17.01.2014 Views

Radiative Transfer Radiative transfer equation (RTE) - IAP ...

Radiative Transfer Radiative transfer equation (RTE) - IAP ...

Radiative Transfer Radiative transfer equation (RTE) - IAP ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Radiative</strong> <strong>Transfer</strong><br />

<strong>Radiative</strong> <strong>transfer</strong> <strong>equation</strong> (<strong>RTE</strong>)<br />

without scattering<br />

N. Kämpfer<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

Institute of Applied Physics<br />

University of Bern<br />

12. Oct. 2010


Outline<br />

Beer’s law in nonhomogeneous medium<br />

Absorption cross section<br />

Opacity & Transmission<br />

Photon mean free path<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

A first look at scattering<br />

Schwarzschild <strong>equation</strong>


Absorption by a non homogeneous medium<br />

Example for absorption of solar radiation in the atmosphere<br />

Radiation is passing through<br />

layer dz under zenith-angle θ<br />

Radiation is attenuated by<br />

amount dI along path ds<br />

ds = sec θdz = 1<br />

cos θ dz = 1 µ dz<br />

1/µ is called air mass factor<br />

Law of Beer-Lambert<br />

to consider the<br />

ase of scattering by a spherical particle of radius r,<br />

rr rvhich the scattering, absorption, or extinction<br />

fficiency K1 in (4.16) can be prescribed on the<br />

(- d(<br />

ig. 4.10 Extinction of incident parallel beam solar radiacn<br />

as it passes through an infinitesimally thin atmospheric<br />

Lver concaining absorbing gases and/or aerosols.<br />

dI (λ) = −k a (λ)I (λ)ds<br />

particle. Figu<br />

eters for va<br />

phere and ra<br />

For the scatt<br />

the spectrum<br />

air molecule<br />

)>1 for rain<br />

Particles w<br />

scattering rad<br />

scattering reg<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

efficiency is o<br />

Scattering<br />

and the scat<br />

forward and b<br />

Fig.4.12a. For<br />

ble to or grea<br />

directed mainly<br />

cated in subse<br />

Figure 4.13 s<br />

ter for particle<br />

of m;. Conside<br />

Schwarzschild eq.<br />

◮ k a (λ) is called absorption coefficient. Dimension is m −1<br />

◮ k a (λ) is proportional to number density: k a (λ) = σ a (λ)n<br />

◮ σ a (λ) is called absorption cross section<br />

◮ k a (λ) = ρk m (λ): k m is mass abs. coefficient, [m 2 /kg]


qru €r0r) sos?a rueqdso<br />

E6<br />

r.llouoloAeM<br />

Lur! | uuru L' r-urj<br />

0l r.r.rrj<br />

L urrl L'<br />

ue6Äx-g<br />

uoqrec<br />

joleM<br />

"" 01<br />

tt-0 L<br />

ot-0 L<br />

ot-0 L<br />

n-0 L<br />

""-01 er-0l'<br />

or-0 L<br />

or-0 L<br />

n-0 L<br />

"r-01 *-0L<br />

or-0 L<br />

ot-0 L<br />

n-0 L<br />

""-ol *-0 |.<br />

or-0lor-0<br />

L<br />

n-o L<br />

""-01 rr-0 L<br />

or-0 L<br />

or-o L<br />

n-0 L<br />

slnp1l aLlJ :saryralory {q uo4dtosqy g'a<br />

r<br />

p<br />

r<br />

v<br />

w<br />

a<br />

o<br />

?<br />

N<br />

=<br />

N<br />

v<br />

a<br />

g<br />

o<br />

p<br />

N<br />

N<br />

N<br />

F<br />

- N<br />

puu 'oroz,{llertues<br />

-eJJO UOISSIIUStrEi]i<br />

UoISSIIUE'9'0 sp3:rl<br />

-er srql urqlrm seiu:<br />

puB eplxolp uoqJr-1 '<br />

uoIleIpE Jelos q-.:r<br />

,{lr.trssrrusuert<br />

eql sr 1r esneraq<br />

u:<br />

:e,to Surq.tosqe i1;.<br />

go uorldecxa Jqt L'<br />

8uue11ecs puc uorr;<br />

-oru1u,{q SuFarr::.<br />

-Jrp po{reru aqr i:,:<br />

eqr 'l(zz'o'b3<br />

:;.<br />

-re,t u 3uole potri!:;:<br />

Jo^o urns eql 8ui:q<br />

eltnb eru selnJelrrru<br />

-3es ssorc uoudrosü<br />

sI qlSuole^€,r'suLr<br />

peJB4ur eql olur (-..<br />

e^IlurpeJ autl-.iq- a ii<br />

-runu sJr oJ ]u0rJrlf:,<br />

-drosqe er{J'salnr:'<br />

xIS rolo () t6l pu<br />

suorcqd Jb LltDae )q-L<br />

Absorption cross sections of some molecules<br />

from the visible to the microwave<br />

<strong>RTE</strong><br />

-3es ssoJc ,^Aoq\\o-<br />

' sJeq{unue^e,r :.i -1o<br />

ruoJJ luepr^e sr stlns<br />

elelclp SeUIf OSeQItr<br />

'pernldec eJB slrpte<br />

''3'e) sp,trelur IIErx<br />

- N<br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Uouoao<br />

Schwarzschild eq.<br />

-ncelou qJee Jo-l sr<br />

erlceds eseql .\\oq ;<br />

""-01 *-0L<br />

or-0 L<br />

or-0 L<br />

g-o I<br />

ez-j1<br />

rt-0 L<br />

or-0 L<br />

ot-0 L<br />

n-o L<br />

a"-01<br />

*-0L<br />

ot-0 L<br />

or-0 L<br />

n-0 L<br />

um €'0 o] run ! 1-ṟ<br />

- N<br />

aqt -<br />

ull{]la 'eprxorp u.}r<br />

8'0 ruo4 pue 'uai",:<br />

ur f' uruj 0|.<br />

Surqceorddu 'sasc:-<br />

uollelpeJ S,t{llel rrl<br />

copied from Bohren, Fundamnetals of atmospheric radiation


Opacity and transmittance<br />

Atmosphere consists of many different species<br />

→ every constitutent contributes in its own way<br />

k a = ∑ k a,i = ∑ n i σ a,i = ∑ ρ i k m,i<br />

i<br />

i<br />

i<br />

Absorption along a path element ds is given by Beer Lambert<br />

dI (λ) = −k a (λ)I (λ)ds<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

which after integration over the whole atmosphere yields<br />

I (λ) = I 0 (λ)e −τa(λ,s)<br />

Opacity τ: τ a (λ, s) = ∫ s σ a(λ)n(s)ds = ∫ s k a(λ, s)ds<br />

Penetration depth: δ = 1/k a<br />

Transmittance: t(λ, s) = e −τa(λ,s) ⇒ t ≈ 1 − τ a for τ a ≪ 1<br />

Absorptivity: a(λ, s) = 1 − t(λ, s) ⇒ a ≈ τ a for τ a ≪ 1<br />

CAVE! absorptivity is not the same as absorption coefficient!


Transmission of Earth atmosphere<br />

Contribution of different species in the UV to infrared<br />

Transmittance<br />

Transmittance<br />

Transmittance<br />

Transmittance<br />

1<br />

0<br />

1<br />

0<br />

1<br />

0<br />

1<br />

ZENITH ATMOSPHERIC TRANSMITTANCE<br />

UV VIS Near IR Thermal IR<br />

CO 2<br />

0<br />

0<br />

0.3 0.4 0.5 0.6 0.8 1 1.2 1.5 2 2.5 3 4 5 6 7 8 910 12 15 20 25 30 40 50<br />

Wavelength [µm]<br />

copied from Petty, Atmospheric radiation<br />

CO<br />

N 2<br />

O<br />

CH 4<br />

O 2<br />

0<br />

O 3<br />

H 2<br />

O<br />

Total<br />

1<br />

0<br />

1<br />

1<br />

1<br />

0<br />

Transmittance<br />

Transmittance<br />

Transmittance<br />

Transmittance<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.


Transmission of Earth atmosphere<br />

Microwave regime<br />

1<br />

Zenith Microwave Transmittance<br />

<strong>RTE</strong><br />

Transmittance<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

Oxygen<br />

Water Vapor (21.3 kg m -2 )<br />

Cloud Liquid Water (0.2 kg m -2 )<br />

Total<br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 50 100 150 200 250 300<br />

Frequency [GHz]<br />

copied from Petty, Atmospheric radiation


Transmission of Earth atmosphere<br />

Microwave regime<br />

1<br />

Zenith Microwave Transmittance<br />

<strong>RTE</strong><br />

Transmittance<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

H 2 O O 2<br />

O 2<br />

H 2 O<br />

Dry (0 kg/m 2 )<br />

Polar (3.1 kg/m 2 )<br />

Midlatitude (21.3 kg/m 2 )<br />

Tropical (53.6 kg/m 2 )<br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 50 100 150 200 250 300<br />

Frequency [GHz]<br />

copied from Petty, Atmospheric radiation


Mean free path of a photon<br />

What happens to a photon launched from a particular point<br />

in a medium?<br />

→ We cannot say what happens to a particular photon<br />

→ We can determine what happens in a statistical sense<br />

What is the probability that a photon propagating along the<br />

x-axis is absorbed between x and x + ∆x?<br />

Given by the integral of a probability density function p(x)<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

∫ x+∆x<br />

x<br />

p(x) dx<br />

where<br />

∫ x+∞<br />

x<br />

p(x) dx = 1<br />

Assume exponential attenuation according Beers law<br />

→ probability photon is not absorb over distance x is e −kax<br />

→ probability photon is not absorb over distance x + ∆x is<br />

e −ka(x+∆x)<br />

→ probability photon is absorb over interval ∆x is difference<br />

∫ x+∆x<br />

x<br />

p(x)dx = e −kax − e −ka(x+∆x)


Mean free path of a photon<br />

probability photon is absorb over interval ∆x<br />

∫ x+∆x<br />

x<br />

p(x) dx = e −kax − e −ka(x+∆x)<br />

According mean value theorem<br />

p(¯x)∆x = e −kax −e −ka(x+∆x) where ¯x lies between x + ∆x<br />

Divide both sides by ∆x and take limit ∆x → 0<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

p(x) = − d dx e−kax = k a e −kax<br />

Mean distance 〈x〉 photon travels before being absorbed<br />

〈x〉 =<br />

∫ ∞<br />

0<br />

xk a e −kax dx = 1 k a<br />

= l a<br />

... but this is the penetration depth ☺


Scattering of radiation<br />

◮ In addition to absorption, light may also be scattered by<br />

air molecules, cloud droplets and aerosols<br />

◮ Scattering is a redistribution of radiation in different<br />

directions → phase function<br />

◮ In analogy to absorption define a scattering cross section<br />

◮ Effect of absorption plus scattering is called extinction<br />

σ e = σ s + σ a<br />

◮ Accordingly an extinction coefficient, k e is defined<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

k e = k s + k a = σ e n<br />

◮ Relative importance of scattering versus absorption is<br />

given by the single scatter albedo, ˜ω<br />

˜ω = k s<br />

k e<br />

=<br />

k s<br />

k s + k a<br />

= σ s<br />

σ e<br />

◮ For ˜ω = 0 → absorption prevails<br />

◮ For ˜ω = 1 → scattering prevails<br />

1 − ˜ω = k a<br />

k e


Scattering of radiation<br />

◮ The scattering cross section is a kind of shadow<br />

However this ’shadow’ can be bigger than the actual<br />

geometrical cross section<br />

◮ The ratio of the scattering cross section to the<br />

geometrical area A is called scattering efficiency:<br />

Q s = σ s<br />

A<br />

◮ Q s in general will be a strong function of λ and ε<br />

◮ For visible wavelength σ s of air molecules is approx.<br />

proportional to 1/λ 4 → Rayleigh scattering<br />

◮ Rayleigh scattering explains blue sky and red sunsets<br />

and sunrises<br />

◮ The loss of radiation along a line-of-sight due to<br />

scattering is always associated with a gain in radiation<br />

along other lines-of-sight<br />

⇒ source term in radiative <strong>transfer</strong><br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.


Example of scattering efficiency<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

copied from K.N.Liou, Atmospheric radiation<br />

Q s as function of size parameter x = 2πr/λ<br />

m i = imag part of N. m r = 1.5


Extinction of solar radiation<br />

<strong>RTE</strong><br />

Transmittance<br />

I I<br />

('l<br />

O)<br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

€ 0)<br />

a.<br />

o<br />

(o5<br />

e9<br />

={<br />

I o)<br />

-oon> LJä8<br />

ö' 9_<br />

N)]üC;g)(D<br />

A<<br />

5A<br />

J<br />

I<br />

I<br />

I<br />

I


Schwarzschild <strong>equation</strong><br />

The atmosphere not only absorbs but it also emits radiation<br />

according Kirchhoff’s law<br />

→ we have to combine extinction and thermal emission!<br />

For the infrared part we will neglect scattering<br />

Consider radiation at λ propagating through a layer ds<br />

→ initial intensity I will be attenuated due to absorption<br />

dI abs = −k a Ids<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

Fraction lost of intensity due to absorption is k a ds<br />

→ This is the absorptivity of the slice of the medium<br />

According Kirchhoff this absorptivity is equal to the<br />

emissivity ε of the slice<br />

→ The slice will thus emit radiation<br />

dI emit = εB(T ) = k a B(T )ds<br />

where B(T) is the Planck function


Radiance of cloudy sky<br />

Radiance [W/(m 2 .sr.µm)]<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Clear sky<br />

9 km alt. cloud layer<br />

5 km alt. cloud layer<br />

0.7 km alt. cloud layer<br />

Planck curves<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

1<br />

0<br />

4 6 8 10 12 14 16 18 20<br />

Wavelength [µm]<br />

copied from E. Brocard, Ph.D. thesis<br />

Planck curves for 215K, 230K, 250K, 270, 294K superposed


Schwarzschild <strong>equation</strong><br />

The net change in intensity is<br />

dI = dI abs + dI emit = k a (B − I )ds<br />

⇒<br />

Schwarzschild <strong>equation</strong><br />

dI<br />

ds = k a(B − I ) = k m ρ(B − I )<br />

This can be rewritten with the help of the opacity dτ = k a ds<br />

dI<br />

dτ = B − I<br />

This is nice and compact, BUT what does it mean? Solve<br />

the <strong>equation</strong>, i.e. integrate it.<br />

Assume a sensor on a satellite looking down on the Earth<br />

Use opacity as vertical coordinate<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

⇒ I (0) = I (τ)e −τ +<br />

∫ τ<br />

0<br />

Be −τ ′ dτ ′


<strong>Radiative</strong> <strong>transfer</strong> <strong>equation</strong><br />

Schwarzschild <strong>equation</strong><br />

Interpretation:<br />

I (0) = I (τ)e −τ +<br />

∫ τ<br />

0<br />

Be −τ ′ dτ ′<br />

◮ I (τ) emission at level τ, e.g. by surface of the Earth, or<br />

any other level where opacity is τ when looking down<br />

from sensor<br />

◮ but reduced by the absorption along the path to the<br />

sensor by e −τ , i.e. the transmissivity<br />

◮ plus emission of atmospheric layers Bdτ ′<br />

◮ Note: Planck function depends on T , B = B(T (τ))<br />

◮ taking into account attenuation on the way to the<br />

sensor e −τ ′<br />

☞ Almost all radiative <strong>transfer</strong> problems involving<br />

emission and absorption, without scattering, can be solved<br />

with this <strong>equation</strong><br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.


<strong>Radiative</strong> <strong>transfer</strong> <strong>equation</strong><br />

Line by line calculations for atmospheric radiative <strong>transfer</strong><br />

The total flux F of radiation could in principle be obtained<br />

by integrating over all wavelengths, or frequencies, i.e. over<br />

thousands and thousands of transitions, and in all directions<br />

F =<br />

∫ ∞ ∫ 2π ∫ π/2<br />

0<br />

0<br />

0<br />

I ν (θ, ϕ) cos θ sin θdθdϕdν<br />

This is done by so called line by line calculations based on<br />

spectral data sets, such as HITRAN☼ or MODTRAN<br />

Band transmission models are sometimes used where flux<br />

transmissions ˆT , averaged over a spectral band, are used<br />

<strong>RTE</strong><br />

Beer’s law<br />

Abs. cross section<br />

Opacity &<br />

Transmission<br />

Mean free path<br />

Scattering<br />

Schwarzschild eq.<br />

∫ 1<br />

F ↑ (z) = σTS 4 ˆT (z s , z) +<br />

F ↓ (z) =<br />

∫ 1<br />

ˆT (z,∞)<br />

ˆT (z S ,z)<br />

σT 4 (z ′ )d ˆT (z ′ , z)<br />

Leading to a net flux of F (z) = F ↑ (z) − F ↓ (z)<br />

σT 4 (z ′ )d ˆT (z ′ , z)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!