18.01.2014 Views

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Truss <strong>and</strong> Cable <strong>Element</strong>s - Example<br />

<strong>The</strong>n equation (10) can be rewritten as:<br />

[ t<br />

]<br />

τ 0<br />

R<br />

R<br />

0 0<br />

T t ρ<br />

=<br />

0 ρ RU t 0 S RUT ⇒ R<br />

[ t<br />

]<br />

τ 0<br />

t [<br />

ρ<br />

t0<br />

=<br />

0 0 0 ρ U t 0 S S 0<br />

UT ⇒<br />

0 0<br />

[ t τ 0<br />

0 0<br />

]<br />

=<br />

]<br />

R T t ρ<br />

=<br />

0 ρ RU t 0 S UT R T ⇒<br />

0 ρ<br />

t ρ U−1 [ t τ 0<br />

0 0<br />

]<br />

(U −1 ) T<br />

Ultimately, carrying out <strong>the</strong> calculations yields:<br />

t<br />

0 0 S 11 = ρ 0<br />

t ρ ( L t P<br />

0 L + ∆L )2 t A<br />

Since mass=const<br />

0 ρ 0 L 0 A = t ρ 0 L + ∆L t A ⇒ t 0 0 S 11 = L t P<br />

0 L + ∆L 0 A<br />

Note how <strong>the</strong> components <strong>of</strong> t 0S do not depend on rotation, hence <strong>the</strong> tensor retains only<br />

<strong>the</strong> S 11 one component. <strong>The</strong>n, <strong>the</strong> nonlinear part <strong>of</strong> <strong>the</strong> stiffness matrix is derived as:<br />

∫<br />

t<br />

0 K t T<br />

NL = 0 B NL 0 S t 0 B NLd 0 V<br />

0 V<br />

[<br />

where t 0 B NL = ( 0 J −1 −1 0 1 0<br />

) N ,ξ =<br />

0 −1 0 1<br />

]<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!