20.01.2014 Views

Molecular breeding in cotton - Icrisat

Molecular breeding in cotton - Icrisat

Molecular breeding in cotton - Icrisat

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2 nd National Workshop on Marker Assisted<br />

Selection for Crop Improvement<br />

<strong>Molecular</strong> Breed<strong>in</strong>g <strong>in</strong> Cotton:<br />

Opportunities and Challenges<br />

VIJAY N. WAGHMARE<br />

Division of Crop Improvement<br />

Central Institute for Cotton Research, Nagpur


Cotton Grow<strong>in</strong>g Regions of the World<br />

80 countries<br />

320 Lakh ha


Economic Position<br />

• Cotton, popularly known as ‘White Gold’, is<br />

important commercial crop <strong>in</strong> India.<br />

• It contributes about 30% of the countries export<br />

earn<strong>in</strong>gs.<br />

• It provide employment to large section of societyon<br />

farm, textile and allied <strong>in</strong>dustries.<br />

• India stands first <strong>in</strong> global <strong>cotton</strong> acreage (10.17<br />

m ha) and second <strong>in</strong> production (29.2 m bales),<br />

while the productivity is at lowest (488 kg l<strong>in</strong>t/ha)<br />

among the major <strong>cotton</strong> grow<strong>in</strong>g countries.


Genetic Resources<br />

• The genus Gossypium comprises of 50 species, among them 5<br />

are tetraploids and 45 are diploids.<br />

• India is the only country <strong>in</strong> the world grow<strong>in</strong>g all the four<br />

cultivated species of <strong>cotton</strong> (two diploids- G. arboreum and G.<br />

herbaceum; and two tetraploid- G. hirsutum and G.<br />

barbadense) and successfully exploit<strong>in</strong>g heterosis through<br />

cultivation of <strong>in</strong>tra and <strong>in</strong>terspecific hybrids.<br />

• India ma<strong>in</strong>ta<strong>in</strong>s large germplasm collection, at present<br />

germplasm accessions hold<strong>in</strong>g stand at more than 10,000,<br />

second largest, just next to the germplasm collection of USA<br />

• The available land races, wild species are under utilized and are<br />

good source for fibre quality such as strength; resistance to<br />

<strong>in</strong>sect pests and diseases.


Phylogenetic relationship of Gossypium species<br />

Source: Wendel and Cronn (2003). Adv. Agron., 78:139-186.


Genetic variability <strong>in</strong> the germplasm of<br />

G. hirsutum and G. arboreum.<br />

A field view of G. barbadense


Wild resources of Gossypium


IMPROVEMENT IN YIELD<br />

•In 2009-10, the average l<strong>in</strong>t yield was 488 kg/ha as aga<strong>in</strong>st 88<br />

kg/ha <strong>in</strong> 1947-48.<br />

•This <strong>in</strong>crease <strong>in</strong> <strong>cotton</strong> yield could be achieved through<br />

development of high yield<strong>in</strong>g varieties and hybrids and their<br />

production and protection technologies.<br />

IMPROVEMENT IN FIBRE QUALITY<br />

•Fibre quality parameters <strong>in</strong>clude fibre length, strength, f<strong>in</strong>eness,<br />

maturity and uniformity.<br />

•Development and release of extra-long staple <strong>cotton</strong> varieties viz.<br />

MCU5, MCU 5VT, Surabhi and Sharda <strong>in</strong> G. hirsutum; Sujata and<br />

Suv<strong>in</strong> <strong>in</strong> G. barbadense and Varalaxmi and DCH 32 <strong>in</strong> hybrids are<br />

notable landmarks <strong>in</strong> <strong>cotton</strong> quality.<br />

•Long staple varieties have also been released <strong>in</strong> G. arboreum. The<br />

long staple varieties of G. arboreum <strong>in</strong>clude PA 255, PA 402, DLSA 17<br />

and AKA 8401.


Varieties from CICR


Field view of G. arboreum selections


Changes <strong>in</strong> area under the four Gossypium<br />

species<br />

1947 2009


Bt Cotton was approved <strong>in</strong> 2002 <strong>in</strong> India<br />

1340 Bt Cotton Hybrids


Kg l<strong>in</strong>t per hectare<br />

Bt-<strong>cotton</strong> area & productivity <strong>in</strong> India<br />

Bt <strong>cotton</strong><br />

1340 Bt hybrids<br />

Bt Cotton area lakh ha


India ranks 24 th <strong>in</strong> Cotton productivity<br />

World’s largest <strong>cotton</strong> area Second <strong>in</strong> production<br />

Even with 85-90% Bt hybrid area 24th-30 th rank<br />

<strong>in</strong> productivity. Only India relies on hybrids


Productivity <strong>in</strong> India and Ch<strong>in</strong>a


Challenges<br />

• Competition from synthetic fibres.<br />

• High <strong>in</strong>cidence of <strong>in</strong>sect pests -result<strong>in</strong>g <strong>in</strong>to huge<br />

economic loss.<br />

• Stagnation and decl<strong>in</strong>e <strong>in</strong> seed <strong>cotton</strong> yield.<br />

• Cont<strong>in</strong>ually narrow<strong>in</strong>g of genetic base of the<br />

cultivated varieties.<br />

• Lack of drought tolerant varieties/ genotypes to<br />

mitigate water stress situation.<br />

• Increas<strong>in</strong>g demand of textile <strong>in</strong>dustries for quality<br />

fibres particularly high fibre strength, length,<br />

f<strong>in</strong>eness and elongation of fibres.


Narrow Genetic Base<br />

• Multani and Lyon (1995)- <strong>in</strong> number of Australian <strong>cotton</strong><br />

cultivars found 92.1 to 98.9% genetic relatedness.<br />

• Iqbal et al (1997)- <strong>in</strong>dicated narrow genetic base <strong>in</strong><br />

<strong>cotton</strong> cultivars.<br />

• Brubaker and Wendel (1994)- reported RFLP diversity, it<br />

was lowest <strong>in</strong> G. hirsutum cultivars than any other<br />

reported taxon.<br />

• Rahman et al. (2002)- reported 81.58 to 94.9 % genetic<br />

relatedness <strong>in</strong> elite <strong>cotton</strong> cultivars.<br />

• Dongre et al (2005); Rana and Bhat (2004, 2005) also<br />

reported low level of genetic diversity among the <strong>cotton</strong><br />

varieties


• In India, there is no report of efforts made towards<br />

molecular mapp<strong>in</strong>g <strong>in</strong> <strong>cotton</strong><br />

• Few reports on use of molecular markers are available<br />

that are ma<strong>in</strong>ly on assess<strong>in</strong>g genetic variability / diversity.<br />

• Mostly SSR and RAPD markers were employed.<br />

• At present, CICR is <strong>in</strong> the process of develop<strong>in</strong>g molecular<br />

l<strong>in</strong>kage map <strong>in</strong> diploid and tetraploid <strong>cotton</strong>. Mapp<strong>in</strong>g<br />

populations such as F2, Backcross and RILs are be<strong>in</strong>g<br />

developed for mapp<strong>in</strong>g fibre quality traits.<br />

• A genome map is expected to be ready <strong>in</strong> next 6 months.<br />

• Meanwhile, core set of germplasm has been established<br />

<strong>in</strong> G.hirsutum that shall be used for association mapp<strong>in</strong>g.


Strategies<br />

• Diversification of gene pool.<br />

• Use of wild tetraploid species to generate more variability<br />

<strong>in</strong> cultivated tetraploid <strong>cotton</strong>.<br />

• Identification of diverse genotypes for development of<br />

varieties and hybrids.<br />

• <strong>Molecular</strong> characterization of representative set of<br />

germplasm and wild sources.<br />

• Development of saturated genetic l<strong>in</strong>kage map of<br />

cultivated diploid and tetraploid species.<br />

• Mapp<strong>in</strong>g agonomically important traits that <strong>in</strong>cludesfibre<br />

quality traits, genes/ QTLs responsible for WUE,<br />

photosysnthesis and biotic and abiotic stresses and<br />

application <strong>in</strong> plant <strong>breed<strong>in</strong>g</strong>-<br />

– Biparental mat<strong>in</strong>g<br />

– LD based association mapp<strong>in</strong>g


Use of <strong>Molecular</strong> Markers <strong>in</strong> Cotton<br />

• The first RFLPs based genetic l<strong>in</strong>kage map of tetraploid<br />

<strong>cotton</strong> was published <strong>in</strong> 1994 (Re<strong>in</strong>isch et al 1994).<br />

• RFLPs have widely been used <strong>in</strong> <strong>cotton</strong> for genetic<br />

diversity analysis and genome mapp<strong>in</strong>g.<br />

• Re<strong>in</strong>isch et al. (1994) map was further saturated us<strong>in</strong>g<br />

the same F2 (G. hirsutum x G. barbadense) population<br />

and a detailed map was published (Rong et al. 2004).<br />

The map consists of 2584 loci spaced at 1.75 cM <strong>in</strong> 26<br />

l<strong>in</strong>kage groups.<br />

• Comparative map of tetraploid and its diploid<br />

progenitors (Brubaker et al. 1999, Rong et al. 2004);<br />

cultivated and wild tetraploid (Waghmare et al. 2005)<br />

are now available.


• The HT map comprises 589 loci<br />

• Total map length: 4259.4 cM


Genetic l<strong>in</strong>kage maps<br />

• At present, more than a dozen genetic l<strong>in</strong>kage<br />

maps are available.<br />

• Collectively, these maps consists of > 6000<br />

DNA markers that <strong>in</strong>cludes-<br />

– 3,300 RFLP<br />

– 700 AFLP<br />

– >2000 SSR and<br />

– 100 SNP


Mapp<strong>in</strong>g Genes <strong>in</strong> Cotton<br />

• About 200 qualitative traits have been identified <strong>in</strong> diploid and<br />

tetraploid <strong>cotton</strong> and several of them have been mapped to<br />

specific chromosomes.<br />

• Shappley et al (1998) identified more than 100 QTLs associated<br />

with agronomic and fibre traits.<br />

• Mei et al (2004) detected seven QTLs for fibre related traits, five of<br />

them were mapped on A genome.<br />

• Zhang et al.(2003) also identified QTLs for fibre quality traits.<br />

• Lacape et. Al. (2003) studied 6 quality traits i.e. length, uniformity,<br />

strengh, elongation, f<strong>in</strong>eness and colour.<br />

– Identified 50 QTLs i.e. LOD scores 3.2 to 4.00.<br />

– Additional 30 QTLs –LOD above 2.5<br />

Observations – QTLs detected for various traits often colocalized<br />

with<strong>in</strong> QTL rich regions.


Mapp<strong>in</strong>g Genes <strong>in</strong> Cotton (Related to adaptation)<br />

• Genetic mapp<strong>in</strong>g has been used to identify QTLs responsible for<br />

improved productivity under arid conditions (Agrama and Moussa<br />

1996; Tu<strong>in</strong>stra et al 1996; Ribant et al 1997).<br />

• QTLs that confer physiological variations associated with stress<br />

tolerance-<br />

– Osmotic adjustment - Morgan 1992; Morgan and Tan 1996<br />

– WUE (measured as carbon isotope ration 13C/12C - Mart<strong>in</strong> et al<br />

1989; Mansur et al 1993.<br />

– Ash content- Mian et al 1996; 1998.<br />

– Abscisic acid levels- Quarrie et al 1994; Tuberosa et al 1998.<br />

– Stomatal conductance - Ulloa et al 2000.<br />

• Productivity and physiological differences were genetically mapped <strong>in</strong><br />

the same population and found productivity to be unrelated to δ13C<br />

(Mansur et al 1993) or to relative water content (Teulat et al 1998).


a Wild type,<br />

b Fuzzfibered l<strong>in</strong>tless Li1;<br />

c Fuzz-fibered l<strong>in</strong>tless Li2;<br />

d Sparsely l<strong>in</strong>ted <strong>in</strong> n2;<br />

e Naked with l<strong>in</strong>t <strong>in</strong> n2;<br />

f Naked with l<strong>in</strong>t <strong>in</strong> N1;<br />

g Naked without l<strong>in</strong>t <strong>in</strong> N1;<br />

h Naked with l<strong>in</strong>t <strong>in</strong> Fbl;<br />

i Naked without l<strong>in</strong>t <strong>in</strong> Fbl;<br />

j Wild type,<br />

k Naked without l<strong>in</strong>t or<br />

tufted <strong>in</strong> SMA-4


Genetic mapp<strong>in</strong>g of <strong>cotton</strong> fiber mutants.


Saranga et al (2001)<br />

• Detected 161 QTLs for 16 measured traits<br />

Traits QTLs LOD >3<br />

Productivity DM 4<br />

SC 14<br />

HI 11<br />

BW 15<br />

BN 4<br />

Physiological traits OP 12<br />

d13 11<br />

CT 4<br />

Chl.a 3<br />

Chl.b 4<br />

Fibre Traits FL, UR, FS, FE, FF,<br />

FC<br />

79


QTLs Affect<strong>in</strong>g Physiological Traits of Cotton<br />

Traits<br />

Osmotic<br />

Potential (3)<br />

Carbon<br />

Isotope ratio<br />

Chr./L<strong>in</strong>kage Marker LOD Score Gene<br />

Group<br />

(Dry) Action<br />

Chr.06 PAR 3-32a - RA<br />

Chr.25 PXP1-47 3.74 D<br />

Chr.15 A 1109 - -<br />

Chr.22 PAR 243 3.72 D<br />

LG D04 A 1163b 3.50 D<br />

LG D05 A 1220 5.60 A<br />

• Reduced OP and SC found to share common basis. OP has<br />

clearly been implicated for improved <strong>cotton</strong> productivity<br />

under arid conditions.


Interval mapp<strong>in</strong>g of<br />

root-knot nematode QTL<br />

localized l<strong>in</strong>kage map on<br />

chromosome 11<br />

Genotypes of recomb<strong>in</strong>ant l<strong>in</strong>es and their<br />

resistance . Solid bars and open bars represent<br />

the M-120 RNR and Pima S-6 type, respectively.<br />

Gray bars represent the <strong>in</strong>terval <strong>in</strong> which<br />

recomb<strong>in</strong>ation has occurred


Summary of QTLs mapped for fibre quality traits <strong>in</strong> <strong>cotton</strong><br />

Fibre Quality Trait No of QTLs No. of Maps<br />

Fibre length 107 20<br />

Fibre uniformity 9 1<br />

Short fibre content 13 2<br />

Fibre strength 102 17<br />

Micronaire 112 16<br />

Fibre f<strong>in</strong>ness 33 2


• The available DNA markers l<strong>in</strong>ked to the fibre quality<br />

QTLs promise to be used <strong>in</strong> markers assisted selection<br />

(MAS).<br />

• However, the genetic distances between DNA markers<br />

and most of the QTLs are too far to be used <strong>in</strong><br />

molecular <strong>breed<strong>in</strong>g</strong>.<br />

• There is no published report of successful application<br />

of MAS <strong>in</strong> <strong>cotton</strong><br />

• Thus, f<strong>in</strong>e mapp<strong>in</strong>g of the QTLs is must.<br />

• IT is difficult to discrim<strong>in</strong>ate co-localization and<br />

co<strong>in</strong>cidence when compar<strong>in</strong>g one QTL with the others.<br />

• Consistency and homology among the QTLs for the<br />

same trait detected <strong>in</strong> different populations can be<br />

deduced only from their map locations.


Consensus map assembly<br />

Source: Genome Research,15:1198-1210 (2005)


Consensus map of <strong>cotton</strong> homoeologous group 3 (Chr.3, Chr14/17, and D3).


Conserved synteny between a segment of C06 and Arabidopsis duplicates 11 and 14.


Duplication <strong>in</strong> hypothetical ancestral <strong>cotton</strong> chromosomes.


Source: Genetics 176:2577-88 (2007)


C4<br />

Chr. 16<br />

C Map: Comparison between<br />

<strong>in</strong>dividual map and a<br />

Consensus map


Genetic map and Arabidopsis syntenic regions of<br />

segment of <strong>cotton</strong> C12 chromosome


Genomic Resources available <strong>in</strong> public doma<strong>in</strong><br />

SSR : 11938 <strong>in</strong> CMD data base<br />

Summary of <strong>cotton</strong> ESTs<br />

Gossypium species Available ESTs (As on<br />

28.10.2010)<br />

G. hirsutum 268797<br />

G. arboretum 41768<br />

G. raimondii 63577<br />

G. herbaceum (africanum) 247<br />

G. barbadense 1356<br />

Total ESTs of Gossypium 378184


Whole Genome Sequenc<strong>in</strong>g<br />

• As a long term goal of characteriz<strong>in</strong>g the spectrum of<br />

diversity among 8 genomes types, D genome<br />

‘Gossypium raimondii’ has been prioritized for<br />

complete sequenc<strong>in</strong>g by International Cotton<br />

Community under International Cotton Genome<br />

Initiatives (ICGI).<br />

• Advantages:<br />

– It has the smallest genome (60% of the ‘A’ genome)<br />

– Genome size 880 Mb<br />

– Detailed genetic l<strong>in</strong>kage map is available<br />

– Recently, a physical map of D genome has also been<br />

assembled.


•A whole genome physical map of G. raimondii was assembled.<br />

•A total of 13,662 BAC-end sequences and 2,828 DNA probes were used <strong>in</strong><br />

genetically anchor<strong>in</strong>g 1585 contigs to a <strong>cotton</strong> consensus genetic map.


SRP003645: Whole genome sequenc<strong>in</strong>g of Gossypium<br />

raimondii genome<br />

Study Type: Whole Genome Sequenc<strong>in</strong>g<br />

Submission: SRA024364 by Monsanto Company on 2010-09-29 15:19:51<br />

Abstract: These data represent whole-genome shotgun sequences of the wild diploid<br />

Peruvian <strong>cotton</strong> species Gossypium raimondii Ulbr., the closest extant<br />

representative of the Dt subgenome of the domesticated allotetraploids G. hirsutum<br />

L. (Upland Cotton) and G. barbadense L. (Pima Cotton). The data conta<strong>in</strong>ed <strong>in</strong> these<br />

accessions comprises roughly 135x genomic coverage of Illum<strong>in</strong>a paired-end 2x100<br />

sequence generated by Monsanto and Illum<strong>in</strong>a as part of a multi-data type approach<br />

to shotgun sequenc<strong>in</strong>g of a diploid <strong>cotton</strong> genome.<br />

Description: n/a<br />

Project: Gossypium raimondii [Monsanto]<br />

Center Project: n/a<br />

Download fastq for entire study(use Aspera plug<strong>in</strong> for fast download)


International Cotton Genome Initiatives (ICGI)<br />

• Jo<strong>in</strong>t Genome Institute (JGI), USA has<br />

completed sequenc<strong>in</strong>g of G. raimondii (D<br />

genome) a putative progenitor of tetraploid<br />

<strong>cotton</strong>.<br />

• Sequence <strong>in</strong>formation of Gossypium genome<br />

from two different sources will complement /<br />

synergize the efforts and provide <strong>in</strong>sight <strong>in</strong>to<br />

gene function and allelic variation between<br />

Gossypium genomes.


Mirid Bugs<br />

Creontiades biseratense Distant<br />

Miridae; Hemiptera<br />

Campylomma livida Reuter<br />

(Ragmus morosus Ballard)<br />

Miridae; Hemiptera<br />

Hyalopeplus l<strong>in</strong>eifer walker<br />

Miridae; Hemiptera


Gall midge: New Report<br />

Das<strong>in</strong>eura gossypii Fletcher,<br />

1914 (Cecidomyiidae : Diptera)


Tea mosquito Helopeltis bradyi<br />

(Water house) on Bt <strong>cotton</strong><br />

It is common pest of Guava/Cashew/tea etc<br />

and called as Kajji bug or tea mosquito This<br />

mirid is most dangerous pest caus<strong>in</strong>g > 90%<br />

damage or yield loss whenever appeared on<br />

<strong>cotton</strong> Dur<strong>in</strong>g current season Helopeltis bradyi<br />

out break has been noticed <strong>in</strong> Hosalli (Uttar<br />

Kannada District) on RCH -708 and MRC -6918<br />

<strong>in</strong>terspecific Bt <strong>cotton</strong>. The yield loss <strong>in</strong> both<br />

the hybrids is > 85%.


SUMMARY<br />

• In past two decades extensive genomic resources have been<br />

developed <strong>in</strong> <strong>cotton</strong>.<br />

• A large collection of robust, portable markers (SSR) are available <strong>in</strong><br />

public doma<strong>in</strong>.<br />

• In <strong>cotton</strong>, molecular markers have successfully been used to access<br />

genetic diversity of germplasm resources, genetic l<strong>in</strong>kage maps and<br />

mapped important agronomic QTLs us<strong>in</strong>g bi-parental mapp<strong>in</strong>g<br />

populations.<br />

• However, consider<strong>in</strong>g the large genome of tetraploid <strong>cotton</strong> (2450<br />

Mb), marker density appears to be very less to tag the economically<br />

important QTLs with tightly l<strong>in</strong>ked markers.<br />

• There is no published report of successful application of MAS <strong>in</strong><br />

<strong>cotton</strong><br />

• Thus, f<strong>in</strong>e mapp<strong>in</strong>g of the QTLs is must.<br />

• Alternately, LD based association mapp<strong>in</strong>g promises effective<br />

utilization of natural genetic diversity of world wide <strong>cotton</strong><br />

germplasm resources.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!