<br />

\zc 7 18<br />

poor<br />

closed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong> Ìon/ con tact<br />

con tact<br />

42c z 19<br />

good<br />

c I osed<br />

covered<br />

mesoderm<br />

separ€¡t¡on/ contact<br />

contact<br />

42c 6 19<br />

poor<br />

c I osed<br />

covered<br />

mesoderm<br />

separêtion/ contact<br />

con tact<br />

42c 11 t9<br />

poor<br />

c I osed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong>¡on/ con tact<br />

contact<br />

42C 3<br />

20<br />

poor<br />

c I osed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong>ion/ contact<br />

con tac t<br />

\2c 8<br />

42c 21<br />

428 I<br />

20<br />

20<br />

t7<br />

good<br />

poor<br />

good<br />

c I osed<br />

c I osed<br />

c I osed<br />

0<br />

0<br />

covered<br />

cove red<br />

covered<br />

mesoderm<br />

mesode rm<br />

mesoderm/<br />

crest<br />

sepa r<strong>at</strong> ion/ con tact<br />

con tact<br />

sepâ ra t îon/ contact<br />

con tact<br />

sePar<strong>at</strong> ion/ contact<br />

con tac t<br />

4zE 10 17<br />

good<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

separ<strong>at</strong> ion/ con tac t<br />

con tact<br />

\28 j2 t7<br />

POor<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

separ<strong>at</strong> icn/ contact<br />

con tact


none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

N)<br />

none ts<br />

428 1 18<br />

good<br />

closed<br />

covered<br />

mesoderm separ<strong>at</strong> ion/ con tact<br />

. contact<br />

428 21 18<br />

good<br />

c I osed<br />

covered<br />

mesoderm separ<strong>at</strong>ion/ contêct<br />

contâct<br />

\28 34<br />

18<br />

good<br />

c I osed<br />

covered mesoderm<br />

separ<strong>at</strong> íon/ con tact<br />

contact<br />

\2E htt<br />

18<br />

good<br />

c I osed<br />

covered mesoderm<br />

separ<strong>at</strong>¡on/ contãct<br />

contact<br />

\zE 49 rB<br />

good<br />

c I osed<br />

covered mesoderm<br />

sepâ!"<strong>at</strong>¡on/ contact<br />

contact<br />

\zE 50<br />

18<br />

good<br />

c I osed<br />

covered mes0derm<br />

sepâr<strong>at</strong> Îon/ contact<br />

contact<br />

hzE 5\<br />

18<br />

good<br />

c¡osêd<br />

covered mesoderm<br />

sepa r<strong>at</strong> ion/ contact<br />

contact<br />

\28 56<br />

18<br />

good<br />

c I osed<br />

covered mesoderm<br />

sePar<strong>at</strong> ion/ con tact<br />

contact<br />

42E 26 19<br />

good<br />

c ¡ osed<br />

covered mesoderm<br />

separ<strong>at</strong>âon/ contact<br />

contact<br />

\2E 3i<br />

19<br />

ooo:<br />

c I osed<br />

covered mesoderm<br />

separ<strong>at</strong>ion/ con tact<br />

con'tact<br />

428 57<br />

19<br />

good<br />

c I osed<br />

covered mesoderm<br />

separ<strong>at</strong>ion/ con tact<br />

contact<br />

\28 65<br />

19<br />

good<br />

closed<br />

covered mesoderm<br />

sepa ra t ion/ contåct<br />

gontact


none<br />

none<br />

none<br />

none<br />

N)<br />

NJ<br />

.{<br />

A<br />

A<br />

A<br />

A<br />

428 69 19 good<br />

\2E 73 20 good<br />

428 17 20 good<br />

4zE 72 20 good<br />

c I osed<br />

closed<br />

c I osed<br />

c I osed<br />

0<br />

0<br />

0<br />

0<br />

covered mesoderm<br />

covered resoi.rm<br />

covered mesoderm<br />

covered mesoderm<br />

separ<strong>at</strong>ion/ con tact<br />

con tac t<br />

sepâr<strong>at</strong> ¡on/ contact<br />

contact<br />

sePa ra t ion/ contact<br />

con tact<br />

sePar<strong>at</strong>¡on/ con tact<br />

contact


Region Embryo Stage Condltîon Neural Access. Ectoderm Mesenchyme Notochord Somíte<br />

Closure Canal s Cover Cover Contact Contêct<br />

Som i te<br />

'Defects<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

cysts<br />

N)<br />

l'.¡<br />

oo<br />

TABLE 3BB. STAGE 17-20 CONTROL AND EXPERIMENTAL EI'IBRYOS (GROUP IV)<br />

\zc 4 r8<br />

poor<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact contact<br />

42c 7 18<br />

poor<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact contact<br />

4zc z 19<br />

good<br />

cl osed<br />

coVered<br />

mesode rm/<br />

crest<br />

contact coR tact<br />

4zc 6 19<br />

poor<br />

closed<br />

cove red<br />

mesoderm/<br />

crest<br />

contact con tact<br />

42c 11 19<br />

poor<br />

c I osed<br />

cove red<br />

mesoderm/<br />

cres t<br />

contact con tact<br />

42C 3<br />

\zc I<br />

20<br />

20<br />

poor<br />

good<br />

c I osed<br />

c I osed<br />

0<br />

covered<br />

covered<br />

mesoderm/<br />

crest<br />

mesoderm<br />

contact con tact<br />

contact con tact<br />

\zc 21<br />

20<br />

poor<br />

c I osed<br />

0<br />

covered<br />

mesoderm<br />

contact/ contact<br />

sePar<strong>at</strong>ion<br />

\28 8 17<br />

soo9<br />

closed/<br />

myeloschisls<br />

covered/<br />

open.<br />

mesoderm/<br />

none<br />

contact/ con tact<br />

sepa rê t ion<br />

42E to 17<br />

good<br />

myeloschisls<br />

covered/<br />

open<br />

mesoderm/<br />

none<br />

contact/ con tact<br />

sePêr<strong>at</strong>ion<br />

\28 i2 17<br />

POOr<br />

c I osed<br />

cove red<br />

mesoderm/<br />

cres t<br />

contact contâct


contact/ none<br />

separ<strong>at</strong>lon<br />

contact none<br />

contact none<br />

contact none<br />

contact none<br />

contêct cysts<br />

contact none<br />

contact cys ts<br />

contact none<br />

contâct nonê<br />

contact none<br />

contâct none<br />

contact cys ts<br />

N'<br />

N¡<br />

\.o<br />

42Ê I 18<br />

good<br />

closed/<br />

m),e¡oschisis<br />

covered/<br />

open<br />

mesode rml<br />

none<br />

contact/<br />

separ<strong>at</strong>Ìon<br />

\zE 21 18<br />

4zE 34 r8<br />

good<br />

good<br />

c I osed/<br />

myeloschisis<br />

closed<br />

covered/<br />

open<br />

covered<br />

mesoderm/<br />

none<br />

mesoderm/<br />

cres t<br />

contact/<br />

separ<strong>at</strong>¡on<br />

con tac t<br />

\28 U+<br />

18<br />

good<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

con tact<br />

\zE 49<br />

18<br />

good<br />

c I osed<br />

covered<br />

mesoderm/<br />

cres t<br />

ccn tact<br />

42E 5a<br />

18<br />

good<br />

c I osed/<br />

hem î mye I ia<br />

covered<br />

mesoderm<br />

con tact<br />

LzE 54<br />

18<br />

good<br />

c I osed<br />

cove red<br />

mesoderm/<br />

crest<br />

contact<br />

\28 56 18<br />

good<br />

c I osed/<br />

hem i myel 1a<br />

covered<br />

mesoderm/<br />

crest<br />

contact<br />

:<br />

428 26 19<br />

good<br />

c I osed<br />

cove red<br />

mesoderm/<br />

cres t<br />

contêct<br />

4zE 31<br />

19<br />

poor<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact<br />

428 57<br />

19<br />

no.:<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact<br />

4zE 65<br />

19<br />

good<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact<br />

42E 69 19<br />

good<br />

c I osed/<br />

hem i mye I ia<br />

covered<br />

mesoderm/<br />

crest<br />

con tact


none<br />

none<br />

428 17 zo<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact con tact<br />

\2E 72 20<br />

c I osed<br />

cove red<br />

mesoderm/<br />

crest<br />

contact con tact<br />

428 73 20<br />

c I osed<br />

cove red<br />

mesoderm/<br />

crest<br />

contêct/ con tact<br />

sepa ra t ion


Region Embryo Stage Conditlon Neural Access. Ectoderm Mesenchyme Notochord SomÎte<br />

Closure Canals Cover Cover Contact Contact<br />

Som i te<br />

Defec t s<br />

none<br />

nOrre<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

¡\)<br />

TABLE 38C. STAGÊ 17-20 CONTROL AND EXPERIMENTAL EMBRYOS (GROUP IV)<br />

c<br />

c<br />

c<br />

c<br />

c<br />

42c 4 18<br />

\2c 7 18<br />

I+zC 21 20 poor<br />

poor<br />

poor<br />

\2C 2 19 good<br />

t+zc 6 19 poor<br />

hzc 11 19 poor<br />

\zc 3 20 poqr<br />

\zc I 20 good<br />

c I osed<br />

c I osed<br />

closed<br />

c I osed<br />

c I osed<br />

closed<br />

c I osed<br />

c I osed<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

covered none<br />

covered cres¡-/<br />

none<br />

covered crest<br />

covered cres t<br />

covered crest<br />

covered crest<br />

covered crest<br />

covered crest<br />

con tact<br />

contact<br />

contact<br />

con tact<br />

con tact<br />

contact<br />

contact<br />

con tact<br />

contact<br />

contact<br />

con tact<br />

contact<br />

contêct<br />

contact<br />

contêct<br />

contact<br />

\28 8 17<br />

good<br />

myeloschisis<br />

open/ none<br />

covered<br />

contact sepêrâtlon none<br />

\28 10 17<br />

good<br />

c I osed<br />

l0<br />

covered crest<br />

con tac t 6êpar<strong>at</strong>¡on none<br />

\zE 52 17<br />

poor<br />

hem i mye I ia<br />

0<br />

open/ none<br />

covered<br />

contact sepa r<strong>at</strong> í on cysts<br />

\zE 1 18<br />

good<br />

myeloschisis<br />

open/ none<br />

cove red<br />

separêt¡on/ separêtion none<br />

contact<br />

428 21 18<br />

good<br />

myeloschisis<br />

open/ none<br />

covered<br />

separ<strong>at</strong>¡on/ separ<strong>at</strong>îon/ cysts<br />

contact con tact


contact none<br />

contact/ none<br />

separ<strong>at</strong> íon<br />

contact none<br />

contêct none<br />

sepa ra t ion none<br />

contact/ cys ts<br />

sepa ra t lon<br />

contact/ none<br />

sepa ra t ion<br />

contact none<br />

contact/ none<br />

sepa r<strong>at</strong> ion<br />

contact/ none<br />

sepa ra t ion<br />

contact cysts<br />

contact none<br />

separ<strong>at</strong>lon cys ts<br />

contact/ none<br />

sepa ra t lon<br />

N)<br />

N'<br />

hzE 3\ 18<br />

good<br />

cl osed<br />

0<br />

covered<br />

crest<br />

contact<br />

\zE 44 18<br />

good<br />

myeloschlsls<br />

0<br />

covered/<br />

oPen<br />

crest/<br />

none<br />

con tact<br />

\zE 49 18<br />

good<br />

c I osed<br />

covered<br />

crest/<br />

none<br />

contact<br />

42E 50 t8<br />

good<br />

hem í mye I la<br />

0<br />

covered<br />

mesoderm<br />

con tact<br />

\zE 54 18<br />

good<br />

myeloschisis<br />

0<br />

covered/<br />

open<br />

none<br />

ccn tact<br />

\zE s6 18<br />

good<br />

hem I mye I la<br />

cove red/<br />

oPen<br />

mesoderm/<br />

none<br />

con tact<br />

428 26 19<br />

good<br />

c I osed<br />

cove red<br />

crest/<br />

none<br />

contact<br />

c<br />

4zE 31 t9<br />

poor<br />

c I osed<br />

0<br />

covered<br />

crest<br />

contact<br />

c<br />

hzl j7 t9<br />

good<br />

c I osed/<br />

myeloschisls<br />

0<br />

cove red/<br />

open<br />

crest/<br />

none<br />

contact/<br />

separ<strong>at</strong>¡on<br />

4zE 65 t9<br />

good<br />

c I osed/<br />

myeloschlsls<br />

covered/<br />

open<br />

crest/<br />

none<br />

contact<br />

c<br />

\zE 69 19<br />

good<br />

hem i mye I ia<br />

0<br />

covered<br />

mesoderm<br />

contact<br />

c<br />

,+28 17 20<br />

good<br />

c I osed<br />

0<br />

covered<br />

crest<br />

con têct<br />

c<br />

\zE 72 zo<br />

good<br />

myeloschisìs<br />

0<br />

open<br />

none<br />

sepa rê t ion<br />

c<br />

t+28 73 20<br />

good<br />

c I osed<br />

0<br />

covered<br />

crest<br />

contact


TABLE 38D. STAOE 17.20 CONTROL AND EXPERII,4ENTAL EMBRYOS (GROUP IV)<br />

Region Embryo stage Condltion Neural Access. Ectoderm Mesenchyme Notochord Somite somite<br />

Closure Canals Cover Cover Contact Contact Defects<br />

contact/ none<br />

separ<strong>at</strong>ion<br />

con tact/ none<br />

separ<strong>at</strong>¡on<br />

contact/ none<br />

separåtion<br />

contêct/ none<br />

sepa râ t ¡on<br />

sepa ra t îon none<br />

sepa ra t ion none<br />

sepa r<strong>at</strong> ion none<br />

sepa ra t î on cys ts<br />

sepa ra t i on none<br />

1..)<br />

D<br />

D<br />

D<br />

\2c 4<br />

ízc 7<br />

\zc z<br />

18 poor<br />

18 poor<br />

19 good<br />

c I osed<br />

c I osed<br />

c I osed<br />

0<br />

0<br />

0<br />

covered none<br />

covered none<br />

covered crest<br />

con tac t<br />

con tact<br />

contact<br />

sepa ra t ion none<br />

sepa ra t ¡on none<br />

contact/ none<br />

separ<strong>at</strong>ion<br />

\zc 6 19<br />

poor<br />

c I osed<br />

covered crest<br />

con tact<br />

\2C 11<br />

19<br />

poor<br />

c I osed<br />

covered crêst<br />

contact<br />

\zc 3<br />

20<br />

poor<br />

closed<br />

covered cres t<br />

con tact<br />

\2c I<br />

20<br />

good<br />

c I osed<br />

covered crest<br />

contact<br />

4zc 21<br />

20<br />

POOr<br />

c I osed<br />

covered crest<br />

contact<br />

D<br />

\28 I 17<br />

good<br />

c I osed<br />

0<br />

covered none<br />

con tact<br />

D<br />

42E 10 17<br />

good<br />

closed<br />

0<br />

cövered none<br />

contact<br />

D<br />

D<br />

\zE 52 17<br />

428 118<br />

poor<br />

good<br />

c I osed<br />

c I osed<br />

0<br />

covered none<br />

covered none<br />

contact<br />

contact


contact cys ts<br />

separ<strong>at</strong>ion none<br />

sepa ra t îon none<br />

contêct. none<br />

contact cys ts<br />

separ<strong>at</strong>ion none<br />

sepa ra t ion cys ts<br />

sepa ra t lon none<br />

separ<strong>at</strong>ion none<br />

separ<strong>at</strong>ion none<br />

separ<strong>at</strong>îon none<br />

separ<strong>at</strong>ion none<br />

sePâ ra t ion none<br />

seêpa r<strong>at</strong> ion none<br />

N)<br />

D<br />

42E 21 18<br />

good<br />

hemîmyel ïa<br />

0<br />

covered<br />

mesoderm con têc t<br />

D<br />

hzl 3\ 18<br />

good<br />

closed<br />

0<br />

covered<br />

crest con tact<br />

D<br />

428 44 18<br />

good<br />

myeloschlsls/<br />

c I osed<br />

0<br />

open/<br />

cove red<br />

nóne/ contact<br />

crest<br />

D<br />

428 49 18<br />

good<br />

c I osed<br />

0<br />

covered<br />

crest con tac t<br />

D<br />

\28 50 18<br />

good<br />

hem ì mye I ia<br />

0<br />

covered<br />

mesoderm con têc t<br />

D<br />

\28 5t+ t8<br />

good<br />

myeloschisis<br />

0<br />

open/<br />

covered<br />

none con têct<br />

hzE 56 18<br />

good<br />

hem i mye I îa<br />

open/<br />

covered<br />

none con tact<br />

D<br />

\28 26 19<br />

good<br />

c I osed<br />

0<br />

covered<br />

none contact<br />

D<br />

\zE 31 19<br />

poor<br />

closed<br />

0<br />

covered<br />

crest con tac t<br />

D<br />

\zE 57 19<br />

good<br />

myeloschîsis/<br />

c I osed<br />

0<br />

open/<br />

covered<br />

none/ con tact<br />

cres t<br />

428 65 19<br />

good<br />

myeloschlsls/<br />

c I osed<br />

open/<br />

cove red<br />

none con têct<br />

D<br />

D<br />

\zE 69 19<br />

428 17 20<br />

good<br />

good<br />

amyel îa<br />

closed<br />

'o<br />

covered<br />

crest contact<br />

D<br />

\zE 7z 20<br />

good<br />

c I osed<br />

0<br />

covered<br />

none contact<br />

D<br />

\2E 73 20<br />

good<br />

c I osed<br />

0<br />

covered<br />

crest contact


Reglon Embryo Stage Condition Neural Access. Ectoderm llesenchyme Notochor


contact cysts<br />

sepãr<strong>at</strong>ion none<br />

separ<strong>at</strong>ion none<br />

sepa r<strong>at</strong> Ion none<br />

contact cysts<br />

sepa r<strong>at</strong> ion none<br />

sepa ra t lon cysts<br />

separ<strong>at</strong>¡on none<br />

separ<strong>at</strong>¡on none<br />

sepêr<strong>at</strong>lon none<br />

sePa ra t Íon none<br />

sepê ra t ¡on none<br />

N)<br />

\, o\<br />

42E 21 18<br />

good<br />

hem î mye I ía<br />

covered<br />

mesoderm contact/<br />

\28 34 18<br />

good<br />

closed<br />

covered<br />

crest con tact/<br />

428 \4 18<br />

good<br />

c I osed<br />

covered<br />

crest con tact/<br />

428 49 18<br />

good<br />

c I osed<br />

covered<br />

crest con tact/<br />

\zE 50 18<br />

good<br />

hem Ìmye I îa<br />

covered<br />

mesoderm con têct/<br />

-.<br />

\zE jU tB<br />

good<br />

cl osed<br />

covered<br />

nonè contact/<br />

\28 s6 18<br />

good<br />

dlplomyel ia<br />

4<br />

covered<br />

mesoderm<br />

\2E 26 i9<br />

good<br />

closed<br />

0<br />

covered<br />

none contact/<br />

qzE<br />

31 19<br />

poor<br />

c I osed<br />

covered<br />

crèst coñ tact/<br />

\2E 57 19<br />

good<br />

c I osed<br />

covered<br />

none con têct/<br />

4zE 6i 19<br />

good<br />

ciosed<br />

covered<br />

none contact/<br />

E<br />

\28 69 19<br />

good<br />

amyel ia<br />

E<br />

\zE 17 zo<br />

good<br />

c I osed<br />

covered<br />

none contâct/


428 72 20<br />

closed<br />

covered none<br />

contact/ sepa ra t lon none<br />

hzE 73 20<br />

closed<br />

covered none<br />

contact/ sepê rât ion none


238<br />

This revlew <strong>of</strong> <strong>the</strong> histologlcal appearance <strong>of</strong> every sectloned embryo,<br />

after al lowing for some cracking durÌ.ng processing, reveals a series <strong>of</strong> rel<strong>at</strong>ed<br />

events during neurul<strong>at</strong>ion. The fl<strong>at</strong>tened neural pl<strong>at</strong>e, protonotochord,<br />

and fused somltic mesoderm lying adjacent to Hensenrs node show<br />

progresslve changes as <strong>the</strong>y are fol lowed cran.ially.<br />

Form<strong>at</strong>lon <strong>of</strong> <strong>the</strong> notochord ís accompanied by development <strong>of</strong> unsegmented<br />

mesoderm and elev<strong>at</strong>ion <strong>of</strong> <strong>the</strong> neural folds. Cranial to this,<br />

development <strong>of</strong> protosomites is accompanied by ínversion <strong>of</strong> <strong>the</strong> neuraì<br />

folds. As <strong>the</strong> somites develop, with încreasing differenti<strong>at</strong>¡on ¡nto<br />

centrêl and perlpheral regions, <strong>the</strong>y show progressive expansîon which<br />

ls accompanied by fur<strong>the</strong>r inversion and <strong>the</strong>n closure cif <strong>the</strong> neural folds.<br />

After fusion <strong>of</strong> <strong>the</strong> neural folds <strong>the</strong> closed tube is inîtlally in<br />

contact with <strong>the</strong> overlyîng newly-fused ectoderm. At stage l2 neural crest<br />

cells begin to infiltr<strong>at</strong>e between neural tube and ectoderm, beginning with<br />

<strong>the</strong> point <strong>of</strong> inltial closure <strong>at</strong> <strong>the</strong> hindbrarin. By Stage 1!, mesenchyme<br />

cells from locally-dispersing somites <strong>the</strong>n. migr<strong>at</strong>e between neural tube<br />

and ectoderm, also beginning <strong>at</strong> <strong>the</strong> hìndbrain. <strong>ln</strong> embryos with myelodysplasia<br />

a local reduction in neural volume allows <strong>the</strong> adjacent somites<br />

to fuse across <strong>the</strong> midl ine, dorsal to neural tissue.<br />

<strong>ln</strong> experimental and control embryos until Stage l! <strong>the</strong> notochord îs<br />

separ<strong>at</strong>ed from developing brain but lies in close contact *¡tn tÁ" developing<br />

cord, except for <strong>the</strong> upper part <strong>of</strong> establ ished myeloschisis tesions<br />

in most cases <strong>of</strong> myeloschisis.<br />

}Jhlle fused and unsegmented somít¡c mesoderm are separ<strong>at</strong>ed from neural<br />

tlssue dur<strong>ln</strong>g early neurul<strong>at</strong>ion, <strong>the</strong> protosom¡tes are in contact wlth


239<br />

neural tissue ât <strong>the</strong> l<strong>at</strong>er stages <strong>of</strong> closure ¡n most control and normal<br />

experlmental embryos. Hany embryos wÌth myeloschisis, however, show<br />

some loss <strong>of</strong> con.tact between neural tissue and protosomìtes (stages 13-16)<br />

or somìtes (Stages 17-20'). Embryos with myelodysplasia general ly retain<br />

contact between somite mesoderm and neural t¡ssue, but <strong>the</strong> mesoderm <strong>of</strong>ten<br />

shows cystic changes and reduced volume.<br />

Even though <strong>the</strong> distrlbution <strong>of</strong> Stages is not perfectly mêtched,<br />

<strong>the</strong>re ls no major difference ín <strong>the</strong> number <strong>of</strong> accessory canals between<br />

experimental and control groups, though embryos wîth myeloschisis and<br />

myelodysplasla show some delay in <strong>the</strong> disappearance <strong>of</strong> accessory canals<br />

<strong>at</strong> Stages I 3- 16.<br />

When <strong>the</strong> development <strong>of</strong> neural defects is followed, myeloschisis<br />

appeårs ât an eêrlier Stage ênd <strong>at</strong> a slightly higher level than <strong>the</strong> myelodysplaslas<br />

(see Tables 37 è 3B). Thus myeloschisis is first detectable as<br />

a wide eversìon <strong>of</strong> <strong>the</strong> neural folds, in smooth cont¡nu¡ty wíth ectoderm <strong>at</strong><br />

Stage 10 (6E 45), leading to non-closure and separ<strong>at</strong>ion <strong>of</strong> <strong>the</strong> two sources<br />

<strong>of</strong> neural m<strong>at</strong>erial by Stage 13 (18E 61). <strong>ln</strong> Stage 1/-20 embryos <strong>the</strong> lesíons<br />

lie in regions B, C and D, gíving way to a normal cord developed from<br />

tail-bud m<strong>at</strong>erial in region E.<br />

tlyelodysplasía fîrst appears âs a narrow eversion <strong>of</strong> <strong>the</strong> neural folds<br />

<strong>at</strong> Sta.ge 16 (3OE 35, 30E 76) wittr no separ<strong>at</strong>îon into rwo sorr".s <strong>of</strong> neural<br />

m<strong>at</strong>erlal and partial ectoderm cover. At Stages 17-20 <strong>the</strong> lesions occupy<br />

regions B, C, D and E, gîving way to a r<strong>at</strong>her small cord or to diplomyel ia<br />

or amyel ia in region E.<br />

0n <strong>the</strong> basls <strong>of</strong> <strong>the</strong>se findings several aspects <strong>of</strong> neurul<strong>at</strong>îon were<br />

analysed quantlt<strong>at</strong>lvely to determine <strong>the</strong> significance <strong>of</strong> differences<br />

between experiment<strong>at</strong> and control embryos (see Sections 6.7, 6.8 and 6.9).


240<br />

The histological fe<strong>at</strong>ures selected for analysis were:<br />

(a) pr.ogress <strong>of</strong> normal neuraI closure<br />

(b) development <strong>of</strong> myeloschisis<br />

(c) development <strong>of</strong> mye I odysp I as ia<br />

(d) length <strong>of</strong> <strong>the</strong> overlap zone (r<strong>at</strong>her than merely <strong>the</strong> number <strong>of</strong><br />

accessory canals)<br />

(e) cover <strong>of</strong> neural tíssue by ectoderm (though not by mesenchyme)<br />

(f)<br />

contact <strong>of</strong> neural tissue with notochord<br />

(g) contact <strong>of</strong> neural tissue with somites<br />

(h) cys.tlc changes and reduced volume <strong>of</strong> somites.<br />

6.5 coMpêRlsoN 0J !l!r!!qcrEÂL FrNprNGs r^,rrH AppEARAtlqE_eL r,/!e!Elf4!R\roå<br />

The histologîcal review <strong>of</strong> normal neural closure in controì embryos<br />

(Sectîon 6.4)may be compared with <strong>the</strong> appearances <strong>of</strong> <strong>the</strong> same whole<br />

embryos recorded by camera lucida drawings before seríal sectioning<br />

(Sectlon 6.t.¡),<br />

<strong>ln</strong> Tables 39-42, sectioned embryos <strong>of</strong> Gròups llland<br />

lV are divíded into four c<strong>at</strong>egories, based on neural defects:<br />

Stage 13-20 control emb ryos<br />

Stage 1l-20 experimental embryos w¡thout neural defects<br />

Stage 13-20 experimental embryos with Íryelosch¡sís<br />

Stage 13-20 experimental embryos w¡th myelodysplasia.<br />

The morphology <strong>of</strong> each whole embryo is compared with <strong>the</strong> histological<br />

appearance <strong>of</strong>:<br />

(a) <strong>the</strong> neural tube <strong>at</strong> somite and post-somite levels<br />

(b) <strong>the</strong> rhomboid s i nus.


241<br />

The control group (Table 99 ) show no neural defects; an oval<br />

rhomboid sinus corresponds to ínciplent histologìcal closure. <strong>ln</strong><br />

exper¡mental embryos without neural defects (Table 40 ) <strong>the</strong>re are again<br />

no cord defects, but in two cases (l8E 44, 30E 4) a closed rhomboid sinus<br />

<strong>ln</strong> serial sectlons was recorded as open in <strong>the</strong> whole embryos. Embryo<br />

l8E 10 should probably be regarded as an example <strong>of</strong> early myeloschisis,<br />

0f <strong>the</strong> embryos wÌth histologîcal myeloschisis (Table At<br />

) two were<br />

recorded with irregular, r<strong>at</strong>her than regular, defects în <strong>the</strong> whole embryos<br />

(30E 56,42E 8). At <strong>the</strong> rhomboid sinus one embryo (lBE 59) exhibited an<br />

oval rhomboid sinus and elev<strong>at</strong>ed neural folds caudal to <strong>the</strong> lesion, and<br />

ano<strong>the</strong>r (3OE 25) showed a triangular rhomboid s¡nus and closed neural folds.<br />

Apart from <strong>the</strong>se four exceptions <strong>the</strong>re is close âgreement between <strong>the</strong><br />

histological findings and <strong>the</strong> camera lucida drawings, with a trîangular<br />

rhomboid sinus corresponding to early myeloschisis <strong>at</strong> Stages lJ-14, and a<br />

regular cord defect correspondíng to establ ished myeloschisis <strong>at</strong> Stages<br />

16-20.<br />

l'lyelodysplasîa (taUle 4Z ) is characterized by an irregular cord<br />

defect wìth only one exception (\ZE 69). At <strong>the</strong> rhomboid sinus, apparent<br />

closure in <strong>the</strong> whole embryos corresponds to a closed neura¡ tube or to<br />

ectoderm covering <strong>the</strong> defects in <strong>the</strong> serial sectîons.<br />

This comparîson <strong>of</strong> <strong>the</strong> appearances <strong>of</strong> <strong>the</strong> neural tube and ifromUoia<br />

s<strong>ln</strong>us before and after seriaì sectioning reveals th<strong>at</strong>:<br />

(") an oval rhomboid sinus is followed by a normal neural closure<br />

(b) a triangular rhombold sinus precedes an open neural defect<br />

(myeloschisis)<br />

(c) a regular neural defect corresponds to hístological myeloschisis


242<br />

(d) an lrregular neural defect represents histologìcal myelodysplasia.<br />

As no embryos earlìer than Stage 16 show nyelodysplasìa no comment<br />

can be made on <strong>the</strong> appearance <strong>of</strong> <strong>the</strong> rhombold sînus. Thts is consistent,<br />

however, wlth <strong>the</strong> suggestÌon th<strong>at</strong> myelodysplasîa does not ar¡se by abnormal<br />

closure <strong>of</strong> <strong>the</strong> neural folds, but Lnvolves an absence <strong>of</strong> neurai pl<strong>at</strong>e<br />

m<strong>at</strong>erial and development <strong>of</strong> <strong>the</strong> dysplastic cord from tê¡ l-bud m<strong>at</strong>erial<br />

alone after Stage 15.


TABLE 39. APPEARANCE OF I,'HOLE EI4BRYOS COI4PARED TO HISTOLOGY OF RHOMBOID SINUS AND OPEN CORD DEFECTS,AT<br />

STAGES l3-20 (CoNTRoLS)<br />

closed/closing<br />

closed/closing<br />

closed/clos<strong>ln</strong>g<br />

closed/closing<br />

c I osed/cl os ing<br />

c I osed<br />

c I osed<br />

cl osed<br />

c I osed<br />

. c I osed<br />

cl osed<br />

cl osed<br />

cl osed<br />

c I osed<br />

closed N)<br />

Embryo<br />

S têge<br />

lJhol e Emb ryo<br />

Les i on<br />

H i stol ogy<br />

Les i on<br />

l/hoI e Emb ryo<br />

Rhomboid Sinus<br />

Histology<br />

Rhomboîd S ìnus<br />

18C I r<br />

13-<br />

none<br />

none<br />

ova I<br />

18C 10<br />

13<br />

none<br />

none<br />

ova I<br />

r8c 14<br />

13<br />

none<br />

none<br />

ova I<br />

t8c 21<br />

l3+<br />

none<br />

none<br />

ova I<br />

18c 27<br />

13+<br />

none<br />

none<br />

ova I<br />

30c 2<br />

16<br />

none<br />

none<br />

c I osed<br />

30c 3<br />

16<br />

none<br />

none<br />

c I osed<br />

3OC 15<br />

16<br />

none<br />

none<br />

cl osed<br />

3OC 12<br />

16<br />

none<br />

none<br />

c I osed<br />

3OC 22<br />

16<br />

none<br />

none<br />

c I osed<br />

3oc 25<br />

16<br />

none<br />

none<br />

cl osed<br />

42c 4<br />

\2c 7<br />

\zc 2<br />

\zc 6<br />

18<br />

18,<br />

19<br />

19<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

cl osed<br />

c I osed<br />

closed<br />

closed


c I osed<br />

closed<br />

closed<br />

c I osed<br />

NJ<br />

42c 11<br />

\zc 3<br />

19<br />

20<br />

42C 8<br />

20<br />

l42c 21<br />

20<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

c I osed<br />

c I osed<br />

c I osed<br />

c¡osed


TABLE 40. APPEARANCE OF }/HOLE EI"IBRYOS COI-IPARED TO HISTOLOGY OF RHOIIBOID SINUS AND OPEN CORD DEFECTS,AT<br />

STAGES 13-20 (EXPERIMENTALS WITHOUT DEFECTS)<br />

everted<br />

el ev<strong>at</strong>ed<br />

e I eva ted<br />

c I osed<br />

c I osed<br />

c I osed<br />

cl osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

N)<br />

Lh<br />

Emb ryo<br />

S tage<br />

VJhole Emb ryo<br />

Les ion<br />

H ìstol ogy<br />

Les i on<br />

lJhole Embryo<br />

Rhombold Sinus<br />

H i stol ogy<br />

Rhombo id S inus<br />

t8E 10<br />

13<br />

none<br />

trianjulêr<br />

f8E 28<br />

14<br />

none<br />

none<br />

ova I<br />

lBE 47<br />

t4<br />

none<br />

none<br />

OVä I<br />

18E 44<br />

15<br />

none<br />

none<br />

ova_l<br />

'30E 4<br />

15<br />

none<br />

none<br />

ova I<br />

30E 9<br />

16<br />

none<br />

none<br />

c I osed<br />

308 26<br />

16<br />

none<br />

none<br />

cl osed<br />

308 59<br />

16<br />

none<br />

none<br />

c I osed<br />

3aE 77<br />

16<br />

none<br />

none<br />

closed<br />

\28 34<br />

18<br />

none<br />

none<br />

c I osed<br />

42Ê. \9<br />

r8<br />

none<br />

none<br />

c I osed<br />

428 26<br />

19<br />

none<br />

none<br />

c I osed<br />

4zE 3t<br />

19 '<br />

none<br />

none<br />

cl osed<br />

428 i7<br />

20<br />

none<br />

none<br />

c I osed<br />

428 73<br />

20<br />

none<br />

none<br />

c I osed


TABLE 41. APPEARANCE OF ì^IHOLE EMBRYOS COI',IPARED To HIsToLoGY OF RHoMBOID sINUS AND oPEN CORD DEFECTSI*AT<br />

STAGES 13-20 (EXPERI},lTNTALS WITH NYELOSCHISIS)<br />

mye I osch i s is<br />

myeloschisis<br />

myeloschlsis<br />

myeloschîsîs<br />

everted<br />

myeloschisìs<br />

mye I osch ls is<br />

myeloschlsis<br />

el ev<strong>at</strong>ed<br />

cl osed<br />

c I osed<br />

c I osed<br />

. c I osed<br />

closed<br />

Emb ryo<br />

Stêge<br />

l^/hole Embryo<br />

Les i on<br />

H I stology<br />

Les ion<br />

l{hol e Embryo<br />

Rhomboid S ìnus<br />

Histology<br />

Rhomboid S inus<br />

18E _6r<br />

13<br />

none<br />

myeloschísis<br />

triangular<br />

188 25<br />

13+<br />

regu lar<br />

myeloschisis<br />

tr i angu I ar<br />

188 13<br />

14<br />

none<br />

myeloschisís<br />

triangular<br />

188 35<br />

14<br />

nohê<br />

myeloschisis<br />

triangular<br />

18E 58<br />

14<br />

none<br />

myeloschisis<br />

triangular<br />

18E 36<br />

14+<br />

none<br />

myeloschisis<br />

trlangular<br />

18E 53<br />

14'<br />

none<br />

myel osch ls I s<br />

trlangular<br />

18E 54<br />

t4+<br />

none<br />

rnyeloschisls<br />

tr¡angular<br />

18E 59<br />

14+<br />

none<br />

myeloschisîs<br />

ova I<br />

30E 25<br />

15<br />

regular<br />

myeloschisls<br />

trîãngulêr<br />

30E 56<br />

16<br />

i rregu I a r<br />

myeloschisls<br />

closed<br />

30Ê 69<br />

16<br />

regular ì<br />

myel osch i s îs<br />

'closed<br />

308 52<br />

16<br />

regular<br />

myeloschisls<br />

c¡osed<br />

428 8<br />

17<br />

î rregular<br />

myeloschisls<br />

c I osed


closed<br />

closed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

covered hem I mye I ia<br />

N<br />

.{<br />

42E 1o<br />

17<br />

regul ar<br />

myeloschlsis<br />

cl osed<br />

4zE 1<br />

r8<br />

regul ar<br />

myeloschisis<br />

c I osed<br />

4zE 4\<br />

r8<br />

regular<br />

myeloschisis<br />

-closed<br />

\zE 54<br />

r8<br />

regular<br />

myelosch¡sÎs<br />

c I osed<br />

42E 57<br />

19<br />

regular<br />

myelosch¡sis<br />

c I osed<br />

hzl 6,<br />

19<br />

regular<br />

myeloschlsîs<br />

closed<br />

hzl 72<br />

20<br />

regu la r<br />

myeloschls¡s<br />

c I osed<br />

42E 21<br />

18<br />

irregular myeloschlsls/<br />

closed<br />

hem i mye I ia


TABLE 42. APPEARANCE OF I,'HOLE EMBRYOS COMPARED TO HISTOLOGY OF RHOI'IBOID SINUS AND OPEN CORD DEFECTS,AT<br />

srAGEs r3-20 (rxpenHrnrnls t,/trH i.,tyELoDyspLAstA)<br />

covered amye I ia<br />

covered hem i myel la<br />

N)<br />

F<br />

Emb ryo<br />

Stêge<br />

30E 35<br />

16<br />

30E 76<br />

16<br />

428 Sz<br />

17<br />

428 50<br />

18<br />

\zE 56 18<br />

Whole Embryo H í stology<br />

Les ion Les ion<br />

i rregul ar<br />

î rregul ar<br />

I rregular<br />

I rregular<br />

i rregu I ar<br />

hemlmyella<br />

hemimyella<br />

hem imye I la<br />

hemi mye I la<br />

hem imye I ial<br />

d iplomyel la<br />

t{ho I e Emb ryo<br />

Rhomboîd S Ìnus<br />

a¡osed<br />

cl osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

Histology<br />

Rhomboid S<strong>ln</strong>us<br />

closed<br />

c i osed<br />

c I osed<br />

covered hem i mye I ia<br />

covered dlp!omyel ia<br />

I42E 69<br />

19<br />

none<br />

hem i mye I îa/<br />

amyel la<br />

c I osed<br />

\zE 21<br />

18<br />

I rregular. myeloschlsis/<br />

hem imye I ia<br />

c I osed


249<br />

6.6 pEVEL0PMENT 0F rH!_¡Ho|4glc R00F<br />

Changes in <strong>the</strong> structure <strong>of</strong> <strong>the</strong> rhornbic ro<strong>of</strong> were also evalu<strong>at</strong>ed for<br />

Groups I - lV. They are presented, toge<strong>the</strong>r w¡th <strong>the</strong> norphology and levels<br />

<strong>of</strong> neurâl defects (from Section 6.2), in Tables 43 - 46. and Flgs. 103- I11.<br />

Tables 43 - 46 show th<strong>at</strong> <strong>the</strong> rhor¡rbic ro<strong>of</strong> undergoes progressive<br />

th i nn îng after neural closure:<br />

Stages l0 - 11+<br />

Stages 12 - 15<br />

Stâges 16 - 17<br />

Stages 18 - 20<br />

thick<br />

thin<br />

very th¡n<br />

membranous<br />

The choroid plexus <strong>of</strong> <strong>the</strong> fourth ventricle is not present before<br />

Stage 18 (f¡S. lO9 ) considerably l<strong>at</strong>er than <strong>the</strong> first appeêrance <strong>of</strong><br />

myeloschîsis and myelodysplasia. ìlîthin each g¡-oup <strong>the</strong>re is no difference<br />

in rhombic development between experimental and control embryos. <strong>ln</strong> this<br />

ser¡es <strong>of</strong> chick embryos, <strong>the</strong> form<strong>at</strong>íon <strong>of</strong> open neural defects cannot be<br />

secondary to excessive pressure within <strong>the</strong> cerebro-spinal fluid system.


RHOMB IC ROOF DEl/ELOPI,IENT<br />

N'<br />

o<br />

Emb ryo<br />

Stage<br />

Rhombic Ro<strong>of</strong><br />

Neural Defects<br />

Regions <strong>of</strong> Defects<br />

6c 20<br />

t0-<br />

èlosíng<br />

none<br />

oc 49<br />

t0-<br />

clos i ng<br />

none<br />

0c 52<br />

10-<br />

closing<br />

none<br />

6c 21<br />

t0<br />

thick<br />

none<br />

0c 46<br />

10<br />

clos<strong>ln</strong>g<br />

none<br />

6E 15<br />

6E8<br />

t0-<br />

t0<br />

closing<br />

thick<br />

none<br />

none<br />

6E 30<br />

6E \s<br />

t0<br />

10<br />

th ick<br />

thick<br />

none<br />

early myeloschisis<br />

E<br />

6E 18<br />

10+<br />

thick<br />

none<br />

6E 4r<br />

10+<br />

thlck<br />

early myeloschlsís<br />

E


Emb ryo<br />

Stage<br />

Rhombîc Roóf<br />

Neural Defects<br />

Regions <strong>of</strong> Defects<br />

18C \<br />

11+<br />

thick<br />

none<br />

18C 23<br />

12<br />

thin<br />

none<br />

lBc 7<br />

12+<br />

thîn<br />

none<br />

18C 22<br />

12+<br />

th in<br />

nonê<br />

6E 13<br />

il-<br />

thlck<br />

none<br />

6E 28<br />

t1-<br />

th ick<br />

none<br />

6t 3t<br />

t1-<br />

thick<br />

none<br />

6E.38<br />

11-<br />

thick<br />

none<br />

6E 44<br />

I t-<br />

th i ck'<br />

none<br />

6E 2\<br />

11<br />

thîck<br />

none<br />

6e 3\<br />

11+<br />

thick<br />

early myeloschisls


Emb ryo<br />

Stage<br />

Rhombic Ro<strong>of</strong><br />

Neural Defects<br />

Regions <strong>of</strong> Defects<br />

18C 11<br />

13-<br />

thin<br />

none<br />

18C 10<br />

13<br />

th in<br />

none<br />

r81 14<br />

13<br />

th in<br />

none<br />

t8c 21<br />

13+<br />

thin<br />

none<br />

18C t7<br />

13+<br />

thin<br />

none<br />

30c 2<br />

16<br />

vèry thÎn<br />

none<br />

30c 3<br />

16<br />

very th <strong>ln</strong><br />

none<br />

30c 15<br />

16<br />

very th¡n<br />

none<br />

30c 12<br />

16<br />

very th¡n<br />

none<br />

30c 22<br />

16<br />

very th¡n<br />

none<br />

30c 25<br />

16<br />

very thin<br />

none<br />

t8E l0<br />

13-<br />

)<br />

thin<br />

myeloschIsîs<br />

DE<br />

18E 6t<br />

13<br />

thin<br />

myel osch i s is<br />

DE<br />

18E 25<br />

13+<br />

thîn<br />

myeloschisis<br />

DE


CDE<br />

D'E<br />

DE<br />

CDE<br />

DE<br />

DE<br />

DE<br />

D<br />

BCD<br />

BC<br />

BC<br />

BCD<br />

N)<br />

188 13<br />

r4<br />

thin<br />

myeloschísls<br />

18E 28<br />

14'<br />

thin<br />

none<br />

r8E 35<br />

14<br />

thÎn<br />

myeloschisls<br />

188 47<br />

14<br />

thin<br />

myeloschlsis<br />

18E 58<br />

14<br />

th in<br />

myeloschisis<br />

18E 36<br />

14+<br />

thin<br />

myeloschisis<br />

188 53<br />

t4+<br />

th<strong>ln</strong><br />

myeloschisis<br />

18E 54<br />

l4+<br />

thin<br />

myeloschisis<br />

l8E 59<br />

l4+<br />

thin<br />

myeloschisis<br />

18E 4.lr<br />

15-<br />

th in<br />

none<br />

30E 4<br />

15<br />

thin<br />

none<br />

3oE 25<br />

15<br />

thin<br />

myeloschisis<br />

30E 9<br />

16<br />

very thin<br />

none<br />

3OE 26<br />

16<br />

very thin<br />

none<br />

308 35<br />

16<br />

very thin<br />

hem i myel ia<br />

3oE 56<br />

16<br />

very thin<br />

myeloschisis<br />

30E 59<br />

16<br />

very thin<br />

none<br />

30E 69<br />

16<br />

very th <strong>ln</strong><br />

myeloschlsls


B C DE<br />

BC<br />

1..)<br />

30E 76<br />

16<br />

very thin<br />

hemi myel i a<br />

30Ê 52<br />

16<br />

very th¡n<br />

myeloschîsis<br />

308 77<br />

16<br />

very thin<br />

none


TABLE q6,. STAGE 17-20 CoNTRoI AND EXPERI¡IENTAL EMBRYoS (GROUP lV)-çpnMRrî RooF DEVEL0PT'îENr<br />

Embryo Stage Rhombic Ro<strong>of</strong> Neural Defects Regîons <strong>of</strong> Defects<br />

BC<br />

B<br />

c<br />

BC<br />

BCDE<br />

N)<br />

42C 4<br />

42C 7<br />

18<br />

membranous<br />

t8<br />

memb ranous<br />

42c 2<br />

19<br />

membranous<br />

none<br />

42C 6<br />

19<br />

membranous<br />

none<br />

\zc 11<br />

19<br />

memb ranous<br />

none<br />

\zc 3<br />

20<br />

membranous<br />

none<br />

hzc 8<br />

20<br />

memb ranous<br />

none<br />

42C 21<br />

20<br />

memb ranous<br />

none<br />

428 I<br />

17<br />

very th¡n<br />

myeloschisis<br />

42E to<br />

17<br />

very thin<br />

myeioschisîs<br />

\zE Sz<br />

17<br />

very th in<br />

hem i mye I i a<br />

hzE l<br />

18<br />

memb ranous<br />

myeloschisis<br />

LzE 21<br />

r8<br />

membranous<br />

myelosch I s i slhemlmyel la<br />

\28 34<br />

18<br />

membranous<br />

none


CD<br />

BCD.E<br />

CD<br />

BCDE<br />

CD<br />

CD<br />

BCDE<br />

c<br />

NJ<br />

\¡r<br />

o\<br />

428 \\<br />

r8<br />

membrênous<br />

myeloschisis<br />

42E \9<br />

r8<br />

membranous<br />

none<br />

hzE 50<br />

18<br />

membranous<br />

hemimyel ia<br />

4zE Sh<br />

18<br />

memb ranous<br />

myeloschisis<br />

\2E 56<br />

18<br />

membrânous<br />

hem i mye I i a/d i pl omye I îa<br />

\zE 26<br />

19<br />

membranous<br />

none<br />

\zE 3t<br />

19<br />

membranous<br />

none<br />

\28 57<br />

19<br />

membranous<br />

myeloschisls<br />

4zE 65<br />

19<br />

membranous<br />

myeloschlsis<br />

hzE 69<br />

r9<br />

memb ranous<br />

hemimyel lalamyel ia<br />

428 17<br />

20<br />

membranous<br />

none<br />

\28 72<br />

20<br />

memb rênous<br />

myeloschisls<br />

42E 73<br />

20<br />

memb ranous<br />

none


Figs- 10J - i11. Development <strong>of</strong> <strong>the</strong> rhombic io<strong>of</strong> În control and<br />

experínental emb ryos (H ¿ f; xt6) :<br />

Fig. 103. Thick rhombic ro<strong>of</strong> in St, 11+ control ernf ryo (tBC 4).<br />

Fís. 104. 'fhîn rhombÍc ro<strong>of</strong> in St. l3+ control emOryo (1BC Z7) .<br />

Fis. 105.<br />

Very thin rhonrbic ro<strong>of</strong> in St. 16 con¡rol embryo<br />

ßoc zz)'.


7-<br />

4.<br />

103<br />

r05


Fî s.<br />

tub.<br />

Thick rhombic ro<strong>of</strong> in 5t.<br />

11+ experìmentai ernb ryo<br />

wi th neural folds everted<br />

<strong>at</strong> <strong>the</strong> rhombo rd srnus<br />

(6E 34)"<br />

Fis.<br />

147.<br />

Th in rhcrnb ic ro<strong>of</strong> i n St, 14+<br />

experimental emb ryo<br />

with earì;, mye losch is i s (tBE<br />

3ó )"<br />

Fig.<br />

loB.<br />

Very thin rhombic ro<strong>of</strong> in St. 16 experimental<br />

embryo with early nryelodysplasia (3or 76).


.t<br />

l<br />

l]]<br />

80t<br />

¿ot<br />

rfÞ'.<br />

!-d...---<br />

901


Fig. 109<br />

Hernbranous rhombic ro<strong>of</strong> with choroid plexus in St, lB<br />

cónrrot embryo (4ZC 7),<br />

Fig. ll0.<br />

Membranous rhombic ro<strong>of</strong> wÍth <strong>the</strong> first sign <strong>of</strong><br />

development <strong>of</strong> a choroíd plexus in St. 1B experimcntal<br />

embryo with myelodysplasia (Aze Sg),<br />

Fis. 111.<br />

|4embranous rhombic ro<strong>of</strong> with <strong>the</strong> fírst sign <strong>of</strong><br />

development <strong>of</strong> a choroid plexus în St. 17 experimental<br />

embryo with myeloschisis (428 B).


'Ì<br />

1ú<br />

111


260<br />

6.7 HrqroLoctcAL, cHANgË AssoctArEp tltrH NEURAT p;FEcrs_<br />

To assess <strong>the</strong> h¡stological differences between normal embryos<br />

and those with neural defects, <strong>the</strong> numbers <strong>of</strong> f0 mlcron sections<br />

show<strong>ln</strong>g a part¡cular fe<strong>at</strong>ure in each reglon were counted, and expressed<br />

as percentage lengths <strong>of</strong> each reglon and <strong>of</strong> <strong>the</strong> entire embryo.<br />

. Counts were confined to Groups lll and lV (Stages 13-20), excluding<br />

<strong>the</strong> embryos with amyet ia and myeloschísis/myelodysplasia<br />

(\2Ê69'\2E21)andthoseínverypoorcondítionafterprocessing<br />

(l8E 10, 188 28, 18E 25, t8E 54). Cnly regions B,c,Dand E (coverÌns<br />

<strong>the</strong> spinai cord) were counted, though <strong>the</strong>ir boundaries differ în Group lll<br />

and Group lV.<br />

For iomparison <strong>of</strong> <strong>the</strong> lengths <strong>of</strong> neural


261<br />

<strong>ln</strong> <strong>the</strong>se tables <strong>the</strong> contrors and <strong>the</strong> experimentar embryos w¡thout<br />

neural dèfects show extensive separ<strong>at</strong>ion between somites and neural<br />

m<strong>at</strong>erial; <strong>the</strong>re Issome separ<strong>at</strong>ion between notochord and neural m<strong>at</strong>erial<br />

by Stêge 20 in two embryos ('ZC Zl , 428 73). The embryos wìth neural<br />

defects also show extensive separ<strong>at</strong>¡on from somites, with separ<strong>at</strong>ion<br />

from notochord (especially <strong>ln</strong> myelosct isis after Stage ,t7) ¡and somite<br />

defects (especial ly ín myelodysptasia after Stage l6). There is no<br />

close associ<strong>at</strong>ion between <strong>the</strong> rength <strong>of</strong> ectoderm discontinuíty from<br />

neural tissue and <strong>the</strong> type <strong>of</strong> neural tesion<br />

.<br />

Figsi. 112-119 compare <strong>the</strong> percentage lengths <strong>of</strong> neural defects in<br />

regions B,c, D and E <strong>of</strong> each âffected experimental embryo with <strong>the</strong> correspondîng<br />

percentage I engths <strong>of</strong>:<br />

(a) ectoderm d iscont inu ity<br />

(b) somite separ<strong>at</strong>ion from neural tîssue<br />

(c) notochord separ<strong>at</strong>ion from neural tissue<br />

(d) local somi te defects.<br />

These figures demonstr<strong>at</strong>e <strong>the</strong> percentage distribution in <strong>the</strong> four<br />

regions <strong>of</strong> embryonic cord <strong>of</strong> myeloschisis irom Stage lJ and myelodysplasia<br />

from Stage 16. Horvever as region B is much larger than all <strong>the</strong> o<strong>the</strong>r<br />

regîons <strong>the</strong> size <strong>of</strong> each region in rel<strong>at</strong>ion to a whole embryo is disproportion<strong>at</strong>e.<br />

The assocî<strong>at</strong>ion <strong>of</strong> myeloschisis with notochord sãpar<strong>at</strong>ion<br />

after Stage 1/,and <strong>of</strong> myelodysplasia with somite defects after Stage l6<br />

are clearly i I lustr<strong>at</strong>ed.<br />

.An analysis <strong>of</strong> variance could not be performed with <strong>the</strong>se figures<br />

as so many <strong>of</strong> <strong>the</strong> histologîcar fe<strong>at</strong>ures showed zero varues in both<br />

exper imenta I and control embryos.


TABLE 47. CONTROL EMBRYoS.HISTOLOGICAL ANALYSIS<br />

Embryo Stêge Regions <strong>of</strong> Regions <strong>of</strong> *"r."<br />

Lesions Measurements Lesi'on<br />

- Díscontinu¡ty Separ<strong>at</strong>lon s"p"i"iiån ó;f¿;r.<br />

ZZZZZZZZZ.Á<br />

region embryo règion embryo regíon embryo region embryo ."gion urbryo<br />

o 9.80<br />

0<br />

o 15.08<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0-<br />

00<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

N)<br />

o\<br />

N)<br />

t8c rl 13<br />

B<br />

0<br />

0<br />

0<br />

00<br />

9.63 0<br />

c<br />

0<br />

0<br />

0<br />

0<br />

D<br />

0<br />

0<br />

0<br />

6 .12<br />

E<br />

0<br />

0<br />

0<br />

t00<br />

18C 10 13<br />

B<br />

0<br />

0<br />

0<br />

c<br />

0<br />

0<br />

0<br />

D<br />

0<br />

0<br />

0<br />

36.36<br />

E<br />

0<br />

0<br />

0<br />

.t 00<br />

r8c 14 13<br />

B<br />

0<br />

0<br />

0<br />

c<br />

c<br />

0<br />

0<br />

D<br />

0<br />

0<br />

0<br />

76.92<br />

E<br />

0<br />

0<br />

0<br />

100<br />

lgc 21 13+<br />

B<br />

0<br />

0<br />

0<br />

o 12.56<br />

c<br />

0<br />

0<br />

0<br />

0<br />

D<br />

0<br />

0<br />

.0<br />

28,57<br />

E<br />

0<br />

100


0<br />

0<br />

0<br />

.0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

a<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

6.76<br />

0<br />

0<br />

0<br />

100<br />

12.28<br />

100<br />

100<br />

100<br />

0<br />

88.89<br />

B5<br />

'0<br />

0<br />

55 .88<br />

28.57<br />

100<br />

2.22<br />

3.5<br />

19.15<br />

22.38<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

.0<br />

12.32<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

7 .8r<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

N)<br />

o\<br />

5.87<br />

B<br />

c<br />

D<br />

E'<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

18C 27 13+<br />

30c 2 16<br />

30c 3 16<br />

30c 15 16<br />

30c 12 16


0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

o<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

NJ<br />

o\<br />

E<br />

0<br />

0<br />

42C 7 r8<br />

B<br />

0 )0<br />

0<br />

B<br />

c<br />

ó<br />

E<br />

B<br />

c<br />

D<br />

E<br />

\2C 4 18<br />

B<br />

c<br />

D<br />

E<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

o<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

30c 22 16<br />

30c 25 16<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

100<br />

3.17 10.56<br />

10<br />

77.7e<br />

100<br />

4.18 11.67<br />

32<br />

59.\6<br />

100<br />

o '21 .61<br />

82.8r<br />

100<br />

100<br />

0 20.25<br />

c<br />

0<br />

0<br />

0<br />

82.76<br />

D<br />

0<br />

0<br />

0<br />

100<br />

E<br />

0<br />

0<br />

0<br />

100<br />

0 5.48<br />

42C 2 19<br />

B<br />

0<br />

0<br />

0


0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

35.29<br />

100<br />

0<br />

0<br />

17.39<br />

100<br />

0<br />

0<br />

6o<br />

0<br />

.0<br />

0<br />

100<br />

100<br />

0<br />

0<br />

16.67<br />

100<br />

4. ol<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

,0<br />

2.34<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

.0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

7. 88<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

N)<br />

o\<br />

4.59<br />

c<br />

D<br />

E<br />

R<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

42C 6 19<br />

\zc 11 19<br />

4zc j zo<br />

20<br />

4zc I


42c 21 zo B<br />

c<br />

D<br />

E<br />

0000<br />

00<br />

00<br />

00<br />

1\.62 12,23 o 6.70 o o<br />

0 6.25 0<br />

o 100 o<br />

0 100 0


00<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

N)<br />

o\<br />

\j<br />

TAB<br />

S,HISÎOLOGICAL ANALYS I S<br />

Embryo Stege Region <strong>of</strong> Region <strong>of</strong> Neural Ectoderm<br />

Les ion Measurements Lesion Discontinuity<br />

ZZ7.'Á<br />

, regîon embryo region embryo<br />

Notochord Soml te Soml te<br />

Separ<strong>at</strong>ïon Separ<strong>at</strong> ion Defects<br />

zzzzzz<br />

region embryo region embryo regíon embryo<br />

18E 47 ttt<br />

80000<br />

c00<br />

000<br />

ouo<br />

12.50<br />

18E 44 15<br />

30E 4 15<br />

30E 9 16<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

100<br />

100<br />

0<br />

,0<br />

36.36<br />

100<br />

0 1.48<br />

0<br />

14.29<br />

33.33<br />

0 4.33<br />

0<br />

20<br />

4.2\


l\t<br />

q\<br />

1oE 26 16<br />

30E 59 16<br />

3oE 77 16<br />

428 34 18<br />

h2E \9 t8<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c -0<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

r00<br />

o 6.15<br />

0<br />

4o<br />

100<br />

0 7.74<br />

33.33<br />

28.57<br />

t00<br />

| .87 6.77<br />

0<br />

53.s5<br />

100<br />

o r1.96<br />

12,77<br />

100<br />

100<br />

o \.22<br />

0<br />

0<br />

00<br />

0<br />

0<br />

0<br />

00<br />

0<br />

0<br />

0<br />

75<br />

73.08<br />

26.32<br />

0 5.95<br />

00<br />

0<br />

0<br />

0<br />

00<br />

oco


N<br />

o\<br />

\o<br />

DO<br />

0<br />

0<br />

65.38<br />

0<br />

EO<br />

0<br />

0<br />

100<br />

0<br />

4zE 26 t9<br />

BO<br />

c'0<br />

DO<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

.,0<br />

61 .32<br />

80<br />

17.1\<br />

0<br />

0<br />

0<br />

EO<br />

0<br />

0<br />

100<br />

0<br />

4zE 31 19<br />

BO<br />

c0<br />

DO<br />

EO<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0 20.09<br />

73.55<br />

100<br />

100<br />

0<br />

0<br />

0<br />

0<br />

428 17 20<br />

\28 73 zo<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

0<br />

0<br />

0<br />

g<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

5.64<br />

0<br />

0<br />

0<br />

3 .86<br />

0 3.61<br />

.0<br />

21 .05<br />

r00<br />

0 19.39<br />

44.58<br />

100<br />

100<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0


0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

N)<br />

.{<br />

Embryo Stage Regions <strong>of</strong> Reglons <strong>of</strong><br />

Les íons Measurements<br />

HISTOLOGICAL ANALYSIS<br />

Neural Ectoderm Notochord<br />

Les ion Di scont inu i ty Separ<strong>at</strong>ion<br />

%zzzzz<br />

reglon embryo regíon embryo region embryo<br />

Somí te Som ì te<br />

Sepa ra t ion Defects<br />

zzzz<br />

regÍon embryo reg ion embryo<br />

18E 61 13 DE<br />

B<br />

c<br />

0<br />

0<br />

10.97 0 0<br />

0<br />

00<br />

0<br />

0 7.04 .o o<br />

00<br />

D<br />

100<br />

0<br />

0<br />

,5.82<br />

0<br />

E<br />

190<br />

0<br />

0<br />

r00<br />

r8E 13 14<br />

CDE<br />

B<br />

0<br />

8.55<br />

0<br />

00<br />

27.61 B.\6<br />

c<br />

22.72<br />

0<br />

0<br />

25<br />

D<br />

100<br />

0<br />

0<br />

100<br />

E<br />

100<br />

0<br />

0<br />

100<br />

t8E. 35 l4<br />

B<br />

0 2.35<br />

0<br />

0<br />

20,24 ß,65<br />

c<br />

o<br />

0<br />

0<br />

0<br />

D<br />

0<br />

0<br />

0<br />

21 .t+3<br />

18E 58 14<br />

CDE<br />

E<br />

B<br />

8o<br />

o 9.29<br />

0<br />

0<br />

0<br />

0<br />

100<br />

16.67 22.\4<br />

c<br />

27.59<br />

0<br />

0<br />

100<br />

D<br />

100<br />

0<br />

0<br />

r00


0<br />

2.67<br />

0.<br />

N'<br />

!<br />

18E 36 14+<br />

DE<br />

22.22<br />

0 5.32<br />

100<br />

,0 r .82<br />

c<br />

D<br />

0<br />

69.7o<br />

'0<br />

12.12<br />

18E 53 14+<br />

DE<br />

60<br />

0 7.35<br />

loo<br />

0 8.90<br />

0<br />

0<br />

63.83<br />

80 .85<br />

E<br />

100<br />

100<br />

18E 59 14+<br />

DE<br />

B<br />

0 2,85<br />

c<br />

'0<br />

308 25 15<br />

BCD<br />

64.71 o<br />

4s.45 o<br />

5.52 12.75 0<br />

23.53<br />

r00<br />

3.07 4.ll<br />

100<br />

,<br />

0<br />

33.33<br />

79.07 0<br />

00<br />

0<br />

100<br />

3oE 56 - 16<br />

BC<br />

1\.4\ 12185 o<br />

600<br />

1 0 .90 14 .92<br />

7\.29


l\)<br />

\l N<br />

D<br />

E<br />

00<br />

00<br />

0<br />

0<br />

13.79 0<br />

100 0<br />

30E 69 16<br />

30Ê 52 16<br />

BCD<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

10.48 ß.93 o o<br />

190 0<br />

5\.17 0<br />

00<br />

14.7t 12.25 14.71 12.25<br />

60.87 60.87<br />

oo<br />

oo<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

4.s6 lo;07 o o<br />

100 0<br />

35.\2 o<br />

100 0<br />

12.75 18.55 2.70 2.81<br />

100 0<br />

r0o 28.57<br />

100 0<br />

t+28 I 17<br />

42E ro 17<br />

.B<br />

B<br />

c<br />

D<br />

E<br />

c<br />

D<br />

E<br />

29.81 23.01 0 0<br />

31 .87 o<br />

00<br />

gro<br />

13,\4 9.24 o o<br />

00<br />

00<br />

00<br />

\3.\3<br />

0<br />

0<br />

0<br />

35.40<br />

0<br />

0<br />

0<br />

29.27<br />

2\.33<br />

0 15.63 0 0.88<br />

65.93 o<br />

100 22.22<br />

100 0<br />

0 20,96 0 0.92<br />

77.46 o<br />

100 13.64<br />

100 0


N)<br />

.{<br />

\28 1 t8<br />

42Ê 44 18<br />

\zE 54 t8<br />

BC<br />

B<br />

c<br />

D<br />

E,<br />

B<br />

c<br />

D<br />

E<br />

B<br />

4.8 13.85 1.77 1.zo 18.40 19.43 3.10 26.06 o<br />

75 o \2.92 1oo o<br />

o o o 1oo o<br />

0 0 o loo o<br />

o 8.73 o 0.63 o ,.s\ o 13.97 o<br />

39.80 4.8g 16.33 43.88 o<br />

55.17oo1ooo<br />

0 0 0 100 o<br />

0 14.55 0 0.61 o o 18.45 18î45 o<br />

\28 s7 19<br />

428 65 t9<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

69 J1 3.96 o 61 ,3g o<br />

58.14 o o roo o<br />

o o o ìoo o<br />

o 17.02 o o.3o o 8.66 o 16.26 o<br />

78.57 1.79 50.89 5\.\6 o<br />

100, 001000<br />

0 0 0 loo o<br />

0 8.06 0 1.10 O O O 16.65 0<br />

22.99 6.90 o 49.40 o<br />

82.76odtooo


N)<br />

\¡<br />

\2E 72 20<br />

E<br />

B<br />

c<br />

D'<br />

E<br />

00<br />

0 15.81 0 0<br />

80..21 o<br />

00<br />

00<br />

0 100 o<br />

0 12.73 0 2\.2\ O 0<br />

64.58 77.08 o<br />

0 100 o<br />

0 loo<br />

0


16.76 13.52<br />

0<br />

29.57<br />

100<br />

0 14.04<br />

49.02<br />

89 .66<br />

33.33<br />

4¡.gA 38.31<br />

87.95<br />

44.77<br />

35 .71<br />

35.97 36.71<br />

61.5\ \ \JI<br />

100<br />

TABLE 50. EXPERII,TENTAL EI"IBRYOS I^'ITH I4YELODYSPLASIA. HISTOLOGICAL ANALYSIS<br />

Embryo Stage Regions <strong>of</strong> Regions <strong>of</strong> Neural Ectoderm Notochord Somìte Somlte<br />

Lesions I'leêsurements Lesion Dlscontinuity Separ<strong>at</strong>ion Separ<strong>at</strong>ion Defects<br />

zzzzzzzT"zz<br />

region embryò region embryo reglon embryo regÍon embryo regîon embryo<br />

308 35 16<br />

308 76<br />

16<br />

BCB<br />

c<br />

D<br />

E<br />

BCDE B<br />

c<br />

D<br />

E<br />

10.99 13.9<br />

100<br />

0<br />

3.05 16.64<br />

100<br />

100<br />

26.67<br />

3.30 8. 13 0<br />

10.81 0<br />

00<br />

00<br />

0 r.21 0<br />

12.74 o<br />

00<br />

00<br />

7.14 11.19<br />

86.49<br />

0<br />

50<br />

0 4.68<br />

11,76<br />

20.69<br />

!00<br />

\2E rz 17<br />

B<br />

o.09 13.68<br />

0 6.52<br />

0<br />

c<br />

D<br />

r00<br />

0'<br />

49.40<br />

0<br />

0<br />

0<br />

o 7.80<br />

3.61<br />

8\.21<br />

AzE jo<br />

18<br />

E<br />

B<br />

0<br />

r0.46 4.68<br />

0<br />

o 4.34<br />

0<br />

lì<br />

100<br />

15.05 16.09<br />

c<br />

100<br />

36.92<br />

0<br />

1 8.46<br />

D<br />

100<br />

0<br />

0


46. 15 76.92<br />

0 20.51 14.83 2i,92<br />

53.33 65.33<br />

o 48.28<br />

100 5\.05<br />

NJ<br />

\¡ o\<br />

E<br />

\zE s6 B<br />

't00<br />

11.92<br />

32.51<br />

0<br />

0<br />

0<br />

2.O2 8,72 7 .93<br />

c<br />

f00<br />

16.00<br />

14.67<br />

D<br />

100<br />

0<br />

0<br />

E<br />

64. 86<br />

0<br />

0


Figs. 112-119. Percentage lengths <strong>of</strong> histological changes associ<strong>at</strong>ed<br />

with myeloschisis and myelorlysplasia in experimental<br />

embryos <strong>of</strong> St. 13 to St. 20. Each dou!:le bar<br />

rePresents one emb ryo I<br />

Fig. 112.<br />

Ectoderm díscontinuity wíth myeloschisis,<br />

FiS. 113.<br />

Ectoderm discontinuity with myelodysplasia.<br />

FiS. 114.<br />

Somite separ<strong>at</strong>ion wi th myeloschisis,<br />

FiS. 115.<br />

Somite separ<strong>at</strong>Ìon with myelodysplasía.<br />

FiS. 116.<br />

Notochord separ<strong>at</strong>ion with myeloschisis.<br />

Fig. 117.<br />

Notochord separêtion rvith myelodysplasia,<br />

Fis. 118.<br />

Simite defects with myeloschisis.<br />

FiS. 119.<br />

Som¡te defects wïth myelodysplasia.


ECTODERM DISCONTINUITY IN EXPERIMENTAL EMBRYOS WITH MYELOSCHISIS<br />

N=l9<br />

E NEURAT LESTON N ECTODERM DTSCONT|NUITY<br />

l8<br />

19 20<br />

REGION B<br />

IrNl En<br />

Ë<br />

T<br />

N<br />

t-<br />

Ë¿E<br />

REGION C<br />

o<br />

zul<br />

*Ë<br />

-t<br />

\o o\<br />

lIIE<br />

EE<br />

REGION D<br />

ã'¡<br />

E<br />

REGION E<br />

3<br />

5<br />

tó<br />

STAGES<br />

17


ECTODERM DISCONTINUITY IN EXPERIMENTAL<br />

EMBRYOS WITH MYELODYSPLASIA<br />

N_Ã I NEURAL LESION<br />

N ECTODERM DISCONTINUITY<br />

t IT<br />

S<br />

I<br />

tó 17 l8<br />

STAGES<br />

REGION B<br />

REGION C<br />

REGION D<br />

REGION E<br />

279 ::<br />

J-<br />

o<br />

zt¿¡<br />

ñ


279<br />

ECTODERM DISCONTINUITY IN EXPERIMENTAL<br />

EMBRYOS WITH MYELODYSPLASIA<br />

N_Ã<br />

I NEURAL LESTON<br />

N ECTODERM DISCONTINUITY<br />

REGION B<br />

I<br />

s<br />

IT<br />

N<br />

J-<br />

l-<br />

o<br />

zt¡¡<br />

ñ<br />

REGION C<br />

REGION D<br />

I<br />

REGION E<br />

tó<br />

17 l8<br />

STAGES


SOMITE SEPARATION IN EXPERIMENTAL EMBRYOS WITH MYELOSCHISIS<br />

E NEURAL LESION NI SOMITE SEPARATION<br />

16 17,<br />

STAGES<br />

EGION C<br />

:tr<br />

t-<br />

o<br />

zu¡<br />

J<br />

\o<br />

o\


SOMITE SEPARATION IN EXPERIMENTAL EMBRYOS<br />

WITH MYETODYSPLASIA<br />

N=5<br />

E NEURAL LEsloN<br />

N SOMITE SEPARATION<br />

REGION B<br />

R\-<br />

Nhr<br />

-<br />

o<br />

ztl¡<br />

ñ<br />

NN<br />

N<br />

REGION C<br />

REGION D<br />

N<br />

REGION E<br />

17 l8<br />

STAGES<br />

\


NgTOCHORD SEPARATTON rN EXPERTMENTAI- EMBRYOS- W|TH MYETOSCHTSTS<br />

N=I9 E NEURAL LESION øNOTOCHORD SEPARATION<br />

!¡<br />

13 14 l5 ló 17 r8 19 20<br />

STAGES<br />

I<br />

REGION B<br />

REc,oN D<br />

ã'H E REGION E<br />

Erl<br />

W.<br />

I v6%fu*"'*'<br />

-¡-<br />

o<br />

z¡l¡<br />

,-t<br />

às<br />

EE<br />

¡t¡¡Ë


283<br />

NOTOCHORD SEPARATION IN EXPERIMENTAL<br />

EMBRYOS WITH MYELODYSPLASIA<br />

¡ NEURAL LESTON<br />

YZ NOT OCHORD SEPARATION<br />

REGION B<br />

I<br />

()<br />

ztt¡<br />

REGION C<br />

àe<br />

REGION D<br />

REGION E<br />

STAGES<br />

17 l8


REGION E<br />

N=|9<br />

SOMITE DEFECTS IN EXPERIMENTAL EMBRYOS WITH MYETOSCHISIS<br />

E NEURAL LESIoN NSOMITE DEFECTS<br />

:tr<br />

t-<br />

o<br />

zt¡¡<br />

-t<br />

ã¡E* Et<br />

HH<br />

\o o\<br />

REG¡ON B<br />

tu<br />

Eå<br />

NN<br />

t¡<br />

!tE<br />

! REG,.N D<br />

13 14ì l5 16<br />

. STAGES<br />

17 8r t9, 20


285<br />

SOMITE DEFECTS IN EXPERIMENTAL EMBRYOS<br />

WITH MYELODYSPLASIA<br />

N=5 f NEURAL LEsloN<br />

NI SOMITE DEFECTS<br />

N S^<br />

REGION B<br />

.L<br />

l-<br />

o<br />

zt¿r<br />

N<br />

i\<br />

N<br />

N REGT.N c<br />

àq<br />

N<br />

REGION D<br />

N<br />

NN<br />

NN<br />

$<br />

REc,oN E<br />

16 17 18<br />

STAGES


286<br />

6.8. EXTENT OF THE OVERLAP ZONE<br />

The overlap zone is characterized by multiple accessory.canals<br />

wlth<strong>ln</strong> <strong>the</strong> tail-bud n<strong>at</strong>er¡al, lying deep to a closing or closed tube<br />

derlved fron neural pl<strong>at</strong>e m<strong>at</strong>erial. Even without accessory canals ìts<br />

presence is revealed by asymmetry <strong>of</strong> <strong>the</strong> definitive neural tube derived<br />

from both sources (Figs. 51 - 60).<br />

Us<strong>ln</strong>g this asymmetry to <strong>ln</strong>dic<strong>at</strong>e <strong>the</strong> extent <strong>of</strong> <strong>the</strong> overlap zone, <strong>the</strong><br />

numbers <strong>of</strong> sectlons containing neurêl pl<strong>at</strong>e m<strong>at</strong>erial and taíl-bud m<strong>at</strong>eriaì<br />

were counted în each region <strong>of</strong> Group lll embryos. Values were expressed ås<br />

percentages <strong>of</strong> each region and <strong>of</strong> each whole embryo .<strong>at</strong> Stages 13-,l6,<br />

cover<strong>ln</strong>g <strong>the</strong> developmental period in which <strong>the</strong> overlap zone ís most prominent.<br />

The results could not be expressed ¡n terms <strong>of</strong> somite levels as <strong>the</strong><br />

definitive number <strong>of</strong> èomîtes has not differenti<strong>at</strong>ed <strong>at</strong> Stages lJ-16.<br />

Group lV embryos could not be included because <strong>the</strong> overlap zone ís<br />

obscured by complete fusion <strong>of</strong> <strong>the</strong> two sources <strong>of</strong> neural m<strong>at</strong>erial after<br />

Stage 16 in <strong>the</strong> controls and în experimental embryos without neural defects.<br />

Tables !l - 54 show <strong>the</strong> percentage lengths <strong>of</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial,<br />

tai l-bud m<strong>at</strong>erial and <strong>the</strong> overlap zone <strong>ln</strong> Group lll<br />

embryos, rearranged<br />

into four c<strong>at</strong>çgories:<br />

Stage 13- 16 control embryos<br />

Stage 13-16 experlmental embryos wîthout neural defects<br />

Stage Il-16 experimental embryos with myeloschisîs<br />

Stage 1l-16 experimental embryos wíth myelodysplasia ,<br />

Figs. 120 - 123 compêre <strong>the</strong> lengths <strong>of</strong> overlap zone with <strong>the</strong> lengths <strong>of</strong><br />

neural defects in <strong>the</strong> four c<strong>at</strong>egories. They show th<strong>at</strong> <strong>the</strong> length and distrlbut¡on<br />

<strong>of</strong> <strong>the</strong> overlêp zone in myeloschísls closely resembles lts length


287<br />

and distr¡bfrtíon in <strong>the</strong> controls and ín experimental embryos wlthout<br />

neural les ions.<br />

The two embryos wlth myelodyplasia show a very d¡fferent p<strong>at</strong>tern.<br />

The upper boundary <strong>of</strong> tail-bud m<strong>at</strong>eriar lies <strong>at</strong> a dimilar revel to th<strong>at</strong><br />

seen in <strong>the</strong> controls <strong>at</strong> Stage ,16. The lower boundary <strong>of</strong> neural pl<strong>at</strong>e<br />

m<strong>at</strong>erlal, however, lies <strong>at</strong>.almost <strong>the</strong> sême level, due to <strong>the</strong> absence <strong>of</strong><br />

neural pl<strong>at</strong>e m<strong>at</strong>erial <strong>ln</strong> Regions C, D and E.<br />

st<strong>at</strong>ist¡cal analysîs <strong>of</strong>, <strong>the</strong> resurts was not performed because <strong>of</strong> <strong>the</strong><br />

smal I number <strong>of</strong> embryos with myeiodysplasia.


100<br />

o 20.79<br />

47.50<br />

100<br />

,N'<br />

oo<br />

100 æ<br />

ZONE IN ST<br />

Emb ryo Stage Type <strong>of</strong> Regions <strong>of</strong> Regions <strong>of</strong><br />

Les ion Les ion Measurements<br />

E.<br />

93.33<br />

r 8c '¡4 13<br />

Neural Pl<strong>at</strong>e I'l<strong>at</strong>erial<br />

66<br />

reg ion emb ryo<br />

18C 11 t3'<br />

100 62.08<br />

c<br />

100<br />

D<br />

100<br />

r8c 10 13<br />

E<br />

95.8¡<br />

B<br />

100 69.95<br />

c<br />

100<br />

D<br />

100<br />

Þ<br />

c<br />

D<br />

100<br />

100<br />

'!00<br />

59.54<br />

Ta îl -Bud M<strong>at</strong>erial Overlap Zone<br />

zzzz<br />

regîon embryo regíon emb ryo<br />

0 22.6'<br />

100<br />

100<br />

100<br />

0 18.62<br />

27.03<br />

100<br />

100<br />

0 '19.09<br />

29.\1<br />

r00<br />

0 22.27<br />

100 .<br />

100<br />

95.83<br />

0 18.23<br />

27.03<br />

100<br />

100<br />

0 19.09<br />

29.41<br />

r00<br />

E<br />

)<br />

100<br />

100<br />

18C 21 13+<br />

B<br />

100<br />

70.62<br />

o 20.79<br />

c<br />

100<br />

47.50<br />

D<br />

t00<br />

100<br />

E<br />

100<br />

100


19.09<br />

r8.95<br />

r 1.84<br />

14.82<br />

15.20<br />

0<br />

17.76<br />

11.65<br />

14.17<br />

14.20<br />

t\,<br />

@<br />

\o<br />

18C 27 13+<br />

B<br />

100<br />

69,26<br />

0<br />

19 .09<br />

c<br />

100<br />

7\.50<br />

7\.50<br />

D<br />

100<br />

100<br />

loo<br />

E<br />

100<br />

100<br />

100<br />

30c 2 16<br />

B<br />

100<br />

73.43<br />

6'52<br />

6.s2<br />

c<br />

100<br />

100<br />

100<br />

D<br />

100<br />

100<br />

100<br />

E<br />

78.95<br />

.r 00<br />

78.95<br />

30c 3 16<br />

B<br />

100<br />

81.57<br />

0<br />

0<br />

c<br />

100<br />

55.560<br />

55.560<br />

D,<br />

100<br />

100<br />

r00<br />

E<br />

94.74<br />

100<br />

94.7\<br />

3oc 15 16<br />

B<br />

r00<br />

81.76<br />

0.72<br />

0.72<br />

c<br />

D,<br />

100<br />

100<br />

100<br />

t00<br />

100<br />

100<br />

E<br />

78.95<br />

100<br />

78,95<br />

30c 12 16<br />

B<br />

100<br />

' V5.t46<br />

5.32<br />

5.32<br />

c<br />

100<br />

100<br />

100<br />

D<br />

100<br />

100<br />

100<br />

E<br />

53.33<br />

100<br />

53.33


t4.09<br />

13.94<br />

0 1).59<br />

100<br />

100<br />

88. 89<br />

o 1 3.07<br />

88<br />

r00<br />

76.19<br />

N)<br />

\o<br />

3OC 22<br />

16 none<br />

B<br />

100<br />

77.18<br />

0'<br />

c<br />

100<br />

100<br />

D<br />

100<br />

r00<br />

E<br />

88.89<br />

100<br />

30c 25<br />

16 none<br />

B<br />

r00<br />

BoJz<br />

0<br />

c<br />

f00<br />

88<br />

D<br />

f00<br />

t00<br />

E<br />

76.19<br />

ioo


0 15. 89<br />

81 .08<br />

100<br />

100<br />

' 76.92<br />

0 14.38<br />

100<br />

70.59<br />

0 10.04<br />

15.79<br />

100<br />

f00<br />

o 9'66<br />

35.09<br />

1oo<br />

È<br />

88.24<br />

Embryo Stage Type <strong>of</strong><br />

Les ion<br />

IMENTAL EMB<br />

Reglons <strong>of</strong> Reglons <strong>of</strong><br />

Les lon l',leasurements<br />

Neural Plâte M<strong>at</strong>erÍal<br />

.t ø'<br />

4tô<br />

reglon emb ryo<br />

Ta I I -Bud H<strong>at</strong>erlal Overlap Zone<br />

zzzz<br />

region embryo reglon emb ryo<br />

18E r0 13-<br />

B<br />

r00<br />

65.65<br />

0 15.89<br />

c<br />

100<br />

81 .08 .<br />

D<br />

1oo<br />

100<br />

E<br />

100<br />

100<br />

lBE 28 r4<br />

Þ<br />

100<br />

64.04<br />

o 15'24<br />

c<br />

100<br />

76.92<br />

100<br />

100<br />

E<br />

70.59<br />

100<br />

r8E 47 14<br />

B<br />

100<br />

76.33<br />

0 10 .04<br />

c<br />

100<br />

15.79<br />

D<br />

E'<br />

loo<br />

100<br />

r00<br />

100<br />

18E 44 15-<br />

B<br />

'100 :<br />

68.8r<br />

0 10.00<br />

c<br />

100<br />

35.09<br />

D<br />

100<br />

100<br />

E<br />

88.24<br />

100


13.85<br />

10. 84<br />

14'5 t<br />

15.97<br />

11.06<br />

1.53<br />

100<br />

100<br />

91 .67<br />

0.67<br />

100<br />

100<br />

100<br />

3. 86<br />

100<br />

100<br />

91 .67<br />

2'9t<br />

100<br />

100<br />

87.50<br />

1 .40<br />

100<br />

100<br />

30E. 4 15<br />

30E 9 16<br />

308 26 16<br />

308 59<br />

308 77<br />

16<br />

16<br />

B 100<br />

c 100<br />

D 100<br />

E 9r.67<br />

B 100<br />

c 100<br />

D 100<br />

E 100<br />

B 100<br />

c 100<br />

D 100<br />

E 91 .67<br />

B 100<br />

c 100<br />

D 100<br />

E 87.50<br />

B 100<br />

c 100<br />

D 100<br />

77.27<br />

8\.67<br />

90.61<br />

80. oo<br />

78.55<br />

1.53<br />

i00<br />

100<br />

100<br />

0.67<br />

100<br />

100.<br />

100<br />

3 .86<br />

100<br />

100<br />

100<br />

2'9t<br />

100<br />

100<br />

100<br />

r .40<br />

r00<br />

100<br />

13.68<br />

10.84<br />

14. r6<br />

1j.49<br />

10.23<br />

N)<br />

to<br />

NJ<br />

E 73'68<br />

100.<br />

73.68


43. rB<br />

100<br />

100<br />

0 12.53<br />

74.07<br />

r00<br />

't00<br />

l\)<br />

\o<br />

0s l1| ITH t'lYEL0ScH r s I<br />

Embryo Stage Type <strong>of</strong> Regîons <strong>of</strong> Regions <strong>of</strong> Neural Pl<strong>at</strong>e M<strong>at</strong>er i a I<br />

Les i on Les i on l'leas urements zz<br />

reg ion ernb ryo<br />

l8E 6l ß nyeloschisis DE<br />

B<br />

c<br />

D<br />

E<br />

100 't00<br />

100<br />

r00<br />

66.87<br />

188 25 13+ myeloschlsis CDE<br />

B<br />

100 69.52<br />

c<br />

D<br />

E<br />

100<br />

100<br />

50<br />

B<br />

100<br />

68.59<br />

Tai l-Bud M<strong>at</strong>erial Overlap Zone<br />

zz%z<br />

region embryo reg ión embryo<br />

o 13.87<br />

\5.16<br />

100<br />

100<br />

0 1 3.90<br />

J6.67<br />

t00<br />

100<br />

0 10.34<br />

0 18.87<br />

\5.t6<br />

100<br />

100<br />

0 12.78<br />

16.67<br />

r00<br />

100<br />

o 10.34<br />

c<br />

100<br />

4:.tB<br />

D<br />

gl<br />

100<br />

100<br />

100<br />

100<br />

18E 35 14 myeloschls,ls E<br />

B<br />

100<br />

57.97<br />

0 12.53<br />

c<br />

t00<br />

7\.07<br />

D<br />

100<br />

100<br />

E<br />

100<br />

100


0 12.18<br />

62.07<br />

100<br />

77.78<br />

o t3.72<br />

78.38<br />

100<br />

100<br />

0 i1.4r<br />

25<br />

100<br />

100 .<br />

0 11.02<br />

66.57<br />

ï00<br />

75<br />

0 8.00<br />

36.5\<br />

NJ<br />

loo B<br />

81 .82<br />

18E 58 14 myelosch¡s¡s CDE<br />

B<br />

100<br />

60.73 0 12.57<br />

c<br />

100<br />

62.07<br />

D<br />

t00<br />

100<br />

E<br />

77.78<br />

. 100<br />

18E 36 1¡+ myeloschlsls<br />

DE<br />

B<br />

100<br />

69.87<br />

0 13.72<br />

|.<br />

100<br />

78. 38<br />

D<br />

100<br />

100<br />

E<br />

100<br />

100<br />

18E 53 l4+ nyeloschîsls DE<br />

B<br />

100<br />

69.79<br />

0 11.41<br />

c<br />

100<br />

25<br />

,D<br />

t00<br />

100<br />

E<br />

100<br />

100<br />

18E 54 t4+ myetoschisis<br />

B<br />

r0o<br />

65.67<br />

o 11.65<br />

c<br />

100<br />

,t6.67<br />

D<br />

I<br />

100<br />

100<br />

f8E 59 14+ myeloschl'sls DE<br />

E<br />

B<br />

75<br />

100<br />

7?.06<br />

100<br />

o 8.36<br />

c<br />

100<br />

36.5\<br />

D<br />

'100<br />

100<br />

E<br />

8r .82<br />

100


7.t6 16.03<br />

100<br />

100<br />

160<br />

7.90 18.22<br />

r00<br />

1oo<br />

75<br />

r 1 .85 20 :30<br />

100<br />

100<br />

83.33<br />

16.9t 21 .02<br />

100<br />

100<br />

87 'so<br />

t\,<br />

\o<br />

308 25 15 myeloschisis BCD<br />

B<br />

100<br />

71 .0\ 7.36 17.30<br />

c<br />

100<br />

100<br />

D<br />

100<br />

100<br />

E<br />

6o<br />

' 100<br />

308 56 l6 nryeloschlsls BC<br />

B<br />

100<br />

78.\7<br />

7.90 18.92<br />

c<br />

100<br />

100<br />

D<br />

100<br />

100<br />

E<br />

75<br />

.l00<br />

308 69 16 myeloschísis BCD<br />

B<br />

100<br />

85.24<br />

11.85 20.63<br />

c<br />

100<br />

100<br />

D<br />

100<br />

100<br />

e<br />

83.33<br />

100<br />

30E 52 16<br />

myeloschlsis BC<br />

B<br />

t00<br />

77.15<br />

16.9t 21 .36<br />

c<br />

100<br />

100<br />

D,<br />

100<br />

100<br />

E<br />

87.50<br />

100


Embryo Stage Type <strong>of</strong> Regîons <strong>of</strong> Regions <strong>of</strong> Neurêl P¡<strong>at</strong>e H<strong>at</strong>erial Tai l-Bud M<strong>at</strong>erial Overlap Zone<br />

Lesion Lesion l'leasurements Z Z Z Z .Z Z<br />

region embryo region embryo region embryo<br />

0<br />

o<br />

0<br />

2.54 1.73<br />

0<br />

0<br />

0<br />

N¡<br />

lo<br />

c<br />

I4-ale ¡q,ovERLAp zoNE tN srAGE t3-16 ExpERtMENTAL Er,tBRyos t^ltrH HyELoDyspLAStA<br />

30E 35 16 hem<strong>ln</strong>ryel la BC<br />

B<br />

9\.51 62.09 12.36 20.08 6.87 4.5r<br />

c<br />

0<br />

100<br />

D<br />

0<br />

100<br />

E<br />

0<br />

100<br />

308 76 16 heml mye I ia BCDE<br />

B<br />

95.42<br />

64.99<br />

7.12 21 .32<br />

c<br />

0<br />

100<br />

D<br />

0<br />

100<br />

E<br />

0<br />

r00


Figs. 120'123. Percentage ie.ngths <strong>of</strong> <strong>the</strong> overlap zone in control<br />

and experìmental embryos <strong>of</strong> St. l3 to st, 16. Each<br />

double bar represents one embryol<br />

FiS. 120.<br />

Overlap zone in control embryos.<br />

FiS. 121 .<br />

FiS. 122,<br />

0verlap zone in experimêntal embryos wîthout neural<br />

. defects.<br />

Overìap zone in experimental embryos with<br />

r'ryeloschisìs.<br />

FiS, 123.<br />

Overlap zone in experimental embryos with<br />

myelodysplas ia"


298<br />

OVERLAP ZONE IN<br />

CONTROL EMBRYOS<br />

N=11<br />

EÐ OVERLAP ZONE<br />

REGION B<br />

:tr<br />

Þ-<br />

o<br />

zllJ<br />

REGION C<br />

\oo\<br />

REGION D<br />

REGION E


299<br />

O\TERLAP ZONE IN EXPERIMENTAL EMBRYOS<br />

WITHOUT NEURAL DEFECTS<br />

N=9 Hl ovrnrAP zoNE<br />

REGION C<br />

T<br />

l-<br />

o<br />

zu.t<br />

-t<br />

\o o\<br />

REGION D<br />

REGION E<br />

15 ló<br />

STAGES


OVERLAP ZONE IN EXPERIMENTAL EMBRYOS<br />

WITH MYELOSCHISIS<br />

N=13<br />

tr NFURAL LESION<br />

@ OVERLAP ZONE<br />

o<br />

zllJ<br />

\o o\,<br />

14<br />

STAGES


301<br />

OVERLAP ZONE IN EXPERIMENTAL EMBRYOS<br />

WITH MYELODYSPLASIA<br />

N=2 f NeuR,qL LEsloN<br />

ffi oveRrap zoNE<br />

REGION B<br />

.L<br />

o<br />

zt¿¡<br />

REGION C<br />

àe<br />

STAGES


302<br />

6.9 ANALYSIS OF NEURAT VOTUHES<br />

Examin<strong>at</strong>ion <strong>of</strong> <strong>the</strong> serial sections showed th<strong>at</strong> <strong>the</strong> cross-sectional<br />

area <strong>of</strong> neural tissue was gre<strong>at</strong>ly reduced <strong>at</strong> <strong>the</strong> slte <strong>of</strong> all myelodysplasla<br />

lesions. <strong>ln</strong> rnyeloschisis leslons <strong>the</strong> sectional area <strong>of</strong> neural tissue was<br />

nel<strong>the</strong>r much reduced (as <strong>ln</strong> myelodysplasia) nor much <strong>ln</strong>creased (as would<br />

be expected in neural ttovergrowthtr). The sectional area <strong>of</strong> notochord în<br />

all experlmental and control e'mbryos, however, appeared to be fa¡rly<br />

un lform.<br />

For direct comparlson <strong>of</strong> indivldual embryos, <strong>the</strong> rêtio <strong>of</strong> rn""n n"rr"l<br />

tlssue to mean notochord was thus calcul<strong>at</strong>ed for Regions C and D. Region B<br />

was not <strong>ln</strong>cluded because <strong>of</strong> <strong>the</strong> considerable length <strong>of</strong> normal spinal cord in<br />

<strong>the</strong> upper somite areas <strong>of</strong> abnormal embryos.<br />

Region E could not be <strong>ln</strong>cluded because neural tlssue ând notochord<br />

were not fully dífferentí<strong>at</strong>ed. The embryos with amyel ¡a (42E 6!) and myeloschísis,/myelodysplasia<br />

(\28 21) were excluded<br />

calcul<strong>at</strong>ion <strong>of</strong> <strong>the</strong> r<strong>at</strong>ios <strong>of</strong> neural t¡ssue to notochord allowed pool in9<br />

<strong>of</strong> embryos in Groups lll and lv (stages l3-20) desÈite differences in <strong>the</strong>ir<br />

regional boundaríes. This províded comparison between:<br />

(a) embryos. <strong>of</strong> different sizes<br />

(b) reglons <strong>of</strong> different sizes<br />

(c) sect¡ons cut in different planes<br />

(d) well- or poorly - processed m<strong>at</strong>erial.<br />

A Leltz - ASI'I lmage Analyser was used to measure <strong>the</strong> cross-sectional<br />

area ( ,z ) <strong>of</strong> neural tube, neural canal (when present), and notochord ¡n<br />

every tenth sect¡on. The mean areas <strong>of</strong> notochord and neural tíssue (neural<br />

tube m<strong>ln</strong>us neural canal) were obta<strong>ln</strong>ed by dlviding <strong>the</strong> sum <strong>of</strong>'area measurements<br />

by <strong>the</strong> number <strong>of</strong> sections measured. As a!l sectíons were cut <strong>at</strong> lo microns


303<br />

ând every tenth sectlon was neasured, <strong>the</strong>se mean areas refrect <strong>the</strong> vorumes<br />

<strong>of</strong> notochord and neural tissue in each region.<br />

The mean areas <strong>of</strong> notochord and neural tissue, ù¿ith <strong>the</strong>¡r respect¡ve<br />

r<strong>at</strong>los for Regions C and D <strong>of</strong> embryos with and w¡thout neural levions,<br />

are gfven in Tables 55-5g and Figs. 124 _ 127.


R<strong>at</strong> io<br />

NT/N<br />

6.53<br />

6.zB<br />

6.78<br />

5.02<br />

8.26<br />

6.92<br />

6.96<br />

7 .07<br />

8.00<br />

5. 40<br />

6.6\<br />

7.60<br />

9.04<br />

8.59<br />

6,zo<br />

4. 89<br />

o<br />

.F.<br />

Embryo Stâge Regions <strong>of</strong> Regions <strong>of</strong><br />

Les ion Meas u remen ts<br />

Hean<br />

Neural Tissue ( p2)<br />

l'lean<br />

Notochord ( u2)<br />

18c 11 13<br />

c<br />

17695.11<br />

2709.94<br />

D<br />

1\935.79<br />

2376.88<br />

r8c 10 13<br />

c<br />

15611.88<br />

2301 .21<br />

D<br />

13027 .13<br />

2593.52<br />

18c 14 13<br />

c<br />

12045.92<br />

1\57 .91<br />

D<br />

11209.23<br />

1619.58<br />

t8c 21 13+<br />

c<br />

14257 .44<br />

2A\7.\0<br />

D<br />

15221 ,70<br />

2151 .7\<br />

tïc 27 13+<br />

c<br />

r9424.14<br />

2\27.12<br />

D<br />

16616.94<br />

3078. 31<br />

30c 2<br />

16<br />

c<br />

18191.20<br />

2740.36<br />

D<br />

17t472.7\<br />

2299.40<br />

30c 3<br />

16<br />

c<br />

21\70.54<br />

2375.\6<br />

D<br />

186il.46<br />

2167.35<br />

30c 15<br />

16<br />

c<br />

13680.02<br />

2207.07<br />

D<br />

12667.02<br />

2592.33


30c 12 16<br />

c<br />

17707,61<br />

2463.3\<br />

7.19<br />

D<br />

15\21 .59<br />

2384.81<br />

6.47<br />

30c 22 16<br />

c<br />

r 8261 .88<br />

2049.27<br />

8'9 t<br />

D<br />

17035.18<br />

2396.82<br />

7.11<br />

30c 25 16<br />

c<br />

22011 .75<br />

1985.70<br />

1r.09<br />

D<br />

21911.\z<br />

1849.85<br />

1r.86<br />

4zc 4 tB<br />

c<br />

23075.86<br />

283\.57<br />

8. 14<br />

D<br />

15344.00<br />

2134.61<br />

7.19<br />

42c 7. t8<br />

c<br />

2\007.6\<br />

2938.7\<br />

8.47<br />

D<br />

1q1 39 .01<br />

2113.3\<br />

6.69<br />

\2C 2 19<br />

c<br />

D<br />

23270.21<br />

r 8448. r I<br />

5410.r4<br />

3zb8. r o<br />

4. 3o<br />

5.61<br />

4zc 6 19<br />

c<br />

31037.73<br />

4085.82<br />

7.ê0<br />

D<br />

22594.20<br />

3574.01<br />

6.32<br />

42C 11 19<br />

c<br />

30579.56<br />

34\9.9\<br />

8 .86<br />

D<br />

21679.28<br />

3308.64<br />

6.55<br />

4zc 3 zo<br />

c<br />

36390.6\<br />

4664. 48<br />

9.93<br />

D<br />

31835.22<br />

4\36.03<br />

\2c I 20<br />

c<br />

3j809,99<br />

57t+6.95<br />

7.17<br />

(,<br />

o<br />

6.23 \¡<br />

D<br />

27096.33<br />

5297.28<br />

5.12


7.30<br />

6,5\<br />

o<br />

C'\<br />

\2c 21 29763.8\<br />

25897,29<br />

4079 .80<br />

3960.70


R<strong>at</strong>io<br />

NT/N<br />

4 .90<br />

4.11<br />

6.17<br />

7.14<br />

6.93<br />

7.75<br />

6.48<br />

4.85<br />

8.27<br />

8.99<br />

6.62<br />

5.71<br />

6.08<br />

5.85<br />

8. 3l<br />

8.06<br />

\¡<br />

Emb ryo<br />

Stage Reg lons <strong>of</strong> Reglons <strong>of</strong><br />

Les ion l4eas u remen ts<br />

Hean<br />

Neural Tí ssue (u2)<br />

l'1ea n<br />

Notochord (u')<br />

18E 10 13-<br />

c<br />

r 0104 .53<br />

2062.53<br />

188 28 rq<br />

D<br />

c<br />

13431 .45<br />

14\1\.26<br />

3271.63<br />

2336.59<br />

D<br />

16120.72<br />

2257.72<br />

18E 47 14<br />

c<br />

12063.37<br />

1740.59<br />

D<br />

1 3504 .85<br />

1 838. 54<br />

18E 44 15-<br />

|^<br />

1820\.95<br />

2808.93<br />

D<br />

20011.18<br />

\122.8\<br />

30Ê 4 15<br />

c<br />

21176,52<br />

2561 .63<br />

D<br />

20323.61<br />

2260.43<br />

30E 9<br />

16<br />

c<br />

15361 .89<br />

2320.80<br />

D<br />

1B8o.S3<br />

25?0.40<br />

308 26<br />

r6<br />

c<br />

15355.11<br />

2526.26<br />

D<br />

1 3308.84<br />

2276.53<br />

308 59<br />

t6<br />

c<br />

20740.19<br />

2495.89<br />

D<br />

17038.79<br />

2119.57


3.97<br />

4. B0<br />

8. 3g<br />

5.81<br />

6.37<br />

5.53<br />

8.88<br />

6.8r<br />

7.99<br />

6.27<br />

7.63<br />

4.96<br />

3.95<br />

3.52<br />

o<br />

@<br />

308 77<br />

r6<br />

c<br />

8480.76<br />

2134.62<br />

D<br />

6682.87<br />

1392.67<br />

428 34<br />

18<br />

c<br />

28229.64<br />

3365.52<br />

D<br />

16386.13<br />

2822.43<br />

428 \g<br />

18<br />

c<br />

3389\.29<br />

5318.37<br />

D<br />

2?835.72<br />

\126.zs<br />

4zE 26<br />

r9<br />

c<br />

24723.1\<br />

2785.70<br />

D<br />

16361 .79<br />

2\02,93<br />

\zE 31<br />

t9<br />

c<br />

35685.93<br />

\462.92<br />

D<br />

25229.\6<br />

4ozz.19<br />

428 1l<br />

20<br />

c<br />

29134.62<br />

3816.02<br />

D<br />

19326.99<br />

3895.g2<br />

42E 73<br />

20<br />

c<br />

19937.55<br />

50ll3 .48<br />

D<br />

r 4190 . 97<br />

\oz7.S3<br />

l


Rêtlo<br />

NT/N<br />

4.go<br />

\.36<br />

3 .44<br />

3. 18<br />

3.76<br />

4. 18<br />

4 .09<br />

4. 66<br />

4.58<br />

5.38<br />

5. oo<br />

5.\9<br />

7.2\<br />

8. 99<br />

5.71<br />

6.59<br />

5.90<br />

Embryo Stage Regions <strong>of</strong> Regions <strong>of</strong><br />

Les ion Meas uremen ts<br />

l.lea n<br />

Neural Tlssue ( u2)<br />

Mean<br />

Notochord ( u2)<br />

t8E 61 13<br />

DE<br />

c<br />

11106.91<br />

220\.99<br />

D<br />

I 1 306.04<br />

259a.85<br />

rgE 25 13+<br />

CDE<br />

c<br />

10409.27<br />

3024.80<br />

D<br />

951\.25<br />

2987.77<br />

r8E 13 14<br />

CDE<br />

c<br />

10699.99<br />

2842.79<br />

D<br />

15929,87<br />

3809.03<br />

r8E 35 14<br />

D<br />

c<br />

1105r.83<br />

2702.77'<br />

D<br />

10319.69<br />

2212.\6<br />

18E 58 t4<br />

CDE<br />

c<br />

11542.98<br />

2517.75<br />

D<br />

16496.84<br />

3068. 54<br />

18E 36 14+<br />

DE<br />

c<br />

12232.23<br />

244i.\1<br />

D<br />

14082.28<br />

2545.31<br />

i8¡ l¡ 14+<br />

DE<br />

c<br />

16313.7t+<br />

2254.53<br />

D<br />

18221 .77<br />

2025,31<br />

18E 54 14+<br />

DE<br />

c<br />

10902 . 68<br />

1909 . 05<br />

D<br />

11705.42<br />

1776.51<br />

18E 59 t4+<br />

DE<br />

c<br />

1\129.61<br />

2394.39


5.33<br />

q.40<br />

3.14<br />

3.88<br />

4.50<br />

4.75<br />

\.65<br />

3.22<br />

3.10<br />

5 .84<br />

7.29<br />

3.79<br />

5 .04<br />

8.62<br />

7.02<br />

8.36<br />

7.10<br />

6.69<br />

7.57<br />

o<br />

qzl 54 CD<br />

c<br />

308 25 15<br />

BCD<br />

D<br />

c<br />

D<br />

r6170.00<br />

13531 .40<br />

9795.97<br />

3oE 56 30E 69 308 52 4zÊ 8 42E ro LzE l \zÊ \4 16<br />

t6<br />

16<br />

17<br />

17<br />

t8<br />

r8<br />

BC<br />

BCD<br />

BC<br />

BC<br />

B<br />

BC<br />

CD<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

10979.95<br />

10675.14<br />

14075. 30<br />

13692,85<br />

7\30.63<br />

8059.26<br />

18472.31<br />

10836. 53<br />

10123.53<br />

868S.1¡<br />

21369.09<br />

9664.56<br />

32564.19<br />

2r685.00<br />

r8<br />

20747.83<br />

13576.92<br />

3035.20<br />

3073.92<br />

3118,57<br />

¿8zB.7t<br />

2371.50<br />

2965.91<br />

29\4.03<br />

2304.\9<br />

2599.22<br />

3162.93<br />

1\87.37<br />

2671 .83<br />

1626.2\<br />

2480. I 4<br />

1376.51<br />

3903.74<br />

3c54.28<br />

3103.44<br />

1792.39


6.7t<br />

6.lt<br />

4.63<br />

4.60<br />

4.13<br />

3.48<br />

hzE 57<br />

428 65<br />

CD c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

4oqo9. r 3<br />

2\661 .93<br />

18039.2\<br />

13392.88<br />

17414.\2<br />

12851 .82<br />

6020.97<br />

3908.29<br />

3897.63<br />

?914.10<br />

4216.91<br />

3694.39


(u2 )<br />

R<strong>at</strong>io<br />

NT/N<br />

1.72<br />

2,33<br />

2.19<br />

2.79<br />

1.99<br />

3. t9<br />

2.22<br />

1 .92<br />

r .47<br />

2.6\<br />

Embryo<br />

S tage<br />

Reg ions <strong>of</strong> Regions <strong>of</strong><br />

Les icin l'leasu remen ts<br />

Mean<br />

Neural Tissue (u2 )<br />

Hean<br />

Notochord<br />

30Ê. 35<br />

308 76 16<br />

16<br />

hzl 52 17<br />

4zE So 18<br />

\zE 56<br />

l8<br />

BC<br />

BCDE<br />

BC<br />

BC DE<br />

BC DE<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

3815.57<br />

52\3.32<br />

5674.14<br />

6299.43<br />

7921 .52<br />

7090.52<br />

9066.77<br />

181\.45<br />

7177.\7<br />

2219.02<br />

2252.72<br />

2595.16<br />

2261 .37<br />

4077.35<br />

222\.38<br />

4084 .47<br />

4060.84<br />

4890. 1 I<br />

D<br />

10131 .55<br />

4r 46.40


Fi9s, 124-127, Neurál tube-norochord r<strong>at</strong>ios in control and<br />

experimental embrycs <strong>of</strong> St. 13 to St, 20. Each bar<br />

rep res en ts one emb.ryo i<br />

Fis. 124. R<strong>at</strong>ios in control embryos.<br />

Fís. 125.<br />

R<strong>at</strong>ios in experimentar embryos with no neurar deflects.<br />

Fig. 126.<br />

R<strong>at</strong>ios in experlmental embryos w¡th myeloschis¡s.<br />

Fig. 127.<br />

R<strong>at</strong>ios in experimental embryos w¡th myeìodysplasia.


314<br />

NEURAL. TUBE -NOTOCHORD<br />

RATIOS IN CONTROL EMBRYOS<br />

N=I9<br />

¡ NEURAL LESION<br />

E NO LESION<br />

5<br />

tn<br />

o<br />

tr0<br />

É.<br />

REGION D<br />

ló l8 19<br />

STAGES


315<br />

NEURAL TUBE -NOTOCHORD<br />

RATIOS IN EXPERIMENTAL EMBRYOS<br />

WITHOUT NEURAL DEFECTS<br />

tr Nrun,ql LEstoN<br />

E No LEsIoN<br />

REGION C<br />

REGION D


316<br />

NEURAL TUBE_NOTOCHORD<br />

RAÏIOS IN EXPERIMENTAL EMBRYOS<br />

WITI.I MYELOSCHISIS<br />

N=21<br />

I NEURAL LESION<br />

trI NO LESION<br />

ttt<br />

I<br />

e,<br />

REGION D<br />

15 ló t7<br />

STAGES


317<br />

NEURAL TUBE-NOTOCHORD<br />

RATIOS IN EXPERIMENTAL EMBRYOS<br />

WITH MYELODYSPLASIA<br />

N=5<br />

| NEURAL LEsloN<br />

E No LEsroN<br />

an<br />

o<br />

tr<br />

ü,<br />

REGION D<br />

ló 17 18<br />

STAGES


3t8<br />

Figures fl:4-127 ' demons t ra te <strong>the</strong> r<strong>at</strong>ios. in <strong>the</strong> four c<strong>at</strong>egorîes <strong>of</strong><br />

enbryos, distinguishi.ng between regions with and w¡thout a neural lesion<br />

in affected embryos. The r<strong>at</strong>los are highest ìn <strong>the</strong> control embryos and<br />

sltghtly lower in <strong>the</strong> experimental embryos with no defects. l,,tyeloschisis<br />

is associ<strong>at</strong>ed w¡th a definite reductîon <strong>ln</strong> rptios,with no suggestion <strong>of</strong><br />

neural lrovergrowtht' before or after <strong>the</strong> stages <strong>of</strong> normar neural crosure.<br />

All embryos wíth nryelodysplasia show a marked reduction <strong>of</strong> r<strong>at</strong>los. ïhere<br />

is no obvious difference ín r<strong>at</strong>io between an affected and an adjacent<br />

unaffected region in ei<strong>the</strong>r myeloschlsís or myelodysplasia, implying<br />

th<strong>at</strong> <strong>the</strong> neuraì tube adjacent to a leslon shows a similar reduction in size.^<br />

St<strong>at</strong>istical analysis <strong>of</strong> <strong>the</strong> d<strong>at</strong>a in Tables 59-66 was restricred to<br />

embryos <strong>of</strong> Stages 16-20, to provide a comparable distribution <strong>of</strong> Stages<br />

within <strong>the</strong> four c<strong>at</strong>egoríes. The v<strong>at</strong>ues for <strong>the</strong> mean notochord area were<br />

f¡rst exam¡ned to test <strong>the</strong> assumption <strong>of</strong> uniform notochord s¡ze. An<br />

analysls <strong>of</strong> varíance showed no signifícant differences in mean notochord<br />

area between <strong>the</strong> four c<strong>at</strong>egoríes in both Regions C and D (Tables .59 ê 60).<br />

TABLE 59A.MEAN NOTOCHORD AREA IN REGION D<br />

Ca tegory Number l''lean S.D. s.D.H.<br />

Cont ro I s<br />

Norma I Exptls.<br />

l4yeloschisís<br />

llyelodysplas la<br />

Totâ I<br />

14<br />

10<br />

1t<br />

5<br />

4o<br />

2985.9<br />

2960.6<br />

2524.\<br />

2989,1<br />

2853.1<br />

1027.3 274.5<br />

980.7 310.t<br />

875.1 263.8<br />

t017,9 455.2<br />

958.4 15t..5


319<br />

TABLE 598 ' ANALYSIS OF VARIANCE (NOTOCHORD) REGION D<br />

Between<br />

}llth¡n<br />

Tota I<br />

D. F. s.s. 14.s.<br />

3 164377<br />

54792<br />

36 3\17713<br />

94%6<br />

39 3582090<br />

t:<br />

P.<br />

0,577<br />

NS<br />

TABLE 6On, ileRì{ NOTOCHOnn Rn¡R.lH.rEctotii C.<br />

. .. .... .. .,<br />

C<strong>at</strong>egory Numbe¡ llean .S.0. S.D.l,.l.<br />

Controls<br />

Ilorma I Expt I s.<br />

Mye I osch ls i s<br />

Itlyelodysplas ia<br />

14<br />

3350.1<br />

10<br />

3\27.o<br />

It<br />

3412.2<br />

5<br />

3573.2<br />

Toral 4o 341\.9<br />

TABLE 6od" AüALysts oF vARtANcE (NorocHoRD)<br />

1250.5<br />

334.2<br />

1173 .9 371.2<br />

1061 .7<br />

320.1<br />

1122.5<br />

502 .0<br />

1123.5<br />

177.6<br />

REGION C<br />

D. F. s.s. t'f. s . F.<br />

Between<br />

tlithin<br />

3<br />

36<br />

1855 t<br />

4904098<br />

6184<br />

136225<br />

0. 045 N.S.<br />

Totâ I<br />

39<br />

\9226t+9<br />

As <strong>the</strong> neural t i s s ue/notochord r<strong>at</strong>ios thus reflect <strong>the</strong> rel<strong>at</strong>ive<br />

volume <strong>of</strong> neural tissue in each regîon, <strong>the</strong> r<strong>at</strong>ios were <strong>the</strong>n.suU;ected<br />

to analys¡s. An omnibus (Anova) analysis <strong>of</strong> variance showed significant<br />

dlfferences (p . O.g) between <strong>the</strong> four c<strong>at</strong>egor¡es (Tables 62 and 65).<br />

Fínally, multiple T - tests <strong>of</strong> all possíble pairs were performed<br />

(Tables 63 arld 66).<br />

The Bonferroni procedure to partition alpha was<br />

used, to mainta<strong>ln</strong> <strong>the</strong> error r<strong>at</strong>e near <strong>the</strong> level employed in <strong>the</strong> Omnibus<br />

test (qq<br />

^â o.ot ).<br />

llelcþrs procedure was appl led as a conservarîve


adjustment for nominal alpha level <strong>ln</strong> <strong>the</strong> presence <strong>of</strong> heterogeneity <strong>of</strong><br />

varlance (as revealed by Bartlettrs test) and unequal numbers în <strong>the</strong><br />

four câtegor ies.


321<br />

TABLE 61., .NEURAL TISSUE/NOTOCHORD RATIOS IN REGION,C<br />

C<strong>at</strong>egory Nurnbe¡. ... Mean . .... ..s. D, s. D.t'|.<br />

Controts t4 7.g't\29 1,7345g0<br />

0.4635861<br />

Normal Exptls. t0 6.gtgooo 1.767074 0.5587979<br />

lilyetoschisls 11 5.510909 f:g66g60 0.5628795<br />

l.lyelodysplasia 5 1,907999 O,31g1{;;z o.144176<br />

Tot<strong>at</strong> 40 6.206750 z.hgoos3 0.3937120<br />

TABLE 62. ANALYSIs oF VARIANCE (RATIos) REGIoN c<br />

D. F. s.s. 1.1 . s - F.<br />

Between<br />

lr¡ rh in<br />

3<br />

36<br />

1 39.340<br />

102.474<br />

\6.\\7<br />

2.8\7<br />

16.317 < 0.05<br />

Tota I<br />

39<br />

241.814<br />

BARTLETTIS TEST FOR REGION C<br />

Chi qq.<br />

D. F.<br />

P<br />

TABLE 6<br />

C<strong>at</strong>egor i es<br />

= 9.25\<br />

=3<br />

< 0.10<br />

I'{ULTIPLE T- TS RAT I<br />

t<br />

G ION C<br />

D; F.<br />

Controls/Normal Expt¡ s. r.419<br />

Contro I s/l'lye losch i s i s 3,209<br />

Con t rol s/Mye I odyspl as i a 12.279<br />

Normal Exptls./t'tyeloschísis 1,649<br />

Normal Exp s. /Myelodysplas ia 8.502<br />

Ìlyeloschlsís/l.tyelodysplas i a 6.1g1<br />

19<br />

21<br />

15<br />

r9<br />

t0<br />

1t<br />

N.S.<br />

P < 0.0,|<br />

P < 0.01<br />

N.S.<br />

P < 0.01<br />

P < 0.01


322<br />

TABLE .64. ¡leunn|ilssue/norocro*o *ot'or''* REGtoN 0..<br />

C<strong>at</strong>egory Number Hean . S. D. s . D. i,f.<br />

Cont rol s<br />

Normal Expt I s.<br />

Hye I os ch 1s i s<br />

l4yelodysplas îa<br />

Tota ¡<br />

TABLE 65, ANALYSIS<br />

t4<br />

t0<br />

t1<br />

5<br />

4o<br />

OF VARIANCE<br />

6.979286 1.704087<br />

5,732000 1.2r5180<br />

5.51\545 1.599928<br />

2.593999 0. 478989<br />

5.713999 1.959256<br />

(RATros) REGtoN D<br />

0,4554363<br />

0.3842739<br />

0.4823966<br />

0.2142107<br />

0.3097856<br />

D. F. s.s. r't. s . F.<br />

P.<br />

Between<br />

3<br />

72.152<br />

2\.051<br />

1r.164 < 0.05<br />

l'/i th i n<br />

36<br />

77.556<br />

2.154<br />

Tota I<br />

39<br />

149.709<br />

BARTLETTIS TEST<br />

chí ôq.<br />

D. F.<br />

P<br />

FOR REGION D<br />

= 6.3\8<br />

-)<br />

< 0.10<br />

C<strong>at</strong>egor ies<br />

Control s/Norma I Exp s.<br />

2.o97<br />

22<br />

- N.S.<br />

Control s/Myel osch i s i s<br />

2.218<br />

22<br />

N.S.<br />

Cont ro I s,/Mye I odysp ì as i a<br />

8.779<br />

t7<br />

p < 0.01<br />

Normal Exptl s. /Myeloschisis<br />

o.356<br />

l8<br />

N.S.<br />

Norma l Expt I s. /l'lye lodysp I as i a<br />

7.161<br />

13<br />

P < 0.01<br />

Ìlye losch i s i s,/l'lye I odysp I as i a<br />

5.570<br />

13<br />

P < 0,01


323<br />

Apart f.rom <strong>the</strong> sîgnîficant difference between embryos with<br />

myeloschisìs and <strong>the</strong> controls in Reglon C, <strong>the</strong>re is little distinction<br />

between <strong>the</strong> control embryos and <strong>the</strong> exper¡mental embryos with myeloschlsls<br />

or wîth no defects. This suggests th<strong>at</strong> neural rrovergrowthrt is not<br />

an essential component <strong>of</strong> myeloschlsis between Stages l6 and 20.<br />

There are however slgniflcant differences in neural t¡ssue/notochord<br />

r<strong>at</strong>los between embryos wìth myelodysplasia and each <strong>of</strong> <strong>the</strong> o<strong>the</strong>r<br />

three c<strong>at</strong>egories in both Regions C and D. Myelodysplasia ls <strong>the</strong>refore<br />

characterized by reduction <strong>ln</strong> <strong>the</strong> volume <strong>of</strong> neural tlssue.


Dlscusst0N<br />

324


t25<br />

7. Dlscusst0N<br />

1'/i th progressive control <strong>of</strong> infectious diseasesi congenitar defects<br />

have become an inportant cause <strong>of</strong> ¡nfant mortal ity and morbidity. Open<br />

defects <strong>of</strong> <strong>the</strong> central nervous system form a signifrcant proportion <strong>of</strong><br />

<strong>the</strong> major malform<strong>at</strong>ions. Anencephaly ls uniformly f<strong>at</strong>al, but <strong>the</strong> effect<br />

<strong>of</strong> spina bifîda varles ¡¡îth <strong>the</strong> exrent and level <strong>of</strong> <strong>the</strong> cord lesion (Barson,<br />

1970).<br />

<strong>ln</strong> an êttempt to <strong>ln</strong>vestlg<strong>at</strong>e <strong>the</strong> embryogenesis <strong>of</strong> anencephaly and<br />

sp<strong>ln</strong>a bifida, ên exper¡mental method has been developed for produc<strong>ln</strong>g<br />

open defects <strong>of</strong> <strong>the</strong> brain and sp<strong>ln</strong>al cord in <strong>the</strong> chlck embryo, by a simple<br />

physlcal procedure.<br />

The dlscussion ls llmlted to cons¡der<strong>at</strong>ion <strong>of</strong> <strong>the</strong> malform<strong>at</strong>ions<br />

obtained by thls technlc - open neural lesions, skeletal defects <strong>of</strong> <strong>the</strong><br />

vertebra¡ column, and a range <strong>of</strong> associ<strong>at</strong>ed non-neural malform<strong>at</strong>ions.<br />

Anterîor spina bifida and neuro-enteric connectlons, hydrocephalus and<br />

<strong>the</strong> Arnotd-chlari nalform<strong>at</strong>ion, syringomyelia and myelocystocele were not<br />

diagnosed in <strong>the</strong> experimental enbryos, and so êre not consîdered in this<br />

d i scuss íon.<br />

A wlde renge <strong>of</strong> neural malform<strong>at</strong>íons has been produced in domestic<br />

and fabor<strong>at</strong>gly animals by a plethora <strong>of</strong> agents - vitamin and míneral<br />

deflciences, stêrv<strong>at</strong>¡on, hypervítaminosis A, ionizing radî<strong>at</strong>ions, infections,<br />

hypoxla, hypo<strong>the</strong>rmia, hyper<strong>the</strong>rrnía, and many drugs, dyes, hormones and<br />

chemîcal n<strong>at</strong>eriêls (Kalter, l!68; Shepard, 1976; persaud, 1977).<br />

0pen neural defects have been produced in <strong>the</strong> chick embryo by x-rays,<br />

ultraviolet light, ultrasound, víruses, hypoxla, hypercarbía, and a variety<br />

<strong>of</strong> drugs, hornones and chemicals (see Section 2.3.2 for references).


326<br />

Spontaneous neural defects have been reported in mice, r<strong>at</strong>s, gu<strong>ln</strong>ea<br />

plgs, rabbits, c<strong>at</strong>s, dogs, pigs, cows, horses, sheepr. go<strong>at</strong>s and non-human<br />

pr<strong>ln</strong><strong>at</strong>es, with occasional reports in o<strong>the</strong>r animals (Kalter, t96g). By far<br />

<strong>the</strong> most extensive investig<strong>at</strong>ions have beèn performed <strong>ln</strong> mice, where armost<br />

a hundred genes can be impr ic<strong>at</strong>ed in neurar marform<strong>at</strong>ion syndromes (sidman<br />

et al ., 1965) .<br />

<strong>ln</strong> <strong>the</strong> present study st<strong>at</strong>istical anarysis was performed for <strong>the</strong> overa<br />

malform<strong>at</strong>lon and mortår ity resurts after windowinq <strong>at</strong> 14,26, and lg hours,<br />

and fol low<strong>ln</strong>g remova I <strong>of</strong> <strong>the</strong> <strong>ln</strong>troduced alr space <strong>at</strong> varrous <strong>ln</strong>tervals after<br />

w<strong>ln</strong>dow<strong>ln</strong>g <strong>at</strong> 26 hours. Anaìysrs showed th<strong>at</strong> windowíng is highry ter<strong>at</strong>ogen¡c,<br />

w¡th ¡ts maxlmun effect <strong>at</strong> <strong>the</strong> earl rest stages. tn embryos windowed <strong>at</strong> 14,<br />

26 and 38 hours,<strong>the</strong> 14 hour group showed a high early mortal ity, while <strong>the</strong><br />

26 hour group showed a high <strong>ln</strong>cldence <strong>of</strong> neural mêlform<strong>at</strong>lons.<br />

After w<strong>ln</strong>dowing <strong>at</strong> 26 hours, <strong>the</strong> mortar ity increased steadi ry when<br />

embryos were recovered <strong>at</strong> progesslvely longer perlods <strong>of</strong> incub<strong>at</strong>ion.<br />

0bl iter<strong>at</strong>ion <strong>of</strong> <strong>the</strong> rntroduced aîr space, however, substantia y reduced<br />

<strong>the</strong> ter<strong>at</strong>ogenic effect <strong>of</strong> windowing when performed immedi<strong>at</strong>ely.<br />

<strong>ln</strong>dívidual malform<strong>at</strong>ions observed <strong>at</strong> 3, 5, and 12 days were not<br />

analysed st<strong>at</strong>lst¡cally, because <strong>the</strong> hí9h rncidence <strong>of</strong> earty and r<strong>at</strong>er<br />

de<strong>at</strong>hs reduces <strong>the</strong> value <strong>of</strong> any such analysis.<br />

Despite <strong>the</strong> high mortal ity <strong>of</strong> windowing in.<strong>the</strong> first lg hoúrs, it<br />

is clear th<strong>at</strong> with prolonged culture <strong>of</strong> <strong>the</strong> survivîng embryos <strong>the</strong> range<br />

<strong>of</strong> malform<strong>at</strong>ions increases. Rump and rimb defects were not apparent<br />

<strong>at</strong> three daysrand ectopia víscerum wâs not seen ât five days.<br />

<strong>ln</strong> <strong>the</strong> major experiment to investig<strong>at</strong>e <strong>the</strong> development <strong>of</strong> open<br />

hêurll dèfêets after w<strong>ln</strong>dowing <strong>at</strong> 26 - 30 hours, 4t! embryos were used, <strong>of</strong><br />

whlch 90 were selected for serl.al section<strong>ln</strong>g.


327<br />

C¡osure <strong>of</strong> <strong>the</strong> anterior neuropore was completed by Stâge lJ in <strong>the</strong><br />

control emhryos, apart fiom one Stage l/ embryo with an open anterior<br />

neuropore (regarded as an open bra<strong>ln</strong> defect by thls Stage). Several<br />

experimental embryos after Stage 12, however, showed open anter¡or neuropores<br />

(regarded as an open brain defects)<strong>at</strong> <strong>the</strong> Stages lmmedi<strong>at</strong>ely following<br />

Stage 12, provlding evidence <strong>of</strong> non-closure r<strong>at</strong>her than closure and<br />

reopen<strong>ln</strong>g <strong>of</strong> <strong>the</strong> bra<strong>ln</strong>. These defects were not seen <strong>ln</strong> large enough numbers<br />

to allow detai led hîstologlcal study. The appearance <strong>of</strong> open braÌn defects<br />

was very similar <strong>at</strong> 3 days and <strong>at</strong> 12 days, and closely resembles <strong>the</strong> welli<br />

preserved.human exencephal lc embryo l l lusrr<strong>at</strong>ed by Hunter (,|934-35).<br />

Closure <strong>of</strong> <strong>the</strong> rhombold sinus occurred <strong>at</strong> Stage 15-f6 in both experlmental<br />

and control groups. A trlangular rhombold s<strong>ln</strong>us, however, was<br />

seen only in exper<strong>ln</strong>ental embryos <strong>of</strong> Stages 11-16. Open cord defects<br />

first appeared <strong>at</strong> Stage 13, and were seen <strong>at</strong> all Stages after this, agaîn<br />

suggesting th<strong>at</strong> <strong>the</strong>y arose by non-cloSure r<strong>at</strong>her.than by reopening <strong>of</strong> <strong>the</strong><br />

closed neural tube.<br />

0n compar<strong>ln</strong>g <strong>the</strong> drawings <strong>of</strong> whole embryos with <strong>the</strong>ir subsequent<br />

histologlcal appearânce, It became apparent th<strong>at</strong> a tr¡angular rhomboid<br />

s<strong>ln</strong>us is <strong>the</strong> precursor <strong>of</strong> myeloschisis. The fact th<strong>at</strong> <strong>the</strong> development <strong>of</strong><br />

rryeloschlsis can be predícted from <strong>the</strong> shape <strong>of</strong> <strong>the</strong> rhomboid sînus before<br />

<strong>the</strong> perlod <strong>of</strong> normal closure is strong evidence th<strong>at</strong> myeloschîsís arîses<br />

by non-cl osure.<br />

Skeletal sta<strong>ln</strong>ing <strong>of</strong> l1-12 day embryos revealed an increasing<br />

sever¡ty <strong>of</strong> axial defects from cervlcal to caudal level's. Spina bifîda<br />

occulta was seen mainly <strong>ln</strong> <strong>the</strong> cervical r.egion. Spina blflda manifesta<br />

occurred (wlth open cord defects) from <strong>the</strong> lower thoracic to <strong>the</strong> upper


328<br />

caudal regions. rrregurar or dereted vertebrae were a¡most all roc<strong>at</strong>ed<br />

in <strong>the</strong> caudal region (rumplessness).<br />

Spontaneous rump defects were seen in ll <strong>of</strong> <strong>the</strong> 62 control embryos,<br />

and were much <strong>the</strong> cornmones t spontaneous defects observed <strong>ln</strong> <strong>the</strong>se exper_<br />

lmen ts .<br />

Rumplessness nây occur <strong>ln</strong> fowls as a dominant, recessive, or sporadic<br />

character (Landauer and Dunn, '|925; Dunn and Landauer, ,|934; Landauer, 1945);<br />

<strong>the</strong> enbryogenesis <strong>of</strong> each type is different (Zwill<strong>ln</strong>g, 1942i 19\Ð.<br />

Experirnental ly, rumpressness has been produced by injection <strong>of</strong> insul-in<br />

ín ot¡o (Landaue r and Bllss, '|946), and by vlbr<strong>at</strong>ion <strong>of</strong> unopened eggs<br />

(Landauer and Baumann, l!41). <strong>ln</strong> both cases <strong>the</strong> <strong>ln</strong>cidence <strong>of</strong> rump defects<br />

varled with <strong>the</strong> genetíc background <strong>of</strong> <strong>the</strong> frock and wrth <strong>the</strong> t¡me <strong>of</strong> year.<br />

<strong>ln</strong> <strong>the</strong> present exper¡ments rvíbr<strong>at</strong>lon <strong>of</strong> unopened eggs was not found to be<br />

signlficantly ter<strong>at</strong>ogeníc (for <strong>the</strong> smal number <strong>of</strong> eggs used) when compared<br />

to windowing. Although seasonal vari<strong>at</strong>íon was not specif ica.l ly tested,<br />

again no significant trend courd be detected when compa red to windowing.<br />

Because <strong>of</strong> continued embryonic Arowth, open cord defects were found<br />

<strong>at</strong> both somite and post-somite levels in Stage l3_16 chick embryos, but<br />

only <strong>at</strong> somite. levels by Stages l/-20.<br />

The posterior neuropore closes êt <strong>the</strong> 20-21 somite stage,<strong>at</strong> a level<br />

th<strong>at</strong> l<strong>at</strong>er lies opposite son't tes 27/29 after addition <strong>of</strong> a fur<strong>the</strong>r 6 somites<br />

(Hami I ton, 1952). As <strong>the</strong> first four permanent som¡tes contrlbute to <strong>the</strong><br />

form<strong>at</strong>ion <strong>of</strong> <strong>the</strong> occípitar regíon, <strong>the</strong> poster¡or neuropore thus coincides<br />

with a future spinal levet <strong>of</strong> vertebrae 23/24 (in <strong>the</strong> lumbar reglon). Uhen<br />

<strong>the</strong> distr¡bution <strong>of</strong> open neural defects <strong>ln</strong> lZ hour embryos was plotted,


329<br />

<strong>the</strong> mid-po<strong>ln</strong>ts <strong>of</strong> <strong>the</strong> defects were found to lie essentially between<br />

somltes 21 and.31, correspondi.ng to future vertebral levels <strong>of</strong> T.4 to S.2.<br />

<strong>ln</strong> <strong>the</strong> 12 day expêrimental embryos rÌrost lesions <strong>of</strong> spina biflda manifesta<br />

were <strong>ln</strong>deed centered <strong>at</strong> <strong>the</strong> lumbar r.egion. Those ly<strong>ln</strong>g <strong>at</strong> more caudal levels<br />

may have been nye I odysp I as ias , r<strong>at</strong>her than myeloschisls, though <strong>the</strong> two<br />

defects were dlfficul t to distinguish.<br />

The less serious defects <strong>of</strong> spina bifida occulta in 12 day embryos,<br />

were mainly locâted in <strong>the</strong> cervical and upper thoracic regions, and showed<br />

very llttle overlap w¡th sp¡na blflda manifesta.<br />

A slmllar d¡stríbutlon <strong>of</strong> lesions emerges from <strong>the</strong> study <strong>of</strong> human<br />

dysraphism. 0f 601 dysraphic infants admitted to hospital and examined<br />

by radlology and necropsy, skeletal defects lay mainly în <strong>the</strong> lumbar and<br />

sacral reglons. The low incidence <strong>of</strong> cranial and uppercervical defects<br />

was probably due to abortîons and stiltbirths caused by associ<strong>at</strong>ed anencephaly.<br />

Skeletal defects <strong>at</strong> <strong>the</strong> cervico-thorac¡c and lumbo-sacral areas<br />

were quite local ized, but bony lesions ¡n <strong>the</strong> thoraco-lumbar regîon and<br />

those involving anencephaìy were more extensive. This suggest th<strong>at</strong> <strong>the</strong>re<br />

are two types <strong>of</strong> dysraphic lesions in man - major defects (anencephaly and<br />

thoraco-lumbar. spína bifida) and more minor defects in o<strong>the</strong>r regions (Barson,<br />

1970') .<br />

- Rump defeòts observed in <strong>the</strong> chick embryos may be compared to sacral<br />

agenesîs in man, which varies in severity from loss <strong>of</strong> coccygeal sêgments<br />

to partíal reductîon <strong>of</strong> <strong>the</strong>.sacrum or even absence <strong>of</strong> all sacral and lumbar<br />

vertebrae. Extensîve sacral agenesis may be accompanied by neurological<br />

involvement and anal or genito-ur<strong>ln</strong>ary defects (Blumel et al., '|959; Russel I<br />

and Altken, 1963). ÌJhereês rumplessness is one <strong>of</strong> <strong>the</strong> commones t spontaneous


330<br />

defects seen <strong>ln</strong> fowls, human sacral agenesis is rare. This may be<br />

because phylogènetlc reductlon <strong>of</strong> caudal segments, already evident in<br />

chlckens, has been carried fur<strong>the</strong>r in <strong>the</strong> hur¡an sprne (Hughes and Freeman,<br />

19741 .<br />

A revlew <strong>of</strong> <strong>the</strong> histological differences between experiment<strong>at</strong> and<br />

control embryos was complîc<strong>at</strong>ed by shr<strong>ln</strong>kage <strong>of</strong> ,or" embryos during pro_<br />

cess<strong>ln</strong>g, producing sp!itt<strong>ln</strong>g <strong>of</strong> <strong>the</strong> neural tube ro<strong>of</strong> <strong>ln</strong> older embryos,<br />

and wide separ<strong>at</strong>ion <strong>of</strong> notochord, somites and neurar trssue rn earry embryos.<br />

These art,¡ facts could probably be avoided by using dloxane for processing._<br />

Examin<strong>at</strong>ion <strong>of</strong> <strong>the</strong> control emb ryos by serîal sectlons revealed a co_<br />

ordin<strong>at</strong>ed sequence <strong>of</strong> changes in chorda-mesoderm and neural tissue during<br />

¡eufol<strong>at</strong>ion, though <strong>the</strong> description is st<strong>at</strong>¡c r<strong>at</strong>her than dynamic.<br />

Duríng Stages l0-12 <strong>at</strong> <strong>the</strong> posterior rhombold sinus, neural pl<strong>at</strong>e<br />

dlfferenti<strong>at</strong>ed ín <strong>the</strong> region <strong>of</strong> Hensenrs node and <strong>the</strong> neural folds were<br />

fl<strong>at</strong>tened or elev<strong>at</strong>ed, while <strong>the</strong> chorda-mesoderm was fused l¡to an undiffer_<br />

entl<strong>at</strong>ed cell nass. At <strong>the</strong> anterior rhomboíd sfnus <strong>the</strong> neurar fords showed<br />

fur<strong>the</strong>r elev<strong>at</strong>íon, and accessory canars were present ín <strong>the</strong> t<strong>at</strong>-bud m<strong>at</strong>eriar;<br />

The notochord was estabr ished and somitic mesoderm became separ<strong>at</strong>ed, though<br />

not segmented. lmmedi<strong>at</strong>ely above <strong>the</strong> rhombold sinus <strong>the</strong> mesoderm showed<br />

separ<strong>at</strong>ion intå club-shaped protosom¡tes, while <strong>the</strong> neural pl<strong>at</strong>e was in_<br />

vertèdr. closing, or crosed. cranially <strong>the</strong> brain was crosing or irosed.<br />

During stages r3-20,Hensenrs node {ån¿ r"t.. <strong>the</strong> primitive streak)<br />

gave bray to a tail-bud by Stage 16, from which <strong>the</strong> caudal regíon developed,<br />

The rhomboíd sinus was crosed by stages l!-r6, but neurar m<strong>at</strong>eriar from <strong>the</strong><br />

ta¡ l-bud contributed ro <strong>the</strong> sp¡nal cord <strong>of</strong> <strong>the</strong> tail until Stages 1!_20.<br />

l'llth <strong>the</strong> onset <strong>of</strong> neurul<strong>at</strong>lon, thickening, elev<strong>at</strong>ion, folding, and


331<br />

'c¡osure <strong>of</strong> <strong>the</strong> neural folds were closely integr<strong>at</strong>ed with form<strong>at</strong>ion <strong>of</strong> <strong>the</strong><br />

notochordr and <strong>the</strong> developnent <strong>of</strong> n<strong>at</strong>ure somites from undifferentl<strong>at</strong>ed<br />

m<strong>at</strong>er¡al <strong>of</strong> <strong>the</strong> streak and node, and l<strong>at</strong>er <strong>the</strong> tail-bud.<br />

<strong>ln</strong> <strong>the</strong> experlmental embryos <strong>the</strong> development <strong>of</strong> <strong>ln</strong>yeloschîsis was<br />

preceded by everslon <strong>of</strong> <strong>the</strong> neural folds <strong>at</strong> <strong>the</strong> rhomboid sinus in<br />

serial sections, producî.ng a trlangular shape on examining <strong>the</strong> whole embryo.<br />

<strong>ln</strong> <strong>the</strong>'earl iest myeloschisis leslons <strong>the</strong> rhomboid sinus was s.tlll open.<br />

Exan<strong>ln</strong><strong>at</strong>ion <strong>of</strong> <strong>the</strong> serlal sect¡ons showed th<strong>at</strong> myeloschlsis consisted <strong>of</strong><br />

an open defect <strong>of</strong> <strong>the</strong> lower part <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial, extending<br />

caudally to involve <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> ta¡l bud m<strong>at</strong>erlal. <strong>ln</strong> older<br />

embryos an appêrently normal neural tube formed <strong>at</strong> a more caudal level.<br />

Establ ished myeloschisis lesions on hlstology showed a fl<strong>at</strong> surface<br />

plaque (continuous with neural pl<strong>at</strong>e), overlyíng neural m<strong>at</strong>erîal containing<br />

accessory canals (derived from <strong>the</strong> têíl-bud). The two sources <strong>of</strong> neural<br />

m<strong>at</strong>erial were clearly separ<strong>at</strong>ed,.wíth dîfferent orient<strong>at</strong>ion <strong>of</strong> <strong>the</strong>ir constituent<br />

cells. The majority <strong>of</strong> mitotîc figures were seen <strong>at</strong> <strong>the</strong> luminal<br />

surface <strong>of</strong> <strong>the</strong> closed neural tube, and along <strong>the</strong> dorsal surface <strong>of</strong> <strong>the</strong><br />

exposed plaque. The everted neural pl<strong>at</strong>e showed smooth continulty<br />

wi th adjacent .ectoderm.<br />

Neural crest cells were seen <strong>at</strong> <strong>the</strong> margin <strong>of</strong> most myeloschîsis lesions,<br />

and adjacent structures were wel I deveìoped. The notochord was uniformly<br />

normal <strong>ln</strong> appeârênce, but wldely separ<strong>at</strong>ed from neural tlssue <strong>at</strong> <strong>the</strong><br />

cranlal end <strong>of</strong> most myeloschisis lesions after Stage ,l6. The somîtes<br />

appeared normal , and <strong>the</strong> impressíon <strong>of</strong> separ<strong>at</strong>ion <strong>of</strong> somites from affected<br />

areas <strong>of</strong> neural tube wâs not confirmed quantít<strong>at</strong>ively.<br />

I'leasurements <strong>of</strong> neural tlssue/notochord r<strong>at</strong>ios provided no evidence<br />

<strong>of</strong> local overgrowthrr <strong>of</strong> neural tlssue, which could <strong>the</strong>refore not be


332<br />

lrnplic<strong>at</strong>ed in <strong>the</strong> p<strong>at</strong>hogenesls <strong>of</strong> nryeloschlsis. lt has to be concluded<br />

th<strong>at</strong> myeloschisis în <strong>the</strong> present series <strong>of</strong> chick embryos tre<strong>at</strong>ed by<br />

w<strong>ln</strong>dowi.ng .arises by simple non-closure <strong>of</strong> <strong>the</strong> neural folds, representing<br />

a fai I ure <strong>of</strong> neurul<strong>at</strong>ion.<br />

The development <strong>of</strong> rrúélódvsolasia was not preceded by any characterístic<br />

shape <strong>of</strong> <strong>the</strong> rhor¡bo ¡ d sînus, and did not occui befor. Stage 16. The neural<br />

canal could not be traced ilrectly înto <strong>the</strong> leslon, and <strong>the</strong>re was no<br />

separ<strong>at</strong>¡on ¡nto neural pl<strong>at</strong>e and tai l-bud m<strong>at</strong>er¡als. l',lyelodysplasia dld<br />

not coexist wlth an open rhombold sinus, and formed an lrregular open<br />

defect in whole embryos <strong>at</strong> /2 hours.<br />

<strong>ln</strong> serlal sections<strong>of</strong> myelodysplasia <strong>the</strong> neural tube <strong>at</strong> <strong>the</strong> upper<br />

end <strong>of</strong> <strong>the</strong> lesion was triangular (due to reduced neural pl<strong>at</strong>e m<strong>at</strong>erial),<br />

giving way.to a narrowly-everted or f l<strong>at</strong> plague(derived from tail-bud<br />

m<strong>at</strong>erial, and partly covered by ectoderm). Caudally, <strong>the</strong>re wês an<br />

apparently normal neural tube (derived from tail-bud m<strong>at</strong>erlal), or a<br />

disrupted region forming diplomyel ia or amyel ia. The myelodysplasia lesions<br />

were partly covered by ectoderm, and nowhere so smoothly contínuous with<br />

ectoderm as <strong>the</strong> myeloschisis lesions. l'lîtoses were not restricted to<br />

<strong>the</strong> surface <strong>of</strong> <strong>the</strong> plague.<br />

The notdchord was uniformly ¡n contact with neural tissue, except<br />

in one embryo th<strong>at</strong> showed a combin<strong>at</strong>íon <strong>of</strong> myeloschisis and myelodysplasia.<br />

Somites în <strong>the</strong> area <strong>of</strong> myelodysplasia were reduced in volume, and <strong>of</strong>ten<br />

reduced in densityrdue to a loose arrangement <strong>of</strong> cells suggesting edema.<br />

<strong>ln</strong> some areas blood vessels were dfl<strong>at</strong>ed., with hemorrhages into <strong>the</strong> local<br />

mesoderm. l'lhere neural tissue was very reduced, <strong>the</strong> somites fused dorsal ly<br />

<strong>ln</strong>to a s<strong>ln</strong>gle mldline mass. All myelodysplasia lesions showed reduction <strong>of</strong><br />

neural volume, both on lmpressidn and by measurement.


333<br />

. These findings s.ugges r th<strong>at</strong> myelodysplasia does not ar¡se by simple<br />

non-closure <strong>of</strong> <strong>the</strong> neural folds, but develops from <strong>the</strong> tail-bud m<strong>at</strong>eriar<br />

after St¿ge 15, in <strong>the</strong> absence <strong>of</strong> neural pl<strong>at</strong>e m<strong>at</strong>erlal.<br />

Histologically, deveropment <strong>of</strong> <strong>the</strong> rhombic ro<strong>of</strong> showed no difference<br />

<strong>ln</strong> enbryos wi th and wÌthout neurar defects. The choroid prexuses did not<br />

âppear unt¡l Stage rB in ei<strong>the</strong>r control or experîmental embryo, after <strong>the</strong><br />

establ lshment <strong>of</strong> myeloschisis and nryeIodyspIasIa. rn <strong>the</strong>se w<strong>ln</strong>dowed chick<br />

embryos, open neural defects cannot be <strong>at</strong>trlbuted to delayed passage <strong>of</strong><br />

cerebro-sp<strong>ln</strong>al fluld across <strong>the</strong> rhombic ro<strong>of</strong> as suggested by Gardner (r!6r,<br />

1964, 1972).<br />

The role played by <strong>the</strong> ¡14çip¡¡L in neurul<strong>at</strong>ion ls stl I I not clear,<br />

desplte many investig<strong>at</strong>¡ons. Elong<strong>at</strong>ion <strong>of</strong> <strong>the</strong> notochord appears to be<br />

an essential componen t <strong>of</strong> neural pl<strong>at</strong>e form<strong>at</strong>ion (Holtfreter,<br />

1955). Jacobson and Gordon (1976) snowe¿ by cell counts in Tri turus<br />

th<strong>at</strong> <strong>the</strong> extending notochord does not creave through <strong>the</strong> neurar pr<strong>at</strong>e<br />

cells, but dísplaces <strong>the</strong>m anterîorly to contrlbute to <strong>the</strong> future brain.<br />

<strong>ln</strong> several mutant mice such as Danforthrs short taí1, brachyury,<br />

anury and trgncête, open and closed neural defects occur sporadical ly,<br />

but are probab.l y secondary to abnormarities <strong>of</strong> <strong>the</strong> notochord or pr¡m¡tive<br />

streak (Grüneberg, rg63). These mutants show extensive vertebrar defects<br />

<strong>of</strong> <strong>the</strong> sp<strong>ln</strong>e and tail, as well as some vîsceral defects, "rro"i"t"d<br />

*¡th<br />

<strong>the</strong> notochordal malform<strong>at</strong>îons. Thei r neurar defects may represent myerodysplas<br />

ia r<strong>at</strong>her than nryeloschisis.<br />

The slze <strong>of</strong> <strong>the</strong> notochord is reduced in amphibia by tre<strong>at</strong>ment wrth<br />

l¡thlum chlorlde (Lehmann, 1937), and enlarged by treêtmeñt wÍth sodium<br />

thlocyan<strong>at</strong>e (Ranzri and Tan<strong>ln</strong>l, 1939). These changes can be explained by<br />

act¡on <strong>of</strong> <strong>the</strong> postul<strong>at</strong>ed mesodeimal¡z¡ng factor (Tolvonen, l96l; Tolvonen


334<br />

et al. 1961). tríth <strong>the</strong> single exception <strong>of</strong> a severely affected embryo<br />

wlth myelodysplasia (showi.ng loss <strong>of</strong> all structures due to cystic<br />

changes <strong>ln</strong> <strong>the</strong> caudal region), no notochordal abnormal i ties were seen in<br />

<strong>the</strong> present series <strong>of</strong> chick embryos.<br />

Howeve r <strong>the</strong> embryos with establ ished myeloschlsis showed separ<strong>at</strong>ion<br />

<strong>of</strong> <strong>the</strong> notochord from neural tissue <strong>at</strong> <strong>the</strong> cránial end <strong>of</strong> <strong>the</strong> leslon. <strong>ln</strong><br />

<strong>the</strong> looptal I mutant mouse open neural defects are a predom<strong>ln</strong>ant expresslon<br />

<strong>of</strong> <strong>the</strong> gene, and appear to arise by non-closure represent<strong>ln</strong>g a myeloschlsis.<br />

Embryos lllustr<strong>at</strong>ed by Stein and Rudin (t953) sho" separ<strong>at</strong>¡on <strong>of</strong> notochord<br />

from <strong>the</strong> open neural defect <strong>at</strong> 10 days. Dav¡s (1942, 1944) by ,ultraviolet<br />

lrradl<strong>at</strong>ion <strong>of</strong> Stage 7-9 chick embryos produced nryeloschlsls, similar to<br />

<strong>the</strong> defects in <strong>the</strong> present embryos, also associ<strong>at</strong>ed wìth notochordal<br />

separ<strong>at</strong>ion. A similar finding was reported by Ancel (1946-\7,1956), who<br />

suggested th<strong>at</strong> <strong>the</strong> separ<strong>at</strong>¡on arose by incomplete separ<strong>at</strong>ion <strong>of</strong> mesodern<br />

<strong>ln</strong>to somltes <strong>at</strong> <strong>the</strong> end <strong>of</strong> gastrul<strong>at</strong>ion. .<strong>ln</strong> <strong>the</strong>.present embryos, however,<br />

<strong>the</strong> gap was filled by a loose mesenchyme after <strong>the</strong> establ îshment <strong>of</strong> myeloschisis,<br />

r<strong>at</strong>her than by fused somitlc mesoderm before <strong>the</strong> form<strong>at</strong>ion <strong>of</strong><br />

<strong>the</strong> neural' defect.<br />

Notochordal separ<strong>at</strong>ion from <strong>the</strong> neural tube occurs as a normal<br />

developmental process upon somíte díspersal and migr<strong>at</strong>ion <strong>of</strong> sclerotome<br />

cells. Even ôt Stage 10 in <strong>the</strong> present enbryos ¡t was seen <strong>at</strong> tbe<br />

cephal ic end <strong>of</strong> <strong>the</strong> notochord, and by Stage 20 had extended into <strong>the</strong><br />

sornite region. Separ<strong>at</strong>íon,rjid not occur in <strong>the</strong> early stages <strong>of</strong> myeloschisls,<br />

and so appears to follow r<strong>at</strong>her than cêuse non-closure. This<br />

suggests a reduced adhesion between notochord and neural pl<strong>at</strong>e, but<br />

it mlght reflect <strong>the</strong> fallure <strong>of</strong> some essent¡al inductlve process êt<br />

an earl lei srase r¡jllán (1968).


335<br />

Lendon (1968, 1975) and notos (1976) both described fiuid<br />

accumul<strong>at</strong>lon deep to <strong>the</strong> neu¡:al plaque, which <strong>the</strong>y regarded as a sequel <strong>of</strong><br />

separ<strong>at</strong>¡on, leadîng to <strong>the</strong> l<strong>at</strong>er elev<strong>at</strong>ion <strong>of</strong> <strong>the</strong> plaque and stretch<strong>ln</strong>g<br />

<strong>of</strong> <strong>the</strong> spinal nerves.<br />

Some indlc<strong>at</strong>lon <strong>of</strong> <strong>the</strong> <strong>ln</strong>fluence <strong>of</strong> <strong>the</strong> notochord on early neurogenesi's<br />

ls provided by studîes <strong>of</strong> <strong>the</strong> rrovêrgrowthlr phenomenon. Bergquist<br />

(1959) and rãlán (1965) found .th<strong>at</strong> remova I <strong>of</strong> <strong>the</strong> fourth neuromere <strong>of</strong> <strong>the</strong><br />

chlck bra<strong>ln</strong> produced marked overgrowth <strong>of</strong> local bra<strong>ln</strong> tissue only when<br />

<strong>the</strong> underly<strong>ln</strong>g notochord was removed or damaged by <strong>the</strong> oper<strong>at</strong>lon. They<br />

suggested th<strong>at</strong> an ¡ntact notochord may exert some controll îng influence<br />

over <strong>the</strong> ôdjacent neural tube. Refinement <strong>of</strong> <strong>the</strong> technic' to allow<br />

separ<strong>at</strong>lon or remova I <strong>of</strong> <strong>the</strong> tip <strong>of</strong> <strong>the</strong> notochord and replacement <strong>of</strong> <strong>the</strong><br />

overlying rhombencephalon <strong>at</strong> stðge 11-12 (Burda, 1968), also produced<br />

local overgrowth <strong>of</strong> brain tissue. Thís was accompanied by increased cell<br />

dlvision and <strong>the</strong> distribution <strong>of</strong> mitotic figures throughout_ <strong>the</strong> bra<strong>ln</strong><br />

wall. Autoradlography showed th<strong>at</strong> both experimental embryos with overgrovrth<br />

and normal controls lost <strong>the</strong> abilîty to <strong>ln</strong>corpor<strong>at</strong>e H3 - thymldîne<br />

by <strong>the</strong> fourth day'mafking <strong>the</strong> onset <strong>of</strong> differenti<strong>at</strong>ion (Bsrda-l,lilson, 19/1)'<br />

Fur<strong>the</strong>rmore <strong>the</strong> ânterior notochord'efter experimental . s.epar<strong>at</strong>îon from<br />

<strong>the</strong> rhombencephalon showed earlier vacuol<strong>at</strong>ion, nuclear pycnosls , and<br />

accumul<strong>at</strong>Íon <strong>of</strong> P.A.S. - posl tive m<strong>at</strong>erial than <strong>the</strong> notochord oí control<br />

emb ryos .<br />

Exam<strong>ln</strong><strong>at</strong>lon <strong>of</strong> somitic mesoderm in control embryos <strong>of</strong> <strong>the</strong> present<br />

serles showed close contact <strong>of</strong> -g.j-!gg with <strong>the</strong> neural tube, whereas<br />

<strong>the</strong> unsegmented and fused mesoderm <strong>of</strong> <strong>the</strong> rhomboid s<strong>ln</strong>us was general ly<br />

separ<strong>at</strong>ed from <strong>the</strong> neural pl<strong>at</strong>e by a smal I. gap. Somites had formed down<br />

to <strong>the</strong> t¡p <strong>of</strong> <strong>the</strong> tail by Stage 20.


336<br />

The inpresslon <strong>of</strong> somlte separât¡on in embryos wlth myeloschisis<br />

was not confirned by fur<strong>the</strong>r analysis, as <strong>the</strong> lengths <strong>of</strong> somite separ<strong>at</strong>îon<br />

dld not correspond to <strong>the</strong> revers <strong>of</strong> <strong>the</strong> defects, and extensîve somite<br />

separ<strong>at</strong>ion occurred in control embryos.<br />

<strong>ln</strong> , aaurans (with a bilaminar neural pl<strong>at</strong>e), analysis <strong>of</strong> <strong>the</strong> mech_<br />

anlsm <strong>of</strong> neurul<strong>at</strong>lon revears th<strong>at</strong> as well as'<strong>ln</strong>trinsic forces within <strong>the</strong><br />

neural pl<strong>at</strong>e, folding involves elev<strong>at</strong>ion <strong>of</strong> <strong>the</strong> differentl<strong>at</strong><strong>ln</strong>g somites,<br />

<strong>ln</strong> <strong>the</strong> presence oi tight adhesion between neural pl<strong>at</strong>e and notochord<br />

(Schroeder, 1!/0). Somite elev<strong>at</strong>ion does not appear to be împortant <strong>ln</strong><br />

<strong>the</strong> chick embryo, as disruptron <strong>of</strong> neuroepi<strong>the</strong>r iar mîcrotubures (by corchrcine)<br />

and mlcr<strong>of</strong>llaments (by cytochalasin B) înhiblts or even reverses neurul<strong>at</strong>ion<br />

(Karfunkel , 1972).<br />

<strong>ln</strong> mammals, open neural defects have been produced by m<strong>at</strong>ernal<br />

tre<strong>at</strong>ment wlth varlous agents, încludíng trypan blue <strong>ln</strong> r<strong>at</strong>s (Gillman et<br />

al., 1948; l,/arkany et ai., l95B; Lendon, t96gt 1915; Rokos et al., t97O;<br />

1976| or mice (tJaddington ênd Carrer, 1953; Hamburgh, 1954): and dímethyl<br />

sulfoxlde or high doses <strong>of</strong> vrtamin A in hamsters (Marin-padi a and Ferm,<br />

1965; Marin-Padilla, r966; 1966; Ferm t966). rn each cêse rhe development<br />

<strong>of</strong> <strong>the</strong> neural defects was crosery associ<strong>at</strong>ed with edema, cyst formâtion,<br />

and hemorrhages in local mesoderm. Rokos et al. (,|970) also descríbed<br />

extensive cell de<strong>at</strong>h ín mesoderm, heart, gut and neural pl<strong>at</strong>e.<br />

<strong>ln</strong> embryos recoùered within 48 hours <strong>of</strong> m<strong>at</strong>ernal injection with<br />

vitamin A or dimethyl sulfoxide, accumul<strong>at</strong>ion <strong>of</strong> f .luld and dil<strong>at</strong>ion <strong>of</strong><br />

local s<strong>ln</strong>usoids was observed in unsegmented nesoderm <strong>at</strong> g-10 hours, followed<br />

by necrosis and col lapse <strong>of</strong> somítes after 24 hours (l4arin-padil la and


337<br />

Ferm, 1965; l"larin-Padi r ¡a, r966; 1966). As <strong>the</strong>se mesoctermal changes preceded<br />

<strong>the</strong> development <strong>of</strong> open neuiar defects, <strong>the</strong>y were regarded as <strong>the</strong> cause<br />

<strong>of</strong> neural dys raph.i sn.<br />

The relevance <strong>of</strong> <strong>the</strong>se observ<strong>at</strong>¡ons to <strong>the</strong> production <strong>of</strong> neurar<br />

defects by m<strong>at</strong>ernal <strong>ln</strong>jection <strong>of</strong> trypan blue is complîc<strong>at</strong>ed by agent and<br />

species dlfferences. Trypan.blue êppears to ""t<br />

<strong>ln</strong> r<strong>at</strong>s and rnlce by<br />

Interfering with fetal n.utrition <strong>at</strong> <strong>the</strong> yolk sac (Beck et al., ,l967;<br />

l{llllams et al., 1976), and signlflcant levels <strong>of</strong> <strong>the</strong> dye have not been<br />

detected within <strong>the</strong> embryo (Wadd<strong>ln</strong>gton and Carrer, f953; tji lson et al.,<br />

1963't. Vitamin A, however, appears to cross <strong>the</strong> placentê when given in<br />

hlgh doses (cîroud and I'lartinet. , 1957), and <strong>the</strong> low molecular weight<br />

<strong>of</strong> dimethyl sutfoxide suggests th<strong>at</strong> placental transfer mí9ht occur (Ferm,<br />

1966). A more direct action by trypan brue wîthout prâcentar intervention,<br />

however, has also produced fluid accumul<strong>at</strong>ion, hem<strong>at</strong>omas, and tlssue<br />

damage in amphîbia (Waddíngton and perry, 1956) and chick embryos subjected<br />

to ¡ntravascular injection <strong>at</strong> J days (Kaplan and Johnson, i970) , or<br />

explant<strong>at</strong>ion on <strong>the</strong> f¡rst day (üurherkar, 1960) . rn each câse <strong>the</strong> brunr<br />

<strong>of</strong> <strong>the</strong> damage was borne by mesodermal tissues, wíth less severe involvement<br />

<strong>of</strong> neural tissue. The interpret<strong>at</strong>ion <strong>of</strong> trypan brue actívrty is fur<strong>the</strong>r<br />

conpllc<strong>at</strong>ed by <strong>the</strong> presence <strong>of</strong> various impurities în different commercial<br />

samples, and <strong>the</strong> existence <strong>of</strong> three fractìons withd,n <strong>the</strong> dye (BecÉ and Lroyd,<br />

r963) .<br />

<strong>ln</strong> <strong>the</strong> present experíments' sectíoned embryos with myeroschîsis showed<br />

no abnormal ities <strong>of</strong> notochord or somites, apart from <strong>the</strong> notàchordal<br />

separ<strong>at</strong>ion already discussed. l,lyeloschlsis could not.be regarded as<br />

secondary to somî te defects.


338<br />

Embryos wîth myelodysplasia however, showed changes crosely resembríng<br />

thos e produced by m<strong>at</strong>ernal hypervitaminosîs A or trypan blue <strong>ln</strong> r<strong>at</strong>s - fluid<br />

accumul<strong>at</strong>ion, vascular dll<strong>at</strong>lon, hen<strong>at</strong>omas, and somlte reductions. As a<br />

large number <strong>of</strong> embryos showi.ng cystic changes were not serected for<br />

serial section<strong>ln</strong>g, <strong>the</strong> histologlca¡ descriptions covered embryos showing<br />

<strong>the</strong> smallest nesodermal invorvement. Thrs suggests th<strong>at</strong> mye¡odysprasia,<br />

accompanled by extensive trunk and rump defects, resulted from extenslve<br />

tlssue damage after wîndowing, for rowed by a variabre degree <strong>of</strong> embryonic<br />

rggul<strong>at</strong>ion. Myeloschisîs, by contrast, resulted from a much more selective<br />

actlon, caus<strong>ln</strong>g non-closure <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e but <strong>of</strong>ten no o<strong>the</strong>r defects.<br />

separ<strong>at</strong>ion <strong>of</strong> notochord from establ ished myeloschrsls reslons <strong>ln</strong>dic<strong>at</strong>es<br />

loss <strong>of</strong> adheslon between neurar pl<strong>at</strong>e and notochord, but rs not sufficient<br />

evidence to postul<strong>at</strong>e fâiture <strong>of</strong> neurul<strong>at</strong>ion due to a loss <strong>of</strong> inductive<br />

interactlon.<br />

Form<strong>at</strong>lon <strong>of</strong> <strong>the</strong> avian tail from <strong>the</strong> ta¡l bud was clearly demo_<br />

str<strong>at</strong>ed by Zwill¡n9 (r942) who excised <strong>the</strong> taH-bud åt Stage r2-16 and<br />

obta<strong>ln</strong>ed embryos wlth no tail, which ended àbruptly just posterlor to<br />

<strong>the</strong> h<strong>ln</strong>d l[mbs when <strong>the</strong> entire tall-bud was removed. Zwilling (1942;<br />

1945) also followed <strong>the</strong> embryogenesis <strong>of</strong> dominant and recessive rumplessness.<br />

He found th<strong>at</strong> <strong>the</strong> dominant gene produced extensive celr de<strong>at</strong>h<br />

with<strong>ln</strong> <strong>the</strong> taÍl-bud and tail anlage by <strong>the</strong> Jrd day, whereas recesgíve<br />

rumplesSness arose by masslve necrosls within a formed tall on days<br />

4-5. <strong>ln</strong>vestig<strong>at</strong>ion <strong>of</strong> rnsur in-induced rumplessness showed a varrabre<br />

development, wlthout massrve ce de<strong>at</strong>h but w¡th frequent inversron <strong>of</strong><br />

<strong>the</strong> tail <strong>ln</strong>to <strong>the</strong> hindgut (ourentery) or defects <strong>of</strong> varlous caudal elemenrs<br />

(l4oseley, 1947).


339<br />

Kôplan (1965) and Kaplan and Grabowski (1967,t , afrer tre<strong>at</strong>ment <strong>of</strong><br />

48 hour chiòk embryos wlth trypan blue, observed extensive blisters and<br />

hem<strong>at</strong>omas <strong>of</strong> <strong>the</strong> trunk and rump, associ<strong>at</strong>ed with vascurar dîr<strong>at</strong>ion and<br />

rupture. These changes were fol lowed by rumplessness in older embryos,<br />

and dlrect observ<strong>at</strong>ion through a glass coverslip over <strong>the</strong> shell window<br />

revealed th<strong>at</strong> enbryos th<strong>at</strong> d¡d not form hem<strong>at</strong>omas did not l<strong>at</strong>er shour<br />

rump defects.<br />

The present series <strong>of</strong> wîndowed embryos recovered <strong>at</strong> 12 days were<br />

not subdivlded on <strong>the</strong> basÌs <strong>of</strong> myeroschrsls or myerodysprasra resrons.<br />

It seems reasonable to suppose th<strong>at</strong> embryos with an irregurar neurar<br />

defect and extenslve vertebral .rrregurarlty and deletions showed myerodysplasla,<br />

associ<strong>at</strong>ed with cysts, hemorrhages, and somlte reduct¡on <strong>at</strong><br />

72 hours. However, embryos with regular defects <strong>at</strong> 12 days also showed<br />

rump defects, în splte <strong>of</strong> <strong>the</strong> absence <strong>of</strong> assocl<strong>at</strong>ed mesodermal defects<br />

ât 72 hours. The embryogenesls <strong>of</strong> rump defects after wrndowíng crearry<br />

requi res fur<strong>the</strong>r <strong>ln</strong>vestig<strong>at</strong>ion.<br />

<strong>ln</strong> many stud¡es <strong>of</strong> neural dysraphism, continuity <strong>of</strong> <strong>the</strong> open neural<br />

t¡ssue with adjacent ectoderm has been taken as evídence <strong>of</strong> non-closure<br />

(Glroud and I'lart¡net, 1957; Dékaban, 1g6r. <strong>ln</strong> an investlg<strong>at</strong>îon <strong>of</strong> <strong>the</strong><br />

regul<strong>at</strong>lve abi'l lty <strong>of</strong> ectoderm in <strong>the</strong> early chíck embryo,. Rokos and<br />

Knowles (1976) split open <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> neuraì tube dur¡ng <strong>the</strong> thírd<br />

day <strong>of</strong> <strong>ln</strong>cub<strong>at</strong>Íon. This produced an open defect <strong>of</strong> <strong>the</strong> neurar tube, w¡th<br />

close apposîtlon <strong>of</strong> <strong>the</strong>. cut edges <strong>of</strong> ectoderm and neural tissue w¡thin<br />

two hours. Thls demonstr<strong>at</strong>es th<strong>at</strong> neura r -ectode rma I continuity ls not<br />

clear pro<strong>of</strong> <strong>of</strong> non-closure. <strong>ln</strong> <strong>the</strong> present windowed embryos, however,<br />

<strong>the</strong>re was a perceptlble difference between smooth contrnurty <strong>of</strong> ectoderm<br />

wlth neural tissue in myeroschisís, and ress rntim<strong>at</strong>e contrgurty between


340<br />

ectoderm and neuraì tlssue <strong>ln</strong> myelodysplasia.<br />

The s.uggéstion th<strong>at</strong> caudal levels <strong>of</strong> <strong>the</strong> neural tube, formed after<br />

closure <strong>of</strong> <strong>the</strong> posterlor neuropore, are derived from <strong>the</strong> tail-bud was<br />

flrst made by Biaun (1882), who described a caudal mass <strong>of</strong> cells undergo<strong>ln</strong>g<br />

cavlt<strong>at</strong>ion in avian enhryos. Development <strong>of</strong> <strong>the</strong> terminal part <strong>of</strong><br />

<strong>the</strong> hur¡an spinal cord from <strong>the</strong> tail-buci was described by Keíbei and Elze<br />

(1908). Schumacher (1927) showed th<strong>at</strong> multiple cavìt<strong>at</strong>ion <strong>of</strong> caudal neural<br />

tlssue ls a normal process in <strong>the</strong> chick embryo.<br />

<strong>ln</strong> birds, Hensents node increases <strong>ln</strong> size and <strong>ln</strong>corpor<strong>at</strong>es <strong>the</strong><br />

rema<strong>ln</strong>der <strong>of</strong> <strong>the</strong> primlt¡ve streak, to form thê ta¡ l-bud <strong>at</strong> <strong>the</strong> 18-22<br />

somlte stage ($eevers, 1!J2). Wetzel (1929) regarded <strong>the</strong> actív¡ty <strong>of</strong> <strong>the</strong><br />

tall-bud ês <strong>the</strong> same as th<strong>at</strong> <strong>of</strong> <strong>the</strong> streak and node <strong>of</strong> earller stages, but<br />

Hunt (193.l) and Seevers (1932) showed th<strong>at</strong> it has ìost <strong>the</strong> capacity for<br />

primary induction, and ¡s restr¡cted to <strong>the</strong> form<strong>at</strong>lon <strong>of</strong> posteríor trunk<br />

structures.<br />

Criley (1969) demonstr<strong>at</strong>ed an overlap zone în <strong>the</strong> caudal region<br />

<strong>of</strong> <strong>the</strong> chlck neural tube, between m<strong>at</strong>erial derived from <strong>the</strong> neural pl<strong>at</strong>e<br />

(lying dorsalty) and m<strong>at</strong>erial derîved from <strong>the</strong> tall-bud (lying ventrally).<br />

This overlap zone (<strong>of</strong> 192-280 microns) was detectable between Stages I1<br />

and 18, with fìsion occurring maximal ly <strong>at</strong> Stages 13-15. The taîl-bud<br />

m<strong>at</strong>erlal extended up to <strong>at</strong> least somite 35, and <strong>the</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial<br />

down to <strong>at</strong> least somíte 33. Removal <strong>of</strong> <strong>the</strong> most caudal section <strong>of</strong> <strong>the</strong><br />

neural pl<strong>at</strong>e showed th<strong>at</strong> an appârently normal segment <strong>of</strong> spÍnal cord can<br />

develop from <strong>the</strong> tail-bud ín complete isol<strong>at</strong>lon from <strong>the</strong> neural pl<strong>at</strong>e.<br />

<strong>ln</strong> <strong>the</strong> present embryos <strong>the</strong> extent <strong>of</strong> <strong>the</strong> overlap was revealed by<br />

qulte subtle changes in outl ine <strong>of</strong> neural tlssue <strong>at</strong>. caudal levels. ldentify<strong>ln</strong>g<br />

fe<strong>at</strong>ures from cranial to caudal were: fallure <strong>of</strong> <strong>the</strong> neural canal to


341<br />

reach <strong>the</strong> floor-pl<strong>at</strong>e; asymmetry <strong>of</strong> <strong>the</strong> neural canal; a pear-shaped external<br />

contoür <strong>of</strong> <strong>the</strong> neural tube; an hour-glass external shape <strong>of</strong> <strong>the</strong> neural<br />

tube; accessory canals în <strong>the</strong> tail-bud nr<strong>at</strong>erial; and finally a solid tailbud,<br />

deep to a foldi.ng neural pl<strong>at</strong>e. Using <strong>the</strong>se fe<strong>at</strong>ures, r<strong>at</strong>her than<br />

sirnply <strong>the</strong> presence <strong>of</strong> accessory canals, <strong>the</strong> overlap zone was detectable<br />

<strong>ln</strong> control embryos <strong>of</strong> Stage tl-16. After ttr¡s, complete fusion obscured<br />

<strong>the</strong> extent <strong>of</strong> overlap in normal enbryos, but <strong>the</strong> zone was still recognisable<br />

in myeloschisis lesions because <strong>of</strong> <strong>the</strong> contínued separ<strong>at</strong>ion <strong>of</strong> <strong>the</strong><br />

tv'ro sources <strong>of</strong> neural m<strong>at</strong>erlal<br />

The overlap zone could only be analysed quantlt<strong>at</strong>ively between<br />

Stages lJ and 16, when it was promînent ín control embryos. There was<br />

little dîfference in <strong>the</strong> extent <strong>of</strong> overlap between embryos wlth myeloschisis<br />

and <strong>the</strong> experímental and control embryos wi th no neural defects,<br />

show<strong>ln</strong>g th<strong>at</strong> myeloschisis does not arlse through changes <strong>ln</strong> <strong>the</strong> extent<br />

<strong>of</strong> <strong>the</strong> zone.<br />

The two embryos with myelodysplasía <strong>at</strong> Stage 16, however, showed<br />

a very short overlap zone due to a greâtly reduced contribut¡on by <strong>the</strong><br />

neural pl<strong>at</strong>e. The lower boundary <strong>of</strong> <strong>the</strong> zone (marking <strong>the</strong> lowest extent<br />

<strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial) lay <strong>at</strong> almost <strong>the</strong> same level as <strong>the</strong> upper<br />

boundary (markíng <strong>the</strong> h¡ghest extent <strong>of</strong> <strong>the</strong> taìl-bud m<strong>at</strong>erial).<br />

'<br />

For <strong>the</strong> analysis <strong>of</strong> volúmetric changes associ<strong>at</strong>ed with open neural<br />

defects, measurement <strong>of</strong> <strong>the</strong> r<strong>at</strong>ìo <strong>of</strong> neural tube to notochordal areas<br />

allowed comparison <strong>of</strong>: embryos <strong>of</strong> different sizes; reglons <strong>of</strong> different<br />

lengths; sections cut in different planes; poor I y-p rocessed and wellprocessed<br />

m<strong>at</strong>erial ¡ and groups <strong>of</strong> embryos with different reglonal<br />

boundarles. St<strong>at</strong>istical analysis revealed greât constancy in notochordal<br />

areas, wlth no evîdence <strong>of</strong> excesslve ¡eural tîssue in myeloschisls, but


3\2<br />

marked reduction in myerodysprasia. possible sources <strong>of</strong> error m¡9ht<br />

be <strong>at</strong>trlbuted toi inaccur<strong>at</strong>e tracing <strong>of</strong> thu tirrr. outl ines, measurements<br />

<strong>of</strong> only every tenth sectlon, and <strong>the</strong> extens¡ôn.<strong>of</strong> some lesions<br />

into Regions B and E (which were not incruded). Future volumetric<br />

analyses should: measure every section; include all four reglons (to<br />

abolish <strong>the</strong> effect <strong>of</strong> different regìonal boun¿aries); and include<br />

older embryos (to detect any overgrowth <strong>at</strong> l<strong>at</strong>er Stages).<br />

<strong>ln</strong>terk<strong>ln</strong>etic migr<strong>at</strong>ion <strong>of</strong> nuclel in neuroe p i<strong>the</strong>l ial cells after<br />

neural closure v/as suggested by F.C. Sauer (1935), and conflrmed by<br />

llarrerson et al. (1956), H.Ë. Sauer and Walker (1959), and Fuj îra (,|960).<br />

Hamburger (1948), by measuring mitotic densíty <strong>ln</strong> <strong>the</strong> neural tube <strong>of</strong> 2{ -<br />

8* day chick embryos, found th<strong>at</strong> <strong>the</strong> mitot¡c êct¡v¡ty in alar and basar<br />

pl<strong>at</strong>es was quite d¡fferent. Ì,ritotíc density in <strong>the</strong> basal pl<strong>at</strong>es reached a<br />

peak <strong>at</strong> 2å - 3 days and <strong>the</strong>n fe stead y, whereas mítoses in <strong>the</strong> alar<br />

pl<strong>at</strong>es rosê steadi¡y to a max¡mum <strong>at</strong> 6 days and <strong>the</strong>n fell sharply. After<br />

8* days, dlfferenti<strong>at</strong>ron follows this prori.fer<strong>at</strong>îve phase, and <strong>the</strong> enormous<br />

<strong>ln</strong>crease in <strong>the</strong> size. <strong>of</strong> <strong>the</strong> cord is due to growth, r<strong>at</strong>her than division,<br />

<strong>of</strong> individual nerve cells. Corllss and Robertson (1959 1963) measured<br />

mitot¡c dens¡ty in <strong>the</strong> chick neural tube before, duríng, and after neural<br />

closure (<strong>at</strong> Stages 9, 11-15, and 19-26). They found th<strong>at</strong> whíle <strong>the</strong> neuraì<br />

pl<strong>at</strong>e was wide open <strong>the</strong>re was no difference în mrtosis between arár and<br />

basal pl<strong>at</strong>es; in regions <strong>of</strong> active fording, mitotic density wês tr{ice as<br />

high in <strong>the</strong> basal pl<strong>at</strong>es, while after closure <strong>the</strong> r<strong>at</strong>io reversed, to be_<br />

come twlce as high in <strong>the</strong> alar pl<strong>at</strong>es. Early neurogenesis is thus accompanled<br />

by differential mltosls.<br />

Autoradiography <strong>of</strong> l-2 day chick embryos gîven two doses <strong>of</strong> H3 -<br />

thymldine, revealed th<strong>at</strong> all cells <strong>of</strong> <strong>the</strong> recently-closed neural tube


343<br />

took up <strong>the</strong> label, shovri.ng thêt differenti<strong>at</strong>ion had not yet occurred<br />

(l'lart I n and Langman, 1965).<br />

<strong>ln</strong> splotch and looptê¡ I mice <strong>the</strong> development <strong>of</strong> open neural defects<br />

(which are a major expressîon <strong>of</strong> <strong>the</strong> mutant genes) is accompanied by a<br />

prolonged cell cycle in <strong>the</strong> neuroe p i<strong>the</strong>lium, and an accumul<strong>at</strong>lon <strong>of</strong><br />

mitotic figures. This retard<strong>at</strong>ion îs followeó by a pericd <strong>of</strong> acceler<strong>at</strong>ed<br />

cel I divislon, producing oúergrowth <strong>of</strong> <strong>the</strong> open neural tissue (Hsu and<br />

Van Dyke, 1948; ì,/¡lson, t974; 1974). <strong>ln</strong> trypan blue - induced dysraphlsm<br />

<strong>of</strong> r<strong>at</strong> enbryos, autoradiography <strong>at</strong> l0| days provided no evidence <strong>of</strong> <strong>ln</strong>creased<br />

mltosls <strong>ln</strong> <strong>the</strong> neural tube (Lendon, l!/2).<br />

Reductlon <strong>of</strong> mltosis, however, may not be essential to <strong>the</strong> development<br />

<strong>of</strong> neural dysraphlsm. Davis (t942, 1944) found th<strong>at</strong> in neural<br />

dysraphîsm <strong>of</strong> chick embryos produced by ultraviolet irradi<strong>at</strong>ion, <strong>the</strong><br />

wavelengths th<strong>at</strong> were most effective in reducing mitoses in <strong>the</strong> neural<br />

pl<strong>at</strong>e were least effectíve in inhibitíng neurul<strong>at</strong>ion.<br />

<strong>ln</strong> <strong>the</strong> present chick embryos m¡totic figures appeared to be restricted<br />

to <strong>the</strong> exposed plaq,ue surface and <strong>the</strong> luminal surface <strong>of</strong> closed areas in<br />

myeloschîsis; figures were more sc<strong>at</strong>tered through <strong>the</strong> ta¡ l-bud m<strong>at</strong>erial in<br />

nryelodysplasia. 14Ítotic dens¡ties in <strong>the</strong>se lesions were not estim<strong>at</strong>ed<br />

because <strong>the</strong> sépar<strong>at</strong>ion <strong>of</strong> neural tissue into its two sources <strong>of</strong> orig<strong>ln</strong><br />

made ít impossible to count figures in rel<strong>at</strong>ion to a constant sur.face area.<br />

lilany <strong>of</strong> <strong>the</strong> changes associ<strong>at</strong>ed wîth <strong>the</strong> development <strong>of</strong> open neural<br />

defects in windowed chick embryos are relevant to <strong>the</strong> p<strong>at</strong>hogenesis <strong>of</strong><br />

dysraphism in man. <strong>ln</strong> <strong>the</strong> human developmental horizons formul<strong>at</strong>ed by<br />

Streeter (1942), <strong>the</strong> anter¡or neuropore closes during horlzon Xl (,l3-20<br />

somites) and posterior neuropore during horlzon Xll (2.|-29 somites).<br />

<strong>ln</strong> <strong>the</strong> chlck embryo <strong>the</strong> anterior neuropore closes <strong>at</strong> Stage ll (,|3 somites)


344<br />

and .<strong>the</strong> rhombo¡d s f nus <strong>at</strong> <strong>the</strong>, 21.-22 $oarl1e..þer tod . {St¿ges 13"j14¡ ,<br />

(Haril l ton,. 1952) ,<br />

Dekaban (1963) and Dekaban and Barrelmez (1964) descrÌbed a t4 somite<br />

(Horlzon xl) human embryo wlth complete neural dysraphism, a normal notochord,<br />

and slight reduction in somlte density ât <strong>the</strong> perlod when <strong>the</strong> anterior<br />

neuropore should be closi.ng. An older human embryo (<strong>of</strong> l3 mm) ,..¡! th exencephaly,<br />

consist<strong>ln</strong>g <strong>of</strong> everted cerebral hemispheres and exposed thalami<br />

and choroid plexus (Hunte r lgli-sil, demonstr<strong>at</strong>es th<strong>at</strong> an open human braîn<br />

can continue to deve I op.<br />

Experîrnental exencephaly produced in r<strong>at</strong>s by m<strong>at</strong>ernal hypervîtaminosis<br />

A and followed rn a closely-spaced series <strong>of</strong> embryos, lr lustr<strong>at</strong>es a very<br />

simllar evolution <strong>of</strong> <strong>the</strong> brain defect. Exencephaly wâs not analysed<br />

hlstotogically <strong>ln</strong> <strong>the</strong> present experiments (because <strong>of</strong> <strong>the</strong> smal'l number<br />

<strong>of</strong> embryos), but <strong>the</strong> existence <strong>of</strong> open anterior neuropores in w<strong>ln</strong>dowed<br />

embryos <strong>at</strong> each Stage after Stage l2 Ís strong evidence <strong>of</strong> ?gn_closure,<br />

Early human embryos with open neural defects <strong>of</strong> <strong>the</strong> lower cord<br />

have been described <strong>at</strong> 8 mm (p<strong>at</strong>ten, 195r,7 mm (<strong>ln</strong>galls, 1932), and<br />

5.5 mm (Lernire et al ., 1965). The smallest <strong>of</strong> <strong>the</strong>se specimens, with a<br />

regular 1 mm open cord defect opposite somite 25, wäs <strong>at</strong> Horizon XlV.<br />

It showed a wiuely everted neurar defect (with ross <strong>of</strong> regurar or¡ent<strong>at</strong>ion<br />

<strong>of</strong> cells), normal notochord, and abnormal somites.<br />

lrlarkany et al. (1958) in trypan blue - induced neural defects <strong>of</strong> r<strong>at</strong>s,<br />

found th<strong>at</strong> open cord defects (rnyeloschisis) could be detected before <strong>the</strong><br />

expected closure <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e. Simîlarly, in <strong>the</strong> present chlck<br />

embryos, <strong>the</strong> development <strong>of</strong> myeloschisis - courd be predicted from <strong>the</strong><br />

shape <strong>of</strong> <strong>the</strong> open rhomboid sinus. rrlye r odysp r as i a however did not rnvolve<br />

abnormallty <strong>of</strong> <strong>the</strong> rhomboid sinus, and deveroped from tafl-bud m<strong>at</strong>errar in<br />

<strong>the</strong> absence <strong>of</strong> <strong>the</strong> neurâl pl<strong>at</strong>e.


345<br />

The defects in early human embryos, toge<strong>the</strong>r with <strong>the</strong> f indi.ngs in<br />

experimental dysraþhism, suppoFt,<strong>the</strong> assertiori th<strong>at</strong> excencephaly, craniorachlschisIs,<br />

and nyeloschisis arise by neural non-closure. Secondary<br />

neural overgrowth and l<strong>at</strong>er degener<strong>at</strong>ive châ.nges <strong>the</strong>n produce <strong>the</strong> character¡stic<br />

lesions <strong>of</strong> anencephaly and mye I omen i ngoce I e . Form<strong>at</strong>¡on <strong>of</strong> <strong>the</strong><br />

caudal spinal cord fron thc ta¡l-bud wouid urpl"in sparing <strong>of</strong> <strong>the</strong> sacral<br />

reglon, though complic<strong>at</strong>ed by rel<strong>at</strong>ive shortening <strong>of</strong> <strong>the</strong> cord in <strong>the</strong> fetal<br />

per iod.<br />

Several forms <strong>of</strong> myelodysplasia can be explained as reductions în<br />

<strong>the</strong> vo I ume<br />

<strong>of</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial, tail-bud m<strong>at</strong>erîêl, or both.<br />

Dipl'onryelía <strong>at</strong> <strong>the</strong> caudar rever. may arise by persistent cavît<strong>at</strong>ion <strong>of</strong> taí r.-<br />

bud m<strong>at</strong>erial. This cannot apply to dlplomyel ia <strong>at</strong> hlgher levels, which<br />

was not encountered in <strong>the</strong> windowed chíck embryos and so is not discussed<br />

fur<strong>the</strong>r.<br />

Local overgrowth <strong>of</strong> neural tissue was suggested by p<strong>at</strong>ten (1952,<br />

1953) as a posslble cause <strong>of</strong> non-crosure, because'¡t wês seen in embryos<br />

w¡thout visíble externar defects, as well as in dysraþhism. Neural overgrowth<br />

can fol low experimental incision <strong>of</strong> <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> closed avian<br />

neural tube, <strong>at</strong> ei<strong>the</strong>r <strong>the</strong> cord level (Fowler, 19531 or in <strong>the</strong> brain<br />

(.lel ínek, 1960).<br />

Harked folding <strong>of</strong> <strong>the</strong> ruminar surface <strong>of</strong> <strong>the</strong> chick neurar tr¡be has<br />

been reported, w¡th and wíthout dysraphísm, after exposure to lead<br />

chlorlde (C<strong>at</strong>lzone and Gray, l94l), tentanus tox¡n (Corl íss et al., 1966)<br />

and several viruses (Hamburger and Haber, 19\7r He<strong>at</strong>h et ar"' r.956; rJir riamson<br />

et al., 1956). However analysis <strong>of</strong> closed brain overgrowth produced by<br />

influenza A vîrus revealed th<strong>at</strong> <strong>the</strong> apparent folding and thíckening <strong>of</strong>


346<br />

<strong>the</strong> bra<strong>ln</strong> wall were.due to marked reduction <strong>of</strong> ventricular volume(Robertson et<br />

al .', 1967 ); <strong>the</strong> volume <strong>of</strong> brain tissue and <strong>the</strong> mitotic densíty were<br />

actual ly reduced.. Neural overgrowth <strong>the</strong>refore cannot be <strong>the</strong> cause <strong>of</strong><br />

vIral-induced dysraphism. Similarly Bergguist (1960) found th<strong>at</strong> over-<br />

. growth <strong>of</strong> <strong>the</strong> chîck brain, produced by injury <strong>of</strong> <strong>the</strong> notochord wíth<br />

removal <strong>of</strong> <strong>the</strong> fourth neurornere <strong>at</strong> Stages I1"I4, was assoc¡<strong>at</strong>ed w¡th<br />

<strong>ln</strong>creased mÌtosis but not increased neural volume.<br />

Desplte P<strong>at</strong>tents description <strong>of</strong> overgrowth <strong>at</strong> early stêges, <strong>the</strong>re<br />

is no evidence th<strong>at</strong> non-closure (myeloschîsis) is caused by íncreased<br />

neural volume. <strong>ln</strong> <strong>the</strong> present series <strong>of</strong> chîck embryos,neural volume _dÌd<br />

not <strong>ln</strong>crease dur<strong>ln</strong>g or after <strong>the</strong> establ ishment <strong>of</strong> myeloschlsis. lt<br />

would be interesting to measure neural volumes in older embryos with<br />

rryeloschîsis.<br />

T¡s hypo<strong>the</strong>sis th<strong>at</strong> dysraphísm arises by ruÞture <strong>of</strong> <strong>the</strong> closed neural<br />

tube due to hydromyelia (Gardner 1961 , 196\, 1972), was ba_sed on studies<br />

by tJeed (1917¡ lgZZ; 1937-38) <strong>of</strong> <strong>the</strong> dynamics <strong>of</strong> cerebro-spinal fluid.<br />

These experiments, however, relied on perfusion <strong>of</strong> <strong>the</strong> venticular system,<br />

with consequent changes în hydrost<strong>at</strong>ic pressure. As fur<strong>the</strong>r evídence <strong>of</strong><br />

rupture <strong>of</strong> <strong>the</strong> rhombic ro<strong>of</strong> due to hydromyelia, Padget (1968, l97o) quotes<br />

studies by Bonnevie (1934) on <strong>the</strong> mouse mutênt l<strong>at</strong>er called myelencephalic<br />

blebs.. Bonnevie belíeved th<strong>at</strong> exencephaly and multiple congenîtál defects<br />

assocî<strong>at</strong>ed with subepìdermal fluid blebs, were secondary to brain rupture<br />

caused by hydronryelia. Reexamin<strong>at</strong>ion <strong>of</strong> <strong>the</strong>se mice by carter (1956, 1959) has<br />

shown th<strong>at</strong> exencephaly precedes bleb-form<strong>at</strong>ion, ând th<strong>at</strong> th'e blebs (which<br />

are responsible for some defects) are derived fron mesenchym¡l tissue fluíd.<br />

Hydromyelia and rupture <strong>of</strong> <strong>the</strong> neural tube after closure does not<br />

expla<strong>ln</strong> <strong>the</strong> ex¡stence <strong>of</strong> dysraphism in human embryos <strong>of</strong> horizons lmmedi<strong>at</strong>ely


347<br />

after pred¡cted closure (Lemîre et al., 1965; Dekaban, 1963i Dekaban and<br />

Bartelmez, 1964), and before <strong>the</strong> appearênce <strong>of</strong> <strong>the</strong> choroid plexuses.<br />

lloreover, studies <strong>of</strong> <strong>the</strong> ernbryology <strong>of</strong> <strong>the</strong> human rhombic ro<strong>of</strong> reveal<br />

an actîve developmental process, r<strong>at</strong>her than passive rupture <strong>of</strong> <strong>the</strong><br />

ro<strong>of</strong> and dissection <strong>of</strong> <strong>the</strong> subarachnold space (Brocklehurst, '|969).<br />

Exper<strong>ln</strong>ental exencephaly in r<strong>at</strong>s appears <strong>at</strong> stages immedi<strong>at</strong>ely<br />

after normal brain closure (ciroud and l,lartinet, 1957; Langman and<br />

lJelch, 1!66). Sinilarly in <strong>the</strong> present chick embryos, dysraphism is<br />

present lmmedi<strong>at</strong>ely after normal neural closure, and before <strong>the</strong> rhombic<br />

ro<strong>of</strong> shows a membranous structure or form<strong>at</strong>ion <strong>of</strong> a choroid plexus.<br />

The o<strong>the</strong>r hypo<strong>the</strong>ses <strong>of</strong> human neural dysraphism mentioned in <strong>the</strong><br />

<strong>ln</strong>troduction can be excluded as causes <strong>of</strong> open neural defects in chïck<br />

embryos. Prlmary vascular defects (Vogel and ttcClenahan, l!!2)<br />

cannot be impl ic<strong>at</strong>ed in <strong>the</strong> chick embryos, whose neural tube is not<br />

vascularized until 72-84 hours (Feeney ênd V<strong>at</strong>terson, 1946). Abnormal<br />

flexion <strong>of</strong> <strong>the</strong> brain (teuedeff, 188l; Frazer, 1921) or cord (Browne, 'l934)<br />

cannot be responsible, as no flexures had appeared by <strong>the</strong> period when<br />

dysraphîc lesions were al ready establ ished.<br />

Birth trauma (Pol îtzer, 1954) is riot appl icable to a non-mammalian<br />

model. nmniotîc adhesions can be dismissed, as open neural defects were<br />

present before <strong>the</strong> form<strong>at</strong>ion <strong>of</strong> <strong>the</strong> amníon. <strong>ln</strong>fection was excluded as a<br />

cause by performing bacterial cultures. Finally, abnormal fusion <strong>of</strong> <strong>the</strong><br />

tv,ro sources <strong>of</strong> neural m<strong>at</strong>erial in <strong>the</strong> overlap zone cannot be excluded as<br />

a factor in human cord defects (Lemlre, .1969), but wês not <strong>the</strong> underlying<br />

cause <strong>of</strong> myeloschisis and myelodysplasia in <strong>the</strong> windowed chick embryos.<br />

<strong>ln</strong> this díscussion <strong>of</strong> dysraphism, spîna bifida occulta has not been<br />

nent¡oned. Sp<strong>ln</strong>a bifida occulta may be subdivided <strong>ln</strong>to two types (James


348<br />

and Lassman, 1972). <strong>ln</strong> <strong>the</strong> sirnple form <strong>the</strong>re is a local ized absence <strong>of</strong><br />

spinous processes for a few ségments, usually without neurological ínvolvenìent.<br />

The spina blfida occuìta syndrome consists <strong>of</strong> neural arch defects<br />

overly<strong>ln</strong>g an abnormal (dysplastic) cord or nerve roots.<br />

The relåtion <strong>of</strong> occult to cystic forms <strong>of</strong> spÌna bifida is not clear.<br />

Lorber anc Levtck (r967) found th<strong>at</strong> parents oi chirdren with myelomeningocele<br />

showed an <strong>ln</strong>creased frequency <strong>of</strong> spina bifida occulta, suggest¡ng<br />

some etlologlcal connection. several mutant mice wîth open neural defects<br />

may also show spina bifida occulta (Gruneberg, I963).<br />

<strong>ln</strong> <strong>the</strong> present chick embryos mesodermal defects, which m¡ght l<strong>at</strong>er<br />

result <strong>ln</strong> spina bifida occul ta,. were seen in experimental embryos with<br />

rryeloschlsis or closed cords. Many 12 day chick embryos exhibited spina<br />

blfida occulta but <strong>the</strong> pôthogenesis <strong>of</strong> <strong>the</strong> lesion was not investig<strong>at</strong>ed.<br />

Trypan blue-induced dysraphism <strong>of</strong> r<strong>at</strong>s can result in exencephaly,<br />

spina bifida manifesta and spina bifida occulta in older embryos. The<br />

early development <strong>of</strong> <strong>the</strong> defects is associ<strong>at</strong>ed with extensive blebform<strong>at</strong>lon<br />

and hem<strong>at</strong>omas which l<strong>at</strong>er disappear, so th<strong>at</strong> small open defects<br />

mîght possibly close ât .l<strong>at</strong>er stêges. (Rokos et al., .|970; 1975; Lendon,<br />

1968; 1976).<br />

Rokos ani Knowles (1976) demonstr<strong>at</strong>ed a high regul<strong>at</strong>ive abílîty in<br />

chlck embryos after opening <strong>the</strong> ro<strong>of</strong> pl<strong>at</strong>e <strong>of</strong> <strong>the</strong> neural tube on <strong>the</strong> third<br />

day. Smal I incísions showed rapid closure and reconstitution. Larger<br />

înclslons produced an everted neural lesîon, <strong>at</strong> which <strong>the</strong> cut edges <strong>of</strong> neural<br />

tube and ectoderm <strong>of</strong>ten fused toge<strong>the</strong>r in 2-4 hours. Thus spìna bífida<br />

occulta could origin<strong>at</strong>e e¡ <strong>the</strong>r as a primary mesodermal defect, or by closure<br />

<strong>of</strong> a smâl I neural defect. <strong>ln</strong>vestig<strong>at</strong>ion <strong>of</strong> windowed chick embryos after 72


349<br />

hours could provide evidence for one or <strong>the</strong> o<strong>the</strong>r mechanîsrn.<br />

Use <strong>of</strong> a non¡.placental embryo for <strong>the</strong> experìmental nodel avoids<br />

problems associ<strong>at</strong>ed with m<strong>at</strong>ernal health and diet during gest<strong>at</strong>ìon,<br />

<strong>the</strong> sltes <strong>of</strong> lmplant<strong>at</strong>ion, and functlon <strong>of</strong> <strong>the</strong> placenta. <strong>ln</strong> <strong>the</strong> chÌck<br />

enbryo, <strong>the</strong> close series <strong>of</strong> morphological stages al lows comparîsons <strong>of</strong><br />

<strong>ln</strong>dlvidual embryos. Regia,ral subdi.¡lsion facil it<strong>at</strong>es analysis <strong>of</strong> a<br />

Particular developmental process <strong>ln</strong> embryos <strong>of</strong> different Stages oÉ through<br />

different regions <strong>of</strong> <strong>the</strong> same embryo.<br />

<strong>ln</strong> <strong>the</strong> case <strong>of</strong> early neurogenesis, <strong>the</strong> chíck is an excel lent experi;<br />

mental model for human malform<strong>at</strong>ions. Hughes and Freeman (1974) compared<br />

<strong>the</strong> development <strong>of</strong> <strong>the</strong> caudal region <strong>of</strong> <strong>the</strong> spinal cord in r<strong>at</strong>, mouse,<br />

oppossum, plg, chick, and human embryos. 0f <strong>the</strong>se embryos only <strong>the</strong> chick<br />

and man show development <strong>of</strong> <strong>the</strong> caudal region <strong>of</strong> <strong>the</strong> neural tube by cavi t-<br />

<strong>at</strong>¡on <strong>of</strong> tai l-bud m<strong>at</strong>erial, after closure <strong>of</strong> <strong>the</strong> neural plâte.<br />

<strong>ln</strong> amphibia, repti les, bìrds, and mammals <strong>the</strong> neural pl<strong>at</strong>e forms as<br />

an ectodermal thickening overlyíng <strong>the</strong> cho rda -mesode rm, "nO<br />

fold, to form<br />

a tube. At caudal levels, however, development <strong>of</strong> <strong>the</strong> cord ís not so uníform.<br />

l'lost work on neurul<strong>at</strong>ion has used amphibia, though studies on anurans<br />

(with a bilaminar neural pl<strong>at</strong>e) are not str¡ctly comparable to o<strong>the</strong>r groups<br />

(schroeder, t 97o) .<br />

With <strong>the</strong> advent <strong>of</strong> electron microscopy, investig<strong>at</strong>ions <strong>of</strong> lgglglg1lq<br />

,<br />

have revealed. <strong>the</strong> existence <strong>of</strong> intracellulêr structures involved in neural<br />

closure. Previous work <strong>at</strong>tempted to explain neurul<strong>at</strong>lon în terms <strong>of</strong> extr¡ns¡c<br />

forces, or by changes secondary to cell division and migr<strong>at</strong>.ion.<br />

Hls (187q) suggested th<strong>at</strong> <strong>the</strong> change <strong>ln</strong> shape <strong>of</strong> neuroepl<strong>the</strong>l ial cells,<br />

from cuboidal to columnar, might be due to cell compression after a period


350<br />

<strong>of</strong> rapid ectodermal mitosis. However Gillette (1944) found a reduction<br />

in <strong>the</strong> sl2e <strong>of</strong>. neural pl<strong>at</strong>e cêlls in Amblystoma during folding. Glaser ('l9.l4¡<br />

19l6) sugsested th<strong>at</strong> neuroepi<strong>the</strong>l iar ceüs change from cuboidar to corumnar<br />

and <strong>the</strong>n to pyramidal shapes, due tc differential uptake <strong>of</strong> w<strong>at</strong>er <strong>at</strong> <strong>the</strong><br />

basal parts <strong>of</strong> <strong>the</strong> ce s. This was shown to be unrikely by <strong>the</strong> detect¡on<br />

<strong>of</strong> only negliglble changes in <strong>the</strong> denslty <strong>of</strong> ,,uur"t pl<strong>at</strong>e cells during folding<br />

<strong>ln</strong> Rana and Amblystoma (Brown et al., l94l), and by Gillettés finding <strong>of</strong> a<br />

reduction <strong>ln</strong> cerr size. Derrick (1937) reported a hígher mitotic index in<br />

neurectoderm than ín adjacent ectoderm <strong>of</strong> chick embryos during neurur<strong>at</strong>ion,<br />

but Bragg (1938) courd not detect a simirar differentiar mitosís in Bufo.<br />

clllette (1944) and Holtfreter (1943) postul<strong>at</strong>ed a contractile surface<br />

co<strong>at</strong> <strong>at</strong> <strong>the</strong> free ends <strong>of</strong> neuroepi<strong>the</strong>r iar ceus, responsibre for changes rn<br />

cel I adhesion and shape.<br />

<strong>ln</strong> a detai red analysis <strong>of</strong> neurur<strong>at</strong>ion ín <strong>the</strong> bilaminar neurar pr<strong>at</strong>e <strong>of</strong><br />

xenopus, Schroeder (1970) described myotome erev<strong>at</strong>ion and epidermar expansíon,<br />

as well as changes <strong>of</strong> shape in both layers <strong>of</strong> neuroepi<strong>the</strong>l ial cells. Similar<br />

changes have not been detected in <strong>the</strong> uniraminar neurâr prêtes <strong>of</strong> o<strong>the</strong>r<br />

vertebrêtes, whích continue to show fording and crosure when cur tured rn ¡sol<strong>at</strong>lon<br />

(Roux, 1885; Boerema, 1g2Ð. The assertion by C. O. Jacobson (1962)<br />

th<strong>at</strong> neural elev<strong>at</strong>ion and folding in <strong>the</strong> Axolotl is produced<br />

by forces gener<strong>at</strong>ed in <strong>the</strong> underrying chorda-mesoderm has now been refuted by<br />

Karfunkel and Burnslde independently (Karfunkel , 197Ð. Thus intracellular<br />

mechanisms must be capable <strong>of</strong> gener<strong>at</strong><strong>ln</strong>g <strong>the</strong> forces needed for neurar closure.<br />

I'licrotubules running rn <strong>the</strong> long axis <strong>of</strong> neuroepi<strong>the</strong>r iar celrs have<br />

been reported in embryos <strong>of</strong> Triturus (Waddington and perry, 1966¡ Burnside,


351<br />

t971), Gal lus and Xenopus (l'lessier, 1969; Kêrfunkel , 1971). These nicrotubules<br />

are dlsrupted by vînblastine and colchicine (Karfunkel, 1971; 1972) ,<br />

w¡th arrest <strong>of</strong> neurul<strong>at</strong>ion and fl<strong>at</strong>tening <strong>of</strong> neuroepÌ<strong>the</strong>l ial cells. Burnside<br />

(197t) foun¿ th<strong>at</strong> <strong>the</strong> m¡crotubules were distributed obl iquely, suggesting<br />

th<strong>at</strong> <strong>the</strong>y might produce cell elong<strong>at</strong>Îon by displacing cytoplasm towards<br />

<strong>the</strong> expanding cell bases, rê<strong>the</strong>r than by'direét elong<strong>at</strong>ion.<br />

A system <strong>of</strong> contractíle micr<strong>of</strong>ilâments has also been described in<br />

<strong>the</strong> apical cytoplasm <strong>of</strong> neuroepi<strong>the</strong>l ial cells in Hyla and Xenopus (Baker<br />

and Schroeder, 1967) and in Rana, Ambìystoma, and Gallus (Schroeder, 1969)-'<br />

Neurul<strong>at</strong>îon is associ<strong>at</strong>ed with a short períod <strong>of</strong> contrêction in <strong>the</strong>se micr<strong>of</strong>l<br />

laments. Disruptìon <strong>of</strong> <strong>the</strong> micr<strong>of</strong>ilaments in neuroepi<strong>the</strong>liaì¡ cells <strong>of</strong><br />

<strong>the</strong> chick embryo, (by vinblastine or cytochâlasin B), inhibits neurul<strong>at</strong>ion,<br />

v,rt th loss <strong>of</strong> apical wedging but no reduction in columnar heíght <strong>of</strong> <strong>the</strong><br />

neural pl<strong>at</strong>e cells (Karfunkel, 1971 ; 1972)'<br />

Ambellan (1955; l95B; 1962) showed th<strong>at</strong> tre<strong>at</strong>ment <strong>of</strong> frog neurulae<br />

with A.T.P., A.D.P., and A.l'1.P. - 3 caused acceler<strong>at</strong>ed n"ut.ul"tion, in direct<br />

proportion to <strong>the</strong> number <strong>of</strong> phosph<strong>at</strong>e groups in <strong>the</strong> nucleotides' Micr<strong>of</strong>i<br />

lament contraction may be ca I c i um-dependen t (Gingell , 1970, ì,tessels 1971).<br />

It would be <strong>of</strong> gre<strong>at</strong> înterest to examine <strong>the</strong> uìtrastructural changes in<br />

<strong>the</strong> neural tis'sue <strong>of</strong> chick embryos after windowing.<br />

<strong>ln</strong> wîndowed embryos with hemimyel ia, <strong>the</strong> neural pl<strong>at</strong>e was absent<br />

caudal ly. As only five embryos were examined histologically ît was not<br />

clear whe<strong>the</strong>r this couìd be <strong>at</strong>tributed to a faîlure <strong>of</strong> neural induction <strong>at</strong><br />

<strong>the</strong> caudal level, or to necrosîs <strong>of</strong> presumptive neurectodermal cells'<br />

<strong>ln</strong> amphibîan embryos, differenti<strong>at</strong>ion <strong>of</strong> neural epi<strong>the</strong>l ium resul ts<br />

from <strong>the</strong> actlon <strong>of</strong> t¡ssues ín <strong>the</strong> archenteric ro<strong>of</strong> on overlyÎng ectoderm<br />

(Spemann, 1938). Experîmentally, however, neural ijìduction can be produced<br />

by: larval or adult neural tissue; certain o<strong>the</strong>r tissues such as kidney,


352<br />

liver, and muscle (but not gut or skin); and even by chemical agents.<br />

<strong>ln</strong> ãrnnlotes, <strong>the</strong> archenteron is ei<strong>the</strong>r absent or much reduced; <strong>ln</strong><br />

birds neurål ìnduction appears to be rel<strong>at</strong>ed to <strong>the</strong> activity <strong>of</strong> Hensenrs<br />

node and <strong>the</strong> primitîve streak. Neural pl<strong>at</strong>e first forms in <strong>the</strong> chick<br />

embryo in <strong>the</strong> future bra<strong>ln</strong> region duri.ng. rnid-gastrul<strong>at</strong>¡on, and different¡<strong>at</strong>ion<br />

continues as <strong>the</strong>.node moves posteriorly with streak regression<br />

(Hamilton, 1952). After form<strong>at</strong>ion <strong>of</strong> <strong>the</strong> neural tube, <strong>the</strong> anterior<br />

region expands to form <strong>the</strong> braîn, and <strong>the</strong> poster¡or part leng<strong>the</strong>ns to<br />

form <strong>the</strong> cord. Hunt (.|931) and t/addington (1932) demonsrrôted <strong>the</strong><br />

ablllty <strong>of</strong> Hensenrs node to induce axlal form<strong>at</strong>ion <strong>at</strong> <strong>the</strong> def¡nítive<br />

streak stage, but restrictíon <strong>of</strong> this abil ity <strong>at</strong> I<strong>at</strong>er stages, VJaddîngton<br />

(1fi2) showed th<strong>at</strong> a transplanted node can st¡lI produce axial<br />

<strong>ln</strong>ductlon, while Shoger (1960) found th<strong>at</strong> disaggreg<strong>at</strong>ed. node tissue retains<br />

Its <strong>ln</strong>ductíve abllity until <strong>the</strong> early somite stage. Crabowski (1957)<br />

suggested th<strong>at</strong> <strong>the</strong> node acts as a regîonal organizer during streak<br />

regress lon.<br />

Tissue induction can be achieved across a millipore fílter with<br />

pores down to 0.8 microns (Grobs¡ein, 1!!J), suggesting <strong>the</strong> êction <strong>of</strong> some<br />

diffusible m<strong>at</strong>erial. Niu and Twírty (1953) found th<strong>at</strong> inductor tissues<br />

in uitro released m<strong>at</strong>erials into <strong>the</strong> culture medíum, capable <strong>of</strong> promoting<br />

differenti<strong>at</strong>ion <strong>of</strong> neurones and melanophores in smal I fragment. áf u*-<br />

planted ectoderm.<br />

<strong>ln</strong>vestlg<strong>at</strong>ions <strong>of</strong> <strong>the</strong> n<strong>at</strong>ure <strong>of</strong> <strong>the</strong> prímary organizer have proved<br />

inconclusive. <strong>ln</strong> some experlments R.N.A.rs from different sources have<br />

produced specìfîc promotion <strong>of</strong> notochord, neural tlssue, kidney, and<br />

heart (Hillman and Niu, .l963; Sanyal and Niu, 1966). O<strong>the</strong>r workers report<br />

neural 'tnCuctlon wlth D.N.A. plus A.T.P., but not wîth R.N.A. (Butros,


353<br />

1962i 1965). Barth and Barth.(1974) susgest th<strong>at</strong> inducing ðgents may<br />

act by aliering <strong>the</strong> propertles <strong>of</strong> cell membranes in <strong>the</strong> reactî.ng tìssue,<br />

to promote red¡str¡bution <strong>of</strong> intracellular ions.<br />

Fai lure <strong>of</strong> înductiori might, occur byl restriction <strong>of</strong> contêct<br />

between <strong>the</strong> two interacting t¡ssues; a defect in <strong>the</strong> înductor; incompetence<br />

<strong>of</strong> <strong>the</strong> reacting tissue; or imperfect tíming <strong>of</strong> <strong>the</strong> contact<br />

between <strong>the</strong> two t¡ssue components (Saxá, 1975).<br />

Cell de<strong>at</strong>h occurs as a normal phenomenon in many embryoníc processes'<br />

part¡cuìarly those involvîng morphogenesis or regression (Glucksmann, 1951) '<br />

Regressive phases <strong>ln</strong> embryogenesis are programmed to occur in a specifíc<br />

sequence th<strong>at</strong> suggests genetic control. Mutant genes cên enhance or<br />

reduce <strong>the</strong> normal p<strong>at</strong>terns <strong>of</strong> celì de<strong>at</strong>h (Saunders, 1966) ' Experimental<br />

tre<strong>at</strong>ments such as x-rays' drugs, viruses, hormones, vitamins, and hypoxla<br />

can promote cell de<strong>at</strong>h (l4enkes et al. 1970); Janus green can Prevent <strong>the</strong><br />

normal cell de<strong>at</strong>h in <strong>the</strong> interdÎgital clefts <strong>of</strong> <strong>the</strong> chíck foot (Saunders,<br />

r966).<br />

Necrobiosis in <strong>the</strong> neural tube shows peaks preceding neural groove<br />

form<strong>at</strong>íon, foldîn9, fusion, and separ<strong>at</strong>íon îrom surface ectoderm<br />

(Glucksmann, l95l). Käl lén (1955) des.cribed ano<strong>the</strong>r peak <strong>of</strong> cell de<strong>at</strong>hs<br />

<strong>ln</strong> <strong>the</strong> rabbí t brain, associ<strong>at</strong>ed with a period <strong>of</strong> ce'l I differentî<strong>at</strong>íon <strong>at</strong><br />

14 days, Rokos et ê1. (1976) described cell de<strong>at</strong>hs in mesoderm,'heart,<br />

gut, and neural pl<strong>at</strong>e tissues <strong>of</strong> r<strong>at</strong> embryos after m<strong>at</strong>ernal injection <strong>of</strong><br />

trypan blue; <strong>the</strong>y suggested th<strong>at</strong> th¡s was an exagger<strong>at</strong>ed form <strong>of</strong> <strong>the</strong> nor-<br />

¡na I cell de<strong>at</strong>h seen in early neurogenesis.<br />

Cell de<strong>at</strong>h is accompanled <strong>at</strong> early embryonic stêges by a ttj!h-regu-.<br />

.làtli¿è àbititv, which is responsîble for rapid <strong>ln</strong>corpor<strong>at</strong>ion <strong>of</strong> grafts


354<br />

(Rose,nqu i s t,l !66) , and rest¡tution <strong>of</strong> excísed areas (Criley, '|969). The<br />

dram<strong>at</strong>lc regul<strong>at</strong>¡on shown by.<strong>the</strong> nervous system <strong>of</strong> amphibian embryos<br />

(Harrlson, 1947) ìs not so pronounced in <strong>the</strong> chìck. However, încísÌons<br />

<strong>ln</strong> <strong>the</strong> ro<strong>of</strong> pl<strong>at</strong>e <strong>of</strong> <strong>the</strong> chick neural tube close spontaneously when<br />

local lzed, and fuse to.ep¡dermis in 2-4 hours when more extenslve (Rokos<br />

and Knowles, l!/6). Lendon (t975) and Rokos ér al. (1976) found th<strong>at</strong> rhe<br />

extensive blebs produced <strong>ln</strong> early rêt embryos by n<strong>at</strong>ernal trypan<br />

blue <strong>ln</strong>jectlon l<strong>at</strong>er resolved. <strong>ln</strong> <strong>the</strong> present windowed chick embryos,<br />

superflcîal cells <strong>of</strong> <strong>the</strong> open neural pl<strong>at</strong>e <strong>ln</strong> early myeloschisis showed<br />

necrosls, whlch was not present <strong>at</strong> l<strong>at</strong>er ståges. Embryos with myelodysplasia<br />

showed extensive degener<strong>at</strong>ive changes ín mesoderm, but ít is<br />

not clear whe<strong>the</strong>r <strong>the</strong>se accompanied or caused <strong>the</strong> neural defects.<br />

Stockardrs pr<strong>ln</strong>ciples <strong>of</strong> ter<strong>at</strong>ogenesis proposed th<strong>at</strong>: malform<strong>at</strong>ions<br />

<strong>ln</strong> different ,o""ffilar<br />

agentsi a given defect<br />

in one specíes may result from a wide range <strong>of</strong> tre<strong>at</strong>ments; <strong>the</strong> in¡tial<br />

act¡on <strong>of</strong> a ter<strong>at</strong>ogenîc agent is to retard <strong>the</strong> r<strong>at</strong>e <strong>of</strong> development; and<br />

<strong>the</strong> type <strong>of</strong> defect is determined by <strong>the</strong> developmental stage ât wh¡ch<br />

<strong>the</strong> embryo was tre<strong>at</strong>ed (Stockard, 1!21). ore recent work has shown th<strong>at</strong><br />

<strong>the</strong>se pr<strong>ln</strong>cíples do not make sufficíent allowance for: species differences ;<br />

agent specifièity¡ dosage <strong>of</strong> <strong>the</strong> agent; <strong>the</strong> metabolic p<strong>at</strong>hways <strong>of</strong> <strong>the</strong> agent;<br />

and <strong>the</strong> nêture <strong>of</strong> <strong>the</strong> embryological process involved.<br />

lllth more detai led knowledge <strong>of</strong> embryological mechanisms it is no¡¿<br />

clear th<strong>at</strong> <strong>the</strong> importance <strong>of</strong> developmental êrrest was overemphasized by<br />

Stockard. <strong>ln</strong>deed <strong>the</strong>re are some malform<strong>at</strong>ion th<strong>at</strong> arise by excessive<br />

growth or excessive resorption (P<strong>at</strong>ten, 1957). The principle th<strong>at</strong> remêîns<br />

most valid ls <strong>the</strong> împortance <strong>of</strong> tlming (Hughes, 1976).


The result <strong>of</strong> any ter<strong>at</strong>ogen¡c insult depends on <strong>the</strong> site <strong>of</strong> action<br />

by <strong>the</strong> agent, and <strong>the</strong> developmenta¡ stage <strong>of</strong> <strong>the</strong> embryo. Thís appl les<br />

to both <strong>the</strong> expression <strong>of</strong> genes, and <strong>the</strong> action <strong>of</strong> environmentâl agents<br />

(saxá, t976).<br />

<strong>ln</strong> general, <strong>the</strong> first period <strong>of</strong> embryonic development (up to <strong>the</strong><br />

form<strong>at</strong>ion <strong>of</strong> germ layers) shows little tendenöy to malfcrm<strong>at</strong>ions, with<br />

embryonic de<strong>at</strong>h <strong>at</strong> high dose levels. lJîth <strong>the</strong> onset <strong>of</strong> morphogenesîs,<br />

<strong>the</strong> embryo become¡ very suscept¡ble to ter<strong>at</strong>ogenlc influences, resultíng<br />

<strong>ln</strong> major malform<strong>at</strong>lons. 0n reaching <strong>the</strong> fetal stêge, only structures<br />

still undergoing differentl<strong>at</strong>lon (such as <strong>the</strong> bra<strong>ln</strong>, pal<strong>at</strong>e, and major<br />

vessels) are stlll susceptlble. to abnormal development (falter, l968).<br />

<strong>ln</strong> mammals, <strong>the</strong>re ls <strong>the</strong> additional problem <strong>of</strong> whe<strong>the</strong>r an êgent<br />

acts directly on <strong>the</strong> embryo or indírectty through <strong>the</strong> placenta, as<br />

exempl ifíed by <strong>the</strong> activity <strong>of</strong> trypan blue. For experimenta¡ ter<strong>at</strong>ology,<br />

<strong>the</strong> use <strong>of</strong> physical agents provîdes accur<strong>at</strong>e control <strong>of</strong> timing and dosage,<br />

though some effects may be secondary to tissue damage or alter<strong>at</strong>ion <strong>of</strong><br />

fiorphogenet i c processes.<br />

X-ray tre<strong>at</strong>ment has revealed <strong>the</strong> sequence <strong>of</strong> crÌtical periods ín<br />

development <strong>of</strong> <strong>the</strong> r<strong>at</strong>(.:lob,et €jL, 19352 Kàven, l!J8; Hicks,.t954), <strong>the</strong> mouse<br />

(Russel l, 1950; 1956; r,rilson, .|954; Hícks, 1954), and <strong>the</strong> chick (Reyss-Brion,<br />

1956; Hadj I tsky,l!62;¡1¡ rrmann and t/olff,1964). Hicks (1954, 1954) found<br />

th<strong>at</strong> irradí<strong>at</strong>ion <strong>of</strong> pregnant r<strong>at</strong>s: <strong>at</strong> 9 days produced an open brain; <strong>at</strong><br />

l0 days produced forebrain, hindbraín, cord, and facial defects; <strong>at</strong> ll<br />

days produced hydrocephalus, with braínstem and cord dèfects; êt l2 days<br />

caused reductÌons <strong>of</strong> <strong>the</strong> brain and eyes; and after thls reduced <strong>the</strong> size<br />

<strong>of</strong> fiber tracts. Hicks found th<strong>at</strong> embryos showed a high regul<strong>at</strong>ive ability<br />

before <strong>the</strong> onset <strong>of</strong> d i ffe ren t i a t i on, so th<strong>at</strong> extensive t¡ssuè damage might<br />

355


356<br />

resu¡t ¡n only minor defects a few days l<strong>at</strong>er. He concluded th<strong>at</strong> <strong>the</strong><br />

n<strong>at</strong>ure <strong>of</strong>. <strong>the</strong> defect was rel<strong>at</strong>ed to <strong>the</strong> time <strong>of</strong> tré<strong>at</strong>ment, wh¡le <strong>the</strong> extent<br />

<strong>of</strong> <strong>the</strong> defect was rer<strong>at</strong>ed to <strong>the</strong> dose. After irradl<strong>at</strong>ion <strong>of</strong> chíck embryos<br />

Hadjiîsky UgAù: <strong>at</strong> O hours produced brain and eye defects; êt 22 hcurs<br />

produced nicrocephaly, mîcrophthalml", op"n cord defects; "nd<br />

<strong>at</strong> 4g-96 hours<br />

obtaîned limb defects; and <strong>at</strong> r68 hours found'rocar ized dîgltar cefects.<br />

Kirrmann and t/olff(1964) after local îzed irradi<strong>at</strong>ion <strong>of</strong> chick embryos concluded<br />

th<strong>at</strong>: undîfferenti<strong>at</strong>ed cells are <strong>the</strong> rnos t sens¡tve to a ter<strong>at</strong>ogen¡c<br />

ðgent; t¡ssue damage during morphogenesis does not suppress dîfferenti<strong>at</strong>ign,<br />

whlch goes on to produce an abnormar organ; and <strong>the</strong> parts <strong>of</strong> <strong>the</strong> earry embryo<br />

have cons î derab le autonomy.<br />

The importance <strong>of</strong> timîng and dosage has been confirmed by experiments<br />

wlth o<strong>the</strong>r physícal âgents, such as: hypoxia in mice (Murkami and Kameyáma,<br />

'|963) and in chícks (Gar rera, r95r); urtrasound in avian embryos (Lutz et ar.,<br />

1955; Lutz and Lutz - Osterag, 1957); ultraviolet lîght in <strong>the</strong> chick embryo<br />

(Hinrlchs, 1j2J; Ðavis, 1942; 19\4); and hyper<strong>the</strong>rmîa in <strong>the</strong> chick (Deuchar,<br />

1952) and rhe hamster (Kilham and Fërm, l9i6).<br />

Despite <strong>the</strong> uncertainty <strong>of</strong> m<strong>at</strong>ernal metabolism and placental trênsport<br />

in mammals, <strong>the</strong> action <strong>of</strong> chemical agen ts also depends on <strong>the</strong> timing <strong>of</strong> m<strong>at</strong>ernal<br />

tre<strong>at</strong>ment.' <strong>ln</strong> r<strong>at</strong>s, tre<strong>at</strong>ment on days 7-10 <strong>of</strong> gestâtion has produced<br />

exencephaly, spina bîfida, hydrocephalus and o<strong>the</strong>r defects: with trypan blue<br />

(i,/arkany et al., .l958i Lendon, 1968i 197Ð: wirh sal ícyl<strong>at</strong>es (Warkany and<br />

Takacs, 1959): and with hypervitaminosis A (Giroud and l4artinet, 1957;<br />

Langman and t{elch, l!66). <strong>ln</strong> hamsters hypervitaminosis A, dimethyl sulfoxide,<br />

and sodium arsen<strong>at</strong>e have all produced exencephaly after m<strong>at</strong>ernal<br />

înjectlon on <strong>the</strong> 8th day <strong>of</strong> gest<strong>at</strong>ion (Marin-padi I la and Ferm, l!6!; Ferm,<br />

1!66; Har<strong>ln</strong>-Padilla, 1966: Ferm and Carpenter, l968).


357<br />

Uindowîlg <strong>at</strong> ear¡y stages <strong>of</strong> avian development can be regarded<br />

as ano<strong>the</strong>r physícal ter<strong>at</strong>ogenÌc procedure. The standard windowíng technic<br />

<strong>at</strong> 26-30 hours produced a high incldence <strong>of</strong> mortal ity and marform<strong>at</strong>íons.<br />

This effect was almost abol ished by obliter<strong>at</strong>ion <strong>of</strong> <strong>the</strong> introduced air<br />

space, if performed i mmed îa te I y.<br />

The ter<strong>at</strong>ogenlc actlon <strong>of</strong> windowing <strong>at</strong> êarly stages <strong>of</strong> development<br />

has been reported by Ancel (19\6-47 t '1956),Hinsch and Hami lton (1956),<br />

l4cCalllon ånd Clarke (1gSÐ, ,"nn et ê1. (i973). <strong>ln</strong> many publ îc<strong>at</strong>ions<br />

"nO<br />

no <strong>at</strong>tempt to obl iter<strong>at</strong>e <strong>the</strong> a¡r space is reported, so thât any nalform<strong>at</strong>ions<br />

recorded mlght be caused by windowing as well as by <strong>the</strong> agents<br />

emp I oyed .<br />

<strong>ln</strong> <strong>the</strong> presen, "rp.rlr"ntr,<br />

embryos <strong>at</strong> <strong>the</strong> t¡me <strong>of</strong> treêtment ranged<br />

from Stage 5 to Stage 10. The effect <strong>of</strong> wîndowing is not confined to<br />

a short period like o<strong>the</strong>r physical agents, though form<strong>at</strong>ion <strong>of</strong> <strong>the</strong> amnîon<br />

by Stage 1B protects <strong>the</strong> embryo after about 60 hours. Some defects (such<br />

as neural dysraphism, eye defects, and trunk cysts) can be <strong>at</strong>trÍbuted to<br />

an early effect; o<strong>the</strong>rs (such as rumplessness, ectop¡a viscerum, and limb<br />

defects) arise l<strong>at</strong>er. A¡though windowing exposes <strong>the</strong> dorsal surface <strong>of</strong><br />

<strong>the</strong> chick embryo, and neural defects origin<strong>at</strong>e dorsally, o<strong>the</strong>r defects<br />

(such as ecto¡iía viscerum) involve ventral structures.<br />

<strong>ln</strong> <strong>the</strong> neural tube, four degrees <strong>of</strong> involvement resulted from<br />

windowing. l4any embryos developed quite normally. Embryos with early<br />

myeloschisis showed necrosis ín <strong>the</strong> superflcial cells <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e,<br />

which l<strong>at</strong>er resolved. Hyelodysplasia, due to absence <strong>of</strong> neural pl<strong>at</strong>e<br />

m<strong>at</strong>erîal,was comb<strong>ln</strong>ed with mesodermal cysts and hemorrhages. The most<br />

severely affected embryos (not examined histological ly),showed early de<strong>at</strong>h<br />

associ<strong>at</strong>ed wlth open neural defects, severe trunk dlstorsion, reduced


358<br />

bra<strong>ln</strong> and cord volume, and <strong>of</strong>ten extensive cysts.<br />

W<strong>ln</strong>dow<strong>ln</strong>g <strong>at</strong> 26^30 hours, like o<strong>the</strong>r ter<strong>at</strong>ogenic <strong>ln</strong>sults, thus<br />

appears to have eî<strong>the</strong>r a moder<strong>at</strong>e or a severe effect on <strong>the</strong> chick embryo.<br />

This grad<strong>at</strong>ion <strong>of</strong> response enables myeloschisis and myerodysprasia to be<br />

dist<strong>ln</strong>guished as dlstinct pêthological processes, each <strong>of</strong> which requires<br />

fur<strong>the</strong>r I nvest ig<strong>at</strong> lon.


SUHHARY AND CONCLUS I ONS


360<br />

I sutlt'lARY ANp coNcLUsto]s<br />

1. The slmple pþysical procedure <strong>of</strong> wîndow<strong>ln</strong>g.e.ggs <strong>at</strong> early stages <strong>of</strong><br />

<strong>ln</strong>cub<strong>at</strong>lon (with removal <strong>of</strong> 2 ml . <strong>of</strong> albumen) proved to be highly ter<strong>at</strong>ogen<br />

I c.<br />

2. W<strong>ln</strong>dowing <strong>at</strong> 14 hours caused a very high earìy mortal ¡ty, w¡th severe<br />

malform<strong>at</strong>ions <strong>ln</strong> <strong>the</strong> survlv<strong>ln</strong>g embryos. fr."ar"na <strong>at</strong> 26 hours produced a<br />

lower nprtal lty, wlth a hÍgh incidence <strong>of</strong> defects (predominantly involving<br />

<strong>the</strong> nervous system). Exposure <strong>at</strong> 38 hours was much less ter<strong>at</strong>ogen¡c.<br />

3. Remova I <strong>of</strong> <strong>the</strong> <strong>ln</strong>troduced alr space, by reexpansion <strong>of</strong> <strong>the</strong> aír-cell<br />

or by <strong>the</strong>.addltlon <strong>of</strong> albumen or F 12 medlum, almost abol ished <strong>the</strong> ter<strong>at</strong>ogenlc<br />

effect <strong>of</strong> windowing, îf pêrformed immedi<strong>at</strong>ely.<br />

4. The <strong>ln</strong>cidence <strong>of</strong> malform<strong>at</strong>ions produced by windowing <strong>at</strong> 26-30 hours<br />

increased with extended periods <strong>of</strong> incub<strong>at</strong>ion. Open brain and cord defects,<br />

nlcrocephaly, eye defects and trunk and rump cysts were present by 3 days.<br />

Facial defects and rumplessness appeared by ! days, but ectopia viscerum<br />

and limb defects were not promingnt unt¡l after 5 days.<br />

5. Examin<strong>at</strong>ion <strong>of</strong> skeletal defects <strong>at</strong> 12 dêys showed th<strong>at</strong> vertebral<br />

lesions varîed ín severity according to <strong>the</strong> region. Spina bifida occulta<br />

occurred largely in <strong>the</strong> cervical and upper thoracic regions. Spina bifida<br />

manifesta was seen between <strong>the</strong> lower thorac¡c and sacral regions. Vertebral<br />

irregularities and deletíons were almost confined to <strong>the</strong> caudal region.<br />

6. open bra<strong>ln</strong> defects occurred <strong>at</strong> every Stage after <strong>the</strong> expected closure<br />

<strong>of</strong> <strong>the</strong> anterior neuropore, suggesting th<strong>at</strong> <strong>the</strong>y arose by non-closure.<br />

7. open cord defects were <strong>of</strong> two distinct types.<br />

8. Hyeloschlsis was preceded by a characteristic triå.ngular shape <strong>of</strong><br />

<strong>the</strong> rhombold sînus. Serial sectlons revealed regular open defects, wlth


361<br />

separ<strong>at</strong>lon between <strong>the</strong> neural pl<strong>at</strong>e and taîl-bud sources <strong>of</strong> neural<br />

t¡ssue, but coirtinuity <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e ¡nto <strong>the</strong> caudal region.<br />

These findings <strong>ln</strong>dic<strong>at</strong>e th<strong>at</strong> myeloschisis arises by non-closure <strong>of</strong> <strong>the</strong><br />

neural folds. îhe establ ishment <strong>of</strong> myeloschisis was fol lowed by local<br />

separ<strong>at</strong>lon <strong>of</strong> <strong>the</strong> notochord from <strong>the</strong> open area <strong>of</strong> neural tube, but not<br />

by overgrowth <strong>of</strong> neural t¡ssue.<br />

9. lilye I odysp I as I a appeared <strong>at</strong> about <strong>the</strong> time <strong>of</strong> expected closure <strong>of</strong><br />

<strong>the</strong> rhomboÌd sinus. Serial sections revealed irregular open defects,<br />

wîth complete absence <strong>of</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial and form<strong>at</strong>ion <strong>of</strong> <strong>the</strong><br />

cord tlssue from tal l-bud m<strong>at</strong>erlal alone. The lesions were accompanied<br />

by extensive cyst¡c and hemorrhagic changes in local mesoderm, with<br />

reduction <strong>ln</strong> somite volume. The¡:e was no assoc.¡êtecL notochordal separêtíon,<br />

but <strong>the</strong> volume <strong>of</strong> neural tls.sue was gre<strong>at</strong>ly reduced.<br />

10. ll<strong>ln</strong>dowing can be compared to o<strong>the</strong>r physical terêtogenic agents,<br />

whose effects depend on timing and dosage. The hígh incide-nce <strong>of</strong> neural<br />

defects was <strong>the</strong> result <strong>of</strong> tre<strong>at</strong>ment <strong>at</strong> <strong>the</strong>. perîod <strong>of</strong> axis form<strong>at</strong>ion and<br />

neurul<strong>at</strong>íon. Depending on <strong>the</strong> degree <strong>of</strong> embryonîc involvement,wíndowing<br />

produced two different types <strong>of</strong> open cord defects - myeloschisis and<br />

mye I odys p I as ì a.<br />

11. Because <strong>of</strong> <strong>the</strong> símílar development <strong>of</strong> neural tube f rom neural pl<strong>at</strong>e<br />

and tall-bud m<strong>at</strong>erials, with an overlap zone showîng cavit<strong>at</strong>ion and fusion,<br />

<strong>the</strong> chlck embryo provídes a good model for experimental investig<strong>at</strong>lon <strong>of</strong><br />

neural dysraphîsm <strong>ln</strong> man.


APPEND I CES<br />

362


363<br />

APPENDIX A<br />

Prepar<strong>at</strong>lon <strong>of</strong> Early Chlck Embryos for Serial Sectîoning.<br />

1. Tlp contents <strong>of</strong> egg <strong>ln</strong>to a dlsh <strong>of</strong> warm Howardrs chick saline.<br />

2, Cut vitelline r¡ernbrane around <strong>the</strong> equ<strong>at</strong>or <strong>of</strong> <strong>the</strong> yolk and peel<br />

membrane and blastoderm <strong>of</strong>f <strong>the</strong> yolk.<br />

3. Transfer to ano<strong>the</strong>r dlsh <strong>of</strong> Howardts sal ìne, remove vitell íne<br />

membrane wlth f<strong>ln</strong>e forceps, and pipette <strong>of</strong>f most <strong>of</strong> <strong>the</strong> saline to fl<strong>at</strong>ten<br />

<strong>the</strong> embryo <strong>ln</strong> a th<strong>ln</strong> fllm <strong>of</strong> saline (wîth ventral surface facing upwards),<br />

4. Add fresh Howardrs sal<strong>ln</strong>e dropwlse to ventral surface <strong>of</strong> <strong>the</strong> embryo'<br />

to wâsh <strong>of</strong>f <strong>the</strong> yolk,<br />

5. Remove salîne and add Boúints fíx<strong>at</strong>ive dropwise to wash <strong>of</strong>f remain<strong>ln</strong>g<br />

yolk partlcles and fix <strong>the</strong> embryo. Hold <strong>the</strong> dish <strong>at</strong> an angle to prevent<br />

<strong>the</strong> embryo flo<strong>at</strong>ing <strong>ln</strong>to a deep pool <strong>of</strong> fix<strong>at</strong>íve and <strong>the</strong>n curl ing <strong>at</strong><br />

<strong>the</strong> edges.<br />

6. Remove yolk - laden fix<strong>at</strong>ive and add just enough fix<strong>at</strong>ive to cover<br />

<strong>the</strong> embryo but prevent curling (for 15 mins.).<br />

7. l{ith a section-ll fter transfer to a fresh dish <strong>of</strong> Bouin's fluid,<br />

cover with a disc <strong>of</strong> filter paper to prevent curlîng, and leave for<br />

several hou rs..<br />

8. Decolorize with several changes <strong>of</strong> 70? alcohol containing 2?<br />

amrhon¡a (for several hours each).<br />

9. Leave <strong>ln</strong> 702 alcohol overnight, and examine for vísîble defects.<br />

Draw embryo with camera lucida.<br />

lO. Sta¡n with s<strong>at</strong>ur<strong>at</strong>ed eos<strong>ln</strong>-bluish in 702 alcohol (to improve<br />

vlslbll Ìty after embeddi.ng),for several hours.<br />

1t. llash briefly with 709 alcohol and separ<strong>at</strong>e <strong>the</strong> embryo from area<br />

vasculosa wlth a cork - borer.


364<br />

1i. Dehydr<strong>at</strong>e with changes <strong>of</strong> 802, 90? and 95? alcohols for t0 nins.<br />

each.<br />

13. Take embryo and a smal I pencil-wrìtten label through amyl acet<strong>at</strong>e<br />

for 10 m<strong>ln</strong>s.<br />

14. Take embryo and label through three changes <strong>of</strong> hot wax, for: 10 mins.<br />

each.<br />

15. Embed enbryo in fresh wax in a plastîc capsule, with ventral surface<br />

facing upwards, trunk parallel to long axis <strong>of</strong> capsule, and label <strong>at</strong> taíl<br />

end <strong>of</strong> emb ryo<br />

16. Cool capsule rapîdly and leave overnight ín fridge.<br />

17. Remove plastîc capsu'le and trim wax around embryo with a razor blâde<br />

until a very smal I segment containing <strong>the</strong> embryo is left with a buttress <strong>of</strong><br />

wax beh î nd it.<br />

18. Cut in as long a ribbon as possible, trimming <strong>the</strong> buttress <strong>of</strong> wêx<br />

behind <strong>the</strong> embryo several times during <strong>the</strong> cutting process.


365<br />

APPENDIX B<br />

Stainl.ng <strong>of</strong> Carti laginous Skeleton ât 11-12 Days.<br />

l. Flx for 48 hours in a mixture <strong>of</strong>:<br />

608 absol ute ethyl alcohol<br />

303 ch I or<strong>of</strong>orm<br />

101 glaclal acetlc acid.<br />

2. Oversta<strong>ln</strong> wlth 0.052 alcían blue ín a solutîon <strong>of</strong> /02 alcohol ,<br />

containing 5? acetíc acld, for 12 hours.<br />

3. Destain wi th 702 alcohol , containing 5% acetic acid, for 48 hours<br />

(using several changes <strong>of</strong> solution).<br />

4. Dehydr<strong>at</strong>e in 90? and 100? alcohol for 12 hours.<br />

5. Pass. through xylol and clear fully in benzyl benzo<strong>at</strong>e.<br />

NB, Embryos are still hard enough <strong>at</strong> <strong>the</strong> end <strong>of</strong> th¡s þrocess to take<br />

back into absolute alcohol, and section with a hand-held razor blade.


366<br />

t0<br />

BIBLIOGRAPHY


367<br />

10, BIBLIOGRAPHY,<br />

Alter, l.,l. (1962)" Anencephalus, hydrocephalus and spina bifida, Archr<br />

Neurol . 7141 1.<br />

Ambellan, E. (1955). Effects <strong>of</strong> adenìne nucleotides on neural tube<br />

form<strong>at</strong>lon <strong>of</strong> <strong>the</strong> frog enbryo. Proc. N<strong>at</strong>. Acad. Sci. 41 :428.<br />

Ambel lan, E. (1958). Compar<strong>at</strong>lve effects <strong>of</strong> mono-, di-, and triphosphorYl<strong>at</strong>ed<br />

nucleoeides on amphibian morphogenesls. J. Emb. Exp.<br />

l.lorphol. 6:86.<br />

Ambellan, E. and l,tebster, G. (19721. Effects <strong>of</strong> nucleotides on<br />

neurul<strong>at</strong>îon <strong>ln</strong> amphibian embryos. Devel . Blol . 5¿t+52.<br />

Ancel, P. (1946-47). Recherché expÉrimentale sur le sp<strong>ln</strong>a blfida.<br />

Arch. An<strong>at</strong>. Hicro. Horph. Exp. 36:45.<br />

Ancel, P. (1955). l,lalform<strong>at</strong>îons d6termînáe par des injectlons de<br />

substances chimíques local îsáes å l" tât. d rembryons de poule.<br />

J. Emb. Exp. Morphol . 3:335.<br />

Ancel, P. (1956). Recherche sur les effets tár<strong>at</strong>ogènes de lr ouverture<br />

de I roeuf de poule âu cours des trente-qu"tr" pr"r'|"."s heures de.ll<br />

<strong>ln</strong>cub<strong>at</strong>ion. Arch. An<strong>at</strong>. t'lîcro. Horph. Exp. 45:203.<br />

Anderson, tr.J..R., Baîrd, D, and Thomson, A.l'1. (1958). Epidemiology <strong>of</strong><br />

Stillbirths and infant de<strong>at</strong>hs due to congenital malform<strong>at</strong>ion. Lancet<br />

l¡.|304.<br />

Baker, P.C. and Schroeder, T.E. (1967). Cy'toplasmlc fi laments and morphogenetic<br />

rnovement ín <strong>the</strong> amphibian neural tube. Devel. Biol . 151432.<br />

Bal lantyne, J.!'1, (1904), llanual <strong>of</strong> Anten<strong>at</strong>al P<strong>at</strong>hology and Hyg¡6¡s - The<br />

Emhryo. Green. Ed I nburgh.<br />

Bar¡y, 4., P<strong>at</strong>ten, B.M. and g.tewart, B.H. (1957), Posslble factors <strong>ln</strong> <strong>the</strong><br />

development <strong>of</strong> <strong>the</strong> Arnold-Chiail malform<strong>at</strong>ion. J. Neurosurg. t4:285.


368<br />

Barson, A.J. (1920). Spina blfida: <strong>the</strong> signiflcance <strong>of</strong> <strong>the</strong> level and<br />

extent <strong>of</strong> <strong>the</strong> defect to <strong>the</strong> morphogenesis. Dev. Hed. Child Neuiol.<br />

12:.129.<br />

Barth. L.G. and Barth, L.J, (1974). lonlc regul<strong>at</strong>ion <strong>of</strong> embryonic<br />

<strong>ln</strong>duction and cel I differenti<strong>at</strong>ion in Rana pipèns. Devel . Blol . 39:'l.<br />

Beck, F. and Lroyd, J.B. (r963). The prepar<strong>at</strong>ion and ter<strong>at</strong>ogenic<br />

propertles <strong>of</strong> pure trypan blue and its common contaminants. J. Emb.<br />

Exp. I'lorphol . 112175.<br />

Beck, F. and Lloyd, J.B. (1966). The terêtogentc effect <strong>of</strong> azo dyes.<br />

Adv. Ter<strong>at</strong>ol. 1:13,l.<br />

Benírschke, K. (,|966). <strong>ln</strong>, The Sex Chrom<strong>at</strong><strong>ln</strong>. Ed. K. L. Ìloore. Saunders,<br />

Phlladelphia.<br />

Bentt Iff, s. and Gordon, L. H. (r965). spinar cord form<strong>at</strong>lon drstar to<br />

<strong>the</strong> posterior neuropore. Abst. Ter<strong>at</strong>ol . Soc. 5:4.<br />

Bergquíst, H. ('l959) . Experíments on <strong>the</strong> overgrowth phenomenon in <strong>the</strong><br />

brain <strong>of</strong> chick embryos. J.'Emb. Exp. Morphol . 72122.<br />

Blurrel, J., Evans, E.B. and Eggers, c. u. N. (lgSg). partial and complete<br />

agenesis or malform<strong>at</strong>ion <strong>of</strong> <strong>the</strong> sacrum wîth associ<strong>at</strong>ed anomar ies. J,<br />

Bore Joint Sur9. 4lA:497.<br />

Boere¡ta .t. (1929). Die Dynanik des Hedul larrhrschulusses. Roux Arch.<br />

Entfv.. - ir'lech. 0rg. 6:601.<br />

Bonnevie, K. (1934). Embryologicar anarysis <strong>of</strong> gene manifest<strong>at</strong>ron in<br />

Llttle and Baggrs abnormal mouse tribe. J. Exp. Zool . 67:443.<br />

Bragg, A.N. (1938). The organiz<strong>at</strong>ion <strong>of</strong> rhe early enbryo <strong>of</strong> Bufo<br />

cogn<strong>at</strong>us as revealed especial ly by <strong>the</strong> mltotic index. Z. Zell .<br />

tli cr. An<strong>at</strong>. 282154.


369<br />

Braun, l'{. (1882). entwicklungsvo.gägn" am Schi^¡anzende bei einigen<br />

Så.ugethÌeren mit Berücks¡chtìgung der Verhältn¡sse bein menschen. Arch.<br />

An<strong>at</strong>. Physiol i An<strong>at</strong>. Abt. 207"1<br />

Bremer; J. L. (1952). Dorsal ¡ntestinal fîstula; accessory neurenteric<br />

canal; dlastem<strong>at</strong>omyel ia. Arch. P<strong>at</strong>h. 54:132.<br />

Brocklehurst, G. (1969). l'he development <strong>of</strong> ih. hur"n cerebrosp<strong>ln</strong>al<br />

fluid p<strong>at</strong>hr^ray with particuiar reference to <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> fourth ventr¡cle.<br />

J. An<strong>at</strong>. 105:467.<br />

Brouwer, B. (1916). Klinische. - an<strong>at</strong>omîsche Untersuchung 'tiber partielle.<br />

Anencephal ie. Z. Ges. Neur. Psychí<strong>at</strong>. 32t16\.<br />

Brown, M.G., Hamburger, V. and Schmltt, F.0. (1941). Density studies<br />

on amphlbían embryos wíth special reference to <strong>the</strong> mechanism <strong>of</strong> organizer<br />

actîon. J.. Exp. Zool. 88:353.<br />

Browne, D. (1934). Tal ipes equino-varus. Lancet. ll:969.<br />

Browne, D. (1967). A mechanist¡c înterpretion <strong>of</strong> certain m_alferm<strong>at</strong>lons.<br />

Adv. <strong>ln</strong> Ter<strong>at</strong>ol.2:11.<br />

Bryden, H. 14., Perry, C. and Keeler, R.F. (1973). Effects <strong>of</strong> alkaloids<br />

<strong>of</strong> Ver<strong>at</strong>rum cal ifornic.um on.chîck embryos. Teralol. 8:19.<br />

Burda, D. J. (1968). Studies on <strong>the</strong> experimental inductíon <strong>of</strong> over-<br />

. grov,rth in chick embryos. An<strong>at</strong>. Rec. 161:419.<br />

Burda-Wi lson, D. (1971). Distríbution <strong>of</strong> thymidine - H3 <strong>ln</strong> <strong>the</strong> overgrown<br />

brain <strong>of</strong> <strong>the</strong> chlck embryo. J. Comp. Neurol. 141t37.<br />

Burnside, B. (.l971). |,licrotubules and mlcr<strong>of</strong>llaments ¡n ne.wt neurul<strong>at</strong>ion<br />

Devel . Biol. 26:416.<br />

, Butros, J.(1962). Studîes on <strong>the</strong> ¡nductive action <strong>of</strong> <strong>the</strong> early chick<br />

axls on <strong>the</strong> fsol<strong>at</strong>ed post-nodal fragments. J. Exp. Zool. 149¡'l.


Butros' J. (1965). Action <strong>of</strong> hearr and liver R.N.A. on <strong>the</strong> differenti<strong>at</strong>ion<br />

<strong>of</strong> segmen.ts <strong>of</strong>. chick blastoderms. J. Enb. Exp. llorphol . 13:1.19.<br />

Caffey, J, .(19721, <strong>ln</strong>, Pedi<strong>at</strong>rlc X-Ray Diagnosis. 6th Edirlon. year Book<br />

Hedical Pub. Ch i cago.<br />

Caneron, A.H. (1956). The spînal cord leslon in spiria biflda cystica.<br />

Lancet ll:1/1 .<br />

Carter, C.0. (1969). Spina bifida and anencephaly: a problem in genetÌcenvlronmental<br />

interactíon. J. Biosoc. Sci. l:71<br />

Carter, T.C. (1956). Genetics <strong>of</strong> <strong>the</strong> Little and Bagg X-rayed mouse stock.<br />

J. Genet. 54:311.<br />

Carter, T- C. (1959). Embryology <strong>of</strong> <strong>the</strong> Little and Bagg X-rayed mouse<br />

stock. J. Genet. 56 :401 .<br />

C<strong>at</strong>lzone, 0. and Gray, P. (1941). Experiments wíth chemicêl interference<br />

<strong>of</strong> early morphogenesis <strong>of</strong> <strong>the</strong> chick. ll. Effects <strong>of</strong> lead on C.N.'S.<br />

J. Exp. Zool . 87:71 .<br />

C<strong>of</strong>fey, V.P., and Jessop, tr.J.E. (,|957). A study <strong>of</strong> 137 cases <strong>of</strong><br />

anencephaly. Br¡t. J. Prev,Soc. l4ed. lt:174.<br />

Cohlan, S.q. (1954) . Congenital anomalies ìn <strong>the</strong> r<strong>at</strong> produced by excess<br />

intake <strong>of</strong> vitam¡n A ín pregnancy. paedi<strong>at</strong>rics 132556.<br />

Corl iss, C.E.,' Fedinec, A.A. and Robertson, c.G. (,|966). .<br />

Ter<strong>at</strong>ogenlc<br />

effect <strong>of</strong> teta¡ìus toxin on c.N.S. <strong>of</strong> early chick embryos. An<strong>at</strong>. Rec. 15\..221 -<br />

Corliss, C.E. and Robertson, c.c. (1959). Cephalocaudal and alar-basal<br />

vari<strong>at</strong>ions in <strong>the</strong> neural ep¡<strong>the</strong>l ium <strong>of</strong> 36 hour chick ernbryos. An<strong>at</strong>. Rec.<br />

1 33:446.<br />

Corliss, C.E. and Robertson, G.G.(1963). The p<strong>at</strong>tern <strong>of</strong>. mitotic densi ty<br />

in <strong>the</strong> early chlck neural epi<strong>the</strong>l ium. J. Exp. Zool . 15j¿125.<br />

370


371<br />

Crlley, B,B.(1969). Analysîs <strong>of</strong> <strong>the</strong> embryonic sources and mechanisms<br />

<strong>of</strong> development <strong>of</strong> posterior levels <strong>of</strong> chick neuraì tube. J. Horphol .<br />

1 28: 465 .<br />

Dareste, C. (1877). Ráche-rches sur la productlon artificielle des<br />

monstruositás o¡Ll essais de t.r<strong>at</strong>ogáie experimentale. Re<strong>ln</strong>wald . Paris.<br />

Davis, J.0. (1942). Photochemical spectral analysis <strong>of</strong> neural tube<br />

form<strong>at</strong>lon. Ph.D. Thesîs. Univ..<strong>of</strong> I'lissouri.<br />

Davis, J.0. (1944). ptrotochemical spectral analysls <strong>of</strong> neural tube<br />

form<strong>at</strong>îon. Biol . Bul l. 87273.<br />

Dekaban, 4.S. (1963). Anencephaly în early human embryos. J. Neurop<strong>at</strong>h.<br />

Exp. Neurol . 22:533.<br />

Dekaban, A.S. and Bartelmez, G.T.r. (1964). Complete dysraphísm in a l4-<br />

somîte human embryo. Am. J. An<strong>at</strong>. 115227.<br />

Derrlck, c. E.(1937), An analysis <strong>of</strong> <strong>the</strong> early development <strong>of</strong> <strong>the</strong> .chick<br />

by means <strong>of</strong> <strong>the</strong> mitotic index. J. Horphol , 61 t257.<br />

Deuchar, E.M. (1952). The effect <strong>of</strong> a high temper<strong>at</strong>ure shock on earìy<br />

norphogenesis în <strong>the</strong> chick embryo. J. Àn<strong>at</strong>. 86:443.<br />

van Dongen, R. (1964). <strong>ln</strong>sulin and myeloschisis in <strong>the</strong> <strong>the</strong> chick embryo.<br />

Aust. J. Exp,.Biol , Med. Scî. 42:607,<br />

Dunn, L.C, and Landauer, l./. (1934). The genetics <strong>of</strong> <strong>the</strong> rumpless fowl<br />

wl th evidence <strong>of</strong> a case <strong>of</strong> changing dominance. J. Genet. 292217.'<br />

Edwards, J. H. (1958). Congenital malform<strong>at</strong>ions <strong>of</strong> <strong>the</strong> central nervous<br />

system. Br¡t. J. Prev. Soc. Hed. 12:115.<br />

Elwood, J.H. (1970). Anencephalus in <strong>the</strong> gritish lsles. Dev. Med. Child<br />

Neurol. 12¿582.<br />

Fallon, l'1., Gordon, A.R.G. and Lendrum, A.C. (1954). Hediastinal cysts<br />

<strong>of</strong> fore-gut origin associ<strong>at</strong>ed with vertebral abnormal lties. Brlt. J.<br />

Sur9. 41 :520.


372<br />

Feeney., J. F. and W<strong>at</strong>terson, R.L..(,1946).. The development <strong>of</strong> <strong>the</strong> vascular<br />

p<strong>at</strong>tern within <strong>the</strong> r',,a|I s <strong>of</strong> <strong>the</strong> central nervous system <strong>of</strong> <strong>the</strong> chick embryo.<br />

J. l''lorphol . 78¿231 ,<br />

Ferm, V.H. (1958). fer<strong>at</strong>ogenic effects <strong>of</strong> trypan blue on hamster embryos.<br />

J. Emb. Exp. Horphol . 6:284.<br />

' Ferm, V.H. (1966). Congen¡tal malform<strong>at</strong>ions ihducecl by CÌmethyl sulfoxide<br />

<strong>ln</strong> <strong>the</strong> golden hamster. J. Emb. Exp. l''lorphol . l6¡49.<br />

F.erm, v.H. ând Carpenter, s.J. (1968). l',lalform<strong>at</strong>f ons induced by sodîum<br />

aisen<strong>at</strong>e. J. Reprod, Fertil. 17:199.<br />

Foltz, E.1., and Shurtleff, D.B. (lglZ). Hydrocephalus tre<strong>at</strong>ment ¡n <strong>the</strong><br />

early weeks <strong>of</strong> life. <strong>ln</strong>, 4.4,0.S. Symposium on ilye I omen I ngoce I e. Bal tîmore<br />

Fowler, l. (1953). Responses <strong>of</strong> <strong>the</strong> chick neural tube in mechanical ly<br />

produced spina bîfida. J. Exp. .7ool . 12J:1lj<br />

Frazer, J.Ê. (1921-22). Report <strong>of</strong> an anencephalic embryo. J.An<strong>at</strong>. 56:12,<br />

Fuj ita, s, (1960). t'litqtíc p<strong>at</strong>rerns and histogenesís <strong>of</strong> <strong>the</strong> central<br />

nervous system. N<strong>at</strong>ure 185: 702.<br />

Gal lera, J. (1951). <strong>ln</strong>fluence de I'<strong>at</strong>mospiràre artifîciellement.<br />

modîfîle sur le developpment embryonnaire du poulet. Acta Anât. I1:549.<br />

. Gardner, l,r,J, (1959). Anâtomic feêtures comÍnon to Arnold-chîarî and<br />

Dandy-tlaIker rialform<strong>at</strong>ions suggest common origin. Clev. Clin. Quart.<br />

26:206.<br />

Gardner, !t,J. (1961). Rupture <strong>of</strong> <strong>the</strong> neural tube. The cause <strong>of</strong> myelomeningocele.<br />

Arch. Neurol . lt: l.<br />

Gardner, W.J. (1964). Diastem<strong>at</strong>gmyel ia and <strong>the</strong> Kl ippel-Fei I syndrome. /<br />

Cleveland Cl in. Quart. 31:19.<br />

Gardner, W,J. (1972). <strong>ln</strong>, The Dysraphlc St<strong>at</strong>es. Exerpta l'le


373<br />

dqs anomal ies de lrorganiz<strong>at</strong>ion chez lrhomme et res animaux. Bal r l)re.<br />

Pari s.<br />

Gesenius, H. (1952). The increases <strong>of</strong> births <strong>of</strong> monsters in Berlin and<br />

its suburbs <strong>ln</strong> <strong>the</strong> post-war years. <strong>ln</strong>t. J. Sexology. 6:24.<br />

Gillette, R. (.l944). Cell nunber and cell size in <strong>the</strong> ectoderm dur¡ng<br />

neurul<strong>at</strong>lon (Amblystoma macul<strong>at</strong>um). ..1. Exp. iool. 96:201.<br />

Gl I lman, J., Gilbert, C., di I lman, T. and.Spence , l. (1948).<br />

Prel im<strong>ln</strong>ary report on hydrocephalus, spina bifida and o<strong>the</strong>r congenital<br />

anomalies <strong>ln</strong> <strong>the</strong> r<strong>at</strong> produced by trypan blue. S. Afr. J. Med. Sci.<br />

13:47.<br />

Gillman, J., Gilbert, 1., Spence, l. and Gillman, T. (tgSl). Fur<strong>the</strong>r<br />

report on congenital defects in r<strong>at</strong>s produced by trypan blue. S..Afr.<br />

J. lled. Sci. 16:125.<br />

Gingell, D. (1970). Contractile responses <strong>at</strong> <strong>the</strong> surface <strong>of</strong> an amphibian<br />

egg. J. Emb.. Exp. Morphol. 232583.<br />

Gi roud, A.et l'larrinet, M, (1957). orphogenàse de lranencephal ie. Arch.<br />

An<strong>at</strong>. I'l i cr. 46:247.<br />

Glaser, 0.C. (1914). 0n <strong>the</strong> mechanism <strong>of</strong> morphologîcal dîfferenti<strong>at</strong>ion<br />

În <strong>the</strong> nervous system. l. The transform<strong>at</strong>ion <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e into<br />

. a neural tube.' An<strong>at</strong>. Rec. 8:525.<br />

Glaser, O.C. (1916). The <strong>the</strong>ory <strong>of</strong> autonomous folding in embryogenesis.<br />

Science 44:505.<br />

Glucksmann, A. (1951). Cell de<strong>at</strong>hs in normal vertebr<strong>at</strong>e ontogeny. Biol.<br />

Rev.26:59.<br />

Grabowski, c.T. (1957). The inductlon <strong>of</strong> secondary embryos in <strong>the</strong> early<br />

chick blastodern by grafts <strong>of</strong> Hensents node. Am. J. An<strong>at</strong>. l0l:101.


374<br />

Grobstein, C. (1953) . orphogenetic interaction between embryonIc mouse<br />

tissues separ6teC by,,a nembrane 'f i I ter:. N<strong>at</strong>ure 172:869.<br />

Grüneberg, H. (1963). <strong>ln</strong>, The P<strong>at</strong>hology <strong>of</strong> Development. Blackweì l. Oxford.<br />

Hadjtiàky, P.(1962). Quoted by Ki rrmann, J. -M. and Wolff, E.(1964). <strong>ln</strong>,<br />

Ter<strong>at</strong>ogenic effects <strong>of</strong> ionizing radl<strong>at</strong>ions on <strong>the</strong> embryonlc development<br />

<strong>of</strong> <strong>the</strong> hlgher verrebr<strong>at</strong>es. <strong>ln</strong>t. Rev. exp. eainol . 3t365.<br />

Ham, R.G.(1965). ctonal growth <strong>of</strong> manmalian celìs in a chemical ly defined<br />

syn<strong>the</strong>tlc medlum. Proc. N<strong>at</strong>. Acad. Sci . 53¿288.<br />

Hamburger, V. (1948). The mitotic p<strong>at</strong>terns ín <strong>the</strong> spinal cord <strong>of</strong> <strong>the</strong> chîck<br />

embryo and <strong>the</strong>ir rel<strong>at</strong>îon to histogenetic processes. J. Comp. Neurol . 88'.221 .<br />

Hamburger, V. and Habel, K. (1947). Ter<strong>at</strong>ogenÌc and lethal effects <strong>of</strong><br />

<strong>ln</strong>fluenza A and mumps vîruses on early chick embryos. Proc. Soc.Exp.<br />

Blol. Med. 66:608.<br />

Hamburger, V. and Hamilton, H.L. (1951). A series <strong>of</strong> normal stages in<br />

development <strong>of</strong> <strong>the</strong> chick embryo. J. l'lorphol. 88:.49.<br />

Hamburgh, l'1. (1952). Malform<strong>at</strong>îons in mouse.embryos induced by trypan blue.<br />

N<strong>at</strong>ure. 169l'27.<br />

Hamburgh, l{. (1954). Embryology <strong>of</strong> trypan blue induced abnormalities in míce.<br />

An<strong>at</strong>. Rec. t l9:409.<br />

Hami lton, H.L. (1952). <strong>ln</strong>, Lîllie's Development <strong>of</strong> <strong>the</strong> Chick. Holt, R¡nehart<br />

and llinston. lrd Edition. New York.<br />

Harpel, H.S. and Gautieri, R.F. (1968). Morphine-induced fetal malform<strong>at</strong>ions.<br />

l. Exencephaly and axial skeletal fusions. J. Phårmacol . Sci. 57.| :1590.<br />

Harrison, R.c. (.|947).Wound heal ing and reconstitutíon <strong>of</strong> <strong>the</strong> central nervous<br />

system <strong>of</strong> <strong>the</strong> amphîbian embryo after removal <strong>of</strong> parts <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e.<br />

J. Exp. Tool . 106:27.


375<br />

He<strong>at</strong>h, H.D., Shear, H.H., lm€gawa, D.T., Jones, I'1. H. and Adams, J. H.<br />

(1956). Ter<strong>at</strong>ogenic effects <strong>of</strong> herpes simplex, vaccinìa, influenza - A<br />

(ttVS), and dìstemper virus infectìons on early chick embryos. Proc. Soc.<br />

Exp. Biol . Med. 92t675 (1956).<br />

Hewltt, D.(1963). Geographical vari<strong>at</strong>îons in <strong>the</strong> mortal îty âttributed to<br />

spina blfida and o<strong>the</strong>r congenital malform<strong>at</strong>îons. Br¡t. J. Prev. soc.<br />

I'led. 17:13.<br />

Hicks, S.P. (t954). echanism åf radi<strong>at</strong>ion anencephaly, anophthalmia and<br />

pitultary anomal ies. Repair ìn <strong>the</strong> mammalian embryo. Arch. P<strong>at</strong>h. 57 *63..<br />

Hlcks, S.P. (1954) . The effects <strong>of</strong> ionizing radi<strong>at</strong>ion, certa<strong>ln</strong> hormones,<br />

and radiomimetic drugs or <strong>the</strong> developing central nervous system. J.<br />

Cel ì. Comp. Physîol . 43. Supp. I :I51.<br />

Hll lman, N.W.4 Nìu, l.t.C. (1963). Chick cephalogenesis. l. The effect <strong>of</strong><br />

R.N.A. on early cephal ïc development. Proc. N<strong>at</strong>. Acad. Sci. 50:486.<br />

Hinrlchs, M.A. (1927). Hodïfìc<strong>at</strong>îon <strong>of</strong> development on <strong>the</strong> basis <strong>of</strong><br />

differential susceptibility to radi<strong>at</strong>ion. lV. Chîck embryos and ultraviolet<br />

radi<strong>at</strong>ion. J. Exp. Tool . \7:309.<br />

Hinsh, G.W. and Hamilton, H, L. (1956). The developmental f<strong>at</strong>e <strong>of</strong> <strong>the</strong><br />

first somlte <strong>of</strong> <strong>the</strong> ch¡ck. An<strong>at</strong>. Rec. 125t225.<br />

Hîs, W. (1874). Unsere Kãrperform und das physiologische Problem ihrer<br />

En ts tehung. Vogel. Leipzî9.<br />

Holtfreter, J. (1943). Properties and functions <strong>of</strong> <strong>the</strong> surface coar in<br />

amphibian eggs. J. Exp. Zool . 932251 .<br />

Holtfreter, J. (1955). <strong>ln</strong>, Analysis <strong>of</strong> Development. Eds. lJi llîer, D.H.,<br />

llelss, P.A and Hamburger, V. Saunders. New York.<br />

Hsu' C.1.. and van Dyke, J. H. (1948). An analysis <strong>of</strong> growth r<strong>at</strong>es in<br />

neural epl<strong>the</strong>l ium <strong>of</strong> normal and spina blfidous (nryeloschîsis) mouse embryos.


376<br />

An<strong>at</strong>. Rec. t 00 :745.<br />

Hughes, A.F.l,¡. . (1976). Developmental biology and <strong>the</strong> srudy <strong>of</strong> malformaiì,ons,<br />

Biol. Rev. 51 t143.<br />

Hughes, A.F.W. and Freefran, R.B. (1974). Compar<strong>at</strong>ive remarks o¡. <strong>the</strong><br />

development <strong>of</strong> <strong>the</strong> tail cord among higher vertebr<strong>at</strong>es. J. Emb.. Exp.<br />

llorphol , 322355.<br />

Hunt, T.E. (1931). An experimental study <strong>of</strong> <strong>the</strong> independent dlfferenti<strong>at</strong>ion<br />

<strong>of</strong> <strong>the</strong> lso¡<strong>at</strong>ed Hensenrs node and its rel<strong>at</strong>îon to <strong>the</strong> f;orm<strong>at</strong>ion <strong>of</strong> axial<br />

and non-axial parts in <strong>the</strong> chick embryo. J. Exp. Zool . 59¿395.<br />

Hunter, R.H. (1934-35). Extroversion <strong>of</strong> <strong>the</strong> cerebral hemîspheres in a<br />

human embryo. J. An<strong>at</strong>. 69¡82.<br />

<strong>ln</strong>gálls, N,t/. (t932). Studies în <strong>the</strong> p<strong>at</strong>hology <strong>of</strong> developnent. Am, J.<br />

P<strong>at</strong>h. 8:525.<br />

<strong>ln</strong>galls, T.H., Avis, F.R., Curley, F.J. and Temin, H.l',l. (1953). Genetic<br />

determinants <strong>of</strong> hypoxia-induced congenital abnormal i ties. J. Hered.<br />

44: 185.<br />

Jacobson, A.G. and Gordon, R. (1976). Changes in shape <strong>of</strong> <strong>the</strong> developing<br />

vertebr<strong>at</strong>e nervous system analysed experîmental ly, m<strong>at</strong>hem<strong>at</strong>ícally and by<br />

computer simul<strong>at</strong>ion. J. Exp. Zool. 197:191.<br />

Jacobson, C:0.' (1962). Cell migr<strong>at</strong>ion in <strong>the</strong> neural pl<strong>at</strong>e and <strong>the</strong> process<br />

<strong>of</strong> neurul<strong>at</strong>lon in <strong>the</strong> axolotl larva. Zool. Bidr. Uppsala 35:433..<br />

James, C.C.M. and Lassman, L.P, (1967). Resul ts <strong>of</strong> tre<strong>at</strong>ment <strong>of</strong> progressive<br />

lesions <strong>ln</strong> spina blfida occulta five to ten years after laminectomy. Lancet<br />

I I 31277 .<br />

James, C.C.M. and Lassman, L. P. (1972). Spinal Dysraphism. Butterworth.<br />

London.


377<br />

Jel inek, R. (1960). Development <strong>of</strong> experimentál exencephalia in <strong>the</strong><br />

chlck. CËslkl. fiorf. 8;368.<br />

Job, T.T., Leibold, G. J. and Fitzmaurice, H.A. (1935). BÌólogical effects<br />

<strong>of</strong> Roentgen rays. The determ<strong>ln</strong><strong>at</strong>ion <strong>of</strong> critical periods in mammalian<br />

development wîth X-rays. Am. J. An<strong>at</strong>. 56:97.<br />

Kätlá, B. (1955). Cell degenerarion durÌn9 Áormal onrogenesîs <strong>of</strong> <strong>the</strong><br />

rabb ¡ t brain. J. An<strong>at</strong>. 89:153.<br />

räl lán, B. (1965). Prol ifer<strong>at</strong>ion în rhe embryonic brain yrîth specíal<br />

reference to <strong>the</strong> overgrowth phenomenon and íts poss¡ble rel<strong>at</strong>ionship to<br />

neop¡,asía. Prog. Brain Res. l4:263.<br />

Käl lén, B. (1968). Early embryogenesis <strong>of</strong> <strong>the</strong> central nervous system<br />

with special reference to closure defects. Dev. l,ted. Chlld Neurol. Supp.<br />

16 : 44.<br />

Kalter, H. (1968), <strong>ln</strong>, Terêtology <strong>of</strong> <strong>the</strong> Central Nervous $ystem. Univ.<br />

<strong>of</strong> Ch í cago Press. Chicago.<br />

['aplan,S. (1965). Physìological and morphologícal analysis <strong>of</strong> <strong>the</strong> effects<br />

<strong>of</strong> trypan blue on <strong>the</strong> chick embryo. An<strong>at</strong>. Rec. l5l:368,<br />

Kaplan, S, and Grabowski, C.T, (1967). Analysis <strong>of</strong> trypan blue-índuced<br />

rumplessness în chick embryos. J. Exp. Zool . 165:325,<br />

Kaplan, S., arid Johnson, E.M. (1970). Ter<strong>at</strong>ogenic effects <strong>of</strong> direct<br />

înjection <strong>of</strong> aqueous and proteín-bound trypên blue ínto <strong>the</strong> bloodstream<br />

<strong>of</strong> 3-day chick embryos. Ter<strong>at</strong>ol . 3J69.<br />

Karfunkel , P. (1971). The role <strong>of</strong> microtubules and micr<strong>of</strong>¡lêments in<br />

neurul<strong>at</strong>ion in Xenopus. Devel . Biol. 25330.<br />

Karfunkel , P, (19721. The activity <strong>of</strong> mïcrotubules and micr<strong>of</strong>ilaments<br />

in neurul<strong>at</strong>ion in <strong>the</strong> chick. J. Exp. Zool. 18'l:289.


378<br />

Karfunkel, P. .(1974). The mechanlsm <strong>of</strong> neural tube form<strong>at</strong>ion¡ <strong>ln</strong>t.<br />

Rev. Cyt. J8:245.<br />

Kaven, A. (193S). Räentgenmodifik<strong>at</strong>ionen bei fiäusen. zeit. tlenschl . Ver.<br />

Konsr¡ r. Lehre. 22:2)8.<br />

l¿.eibel, F. and Elze, C. . (1908) . <strong>ln</strong>, Normentafel zur Entwicklungsgeschichte<br />

des l4enschen. Fi scher, Jerra.<br />

Kennedy, Vr.P. (.l967). Epldemiologic aspects <strong>of</strong> <strong>the</strong> problem <strong>of</strong> congenital<br />

malform<strong>at</strong>ions. Birth Defects 0riginal Articles Series, Vol. lll:No.2.<br />

Khan, A.A. (1965). Congenîtal malform<strong>at</strong>ions in Afrlcan neon<strong>at</strong>es in<br />

Nairobi. J. Trop. Med. Hyg. 68'272.<br />

Kllham, L. and Ferm, V.H. (1976). Exencephaly in fetal hamsters fol ìowíng<br />

exposure to hyper<strong>the</strong>rnia. Ter<strong>at</strong>ol . 142323.<br />

Klrroênn:', J.H. and t'lolff . E. (1964). Ter<strong>at</strong>ogenic effects <strong>of</strong>: îoniz<strong>ln</strong>g<br />

radi<strong>at</strong>ions on <strong>the</strong> embryonic development <strong>of</strong> <strong>the</strong> higher vertebr<strong>at</strong>es. <strong>ln</strong>t.<br />

Rev. Exp. P<strong>at</strong>hol, 3:365.<br />

Landauer, l{. (1945). Recessive rumplessness <strong>of</strong> fowl6 wlth kyphoscollosls<br />

and supernumerary ribs. Genetics 30:403.<br />

Landauer, W. and Baumann, L. (1943). Rumplessness <strong>of</strong> chlcken embryos<br />

produced by mechanical shaking <strong>of</strong> eggs prior to incub<strong>at</strong>ion. J. Exp. Zool .<br />

. 93:51<br />

Landaue.r, ll. and Bl iss, C,J'. (19!6). <strong>ln</strong>sul in-induced rumplessnets <strong>of</strong><br />

chickens. lll. The rel<strong>at</strong>ionship <strong>of</strong> dosage and <strong>of</strong> developmental stage<br />

<strong>at</strong> <strong>the</strong> t¡me <strong>of</strong> injection to response. J. Exp. Zool. 102:1.<br />

Landauer, ì^1. and Dunn, L.C. ('1925). Two types <strong>of</strong> rumplessnèss in domestic<br />

fowls. J. Hered. 16:151 .<br />

Langman, J. and l.lelch, G. W. (1966). Effect <strong>of</strong> vitamin A on devetopment <strong>of</strong><br />

<strong>the</strong> central nervous,systern. J. Comp. Neurol. .l28:1.


379<br />

Laurence, K.14. (1964). Thé n<strong>at</strong>ural history <strong>of</strong> spina bifida cystica.<br />

Detaî led analysis <strong>of</strong> 40/ cases. Arch. Dis. Child. 39:4'l.<br />

Laurence, K.N. (1969). The recurrence risk In spina bifida cystica and<br />

anencephaly. Dev. l,led. Child Neurol . Supp. 20:2J.<br />

Laurence, K.14..(1976). Spîna bifida research in Wales. J. Roy. Coll.<br />

Phys. Lond. 10:333.<br />

La Viel le, C.J. and Campbell, D.A. (1958). Neur<strong>of</strong>ibrcm<strong>at</strong>osis and intr<strong>at</strong>horacic<br />

meningocele. Radiology. /0:62.<br />

Lebedeff, A. (f881). Uber díe Entstehu,ng der Anencephalie und Spina bifida<br />

bel Vöge<strong>ln</strong> und I'tenschen. Vi rchclvs Arch. P<strong>at</strong>h. An<strong>at</strong>. 86:263.<br />

Leck, l. (1969). Ethnic differences in <strong>the</strong> incidence <strong>of</strong> malform<strong>at</strong>¡ons<br />

fol lowing migr<strong>at</strong>ion. Brlt. J. Prev. Soc. Med. 2l:166.<br />

Leck, l. and Record, R.c. (1966). Seasonal incidence <strong>of</strong> anencephalus.<br />

Brit. J. Prev. Soc. Med. 20:.67.<br />

Lehmann, F.E. (1937). i,lesodermisierung des prå'sumptiven chorda-m<strong>at</strong>erials<br />

durch einwi rkung von lithiumchlorid auf die gastrula von Trìton alpestr¡s.<br />

Arch. Entwmech. 0rg. 136:112.<br />

Lemi re, R.J, (1969). Vari<strong>at</strong>îons in development <strong>of</strong> <strong>the</strong> caudal neural tube in<br />

human embryos. Ter<strong>at</strong>ol . 21361 .<br />

Lemire, R.J., .Shepard, T.H. and Elsworth, C.A, (1965). Caudal myeloschisis<br />

in a 5 mm. (horizon XIV) human embryo. An<strong>at</strong>. Rec. t!2:!.<br />

L,endon, R.G. (1968). Studies on <strong>the</strong> embryogenesis <strong>of</strong> spina bifida in <strong>the</strong><br />

r<strong>at</strong>. Dev. l''led. Chî ld Neurol. Supp. 16:54.<br />

Lendon, R.c. (1972). An autoradiographîc study <strong>of</strong> induced myelomeningocele.<br />

Dev. I'led. Chl ld Neurol. Supp. 27¡80.<br />

Lendon, R.G. (1975). The embryogenesÌs <strong>of</strong> trypan-blue induced spina bifida<br />

aperta and short taíl <strong>ln</strong> <strong>the</strong> r<strong>at</strong>. Dev. I'led. Chlld Neurol. Supp. 25:3.


380<br />

Llghtowler, C.D.R. .(1971). Men ingomye I oce I e : The price <strong>of</strong> tre<strong>at</strong>ment.<br />

Brlt. Hed. J..l l:385.<br />

Lorber, J. and Levick, R.K.(1967). Spina bifida cystica: incÌdence <strong>of</strong><br />

spina bifida occulta in parents and în controls. Arch. Dìs. Chlld.42:<br />

171.<br />

Lutz, H., Bonhomme, C.H. and Lutz-Osterag, Y.' (1955). Actîon local lsáe<br />

des ultra-sons sur le blastoderme non incube de I toeuf dloîseau. Compte<br />

Rend. Soc. De Biol . 1,+9t1475.<br />

Lutz, H. and Lepy, t4. (1958). Action du gaz carbonique sur le blastoderme<br />

non incubá droiseau. Bull. Soc. Zool . 83t76.<br />

Lutz, H. ênd Lutz-osterag, G. (1957r. Action des ultra-sons sur le developpement<br />

du blastoderme non incube droiseau. Arch. An<strong>at</strong>. l,licro. Morph. Exp.<br />

46ß07.<br />

Mackenzíe, N.G., and Ernery, J.L, (1971).Oeformitíes <strong>of</strong> <strong>the</strong> cervîcal cord<br />

1n chi ldren with neurospinal dysraphism. Dev. l'1ed, Child Neurol. Supp.<br />

25258.<br />

l,tacHahon, 8,, Pugh, T.F. and <strong>ln</strong>galls, T.H. tt953).nnencephalus, spina bifida,<br />

and hydrocephalus incìdence rel<strong>at</strong>ed to sexr. race, and season <strong>of</strong> birth, and<br />

incidence ín siblings. Brit, J. Prev. Soc, Hed. 7:21t.<br />

Mac|lahon, B, ånd. Yen, S. (1971). Unrecognised epîdemic <strong>of</strong> anencephaly and<br />

spina bifida. Lancet I :31.<br />

McCal I lon, D.J. (1971 ) . Embryotoxic effect <strong>of</strong> t i ssue-speçi f ic. aRtiserum<br />

în <strong>the</strong> chick embryo. Canad. J. zool. 49¡143.<br />

I'tcCallion, D.J. and Clarke, R.B. (1959). A study <strong>of</strong> rhe terarogenîc effecrs<br />

<strong>of</strong> opening a window in <strong>the</strong> shel I <strong>of</strong> <strong>the</strong> henrs egg <strong>at</strong> 24 hours <strong>of</strong> íncub<strong>at</strong>ion.<br />

Canad. J. Zool . 37l.387.


381<br />

McKeown, T. and Record, R.G.(1951) Seasonal íncidence <strong>of</strong> congenital malform<strong>at</strong>ions<br />

<strong>of</strong> <strong>the</strong> central nervous systern. Lancet. l:192.<br />

Mann, R.4., I'loore, K.L. and Persaud, T.V.N. (,l973) Llmit<strong>at</strong>ions in <strong>the</strong><br />

use <strong>of</strong> <strong>the</strong> early chîck embryo as a ter<strong>at</strong>ological model. Ter<strong>at</strong>ol .lz A22.<br />

Harin-Padi I ìa, H. (1966). Mesoderm<strong>at</strong> al ter<strong>at</strong>¡ons induced by hypervi taminosls<br />

A. J. Emb.. Exp. I'lorphol. 15:261.<br />

l4arin-Padllla, l,l. (1966). Mesodermal alterarlons induced by dimethyl suifoxlde.<br />

Proc. Soc. Exp. Blol. lçled. 122t717.<br />

lilar<strong>ln</strong>-Padil la, l,l. and Ferm, V. (1965). Somite necrosis and developmental<br />

malform<strong>at</strong>ions induced by vitamin A in <strong>the</strong> golden hamster. J. Ëmb._ Exp.<br />

Morphol . 13: 1.<br />

Hartin, A.H. and Langman, J. (.|965). The development <strong>of</strong> <strong>the</strong> spinal cord<br />

exam<strong>ln</strong>ed by autoradiography. J.Emb. Exp. Morphol . 1\225.<br />

}l<strong>at</strong><strong>the</strong>ws, G.B.P., Persaud, T.V.N. and Hann, R.A. (197Ð. The chick embryo<br />

as an experímental model in ter<strong>at</strong>ological studies. <strong>ln</strong>, Labor<strong>at</strong>ory Ãninrals<br />

in Bíomedical Research and reaching. ,canadian Associ<strong>at</strong>íon For Labor<strong>at</strong>ory<br />

Anímal Science. hti nn ipeg.<br />

Ilenkes, 8., Litvac, B. and llies, A. (1964). 'Spontãneous and induced<br />

cell degener<strong>at</strong>îon in rel<strong>at</strong>ion to terêtogenesis. Rev. Roum. drEmbryol .<br />

Cyt. Serie drEìrbryol . 1z\7.<br />

Henkes, 8., Sandor, S. and llies, A. (1970). Ceìl de<strong>at</strong>h in ter<strong>at</strong>ogenesis.<br />

Adv. <strong>ln</strong> Ter<strong>at</strong>ol. 4 : 169.<br />

Messler, P.E. (1969). Effect <strong>of</strong> g-mercaptoethanor on <strong>the</strong> fine structure<br />

<strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e cells in <strong>the</strong> chîck embryo. J. Emb. Exp. l,lorphol.<br />

21t309.<br />

llorgagni, J.B, (1769). <strong>ln</strong>, The Se<strong>at</strong>s and Causes <strong>of</strong> Diseases <strong>ln</strong>vestíg<strong>at</strong>ed by<br />

An<strong>at</strong>omy. I'lil lar and Cadet l. London.


382<br />

Hoseley, H.R. (.l947). <strong>ln</strong>sul in-înduced rumplessness <strong>of</strong> chickens. lV. Early<br />

embryology. J. Eip. Zool . 1t5;279.<br />

l,lulherkar, L. (1960). Effects <strong>of</strong> trypan blue on chick emb¡yos.cultured<br />

in uitxo. J. E¡¡b. Exp, Horphol . Bi 1..<br />

llurakami, U. and Kameyar6¿, Y. (1963). Vertebral nalforrn<strong>at</strong>ions in <strong>the</strong> mouse<br />

fetus caused by m<strong>at</strong>ernal hypoxia rJr.rring early stages <strong>of</strong> pregnancy. J.<br />

Emb.. Exp. l,1orphot. l1:107.<br />

Naggan, 1., and Macl4ahon, D. (1967). Ethnic differences in <strong>the</strong> prevalance<br />

<strong>of</strong> anencephaly and spina bifida in Boston, l''lassachusetts. New Engl. J,<br />

!ie.d.277t1119.<br />

Niu, M.C.* Tw¡tty, v.c. (1953). The differentiêtion <strong>of</strong> gastrula ectoderm<br />

<strong>ln</strong> medium conditloned by axial mesoderm.. Proc. N<strong>at</strong>. Acad. Sci. 39:985.<br />

0jeda, J. 1., Barbosa, E. and Gomez-Bosque, P. (1970). Selective skeletal<br />

sta<strong>ln</strong><strong>ln</strong>g <strong>ln</strong> whole chicken embryos: a rapid alcian blue technique. Stain<br />

Techno f . t+5t137.<br />

Padget, D.H, (1968). Spina bifîda and embryonic neuroschísis. Johns<br />

Hopkl ns Med. J. 123 t233.<br />

Padget, D.H, (1970). Neuroschîsis and hurnan embryonic maldevelopment<br />

J. Neurop<strong>at</strong>h. Exp. Neurol . 2i:1J2.<br />

. P<strong>at</strong>ten, 8.14. (1952). Overgrowth <strong>of</strong> neural tube in young human embryos.<br />

An<strong>at</strong>. Rec. 1 13.381 .<br />

P<strong>at</strong>ten, B.M. (1953). Embryological stages in <strong>the</strong> establ ishing <strong>of</strong> myeloschisis<br />

wi th spina bifida. Am. J. An<strong>at</strong>. 932365.<br />

P<strong>at</strong>ten, 8.14. (1957). Varying developmental nechanisms in Terâtology.<br />

Ped i <strong>at</strong>ri cs. 19t734.<br />

Penrose, L.s. (1946). Famllial d<strong>at</strong>a on 144. cases <strong>of</strong> anencephaly, spína<br />

bifida and congenltal hydrocephalus. Ann. Eugen. 13:73.


Penrose, L. S.(1957). Genetics <strong>of</strong> anencephaly. J. I'len t. Def. Res. l:4.<br />

Persaud, .T.v.N.('l977). <strong>ln</strong>, Problems <strong>of</strong> Birth Defects. university Pêrk<br />

Press. Baltimore.<br />

Pleydell, M.J. (1960). Anencephaly and o<strong>the</strong>r congenÎtal abnormal itles.<br />

Epidmiological study in Northants. Brit. Hed. J. 1:309.<br />

Pol ltzer, G. (1954). Uber Spaltbi ldungen des'Gel irns und Ruckenmarks<br />

menschlÎcker Embryonen und ihre Unterscheidung von Verletzurgen. l'lien.<br />

Ztschr. Nervenh. 10: 18.<br />

Ránzl , S. und Tamini, E. (1939). Die Wirkung von Na SCN auf die Entwicklqng<br />

von Froschemb ryonen . N<strong>at</strong>urur¡ss. 27:566.<br />

von Recklinghausen, F. (1886).. Untersuchungen uber dle Spina Bifida.<br />

Arch. P<strong>at</strong>h. An<strong>at</strong>. 105:243.<br />

Record, R,G. (1961). Anencephalus ín Scotland. Brit. J. Prev. Soc. l4ed.<br />

15293.<br />

Record, R.G. and HcKeown, T. (1949) Congenital malform<strong>at</strong>ions <strong>of</strong> <strong>the</strong><br />

central nervous system. l. A survey <strong>of</strong> 930 cases. Srit. J. Soc. Med'<br />

4:183.<br />

Record, R.G. and ÌlcKeown, T. (1951). Congenital malform<strong>at</strong>ions'<strong>of</strong> <strong>the</strong><br />

central nervous system, D<strong>at</strong>â on s¡xty-n¡ne pairs <strong>of</strong> twíns. Ann. Eugenics.<br />

t5:285.<br />

Reyss-Brion, !r. (1956). La sensibilite d¡fferentiel le de certaínes ebauches<br />

de lrembryon de Poulet aux Rayons X, a dífferents stades du developpement.<br />

Arch. An<strong>at</strong>. l'tlcr. 45:342.<br />

Robertson, G.G., de Bandi, H.0., Williamson, A.P. and Bl<strong>at</strong>tner' R.J. (1967).<br />

Brain ahnormal îties 1n early ch¡ck embryos infected wlth influenza-A virus.<br />

An<strong>at</strong>. Rec. 158:1.<br />

383


384<br />

Robertson, G.G., I.,illiamson, A.P. and Bl<strong>at</strong>tner, R.J' (1960). 0rlgin <strong>of</strong><br />

myeloschisis în chìck embryos infected wi th <strong>ln</strong>fluenza-A virus. Yale J.<br />

Biol . tled. 32?449.<br />

Rogers, S.C. and Horrîs, 14. .(1971). <strong>ln</strong>fant mortal lty from spína bîfida'<br />

congenital hydrocephalus, monstrosity, and congenital leslons <strong>of</strong> <strong>the</strong><br />

ca¡díovascular system <strong>ln</strong> England and lJales. Ânn. Hum. Genet. 34:295.<br />

Rokos, J. (197Ð. P<strong>at</strong>hogenesis <strong>of</strong> diastem<strong>at</strong>omyel ia and spina bifida- J.<br />

P<strong>at</strong>h. 117:.l55'<br />

Rokos, J., €ekanova, E. and Kithierova, E. (1976)<br />

'<br />

P<strong>at</strong>hogenesis <strong>of</strong> trypan- 't<br />

blue-<strong>ln</strong>duced spina bif irla. J. P<strong>at</strong>h. 118:2!.<br />

.Rokos,<br />

J., Kithierova, E. and Palounkova, E. (1970), The morphogenesis<br />

<strong>of</strong> developmental malform<strong>at</strong>ions <strong>of</strong> <strong>the</strong> central nervous system. lV. The<br />

earl lest norphologic changes wîthin embryonîc tissue after appl ic<strong>at</strong>ion<br />

<strong>of</strong> trypan blue. Fol ia, l''lorph. t8:168.<br />

Rokos, J. and Knowles, J. (1976). Experimental contribution to <strong>the</strong><br />

pâthogenesis <strong>of</strong> spina bifida, J, P<strong>at</strong>h. 118:21.<br />

Rosenquist, c.c. (1966). Radioautographîc study <strong>of</strong> labeled grafts ín <strong>the</strong><br />

chick blastoderm. Development from primitive streak stages to Stage 12.<br />

Contr. Emb, Carn. <strong>ln</strong>st. vJash. 38:71 .<br />

. Roman<strong>of</strong>f, A.L: (1960), The Avian Embryo. McHillan. New York.<br />

Roux, l.l. (1885). Beítrage zur Entwicklungsmechanik des Embryo. Ztschr.<br />

Fur. B iol . 21:41l.<br />

Rugh, R. and Grupp, E. (1959). X-irradi<strong>at</strong>îon exencephaly. Am.J. Roent.<br />

81 :1026.<br />

Russel l, D.S., and Donald,C. (1935). The mechanism <strong>of</strong> internal hydrocephalus<br />

in spina bifida. Bra<strong>ln</strong>. 58:203.


385<br />

Russell, H.E. and A¡ tken' G.T. .(1963). Congenital absence <strong>of</strong> <strong>the</strong> sacrurn<br />

and lumbar vertebrae wlth pros<strong>the</strong>t¡c manêgement. J. Bone Joint Surg.<br />

454: 50 1 .<br />

Russel l, L.B. (1950). x-ray induced developmental abnormal ltles in <strong>the</strong><br />

fi¡ouse and <strong>the</strong>ir use in <strong>the</strong> analysis <strong>of</strong> embryological p<strong>at</strong>terns. l. Êxternal<br />

and gross vîsceral changes. J. Exp. Zoot. 114:545.<br />

Russel l, L.B. (1956). X-ray induced developmental abnormal íties in <strong>the</strong><br />

mouse and <strong>the</strong>ir use in <strong>the</strong> analysis <strong>of</strong> embryological p<strong>at</strong>terns. ll. Abnormalltles<br />

<strong>of</strong> <strong>the</strong> vertebral column and thorax. J.Exp' Zool . 131.329.<br />

Sammons, B.P. and Thomas, D,F. (1959). Extensive lumbar meningocele<br />

associ<strong>at</strong>ed wlth neur<strong>of</strong>ibrom<strong>at</strong>osis. Am. J. Roent. 8t:1021.<br />

Sanyal, S. and Niu, l,'1,c. (1966). Effects <strong>of</strong> R.N.A. on <strong>the</strong> developmental<br />

potentlal íty <strong>of</strong> <strong>the</strong> poster¡or primitive streak <strong>of</strong> <strong>the</strong> chick blastoderm.<br />

Proc. N<strong>at</strong>. Acad. Sci. 55.7\3'<br />

Sauer, F.C,(tS¡l). Mitosis <strong>ln</strong> <strong>the</strong> neural tube. J. Comp. Neurol . 6z:377.<br />

Sauer, l.,l,E, and ì,lalker, B. (1959). Radioautograph¡c study <strong>of</strong> ínterkinetic<br />

nuclear mígr<strong>at</strong>ion in <strong>the</strong> neural tube, Proc' Soc. Exp. Biol . Med. 101:557.<br />

Saunders, J.l,r. (1966). De<strong>at</strong>h in embryonic systems. Science f54:604'<br />

Saunders, R.1.. de C.H. (1943). Combined anterior and posterîor spina bifida<br />

<strong>ln</strong> a líving neon<strong>at</strong>al human female. An<strong>at</strong>. Rec. 87:255.<br />

saxán,. L. (1975). Embryonic iniuction. Cl in. Obst. Gyn. t8:1À9.<br />

Saxán, L, (1976). l4echanisms <strong>of</strong> ter<strong>at</strong>ogenesis. J. Emb. Exp. Morphol .<br />

36:1.<br />

Schroeder, T.E.(1969). The role <strong>of</strong> rcontracti le ringr fi laments in dividing<br />

Arbacia eggs. Blol . Bull. ß7t413.<br />

\


386<br />

Schroeder, T.E. (1970)<br />

"<br />

Neurul<strong>at</strong>ion in Xenopus laevís. An analysis and<br />

npdel based upon light and electron mlcroscopy. J.Emb. Exp. l'lorphol.<br />

23t427.<br />

Sôhirmachêr, - S. (1927). Uber die sogenannte Vervielfachung des Hedul larrohnes<br />

(bzw. des Canal îs central is) leí. Embryonen. Z. Hlcr. An<strong>at</strong>.<br />

Forech. 1O:.75.<br />

Searle, A.c.(1959). The încídence <strong>of</strong> anencephaly in a polytypic<br />

popul<strong>at</strong>ion. Ann. Hum. cenet, 23:279.<br />

Seevers, C.H. (1932). Potencies <strong>of</strong> <strong>the</strong> end bud and o<strong>the</strong>r caudal levels<br />

<strong>of</strong> <strong>the</strong> early chick embryo with specíal reference to <strong>the</strong> origin <strong>of</strong> <strong>the</strong><br />

metanephros. An<strong>at</strong>. Rec. 542217,<br />

Shannon, l'l.l/. and Nadler, H.L. (1968). X-l inked hydrocephalus. J.Med,<br />

cenet.5:326.<br />

Sharrard, lr.J.t^r. (1971), <strong>ln</strong>, Paedi<strong>at</strong>ric 0rthopaedics and Fractures.<br />

B I ackwel l. Oxford.<br />

Sharrard, ll.J., Zachary, R.B. and Lorber, J. (1967). Survival and<br />

paralysís in open myelomeningocele with special reference to <strong>the</strong> time<br />

<strong>of</strong> repair <strong>of</strong> <strong>the</strong> spinal lesion. Dev. lrled. Child Neurot. Supp. 13:35.<br />

Shepard, T.H..(1976). <strong>ln</strong>, C<strong>at</strong>alog <strong>of</strong> Ter<strong>at</strong>ogenic Agents. John Hopk<strong>ln</strong>s<br />

' Unlv. Press. Balti¡nore. 2nd Edition.<br />

Shoger,. R.L. (1960). The regul<strong>at</strong>ive capacity <strong>of</strong> <strong>the</strong> node region. J. Exp.<br />

zool . 143221 .<br />

Sidman, R.1., Green, M.C. and Appel, S,H. (1965). <strong>ln</strong>, C<strong>at</strong>alog <strong>of</strong> <strong>the</strong> Neurological<br />

ltutants <strong>of</strong> <strong>the</strong> House. Hårvard Unív. Press. Cambrlà9e, t4ass.<br />

S<strong>ln</strong>clair, J.G.(1950). A specific transplacental effect <strong>of</strong> urethane in<br />

mice. Texas Rep. Biol . Hed. 8:623.


387<br />

Spemann, H. (1938). Embryonic Development and <strong>ln</strong>duction. yale Univ.<br />

Press. New Haven.<br />

Stein, K.F. and Rud<strong>ln</strong>, l.A. .(I953). Development <strong>of</strong> mice homozygous for<br />

<strong>the</strong> gene for looptail. J. Hered. 44259.<br />

Sternberg, H. (1929). Uber Spaltbí ldingen des Medullarrohres bel jungen<br />

menschlîchen Embryonen eín Beitrag ru, Entrt"hrrg der Anencephalie und:.<br />

der Rachlschisis. Virchowrs Arch. Z7Zz3Z5.<br />

Stevenson, A.C., Johnston, H.A,, Stewart, I,l.l.p., and Goldín9, D.R. ('l966),<br />

congenital malform<strong>at</strong>ions. A Report <strong>of</strong> a study <strong>of</strong> series <strong>of</strong> consecutive<br />

blrths în 24 centres. Bull. tl.H.0. l4: Suppl,, p.2j.<br />

Stockard' c.R. (1920-21). Developmentar r<strong>at</strong>e and structurar expressíon;<br />

ên exper¡mental study <strong>of</strong> twins, rtdouble monstersr and síngle deformities,<br />

and <strong>the</strong> Ínteraction among embryonic organs during <strong>the</strong>ir origin and<br />

development. Am. J. An<strong>at</strong>.28:1.l5,<br />

Streeter, G.L. (1942). Developmental horizons in human embr,yos. Contr.<br />

Emb. Carn. <strong>ln</strong>st. Wash. )OzZ11.<br />

Tizard, J. (1968) . chirdren wi th myeromeningocere; socîar and educ<strong>at</strong>ionar<br />

problems. Dev. l4ed. Child Neurol, Supp. t5:,l.<br />

Toivonen, S. (1961). An experimentally produced change in <strong>the</strong> sequence<br />

<strong>of</strong> neu¡.al izing and mesodermalîzing inductive actions. Experentia l/:g/.<br />

Tolvone¡, S., Saxen, L. and Vainio, T. (1961). Quantît<strong>at</strong>ive evídénce<br />

for <strong>the</strong> two-gradient hypo<strong>the</strong>sis in <strong>the</strong> prímary inductíon. Experlentîa 1/:86.<br />

Torpin, R. (1968). Fetal l4alform<strong>at</strong>ions. Thomas. Springfìeld,<br />

Tulp, N. (1652) Observ<strong>at</strong>iones Hedicae. Amsterdam.<br />

Vogel, F.S. and I'lcClenahan, J,L. (19SZr. Anomalies <strong>of</strong> major cerebral<br />

arterles aesoci<strong>at</strong>ed with congenital malform<strong>at</strong>lons <strong>of</strong> <strong>the</strong> brá<strong>ln</strong>. Am J. p<strong>at</strong>h.<br />

282701 .


vJêdd¡ngton, C.H. (1932).. Exper¡ments on <strong>the</strong> development <strong>of</strong> chlck and duck<br />

embryos cultiv<strong>at</strong>ed in oil:ro. Phll. Trans. noy. So". B. 2212179.<br />

l{addington, C.H..and carter' T.c. (1953). A note on abnormal ities induced<br />

<strong>ln</strong> nouse embryos by'trypan blue' J. Emb. Exp. Horphol . I:167.<br />

Waddington, C.H.4 Perry, H.H. (1956). Ter<strong>at</strong>ogenic effects <strong>of</strong> trypan blue<br />

on amphlblan embryos. J. Emb. exp. Horihol. ll:110.<br />

Waddington, C.H. and Perry, H. 14. (1966). A note on <strong>the</strong> mechanism <strong>of</strong> cell<br />

deform<strong>at</strong>ion in <strong>the</strong> neural folds <strong>of</strong> <strong>the</strong> amphibìan. Exp. Cell Res' 41:691.<br />

lJa rkany, J. (1971). Congenital l4alform<strong>at</strong>ions. Year Book Medical Publ ishers'<br />

Ch i cago .<br />

tlarkany, J. and Schraffenberger, E. (1947). Congenital malform<strong>at</strong>íons<br />

induced in r<strong>at</strong>s by Roentgen rays. Skeletal changes in <strong>the</strong> <strong>of</strong>fspríng<br />

fol lowing a single irradÎ<strong>at</strong>ìon <strong>of</strong> <strong>the</strong> mo<strong>the</strong>r. Am. J' Roent. Rad. Ther.<br />

57 2455.<br />

l,la rkany, J. and Takacs, E. (1959). Experimental production <strong>of</strong> congenital<br />

malform<strong>at</strong>ions in r<strong>at</strong>s by sal icyl<strong>at</strong>e poísoning. Amer. J. p<strong>at</strong>tr. 35:315.<br />

l,la rkany, J., l/i lson, J,G., and Geiger, J.F. (1958). yeloschisis and<br />

rnye I omen i ngoce I e produced experimentally ¡n <strong>the</strong> r<strong>at</strong>. J. Comp. Neurol.<br />

109:35.<br />

lr<strong>at</strong>terson, R.L., Veneziano, P. and Barth, A. (1956). Absence <strong>of</strong> a true<br />

germinal zone in neural tubes <strong>of</strong> young chick embryos as demonstr<strong>at</strong>ed by<br />

<strong>the</strong> colchicine technlque. An<strong>at</strong>, Rec. 2\t379.<br />

lleed, L.H. (1917). The development <strong>of</strong> <strong>the</strong> cerebro spinal spaces in <strong>the</strong><br />

pig and <strong>ln</strong> man. Contr. Emb. Carn. <strong>ln</strong>st. l'lash. 5:1<br />

Weed, L.H. (1922). The absorption <strong>of</strong> cerebrospinal fluid ¡nto <strong>the</strong> venous<br />

system. Am. J. An<strong>at</strong>. 3l:19t.<br />

388


389<br />

lJeed, ¡.H. (1937 -38'). M.ning., and cerebrospînal ftuid. J. An<strong>at</strong>. 722181 .<br />

Wessels, N.K. (1971). How living cells change shape. Scî. Amer. 225tlY276.<br />

lletzel, R. (1929. Untersuchungen am Huhnchnen. Die Entwlcklung des Keims<br />

wahrend der ersten binden Bruttage. Arch. Entwmech. 119:188.<br />

tlillîams, K.E., Roberts, G., Kídston, H.E., Beck, F. and Lloyd, J.B.(1976).<br />

<strong>ln</strong>hlbítlon <strong>of</strong> pinocytos¡s in r<strong>at</strong> yolk sic by irypan blue. Ter<strong>at</strong>ol . 141343.<br />

!,li I I iamson, A.P., B¡<strong>at</strong>tner, n.¡, and Robertson, G.G.(1953). Factors înfluencing<br />

production <strong>of</strong> developmental defects in <strong>the</strong> chick embryo fol lowing<br />

<strong>ln</strong>jection wlth Newcastle disease vírus. J. lmmunol . 71.207. t'lil I iamson,<br />

4.P., Blâttner, R.J. and Simonsen, L. (1956). Mechanlsm <strong>of</strong> <strong>the</strong> ter<strong>at</strong>ogenic<br />

actîon <strong>of</strong> Newcastle disease virus in <strong>the</strong> chick embryo. J. lmmunol . 76:275.<br />

lllllier, B.H., l,leiss, P.A. and Hamburger, V. (1955), Eds. Analysis <strong>of</strong><br />

Development. Saunders, New York,<br />

lJi lson, D.B.(1974), Prol îfer<strong>at</strong>ion în <strong>the</strong> neural tube <strong>of</strong> <strong>the</strong> splotch (sp)<br />

mutânt mouse. J. Comp. Neurol, 15422\9.<br />

Wilson, D.B. and carter, E.M. (1974). The neural cell cycle in <strong>the</strong> looptail<br />

(Lp) mutênt mouse. J. Emb. Exp. Morphol . 322397.<br />

tti lson, J.c.(1954). Differentî<strong>at</strong>ion and <strong>the</strong> reaction <strong>of</strong> r<strong>at</strong> embryos to<br />

radl<strong>at</strong>lon. J. Cell. Comp. Physiol. 41, Suppl. l:11.<br />

Wilson, J.G.,'Shepard, T,H., Gennaro, J.F. (1963). Studies on <strong>the</strong> sìte<br />

fh<br />

<strong>of</strong> ter<strong>at</strong>ogenic act¡on <strong>of</strong> C'- - labeled trypan blue. An<strong>at</strong>. Rec. 145:300.<br />

Yen, S. and Macl'lahon, B. (1968). Genetics <strong>of</strong> anencephaly and spina bifida.<br />

Lancet ll:623.<br />

van der Zwan, A. (1951). Anencephaly and rachischisis. Case description,<br />

p<strong>at</strong>hology and aetlology. Fol ia. Psychi<strong>at</strong>. Neurol. Neurochir. Neerland.<br />

54:147.


390<br />

Zwllli.ng, E..(1942). Restitution <strong>of</strong> rhe tail in <strong>the</strong> early chick embryo.<br />

J. Exp. Zool . 9l:453.<br />

Zwllll.ng, E. (1942). The development <strong>of</strong> dominant rumplessness in chick<br />

embryos. lìenet i cs 27¡6\l .<br />

Zwll li.ng, E. (1945). The embryogeny <strong>of</strong> a recessive rumpless condition<br />

<strong>of</strong> chickens. J. Exp. Zool. 99t79,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!