17.01.2014 Views

Effect of bulk modulus on performance of a hydrostatic transmission ...

Effect of bulk modulus on performance of a hydrostatic transmission ...

Effect of bulk modulus on performance of a hydrostatic transmission ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

546 Ali Volkan Akkaya<br />

where, k v is slope coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> valve static characteristic (m 5 /Ns), P is system pressure (Pa)<br />

and P v is valve opening pressure (Pa).<br />

2.3 Hydraulic hose<br />

As in traditi<strong>on</strong>al modelling, the pressurized hose that c<strong>on</strong>nects the pump to the motors is<br />

modelled as volume with a fixed <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> in this secti<strong>on</strong>. Variable <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> are<br />

discussed in the following subsecti<strong>on</strong>.<br />

The fluid compressibility relati<strong>on</strong> can be given as in (4). Equati<strong>on</strong> (5) provides the pressure<br />

value from a given flow rate. It is assumed that pressure drop in the hydraulic hose is negligible.<br />

Q c = (V /β)(dP/dt), (4)<br />

(dP/dt) = (β/V )Q c , (5)<br />

where, Q c is flow rate deal with fluid compressibility (m 3 /s), V is the fluid volume (m 3 )<br />

subjected to pressure effect, β is fixed <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> (Pa).<br />

2.3a Variable <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> Fluid is an important element <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>hydrostatic</strong> systems and enables<br />

power transmissi<strong>on</strong>, hence it can influence the dynamic behaviours <str<strong>on</strong>g>of</str<strong>on</strong>g> the system and the<br />

c<strong>on</strong>trol system. The <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-aerated hydraulic oil depends <strong>on</strong> temperature and<br />

pressure, for mineral oils with additives its value ranges from 1200 to 2000 MPa. Moreover,<br />

system pressure and entrapped air affect the <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> value. If a hydraulic hose is used<br />

rather than a steel pipe, the <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> may be c<strong>on</strong>siderably reduced. Owing<br />

to these reas<strong>on</strong>s, the parameters influencing <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> value must be included in the HST<br />

model for more accurate system dynamics.<br />

The equati<strong>on</strong> which gives the variable <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid-air mixture in a flexible<br />

c<strong>on</strong>tainer is as follows (McCloy & Martin 1980):<br />

1<br />

= 1 + 1 + V a 1<br />

· , (6)<br />

β v β f β h V t β a<br />

where, the subcripts a, f and h refer to air, fluid, and hose respectively. It is assumed that the<br />

initial total volume V t = V f + V a , and that β f ≫ β a . Thus <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> will be less than any<br />

β f , β h ,orV t /V a β a . The <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid β f is obtained from the manufacturers<br />

data. The adiabatic <str<strong>on</strong>g>bulk</str<strong>on</strong>g> <str<strong>on</strong>g>modulus</str<strong>on</strong>g> used for air is (C p /C v )P = 1·4P . With these assumpti<strong>on</strong>s,<br />

(6) can be rewritten as in,<br />

1<br />

= 1 + 1 +<br />

s<br />

β v β f β h 1·4 · P , (7)<br />

where, s is entrapped air percent in the total volume (s = V a /V t ).<br />

2.4 Hydraulic motor and load<br />

Flow rate used in the hydraulic motor (m 3 /s) can be written as in<br />

Q m = k m ω/η vm , (8)<br />

where, k m is hydraulic motor coefficient (m 3 ), ω is angular velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic motor (1/s)<br />

and η vm is volumetric efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the motor (−). It is assumed that hydraulic motor efficiency<br />

does not depend <strong>on</strong> its shaft rotati<strong>on</strong> angle. Hydraulic motor torque (Nm) can be written as,<br />

M m = k mt P η mm , (9)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!