03.01.2014 Views

Datawave - Emerson Network Power

Datawave - Emerson Network Power

Datawave - Emerson Network Power

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

POWER PROTECTION<br />

<strong>Datawave</strong> ®<br />

TECHNICAL DATA MANUAL<br />

Magnetic<br />

Synthesizer


TABLE OF CONTENTS<br />

POWER CONDITIONING, DISTRIBUTION, CONTROL AND MONITORING FOR ANY COMPUTER SITE. . . . . . . . . . 1<br />

DEPENDABLE POWER FOR COMPUTER-DEPENDENT OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

ADVANTAGES THAT ADD UP TO COMPUTER-GRADE POWER YEAR AFTER YEAR . . . . . . . . . . . . . . . . . . . . . 3<br />

OPERATIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

APPLICATIONS GUIDELINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Paralleling Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Beyond <strong>Power</strong> Conditioning: Harmonic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

STANDARD FEATURES FOR ALL SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

OPTIONAL FEATURES FOR ALL SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

SITE MONITORING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

<strong>Power</strong> Monitor Panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

Basic Temperature Monitoring Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

SiteScan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

AVAILABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

SYSTEM SIZING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

PHYSICAL AND ELECTRICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

Operational Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

Heat Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

Physical and Mechanical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

Service Access and Clearance Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

i


POWER CONDITIONING, DISTRIBUTION, CONTROL AND MONITORING FOR ANY<br />

COMPUTER SITE<br />

15-30 kVA<br />

50-75 kVA<br />

100-125 kVA<br />

150-200 kVA<br />

1


DEPENDABLE POWER FOR COMPUTER-DEPENDENT OPERATIONS<br />

The Liebert <strong>Datawave</strong><br />

magnetic synthesizer<br />

provides cost effective<br />

power conditioning and<br />

protection for mainframes,<br />

minicomputers,<br />

and other electronic<br />

equipment requiring stable,<br />

noise-free power.<br />

The patented <strong>Datawave</strong><br />

magnetic synthesis process<br />

is the most dependable<br />

power conditioning<br />

technology available.<br />

Rugged components,<br />

including key circuit elements<br />

specially manufactured<br />

by Liebert, assure<br />

an extremely long service<br />

life.<br />

The <strong>Datawave</strong> power<br />

conditioner has the<br />

grounding and conditioning<br />

features demanded<br />

by today’s computer systems.<br />

Computers, as well as a<br />

variety of electronic<br />

equipment in business<br />

use today, require clean<br />

stable power.<br />

Typical electrical supply<br />

specifications are:<br />

•Voltage: ± 5%<br />

•Frequency: ±0.5 Hz<br />

•Sags/Swells: ± 10% of<br />

nominal voltage<br />

•Transients: Less than<br />

50 volts in magnitude<br />

(impulses from 0.5 to<br />

800 microseconds).<br />

Weather extremes,<br />

storms, accidental faults,<br />

momentary overloads,<br />

and even normal operation<br />

of electrical equipment<br />

can disturb power<br />

supplied by the utilities.<br />

Resulting sags, swells,<br />

transients and noise,<br />

while sometimes not<br />

noticeable in lighting and<br />

other noncritical electricity<br />

uses, can cause out-ofspec<br />

conditions, interruption<br />

of operations, and<br />

loss of data.<br />

The chart below illustrates<br />

types of disturbances<br />

and their<br />

potential effect on operations.<br />

<strong>Power</strong><br />

Conditions Definitions Causes<br />

Possible<br />

Computer Symptoms<br />

Common mode<br />

disturbances<br />

Normal mode<br />

noise<br />

Normal mode<br />

impulses &<br />

ringing<br />

transients<br />

Impulses and EMI/RFI noise with<br />

respect to ground superimposed on<br />

the power conductors.<br />

Amplitude—Millivolts to several volts<br />

for noise; hundreds of volts for<br />

impulses<br />

Low level signals superimposed on<br />

the power sinewave.<br />

Amplitude—0.5 V to 25 V<br />

Typically a narrow, fast-rise voltage<br />

variation. Can be followed by a<br />

damped oscillation decaying to<br />

nominal in less than one cycle.<br />

Amplitude—50 V to 6 kV<br />

Duration—0.5 µsec to 2000 µsec<br />

Radio transmission; Normal<br />

computer operation; Arcing contacts;<br />

Lightning; Poor grounding and<br />

shielding.<br />

Normal computer operation;<br />

Switching power supplies; <strong>Power</strong><br />

line modulation equipment (i.e.,<br />

Simplex clocks); Motor speed<br />

controllers.<br />

Switching loads on or off; Normal<br />

computer operation; Utility switching;<br />

Lightning.<br />

Incorrect data transfer from<br />

CPU to disk or tape;<br />

Terminal or printer errors;<br />

Input/output hardware<br />

damage; <strong>Power</strong> supply<br />

damage.<br />

Processing errors; Incorrect<br />

data transfer from CPU to<br />

memory; Printer or terminal<br />

errors.<br />

Incorrect data on disks or<br />

tapes; Processing errors;<br />

Printer or terminal errors;<br />

Hardware damage.<br />

Sags<br />

A low-voltage condition on one or<br />

more phases.<br />

RMS voltages below 80-85% of<br />

nominal.<br />

Duration—Greater than 1 cycle<br />

Ground faults; Starting large loads;<br />

Inadequate power system capacity;<br />

Utility switching; Utility equipment<br />

failure; Lightning.<br />

Computer system crashes;<br />

Hardware damage.<br />

Swells<br />

A high-voltage condition on one or<br />

more phases.<br />

Voltages above 110% of nominal.<br />

Duration—Greater than 1 cycle<br />

Rapid load reduction; Utility<br />

switching.<br />

Hardware damage.<br />

Waveform<br />

distortion<br />

A deviation from a true voltage<br />

sinewave.<br />

Motor speed controllers; Computer<br />

operation; Other nonlinear loads.<br />

Communication errors;<br />

Hardware damage.<br />

Single-phase<br />

outage<br />

Loss of a phase on a polyphase<br />

system.<br />

Fuse failure; Ground faults;<br />

Equipment failure; Accidents; Utility<br />

equipment failure; Lightning; Acts of<br />

nature.<br />

System crashes; Hardware<br />

damage.<br />

Outage<br />

A zero-volt condition lasting longer<br />

than a half-cycle.*<br />

Ground faults; Equipment failure;<br />

Utility equipment failure; Lightning;<br />

Acts of nature.<br />

System crashes; Hardware<br />

damage.<br />

* This is the definition of “outage” as seen by most computers. Utility companies usually define outage as a zero-volt condition lasting longer<br />

than five minutes.<br />

2


ADVANTAGES THAT ADD UP TO COMPUTER-GRADE POWER YEAR AFTER YEAR<br />

Several varieties of<br />

technologies have been<br />

applied to correct these<br />

disturbances—with<br />

varying degrees of<br />

success. Motor generator<br />

sets and line voltage<br />

regulators provide<br />

protection from some<br />

variations, but can have<br />

their own ability to<br />

supply computer grade<br />

power hampered by some<br />

electrical problems.<br />

<strong>Datawave</strong> offers<br />

protection from a wider<br />

range of power problems,<br />

maintaining voltage<br />

within specification and<br />

isolating equipment from<br />

potentially damaging<br />

variations and<br />

transients.<br />

Engineered for<br />

Inherent<br />

Dependability<br />

<strong>Datawave</strong>’s rugged simplicity<br />

ensures years of<br />

reliable operation, providing<br />

clean, stable<br />

power for decades.<br />

Equally important, the<br />

<strong>Datawave</strong> magnetic synthesizer<br />

regulates power<br />

without delicate electronic<br />

controls, highpower<br />

semiconductors,<br />

maintenance dependent<br />

mechanical drives or<br />

rotating parts.<br />

Designed for<br />

Efficiency<br />

<strong>Datawave</strong>’s efficiency of<br />

93%, along with nearly<br />

unity power factor, lowers<br />

utility costs.<br />

Limitless Future<br />

Capacity<br />

<strong>Datawave</strong> CA models,<br />

from 30 kVA up, can be<br />

paralleled to increase<br />

capacity by simply wiring<br />

them together.<br />

Load sharing is automatic.<br />

Each <strong>Datawave</strong><br />

supplies its rated amount<br />

of power.<br />

Built to Handle<br />

Computer Current<br />

Requirements<br />

Because of <strong>Datawave</strong>’s<br />

low output impedance,<br />

nonlinear current<br />

demands of modern computers<br />

are supplied with<br />

ease. Short-term currents<br />

up to 200% of the<br />

unit’s capacity can be<br />

delivered.<br />

Transient Protection<br />

The rugged <strong>Datawave</strong><br />

design withstands high<br />

energy transients without<br />

passing them along<br />

to computer equipment.<br />

The <strong>Datawave</strong> easily<br />

meets ANSI C62.41 and<br />

C62.45.<br />

Precise Voltage<br />

Regulation<br />

Sags and swells to ±40%<br />

are minimized to well<br />

within computer requirements.<br />

Input Phase Loss and<br />

Unbalance Protection<br />

Shorting, opening, or<br />

unbalance of an input<br />

phase, which typically<br />

causes motors to overheat<br />

or drop off-line, has minimal<br />

effect on <strong>Datawave</strong><br />

operation. The waveform<br />

synthesis network continues<br />

to supply 3-phase<br />

computer grade power.<br />

Balancing Unbalanced<br />

Loads<br />

Even 100% unbalanced<br />

loading of the <strong>Datawave</strong><br />

does not cause a significant<br />

change in output<br />

voltage. Variations in output<br />

are held to + 5%, -2%.<br />

Load Generated Noise<br />

Filtering<br />

Output impedance of the<br />

<strong>Datawave</strong> decreases with<br />

frequency, allowing the<br />

attenuation of load-generating<br />

noise, and<br />

impulses which could<br />

otherwise affect other<br />

devices.<br />

Input Current<br />

Distortion<br />

The <strong>Datawave</strong> absorbs<br />

harmonic currents generated<br />

by non-linear loads.<br />

The input current distortion<br />

is less than 8% THD,<br />

independent of load current<br />

distortion.<br />

Built-In Distribution<br />

Depending on application<br />

requirements, <strong>Datawave</strong><br />

can be supplied with a<br />

custom distribution system,<br />

featuring easilychangeable<br />

flexible,<br />

shielded, liquid-tight distribution<br />

cables, individually<br />

protected panelboards<br />

and separate<br />

branch circuit breakers.<br />

Sag of 40% -5%<br />

<strong>Datawave</strong> M/G Set LVR<br />

Frequency<br />

out of spec at 20%<br />

Swell of 40% +5% Out of spec<br />

Output Harmonic<br />

Distortion<br />

Less than 4%,<br />

total<br />

Less than 4%,<br />

total<br />

Voltage<br />

out of spec<br />

Voltage<br />

out of spec<br />

Typically 1% additive<br />

to input distortion<br />

Overload 150% for 20 min. 150% for 1 min. 200% for 1 min.<br />

<strong>Power</strong><br />

Efficiency<br />

Input <strong>Power</strong><br />

Factor<br />

Paralleling<br />

Capability<br />

Full load, 93%<br />

3/4 load, 91.5%<br />

1/2 load, 89%<br />

Approaches<br />

unity<br />

Unlimited<br />

Full load, 87%<br />

3/4 load, 88%<br />

1/2 load, 85%<br />

0.7 to 0.8<br />

lagging<br />

Complicated<br />

or not possible<br />

Full load, 96%<br />

3/4 load, 96%<br />

1/2 load, 96%<br />

Reflects load<br />

power factor<br />

Not possible<br />

3


OPERATIONAL DESCRIPTION<br />

The <strong>Datawave</strong> magnetic synthesizer is an electromagnetic, 3-phase AC power regenerator. Output waveforms<br />

are generated by combining pulses from saturating transformers.<br />

Three areas of regeneration enable<br />

<strong>Datawave</strong> to eliminate virtually all<br />

power line disturbances, including<br />

momentary interruptions from<br />

static switching:<br />

(1) Energy input transfer<br />

(2) Waveform building<br />

(3) Energy storage/output<br />

Energy<br />

input<br />

transfer<br />

Waveform<br />

building<br />

Energy<br />

storage/<br />

output<br />

Energy Input Transfer<br />

Input power is supplied<br />

through nonlinear chokes<br />

specially designed to provide<br />

current to the transformers<br />

independent of<br />

widely varying input<br />

voltage levels and waveform.<br />

This energy transfer<br />

technique virtually<br />

eliminates line noise and<br />

the effects of sags and<br />

swells. This current powers<br />

the waveform building<br />

circuits.<br />

Waveform<br />

Building<br />

Six interconnected saturating<br />

transformers construct<br />

the waveforms,<br />

with each transformer<br />

producing a distinct voltage<br />

pulse. Transformer<br />

geometry and construction<br />

determine the amplitude<br />

and duration of the<br />

pulses, and interconnecting<br />

circuitry combines<br />

these pulses into waveforms.<br />

Energy Storage/<br />

Output<br />

As integral elements of<br />

the interconnecting circuitry<br />

capacitors also<br />

help control the saturating<br />

sequence. Energy is<br />

dynamically stored as<br />

current in the saturated<br />

transformers, and as<br />

voltage in the capacitors.<br />

This constantly alternating<br />

energy ensures hard<br />

saturation of the transformers,<br />

precise pulse<br />

regulation and a clean,<br />

stable waveform with<br />

less than 4 percent total<br />

harmonic distortion.<br />

Three-phase power is<br />

supplied to the load<br />

through a zig-zag transformer.<br />

This configuration<br />

maintains 120°<br />

phase separation, establishes<br />

the output-circuit<br />

neutral, and assists<br />

line-to-neutral voltage<br />

regulation. The output-circuit,<br />

including the<br />

neutral, is totally isolated<br />

from input power.<br />

This unique design<br />

results in:<br />

•Reliable operation and<br />

long life<br />

•Accurate voltage regulation<br />

•Clean waveform, independent<br />

of input<br />

•High subcycle surge<br />

and safe steady-state<br />

overload protection to<br />

300 percent of nominal<br />

•Line-side and load-side<br />

noise suppression<br />

About Saturation:<br />

Inductors normally act as<br />

high-impedance circuits,<br />

supporting voltage. However,<br />

as the inductor core<br />

becomes saturated, current<br />

increases and voltage<br />

decreases. At saturation,<br />

regardless of polarity the<br />

inductor resembles a<br />

short-circuit.<br />

Current is high, and the<br />

voltage is near zero. If<br />

voltage across this saturated<br />

core is reversed, it<br />

again acts as an open circuit<br />

until saturated in<br />

the reversed direction,<br />

when it again becomes a<br />

short-circuit.<br />

About Synthesis:<br />

At any moment during<br />

operation, five of the six<br />

transformer cores are<br />

saturated, acting as<br />

short-circuits. The sixth<br />

is then saturated, and<br />

the voltage across it collapses.<br />

The sixth then<br />

reverses the voltage<br />

across the next core in<br />

the configuration, producing<br />

an unsaturated<br />

condition. As this core<br />

saturates, it reverses the<br />

voltage across still<br />

another core. This<br />

sequential switching of<br />

transformer cores produces<br />

a series of precisely<br />

defined voltage pulses<br />

used as output waveform<br />

building blocks.<br />

Transformer windings<br />

are primary-over-secondary,<br />

isolated with electrostatic<br />

shields for<br />

rejection of common-mode<br />

noise. An<br />

advantage of this configuration<br />

is that any broken<br />

circuit connection<br />

will not cause voltage<br />

supplied to the load to<br />

exceed specification.<br />

4


APPLICATIONS GUIDELINES<br />

A <strong>Datawave</strong> power conditioning system is<br />

available for almost any application.<br />

Model SC <strong>Datawave</strong><br />

Magnetic Synthesizer<br />

A Complete System in a Single Package:<br />

•Full Conditioning<br />

•Monitoring and Alarm Capabilities<br />

•Integral Branch Circuit Distribution<br />

•Flexible Distribution Cables<br />

Model CA <strong>Datawave</strong><br />

Magnetic Synthesizer<br />

The Key Building Block:<br />

•The foundation for basic <strong>Datawave</strong> power<br />

conditioning systems<br />

A <strong>Datawave</strong> system can be configured<br />

for practically any site.<br />

For Existing Distribution<br />

The Model CA can be installed to provide full<br />

conditioning capabilities in front of an existing<br />

distribution panelboard. It can also be used in<br />

old or new installations where rigid conduit is<br />

specified for distribution.<br />

The Model CA, teamed with a separate distribution<br />

module (i.e., Liebert Precision <strong>Power</strong> Center), solves<br />

the distribution problem when the conditioning module<br />

is not installed within the computer room.<br />

Remote Distribution<br />

•Used where the distance between distribution<br />

and conditioning modules is 100 ft (30 m) or less.<br />

•Voltage step-down (if required) is performed by<br />

the conditioning module.<br />

•Feeder between modules carries conditioned<br />

power at the utilization voltage level (typically<br />

120/208 volts 3-phase).<br />

•Distribution module performs distribution monitoring<br />

and control functions at point-of-use.<br />

Conditioning<br />

and<br />

Step-down<br />

Distribution<br />

5


Remote Step-Down/Distribution<br />

•Used where feeder distance between modules is<br />

between 100 and 300 feet (30 and 92 meters). If<br />

feeder distance between modules exceeds 300 feet<br />

(92 meters), consult factory.<br />

•Decreases power loss and allows use of smaller<br />

conductors and conduits between modules.<br />

•Voltage is not stepped down in the conditioning<br />

module.<br />

•Feeder between modules carries conditioned power<br />

at primary voltage level.<br />

•Distribution module, besides providing<br />

distribution, monitoring, and control functions, also<br />

performs voltage step-down and common mode<br />

noise isolation at point-of-use.<br />

Conditioning<br />

Stepdown and<br />

Distribution<br />

For Multiple Distribution<br />

The Remote Distribution System or the Remote<br />

Step-Down System can be arranged so that the<br />

Model CA <strong>Datawave</strong> feeds two or more distribution<br />

modules. Multiple-distribution systems allow shorter<br />

distribution cable runs in a large computer room and<br />

separate computer facilities to be supplied from the<br />

same conditioning system, while retaining individual<br />

distribution, control, and monitoring.<br />

For Multiple-Utility-Feed Systems<br />

Where the probability that both utility feeds would<br />

fail simultaneously is very remote, the power reliability<br />

obtained by feeding the <strong>Datawave</strong> installations<br />

from more than one utility feed can approach<br />

that obtained from a UPS system.<br />

Multiple input systems use a static transfer switch to<br />

select the input feeder for connection to the power<br />

conditioning system.<br />

Utility<br />

Feed #1<br />

Static Switch<br />

Utility<br />

Feed #2<br />

For General Distribution Systems<br />

The Model SC <strong>Datawave</strong> can be used in new office<br />

buildings to supply “noisefree” power circuits generally<br />

distributed throughout the building for desktop<br />

computers and word processors. The unbalancedload-handling<br />

capability of the <strong>Datawave</strong> magnetic<br />

synthesizer technology makes it ideal for conditioning<br />

such a distribution system, since the loads are<br />

predominantly single-phase, and cannot be closely<br />

controlled for balance. The <strong>Datawave</strong> system also<br />

provides step-down to eliminate the need for a<br />

step-down transformer.<br />

6


Paralleling Units<br />

Parallel <strong>Datawave</strong> units<br />

are used for redundancy or<br />

to power loads greater than<br />

200 kVA. <strong>Datawave</strong> magnetic<br />

synthesizers can be<br />

paralleled without special<br />

paralleling circuitry, with<br />

the resulting parallel system<br />

performing as a single<br />

magnetic synthesizer of the<br />

combined capacity.<br />

Specifications such as voltage<br />

regulation, capacity,<br />

efficiency, and harmonic<br />

distortion are not affected<br />

by paralleling.<br />

Output switchgear<br />

To load<br />

distribution<br />

Beyond <strong>Power</strong> Conditioning: Harmonic Isolation<br />

Today, as more and more<br />

users of electronic equipment<br />

become concerned<br />

about harmonics, the<br />

<strong>Datawave</strong> Magnetic Synthesizer<br />

is being increasingly<br />

applied as a<br />

harmonic isolator.<br />

Because of its basic operation,<br />

the <strong>Datawave</strong><br />

Magnetic Synthesizer<br />

isolates its output from<br />

its input. This capability<br />

allows the <strong>Datawave</strong> system<br />

to provide harmonic<br />

isolation as well as power<br />

conditioning. The output<br />

voltage is regenerated,<br />

free of any input voltage<br />

distortion, notching or<br />

transients.<br />

Further, the <strong>Datawave</strong><br />

system is designed to be<br />

compatible with nonlinear<br />

loads without derating,<br />

including singlephase,<br />

switched-mode<br />

power supplies.<br />

The <strong>Datawave</strong> Magnetic<br />

Synthesizer isolates the<br />

power system from the<br />

harmonic current distortion<br />

caused by nonlinear<br />

loads. Its input current<br />

distortion remains less<br />

than 8% THD even with<br />

output load current distortions<br />

over 110% THD.<br />

Input voltage distortion<br />

notching and transients<br />

Output voltage distortion<br />


STANDARD FEATURES FOR ALL SYSTEMS<br />

All Liebert <strong>Datawave</strong><br />

systems incorporate a<br />

number of standard features<br />

to ensure load protection<br />

and to simplify<br />

maintenance.<br />

The <strong>Datawave</strong> magnetic<br />

synthesizer uses<br />

heavy-duty dry type<br />

transformers and high<br />

reliability capacitors to<br />

regenerate clean output<br />

power. <strong>Power</strong> to the critical<br />

load is regulated to<br />

within ±5% for input<br />

power varying from<br />

+40% to -40% of nominal.<br />

(Refer to Operational<br />

Description on page 4<br />

and Voltage<br />

Regulation on<br />

page 14.)<br />

Each magnetic component<br />

in the magnetic synthesizer<br />

is equipped with<br />

two temperature sensors<br />

in the windings.<br />

One sensor provides an<br />

alarm if any internal<br />

temperature exceeds<br />

180°C, the other shuts<br />

down the system if any<br />

internal temperature<br />

exceeds 200°C, even<br />

though full class H 220°C<br />

transformer insulation is<br />

utilized.<br />

A main input circuit<br />

breaker provides either<br />

manual control or automatic<br />

shutdown of the<br />

system in the event of an<br />

overcurrent condition.<br />

The breaker is<br />

molded-case, rated to<br />

provide coordination with<br />

output protection<br />

devices. In addition to<br />

manual and thermal-magnetic<br />

trip, the<br />

input breaker can be<br />

tripped by an electrically<br />

actuated shunt trip<br />

mechanism. As a standard<br />

feature, the shunt<br />

trip of the input circuit<br />

breaker is activated by<br />

the 200°C temperature<br />

sensors, local Emergency<br />

<strong>Power</strong> Off switch, and<br />

Manual Restart circuit.<br />

The local Emergency<br />

<strong>Power</strong> Off (EPO)<br />

switch is an illuminated<br />

push button, easily accessible<br />

for emergency shutdown<br />

use, but fully<br />

guarded to prevent accidental<br />

operation.<br />

Input circuit breaker<br />

The manual restart circuit<br />

shunt-trips the main<br />

input breaker whenever<br />

input power is lost. This<br />

isolates the system from<br />

repetitive power applications<br />

during fault-clearing<br />

operations by the<br />

utility and allows an<br />

orderly restart of the system<br />

when normal power<br />

returns.<br />

The manual restart circuit<br />

can be disabled by<br />

the manual restart<br />

switch. The auto position<br />

of the switch defeats<br />

manual restart, and<br />

allows the conditioner to<br />

automatically restart<br />

when power returns.<br />

Auto restart is useful for<br />

unattended remote sites<br />

where the load can automatically<br />

restart, and in<br />

those applications when<br />

the manual restart function<br />

is provided elsewhere<br />

in the system.<br />

The low-voltage shunt<br />

trip circuit also allows<br />

system shutdown by<br />

external relays, Remote<br />

Emergency <strong>Power</strong> Off<br />

(REPO) switches, or<br />

other remote devices.<br />

A double-pole, doublethrow<br />

(dpdt) building<br />

interface relay is powered<br />

by a 24 volt DC supply<br />

from the output of the<br />

magnetic synthesizer<br />

Energized whenever the<br />

<strong>Datawave</strong> system is on,<br />

the relay drops out if the<br />

output voltage disappears<br />

for any reason. The<br />

relay can be used for<br />

remote alarming of system<br />

shutdown, or shutdown<br />

interface with<br />

additional loads such as<br />

environmental control<br />

units.<br />

<strong>Datawave</strong> system components<br />

are housed in a<br />

welded steel frame<br />

with removable cabinet<br />

panels to provide maximum<br />

accessibility to the<br />

interior For safety and<br />

security, any panels<br />

which provide access to<br />

high voltage areas<br />

require a tool for<br />

removal.<br />

Cabinet colors are available<br />

to match or accent<br />

the computer equipment<br />

or room decor.<br />

Temperature sensors<br />

8


OPTIONAL FEATURES FOR ALL SYSTEMS<br />

Individually<br />

Protected Panelboards<br />

One 42-pole panelboard<br />

is provided on 15-30 kVA<br />

Model SC units; two (for<br />

a total of 84 poles) are<br />

provided on 50-75 kVA<br />

SC units; and four 30<br />

pole panelboards for a<br />

total of 120 poles are<br />

provided for 100-200 kVA<br />

SC units. Each<br />

panelboard is protected<br />

by a main circuit breaker<br />

to prevent overload and<br />

allow manual shutdown<br />

of the entire panelboard.<br />

Each panelboard is<br />

enclosed for safety, and<br />

has individual isolated<br />

neutral and safety<br />

ground busbars.<br />

Output circuits are<br />

protected by single-, two-,<br />

or three-pole thermalmagnetic<br />

molded-case<br />

branch circuit breakers<br />

sized specifically for the<br />

load to be served.<br />

(Standard panelboards<br />

use plug-in breakers.)<br />

Optional Panelboard<br />

Types<br />

Branch circuit<br />

panelboards which<br />

accept bolt-in type circuit<br />

breakers are optional for<br />

the <strong>Datawave</strong> system, as<br />

are panelboards for<br />

plug-in or bolt-in<br />

breakers manufactured<br />

by Square-D Corp.<br />

Flexible Output Cables<br />

& Terminations<br />

A flexible output cable<br />

system is available for SC<br />

units. Cable conductors<br />

are protected by a jacketed,<br />

liquid-tight, flexible<br />

steel conduit with a copper<br />

shielding conductor.<br />

Each output cable is fabricated<br />

to any specified<br />

length and type of termination<br />

to match the<br />

equipment to which it is<br />

to be connected<br />

Add-on cables for field<br />

installation can also be<br />

fabricated. Terminations<br />

include:<br />

•Receptacles to match<br />

equipment plugs.<br />

•Conduit termination<br />

fittings with conductor<br />

“pigtails” for hard wire<br />

connection.<br />

Subfeed Output Circuit<br />

Breaker<br />

A subfeed output circuit<br />

breaker, powered ahead<br />

of the output panelboards,<br />

is available on<br />

the Self-Contained <strong>Datawave</strong><br />

units to feed a<br />

remote distribution unit,<br />

panelboards, or other<br />

loads.<br />

A single subfeed breaker<br />

(225-amp max) is available<br />

on Model SC 50 or<br />

75 kVA systems. Either<br />

one (400-amp max) or<br />

two (225-amp each max)<br />

subfeed output breakers<br />

are available on Model<br />

SC 100-200 kVA systems.<br />

Main Output Circuit<br />

Breaker<br />

A molded case, thermal<br />

magnetic circuit breaker<br />

sized for 125% of the<br />

<strong>Datawave</strong>’s output full<br />

load amps is provided on<br />

all standard CA units.<br />

The main output circuit<br />

breaker provides a main<br />

disconnect and overcurrent<br />

protection for the<br />

<strong>Datawave</strong> output power<br />

feeder.<br />

High-Voltage Junction<br />

Box With Flexible<br />

Input Cable<br />

The high-voltage junction<br />

box can be installed under<br />

a raised floor system. The<br />

junction box contains terminals<br />

for connecting the<br />

incoming power line and<br />

ground conductors. A 10ft<br />

(3m) flexible cable is furnished<br />

for connection<br />

between the junction box<br />

and the <strong>Datawave</strong> main<br />

input circuit breaker.<br />

Low-Voltage Junction<br />

Box with Flexible<br />

Input Cable<br />

The low-voltage junction<br />

box can be installed<br />

under a raised floor. It<br />

contains terminals for<br />

connection of all building<br />

interface alarms or controls,<br />

and all Remote<br />

Emergency <strong>Power</strong> Off<br />

switches. A 10ft (3m)<br />

flexible control cable for<br />

the system is furnished<br />

for connection between<br />

the junction box and the<br />

<strong>Datawave</strong> system.<br />

9


Reserve Input Junction<br />

Box with Flexible<br />

Input Cable<br />

The reserve input highvoltage<br />

junction box can<br />

be installed under a<br />

raised floor system. The<br />

junction box contains terminals<br />

for connecting the<br />

reserve input power line,<br />

neutral, and ground conductors.<br />

A 10-foot<br />

(3-meter) flexible cable is<br />

furnished for connection<br />

between the junction box<br />

and the <strong>Datawave</strong><br />

reserve input circuit<br />

breaker.<br />

Remote Emergency<br />

<strong>Power</strong> Off (REPO)<br />

Switch<br />

Secondary Class<br />

Surge Arrester<br />

A secondary class surge<br />

arrester is wired to all<br />

three phases of the input<br />

power to shunt otherwise<br />

damaging voltage<br />

surges to the building<br />

ground.<br />

The arrester is rated for<br />

a maximum FOW sparkover<br />

of 3200 volts with<br />

maximum discharge voltage<br />

of 2.2 kV at 1500<br />

amperes, assuming a<br />

standard 8 x 20 microsecond<br />

waveform.<br />

The sure arrester provides<br />

protection for the<br />

<strong>Datawave</strong> against those<br />

very high voltage surges<br />

which can cause insulation<br />

or wiring failures.<br />

Bypass Transformer<br />

The bypass transformer<br />

is a 3-phase isolation<br />

transformer, furnished in<br />

a NEMA 1 (general purpose)<br />

enclosure. The<br />

bypass transformer is<br />

used with the bypass<br />

switch to provide stepdown<br />

and/or isolation for<br />

the bypass leg of the<br />

<strong>Datawave</strong> system.<br />

An optional decorative<br />

cabinet may be provided<br />

when desired. The cabinet<br />

color may be selected<br />

to match or accent the<br />

room decor.<br />

Floor Pedestals<br />

In rooms without a<br />

raised floor, the floor pedestals<br />

provide space for<br />

the bottom entrance of<br />

cables (and cooling air).<br />

The height of the floor<br />

pedestals is customerspecified.<br />

Standard floor pedestal<br />

height range: adjustable<br />

from 8.6 to 13.3 in.<br />

(218 to 336mm).<br />

Other available ranges<br />

are: 6 to 8.5 in. (152 to<br />

216mm), and 13.5 to<br />

18 in. (343 to 457mm).<br />

Bypass Switch<br />

Transient Suppression<br />

Plate<br />

The transient suppression<br />

plate is a one square<br />

meter metal plate<br />

mounted to (and bonded<br />

to) the high-voltage junction<br />

box. It reduces the<br />

effects of transients on<br />

the ground system by<br />

providing a capacitive<br />

coupling to building<br />

steel.<br />

Phase Rotation Meter<br />

The phase rotation meter<br />

is a handheld instrument<br />

with clip-on leads for connecting<br />

to the circuit<br />

under test. Upon meter<br />

connection and circuit<br />

energization, the meter<br />

shows whether the circuit<br />

phase rotation is in<br />

“ABC” or “BAC”<br />

sequence.<br />

The phase rotation meter<br />

can be used to verify the<br />

rotation sequence of any<br />

three-phase circuit up to<br />

600 volts.<br />

Pressing the REPO push<br />

button activates the<br />

shunt trip mechanism of<br />

the main input circuit<br />

breaker, shutting down<br />

the system.<br />

The illuminated and fully<br />

guarded REPO button is<br />

mounted in a wall box.<br />

The assembly includes<br />

50 feet (15.2 meters) of<br />

3-conductor cable for wiring<br />

to the building interface<br />

system. Additional<br />

lengths of cable are available.<br />

The bypass switch facilitates<br />

system maintenance<br />

by allowing the<br />

magnetic synthesizer of<br />

the <strong>Datawave</strong> system to<br />

be taken out of the circuit,<br />

or bypassed, with<br />

continued system operation.<br />

10


SITE MONITORING<br />

Monitoring systems for<br />

Liebert power conditioners<br />

range from temperature<br />

sensing to multipleparameter<br />

monitoring<br />

with remote display and<br />

printout.<br />

All units are equipped<br />

with a guarded and<br />

illuminated Local<br />

Emergency <strong>Power</strong> Off<br />

switch; provisions for<br />

connecting Remote<br />

Emergency <strong>Power</strong> Off<br />

switch; selectable auto or<br />

manual restart feature,<br />

to allow an orderly<br />

system restart after a<br />

power failure; a<br />

summary alarm contact;<br />

and a building interface<br />

relay.<br />

<strong>Power</strong> Monitor<br />

Panel<br />

True RMS techniques<br />

are used to provide<br />

accurate measurements<br />

of <strong>Datawave</strong><br />

operation, while the<br />

high visibility Liquid<br />

Crystal Display provides<br />

clear reporting.<br />

The, microprocessorbased<br />

power monitoring<br />

system continuously<br />

monitors and sequentially<br />

displays the following<br />

parameters:<br />

•Input voltages, line-toline<br />

for each phase<br />

•Output voltages, lineto-line<br />

and line-toneutral<br />

for each phase<br />

•Output currents for<br />

each phase, including<br />

neutral and ground<br />

currents<br />

•Output voltage THD<br />

for each phase<br />

•Output current THD<br />

for each phase<br />

•K-factor and crest factor<br />

•Output power including<br />

kVA, kW, kW-<br />

Hours, power factor,<br />

percent load and output<br />

frequency.<br />

The monitor panel also<br />

provides warning of outof-spec<br />

conditions<br />

through audible alarm<br />

and displayed alarm<br />

messages. All alarmed<br />

conditions are retained<br />

in a nonvolatile memory<br />

until reset. Alarm<br />

thresholds are adjustable<br />

to meet individual<br />

site needs.<br />

Alarmed conditions<br />

include:<br />

•Output overvoltage<br />

•Output undervoltage<br />

•Output voltage THD<br />

•Output overcurrent<br />

•Neutral overcurrent<br />

•Ground overcurrent<br />

•Transformer overtemperature<br />

•Frequency deviation<br />

•Phase sequence error<br />

•Phase loss<br />

•Five customer-specified<br />

alarm conditions.<br />

For additional application<br />

flexibility, the following<br />

alarms can be<br />

configured to shut down<br />

the system:<br />

•Output over-/undervoltage<br />

•Phase sequence error/<br />

phase loss<br />

•Ground overcurrent<br />

Through a two-conductor<br />

communications<br />

cable, the system can<br />

communicate alarms<br />

and monitored conditions<br />

to a Liebert Site-<br />

Scan central monitoring<br />

system. An isolated RS-<br />

232 ASCII communication<br />

port is provided for<br />

communication to other<br />

monitoring systems.<br />

Basic Temperature Monitoring Panel<br />

The Transformer Overtemperature alarm indicator is a part of the 180°C transformer temperature sensing<br />

circuit. This configuration is optional on all units.<br />

11


SiteScan<br />

SiteScan is an online<br />

center for monitoring and<br />

controlling all support<br />

systems in a large data<br />

processing installation.<br />

SiteScan provides early<br />

warning alarms and total<br />

site management data. A<br />

software-based system<br />

using a microcomputer<br />

as the central processing<br />

center, SiteScan is<br />

programmable, menudriven,<br />

and upgradeable.<br />

Four primary site management<br />

programs are<br />

built into SiteScan:<br />

Alarm functions provide<br />

instant warning of potential<br />

problems. A seven<br />

level selection of options<br />

for response to each<br />

alarm offers total flexibility<br />

in designing a custom-tailored<br />

alarm<br />

system.<br />

Control functions allow<br />

critical setpoints and<br />

sensitivities to be<br />

adjusted by remote control<br />

for dynamic, singlepoint<br />

site management.<br />

Password access preserves<br />

site security.<br />

Status functions provide<br />

complete information on<br />

all computer support systems,<br />

including real-time<br />

status of all monitored<br />

parameters and any<br />

alarm conditions.<br />

History functions offer<br />

database management<br />

capabilities. These<br />

functions track, store and<br />

graphically display<br />

crucial data and trends<br />

for site management<br />

activities such as<br />

capacity analysis, growth<br />

predictions, and energy<br />

management.<br />

SiteScan makes full use<br />

of all features of its<br />

computer-based central<br />

processor, including<br />

RS-232 communications<br />

and other output ports<br />

and unlimited expansion<br />

via multiplexers.<br />

For critical data<br />

processing facilities,<br />

the SiteScan system<br />

offers total site<br />

management capability<br />

in a virtually<br />

obsolescence-proof<br />

configuration.<br />

AVAILABILITY<br />

Individually protected<br />

panelboards<br />

Flexible Output Cables<br />

and Terminations<br />

Optional Panelboard<br />

Types<br />

Subfeed Output<br />

Circuit Breaker<br />

Main Output<br />

Circuit Breaker<br />

High-Voltage Junction Box<br />

With Flexible Input Cable<br />

Low-Voltage Junction Box<br />

With Flexible Input Cable<br />

Reserve Input Junction Box<br />

With Flexible Input Cable<br />

Secondary Class Surge<br />

Arrester<br />

Remote Emergency <strong>Power</strong><br />

Off (REPO) Switch<br />

Model SC<br />

Model CA<br />

15-30 kVA 50-75 kVA 100-200 kVA 15-30 kVA 50-75 kVA 100-200 kVA<br />

Standard<br />

(panelboard)<br />

42 poles<br />

Standard<br />

(2 panelboards)<br />

84 poles<br />

Standard<br />

(4 panelboards)<br />

120 poles<br />

Not<br />

applicable<br />

Optional Optional Optional Not<br />

applicable<br />

Optional Optional Optional Not<br />

applicable<br />

Not<br />

available<br />

Optional Optional Not<br />

applicable<br />

Not<br />

applicable<br />

Not<br />

applicable<br />

Not<br />

applicable<br />

Not<br />

applicable<br />

Not<br />

applicable<br />

Not<br />

applicable<br />

Not<br />

applicable<br />

Not<br />

applicable<br />

Not available Not available Not available Standard Standard Standard<br />

Standard Standard Optional Optional Optional Optional<br />

Optional Optional Optional Optional Optional Optional<br />

Not<br />

applicable<br />

Not<br />

applicable<br />

Optional with<br />

Bypass Switch<br />

Not<br />

applicable<br />

Not<br />

applicable<br />

Optional with<br />

Bypass Switch<br />

Optional Optional Optional Optional Optional Optional<br />

Optional Optional Optional Optional Optional Optional<br />

Floor Pedestals Optional Optional Optional Optional Optional Optional<br />

Bypass Switch Optional Optional Optional Optional Optional Optional<br />

Bypass Transformer Optional Optional Optional Optional Optional Optional<br />

Transient Suppression<br />

Plate<br />

Optional with<br />

high-voltage<br />

junction box<br />

Optional with<br />

high-voltage<br />

junction box<br />

Optional with<br />

high-voltage<br />

junction box<br />

Optional with<br />

high-voltage<br />

junction box<br />

Optional with<br />

high-voltage<br />

junction box<br />

Optional with<br />

high-voltage<br />

junction box<br />

<strong>Power</strong> Monitor Panel Standard Standard Standard Optional Optional Optional<br />

SiteScan Optional Optional Optional Optional Optional Optional<br />

12


SYSTEM SIZING<br />

A fundamental concern is the size of the conditioning system required to<br />

meet present and future needs.<br />

Present Requirements<br />

Estimating the present system size can be done in a number of ways,<br />

depending on the source of information available. Typical sources include<br />

the computer site planning manuals, equipment nameplate data, and the<br />

existing electrical service data. Present kVA requirements can be estimated<br />

using any of the following:<br />

1. Kilowatts (kW) and <strong>Power</strong> Factor (pf)<br />

kVA<br />

=<br />

kW<br />

----<br />

pf<br />

(If pf is not given, assume an average of 0.80.)<br />

2. Ampere specifications for the electrical service feeding the data<br />

processing area.<br />

kVA<br />

=<br />

V<br />

----------------<br />

× A × 3<br />

1000<br />

(for 3-phase systems)<br />

3. BTU/hr or kcal/hr specifications.<br />

kW = ------------------<br />

( BTU) ⁄ ( hr)<br />

kW =<br />

3413<br />

kVA<br />

=<br />

kW<br />

----<br />

pf<br />

(If pf is not given, assume an average of 0.80.)<br />

4. <strong>Power</strong> profile of equipment. (When available, this is the most reliable<br />

base from which to estimate present kVA loading.)<br />

For 3-phase equipment:<br />

kVA<br />

A<br />

V × A × 3<br />

= ----------------<br />

1000<br />

kVA × 1000<br />

= ----------------<br />

V × 3<br />

For single-phase equipment:<br />

kVA<br />

A<br />

= --------<br />

V × A<br />

1000<br />

=<br />

kVA<br />

----------------<br />

× 1000<br />

V<br />

(<br />

-----------------<br />

kcal) ⁄ ( hr)<br />

860<br />

After the present kVA requirement has been determined the anticipated<br />

growth and the special characteristics of the load must be considered.<br />

Growth Requirements<br />

The <strong>Datawave</strong> should be<br />

sized anticipating growth<br />

to protect against shortterm<br />

obsolescence. With<br />

the growth rates associated<br />

with data processing<br />

centers, their power<br />

requirements double in a<br />

relatively short time.<br />

Therefore it is not unreasonable<br />

to size the conditioner<br />

for twice (or 200%<br />

of) the present estimated<br />

kVA load. Even in a minimum<br />

growth environment,<br />

the conditioner should be<br />

sized for 125% of the estimated<br />

kVA load.<br />

Special Load<br />

Characteristics<br />

Whenever special load<br />

characteristics are encountered,<br />

factory application<br />

engineers should be consulted<br />

for recommended<br />

system sizing.<br />

System Grounding<br />

Considerations<br />

The grounding of any<br />

power conditioning system<br />

is critical to its performance.<br />

When grounding<br />

for system performance,<br />

however, the first rule<br />

must always be safety.<br />

What good is a system that<br />

performs, but is not safe?<br />

The National Electrical<br />

Code provides for a safe<br />

electrical system. The<br />

ground path required by<br />

the NEC for safety should<br />

be enhanced or improved<br />

for a system performance,<br />

never defeated or eliminated.<br />

For detailed system<br />

grounding considerations,<br />

refer to the installation<br />

manual.<br />

13


PHYSICAL AND ELECTRICAL DATA<br />

Operational Characteristics<br />

Input Transients<br />

No spikes, transients, or<br />

other disturbances are<br />

evident on any of the<br />

three output phases<br />

when high-energy, ringing<br />

transients (ANSI<br />

C62.41, Category B) are<br />

impressed on the input<br />

lines.<br />

Electrical Noise<br />

Suppression<br />

Voltage Regulation<br />

Type<br />

Input voltage<br />

(% of Nominal) Load<br />

Output Voltage<br />

(% of Nominal)<br />

Normal Nominal 0% to 100% Nominal to +3%<br />

High line/Low line +40% to -40% 0% to 100% +5% to -5%<br />

Unbalanced input<br />

voltage<br />

Unbalanced<br />

load<br />

Nominal<br />

(single-phase)<br />

Nominal<br />

0% to 60% +5.8% to -4%<br />

100% on two phases<br />

0% on one phase<br />

Overload Nominal 200% -6%<br />

+5% to -2%<br />

Type<br />

Normal<br />

mode<br />

Common<br />

mode<br />

Suppression<br />

120 dB<br />

120 dB<br />

Short-Circuit<br />

Capability<br />

The sustained short-circuit<br />

current available<br />

from the <strong>Datawave</strong> magnetic<br />

synthesizer is up to<br />

+200% of full-load current<br />

(continuously, or<br />

until protection circuitry<br />

is activated).<br />

Output Voltage<br />

Harmonic Distortion<br />

(No-load to Full-load)<br />

Total Harmonic Distortion—less<br />

than 4%<br />

NOTE: Incoming line distortion<br />

is not additive to<br />

output Total Harmonic<br />

Distortion.<br />

Efficiency (Nominal Input Voltage)<br />

15-20 kVA 30 kVA 50-200 kVA<br />

Full-load 89% 91% 93%<br />

Three-quarter load 87% 89% 91.5%<br />

Half-load 83% 86% 89%<br />

Input <strong>Power</strong><br />

Factor<br />

From half-load to fullload—0.96<br />

lead to 0.96<br />

lag.<br />

NOTE: Input power factor<br />

does not depend on<br />

load.<br />

Input Current<br />

Distortion<br />

Total Harmonic Distortion—less<br />

than 8%<br />

NOTE: Input current<br />

distortion is independent<br />

of load power factor<br />

current distortion.<br />

Audible Noise<br />

15-30 kVA 55 dBA<br />

50-75 kVA 58 dBA<br />

100-200 kVA 63 dBA<br />

NOTE: Average sound<br />

level, measured at 5 feet<br />

(1.6 meters).<br />

14


Electrical Characteristics<br />

Table 1 Electrical Characteristics<br />

Main Input<br />

Output & Reserve Input<br />

Suggested Feeder<br />

Suggested Feeder<br />

Voltage kVA FLA OPD Wire Size (AWG) FLA OPD Wire Size (AWG)<br />

15 49 60 6 42 60 6<br />

20 65 80 4 56 70 4<br />

30 95 125 1 83 110 2<br />

50 155 200 000 139 175 00<br />

208V 75 233 300 350 kcmil 208 300 350 kcmil<br />

100 311 400 000 (2*) 277 350 500 kcmil<br />

125 389 500 250 kcmil (2*) 347 450 0000 (2*)<br />

150 466 600 350 kcmil (2*) 416 600 350 kcmil (2*)<br />

200 622 800 300 kcmil (3*) 555 700 500 kcmil (2*)<br />

15 42 60 6<br />

20 56 70 4<br />

30 83 100 2<br />

50 135 175 00<br />

240V 75 202 250 250 kcmil<br />

100 269 350 500 kcmil<br />

125 337 450 0000 (2*)<br />

150 404 500 250 kcmil (2*)<br />

200 539 700 500 kcmil (2*)<br />

15 27 40 8 23 30 10<br />

20 36 50 8 30 40 8<br />

30 52 70 4 46 60 6<br />

50 85 110 2 76 100 3<br />

380V 75 127 175 00 114 150 0<br />

100 170 225 0000 152 200 000<br />

125 213 300 350 kcmil 190 250 250 kcmil<br />

150 255 350 500 kcmil 228 300 350 kcmil<br />

200 340 450 0000 (2*) 304 400 000 (2*)<br />

15 25 40 8 22 30 10<br />

20 34 50 8 29 40 8<br />

30 50 70 4 43 60 6<br />

50 81 110 2 72 90 3<br />

400V 75 121 175 00 108 150 0<br />

100 162 200 000 144 200 000<br />

125 202 250 250 kcmil 180 225 0000<br />

150 243 300 350 kcmil 217 300 350 kcmil<br />

200 323 400 000 (2*) 289 400 000 (2*)<br />

15 24 30 10 21 30 10<br />

20 33 40 8 28 40 8<br />

30 48 60 6 42 60 6<br />

50 78 100 3 70 90 3<br />

415V 75 117 150 0 104 150 0<br />

100 156 200 000 139 175 00<br />

125 195 250 250 kcmil 174 225 0000<br />

150 234 300 350 kcmil 209 300 350 kcmil<br />

200 312 400 000 (2*) 278 350 500 kcmil<br />

15 21 30 10 18 25 10<br />

20 28 40 8 24 30 10<br />

30 41 50 8 36 50 8<br />

50 67 90 3 60 80 4<br />

480V 75 101 125 1 90 125 1<br />

100 135 175 00 120 150 0<br />

125 168 225 0000 150 200 000<br />

150 202 250 250 kcmil 180 225 0000<br />

200 269 350 500 kcmil 241 300 350 kcmil<br />

15 17 25 10 14 20 12<br />

20 22 30 10 19 25 10<br />

30 33 50 8 29 40 8<br />

50 54 70 4 48 60 6<br />

600V 75 81 110 2 72 90 3<br />

100 108 150 0 96 125 1<br />

125 135 175 00 120 150 0<br />

150 162 225 0000 144 200 000<br />

200 216 300 350 kcmil 192 250 250 kcmil<br />

* Number of parallel feeders<br />

Voltage and Current Ratings<br />

The <strong>Datawave</strong> magnetic synthesizer<br />

has nine kVA capacities,<br />

from 15 kVA through 200 kVA.<br />

A range of voltage capabilities is<br />

available for each size, in both<br />

50 and 60 Hz. Table 1 shows<br />

common voltages, Full Load<br />

Ampere (FLA) values, and circuit<br />

breaker (OPD) ratings.<br />

(For voltage ratings not shown,<br />

consult Factory).<br />

NOTES:<br />

1. FLA = Full Load Amps of <strong>Datawave</strong><br />

system.<br />

OPD= Overcurrent Protection Device<br />

inside <strong>Datawave</strong> unit.<br />

(2*) = Two parallel feeders per NEC<br />

300-20 and 310-4.<br />

Wire Sizes based on NEC 1996 Table<br />

310-16, using 75°C copper conductor.<br />

2. Input feeder wire size listed in Table is<br />

the minimum feeder size<br />

recommended. Larger wire size may be<br />

required because of voltage drop or<br />

supply OPD.<br />

3. Output feeder and Reserve Input feeder<br />

size listed in Table is the minimum size<br />

recommended. Larger wire size may be<br />

required because of voltage drop or<br />

harmonic neutral current (Ref. NEC<br />

Table 310-16 Notes 8 and 10). For best<br />

performance, Synthesizer should be<br />

located as close to the load as practical.<br />

4. Insulated ground conductors are<br />

recommended to be parity sized with<br />

power conductors for increased system<br />

performance. Ground conductor<br />

minimum size must be per NEC, Table<br />

250-95. Input power feeder conduit may<br />

be used as safety ground (customer<br />

option). If conduit is used, adequate<br />

electrical continuity must be maintained<br />

at conduit connection to enclosures and<br />

throughout conduit run.<br />

5. Reserve input is used in bypass mode<br />

of <strong>Datawave</strong> system (100-200 kVA).<br />

Reserve input voltage must be same as<br />

<strong>Datawave</strong> system output voltage.<br />

6. The Main Output Breaker listed in the<br />

table is typical for Model CA units only.<br />

7. Standard Breaker Interrupting Ratings<br />

as follows. Other ratings available upon<br />

request.<br />

OPD 208V 380-415V 480V 600V<br />

Up to<br />

250A<br />

65KA 15KA 35KA 22KA<br />

300-<br />

600A<br />

65KA 25KA 35KA 25KA<br />

700-<br />

800A<br />

65KA 50KA 50KA 25KA<br />

15


Heat Output<br />

The <strong>Datawave</strong> magnetic<br />

synthesizer is the most<br />

efficient of the power<br />

synthesizing technologies.<br />

As the <strong>Datawave</strong><br />

operates, some energy is<br />

lost in the form of heat.<br />

Table 2 shows the heat<br />

output of the <strong>Datawave</strong><br />

system for each model at<br />

one-half, three-quarter,<br />

and full loads (based on a<br />

unity load power factor).<br />

Table 2<br />

Heat output<br />

Size<br />

One-half<br />

load<br />

Three-quarter<br />

load<br />

Full<br />

load<br />

kVA/kW BTU/hr (kW) BTU/hr (kW) BTU/hr (kW)<br />

15 5250 (1.54) 5750 (1.68) 6350 (1.85)<br />

20 6990 (2.05) 7650 (2.24) 8450 (2.47)<br />

30 8350 (2.44) 9490 (2.78) 10125 (2.97)<br />

50 10550 (3.09) 11890 (3.48) 12850 (3.76)<br />

75 15820 (4.63) 17830 (5.23) 19270 (5.65)<br />

100 21090 (6.18) 23780 (6.97) 25700 (7.53)<br />

125 26360 (7.72) 29720 (8.71) 32100 (9.41)<br />

150 31640 (9.3) 35670 (10.5) 38500 (11.3)<br />

200 42180 (12.4) 45760 (13.9) 51400 (15.1)<br />

Environmental characteristics are:<br />

•Temperature, operating 0°C to +40°C<br />

•Temperature, storage -55°C to +85°C<br />

•Relative humidity<br />

0% to 95% (non-condensing)<br />

16


Physical and Mechanical Characteristics<br />

Weights and Dimensions<br />

The weights and dimensions of the <strong>Datawave</strong> magnetic<br />

synthesizers are shown in Table 3.<br />

(All weights and dimensions are those of an uncrated<br />

unit, less cables and floor pedestals.)<br />

Floor Loading<br />

Data for both distributed and concentrated floor loading<br />

of the <strong>Datawave</strong> magnetic synthesizer are shown<br />

in Table 4. Distributed floor loading values reflect<br />

the weight of the unit over its entire footprint area,<br />

and is expressed in lb/ft 2 or kg/m 2 . Concentrated floor<br />

loading values reflect the weight of the unit at each<br />

point of support.<br />

Table 3<br />

Weight and dimensions<br />

Table 4<br />

Floor loading<br />

Size 60 Hz 50 Hz W x D x H<br />

kVA<br />

15<br />

20<br />

30<br />

50<br />

75<br />

100<br />

125<br />

150<br />

Module A<br />

150<br />

Module B<br />

200<br />

Module A<br />

200<br />

Module B<br />

lbs<br />

(kg)<br />

1200<br />

(545)<br />

1500<br />

(680)<br />

1600<br />

(730)<br />

2400<br />

(1090)<br />

2750<br />

(1250)<br />

3900<br />

(1775)<br />

4300<br />

(1955)<br />

2650<br />

(1205)<br />

3150<br />

(1430)<br />

3000<br />

(1365)<br />

3500<br />

(1590)<br />

lbs<br />

(kg)<br />

1300<br />

(590)<br />

1600<br />

(730)<br />

1700<br />

(775)<br />

2640<br />

(1200)<br />

3025<br />

(1375)<br />

4400<br />

(2000)<br />

4900<br />

(2230)<br />

2990<br />

(1360)<br />

3500<br />

(1590)<br />

3410<br />

(1550)<br />

3940<br />

(1790)<br />

Inches<br />

(mm)<br />

36x34x64<br />

(914x863x1626)<br />

36x34x64<br />

(914x863x1626)<br />

36x34x64<br />

(914x863x1626)<br />

44x32x68<br />

(1118x813x1727)<br />

44x32x68<br />

(1118x813x1727)<br />

66x36x76<br />

(1676x914x1931)<br />

66x36x76<br />

(1676x914x1931)<br />

52x36x76<br />

(1321x914x1931)<br />

52x36x76<br />

(1321x914x1931)<br />

52x36x76<br />

(1321x914x1931)<br />

52x36x76<br />

(1321x914x1931)<br />

Size<br />

Distributed floor loading<br />

(Wt. per unit area)<br />

lb/ft 2<br />

kVA (kg/m 2 )<br />

15 141<br />

(691)<br />

20 176<br />

(862)<br />

30 188<br />

(925)<br />

50 245<br />

(1199)<br />

75 281<br />

(1375)<br />

100 236<br />

(1159)<br />

125 261<br />

(1276)<br />

150<br />

Module A<br />

150<br />

Module B<br />

200<br />

Module A<br />

200<br />

Module B<br />

Concentrated floor loading<br />

(Wt. at each support point)<br />

60 Hz 50 Hz 60 Hz 50 Hz<br />

204<br />

(998)<br />

242<br />

(1184)<br />

231<br />

(1131)<br />

269<br />

(1317)<br />

lb/ft 2<br />

(kg/m 2 )<br />

153<br />

(748)<br />

188<br />

(925)<br />

200<br />

(983)<br />

270<br />

(1320)<br />

309<br />

(1513)<br />

267<br />

(1305)<br />

297<br />

(1456)<br />

230<br />

(1126)<br />

269<br />

(1317)<br />

262<br />

(1284)<br />

303<br />

(1483)<br />

lbs<br />

(kg)<br />

300<br />

(136)<br />

375<br />

(170)<br />

400<br />

(183)<br />

600<br />

(273)<br />

688<br />

(313)<br />

975*<br />

(444)*<br />

1075*<br />

(489)*<br />

663*<br />

(301)*<br />

788*<br />

(358)*<br />

750*<br />

(341)*<br />

875*<br />

(398)*<br />

lbs<br />

(kg)<br />

325<br />

(148)<br />

400<br />

(183)<br />

425<br />

(194)<br />

660<br />

(300)<br />

756<br />

(344)<br />

1100*<br />

(500)*<br />

1225*<br />

(558)*<br />

748*<br />

(340)*<br />

875*<br />

(398)*<br />

853*<br />

(388)*<br />

985*<br />

(448)*<br />

* Floor stand or pedestal-equipped units only—otherwise there are<br />

no concentrated loading points for these units.<br />

17


Service Access and Clearance Requirements<br />

The <strong>Datawave</strong> magnetic synthesizer is designed to require minimal servicing. Access areas and recommended<br />

minimum clearances of each module are described below.<br />

15-20-30 kVA Sizes<br />

50-75 kVA Sizes<br />

Recommended minimum<br />

service clearances should<br />

exist at the front and one<br />

other side or rear as<br />

shown.<br />

Service clearance<br />

extends 42 inches<br />

(1067 mm) from the unit<br />

in accordance with the<br />

National Electrical Code.<br />

Model SC units require<br />

at least 6 inches<br />

(143 mm) at the bottom<br />

of the unit for cable routing.<br />

If the unit is not<br />

installed on a raised<br />

floor, floor pedestals<br />

must be provided.<br />

(Non-raised floor<br />

applications are not<br />

CSA-approved.)<br />

There should be<br />

18 inches (457 mm)<br />

above the unit for cooling<br />

air exhaust.<br />

Recommended minimum<br />

service clearances for the<br />

50 and 75 kVA sizes<br />

should exist at the front<br />

and left side. Where possible,<br />

service clearance is<br />

recommended at the<br />

front and rear. Service<br />

clearance extends 42<br />

inches (1067 mm) from<br />

the unit in accordance<br />

with the National Electrical<br />

Code.<br />

Model SC units require<br />

at least 6 inches<br />

(143 mm) clearance at<br />

the bottom of the unit for<br />

cable exit. (NOTE: If bottom<br />

cable exit or distribution<br />

cables are used,<br />

the unit must be<br />

installed on a raised<br />

floor, or floor pedestals<br />

must be provided.<br />

Non-raised floor applications<br />

are not<br />

CSA-approved.)<br />

There should be<br />

18 inches (457 mm)<br />

above the unit for cooling<br />

air flow.<br />

18"<br />

(457mm)<br />

42"<br />

(1067mm)<br />

42"<br />

(1067mm)<br />

18"<br />

(457mm)<br />

42"<br />

(1067mm)<br />

42"<br />

(1067mm)<br />

(required, plus<br />

one other side<br />

or back)<br />

15-20-30 kVA<br />

6"<br />

(152mm)<br />

(min. for bottom<br />

cable entrance)<br />

42"<br />

(1067mm)<br />

42"<br />

(1067mm)<br />

(required, plus one<br />

other side or back)<br />

50-75 kVA<br />

6"<br />

(152mm)<br />

(min. for bottom<br />

cable entrance)<br />

18


100-200 kVA Sizes<br />

Recommended minimum<br />

service clearances for the<br />

100 to 200 kVA sizes are<br />

as shown. Front service<br />

clearance is required.<br />

Model SC units require<br />

additional service clearance<br />

on the right side for<br />

access to the output distribution.<br />

Service clearance<br />

extends 42 inches<br />

(1067 mm) from the unit<br />

in accordance with the<br />

National Electrical Code.<br />

There must be 6 inches<br />

(143 mm) clearance at<br />

the bottom of the unit if<br />

bottom cable exit is<br />

desired.<br />

(NOTE: If bottom cable<br />

exit or distribution cables<br />

are used, the unit must<br />

be installed on a raised<br />

floor, or floor pedestals<br />

must be provided. Nonraised<br />

floor applications<br />

are not<br />

CSA-approved.)<br />

There should be 18<br />

inches (457 mm) above<br />

the unit for cooling air<br />

flow.<br />

18"<br />

(457mm)<br />

42"<br />

(1067mm)<br />

(required for<br />

service<br />

access)<br />

42"<br />

(1067mm)<br />

(for SC<br />

units)<br />

100, 125 kVA<br />

6"<br />

(152mm)<br />

(min. for bottom<br />

cable entrance)<br />

18"<br />

(457mm)<br />

42"<br />

(1067mm)<br />

42"<br />

(1067mm)<br />

(for SC<br />

units)<br />

150, 200 kVA<br />

6"<br />

(152mm)<br />

(min. for bottom<br />

cable entrance)<br />

19


POWER PROTECTION<br />

<strong>Datawave</strong> ®<br />

The Company Behind the Products<br />

With over a million installations around the globe,<br />

Liebert is the world leader in computer protection<br />

systems. Since its founding in 1965, Liebert has<br />

developed a complete range of support and<br />

protection systems for sensitive electronics:<br />

• Environmental systems—close-control air<br />

conditioning from 1 to 60 tons<br />

• <strong>Power</strong> conditioning and UPS with power<br />

ranges from 300 VA to more than 1000 kVA<br />

• Integrated systems that provide both<br />

environmental and power protection in a<br />

single, flexible package<br />

• Monitoring and control—from systems of any<br />

size or location, on-site or remote<br />

• Service and support through more than 100<br />

service centers around the world and a 24/7<br />

Customer Response Center<br />

While every precaution has been taken to ensure<br />

the accuracy and completeness of this literature,<br />

Liebert Corporation assumes no responsibility and<br />

disclaims all liability for damages resulting from<br />

use of this information or for any errors or<br />

omissions.<br />

© 2002 Liebert Corporation<br />

All rights reserved throughout the world.<br />

Specifications subject to change without notice.<br />

® Liebert and the Liebert logo are registered<br />

trademarks of Liebert Corporation. All names<br />

referred to are trademarks or registered<br />

trademarks of their respective owners.<br />

TECHNICAL DATA MANUAL<br />

Technical Support<br />

United States<br />

1050 Dearborn Drive<br />

P.O. Box 29186<br />

Columbus, OH 43229<br />

Single-Phase UPS<br />

800-222-5877<br />

Outside the United States<br />

614-841-6598<br />

3-Phase UPS<br />

800-543-2378<br />

Environmental Control<br />

800-543-2778<br />

Italy<br />

Via Leonardo Da Vinci 8<br />

Zona Industriale Tognana<br />

35028 Piove Di Sacco (PD)<br />

+39 049 9719 111<br />

FAX: +39 049 5841 257<br />

Asia<br />

23F, Allied Kajima Bldg.<br />

138 Gloucester Road<br />

Wanchai<br />

Hong Kong<br />

+852 2 572 2201<br />

FAX: +852 2 831 0114<br />

Web Site<br />

www.liebert.com<br />

SL-20184 (6/02)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!