20.01.2014 Views

Molecular Breeding in Minor Oilseed Crops: Opportunities ... - icrisat

Molecular Breeding in Minor Oilseed Crops: Opportunities ... - icrisat

Molecular Breeding in Minor Oilseed Crops: Opportunities ... - icrisat

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Molecular</strong> <strong>Breed<strong>in</strong>g</strong> <strong>in</strong> M<strong>in</strong>or <strong>Oilseed</strong> <strong>Crops</strong>:<br />

<strong>Opportunities</strong> and Challenges<br />

V. D<strong>in</strong>esh Kumar<br />

Directorate of <strong>Oilseed</strong>s Research,<br />

Rajendranagar, Hyderabad, India<br />

2 nd National Workshop on “Marker Assisted Selection for Crop Improvement”<br />

27-29 October 2010, ICRISAT, Patancheru, India


Outl<strong>in</strong>e of the presentation..<br />

‣ Some basic statistics<br />

‣ Importance of the m<strong>in</strong>or oilseed crops<br />

‣ Genomic resources available<br />

‣ An update on molecular markers used so far<br />

‣ where we stand with respect to MAS – Indian scenario<br />

‣ Challenges and road ahead <strong>in</strong> each crop<br />

‣ Some open issues..


Crop-wise % area to total oilseeds area and<br />

% production to total production <strong>in</strong> India<br />

GN RM SB Sun Ses L<strong>in</strong> Saf Cas Niger<br />

Area 22.4 22.8 34.5 6.6 6.6 1.5 1.1 3.1 1.4<br />

Prod 25.9 26 35.7 4.2 2.3 0.61 0.7 4.2 0.42<br />

Six crops’ share - 20.3 % area and 12.43 % production,<br />

thus relegated to m<strong>in</strong>or oilseeds’ status<br />

But, they are be<strong>in</strong>g cultivated by poor farmers, on marg<strong>in</strong>al lands.<br />

traditionally grown, each with a specific niche area


India’s position with respect to it’s share compared<br />

to world (2008-09)<br />

Crop<br />

Area % of<br />

world (rank)<br />

Production %<br />

of world (rank)<br />

Sunflower 8 (IV) 3.1 (X)<br />

Safflower 50 (I) 37 (I)<br />

Sesame 23 (I) 18.5 (I)<br />

Castor 58 (I) 71 (I)<br />

L<strong>in</strong>seed 23 (II) 7.4 (IV)<br />

This clearly <strong>in</strong>dicates the importance of these crops<br />

We are the world leaders <strong>in</strong> production and thus should be the first to<br />

adopt the recent techniques <strong>in</strong> these crops<br />

Ironically, least <strong>in</strong>formation (of MAS) is available <strong>in</strong> these crops


Present scenario..<br />

Productivity (kg/ha) <strong>in</strong> India and the world<br />

There is a huge gap between what we harvest and<br />

the potential of the crop


Sunflower<br />

• Oil rich <strong>in</strong> l<strong>in</strong>oleic acid - used for cul<strong>in</strong>ary purposes, <strong>in</strong> preparation of<br />

vanaspati and <strong>in</strong> the manufacture of soaps and cosmetics<br />

• Be<strong>in</strong>g rich <strong>in</strong> PUFA, considered a healthy oil<br />

• Oil cake can be used as animal feed<br />

Safflower<br />

• Oil is rich <strong>in</strong> polyunsaturated fatty acid – l<strong>in</strong>olenic acid<br />

• Cultivated for both oil (healthy) and the petals –<br />

for pharmaceutical and dye purpose<br />

• The cake, particularly from decorticated seed, is used as a<br />

concentrated cattle feed, and that from undecorticated seed<br />

is sometimes used as a manure.


Sesame<br />

• Rich source of edible oil (46 to 52 per cent).<br />

• Oil has excellent keep<strong>in</strong>g quality - cook<strong>in</strong>g and pickl<strong>in</strong>g oil<br />

• It is also used for ano<strong>in</strong>t<strong>in</strong>g the body, for manufactur<strong>in</strong>g perfumed oils and for<br />

medic<strong>in</strong>al purposes.<br />

• Sesamum-cake is a rich source of prote<strong>in</strong>, carbohydrates and m<strong>in</strong>eral nutrients,<br />

such as calcium and phosphorus.<br />

• The cake is edible and is eaten avidly by work<strong>in</strong>g classes.<br />

• Oil rich <strong>in</strong> ergosterols and antioxidants


Castor<br />

• Very unique oil – 90% ric<strong>in</strong>oleic acid thus most pure fatty acid found<br />

– the only oil with a hydroxyl group<br />

• Earns - about 1000 crores for the National Exchequer<br />

• Perennial tree crop that is drought hardy<br />

• Oil used as a lubricant <strong>in</strong> high-speed eng<strong>in</strong>es and aeroplanes,<br />

<strong>in</strong> the manufacture of soaps, transparent paper, pr<strong>in</strong>t<strong>in</strong>g-<strong>in</strong>ks,<br />

varnishes, l<strong>in</strong>oleum and plasticizers - over 150 uses<br />

• It is also used for medic<strong>in</strong>al and light<strong>in</strong>g purposes.<br />

• Value added castor oil is very expensive – more than 20 fold <strong>in</strong>crease <strong>in</strong> value<br />

(for 4 th order molecules)<br />

• De-oiled cake can be used as manure and nematicide – NOT USED AS ANIMAL FEED


L<strong>in</strong>seed<br />

• The oil content of the seed varies from 33 to 47 per cent.<br />

• Now the oil is promoted as a healthy oil due to high levels of<br />

alpha l<strong>in</strong>olenic acid - anticholesterol<br />

• Oil is an excellent dry<strong>in</strong>g oil used <strong>in</strong> manufactur<strong>in</strong>g pa<strong>in</strong>t and<br />

varnishes, oilcloth, waterproof fabrics and l<strong>in</strong>oleum and as an<br />

edible oil <strong>in</strong> some areas.<br />

• L<strong>in</strong>seed-cake is a very good manure and animal feed.<br />

• L<strong>in</strong>seed straw produces fibre of good quality. L<strong>in</strong>seed is used <strong>in</strong><br />

mak<strong>in</strong>g paper and plastics.


Genomic resources <strong>in</strong> the selected oilseed crops<br />

Crop Botanical name Family Nucleotide<br />

sequences<br />

ESTs<br />

Prote<strong>in</strong><br />

db<br />

Genom<br />

e size<br />

(Mbp)<br />

Chromosome<br />

number<br />

Sunflower<br />

Safflower<br />

Sesame<br />

Castor**<br />

L<strong>in</strong>seed<br />

Helianthus<br />

annuus L.<br />

Carthamus<br />

t<strong>in</strong>ctorius L.<br />

Sesamum<br />

<strong>in</strong>dicum L.<br />

Ric<strong>in</strong>us<br />

cummunis L.<br />

L<strong>in</strong>um<br />

usitatissimum L.<br />

Asteraceae 12148 134343 6320 3000 2n=2x=34<br />

Asteraceae 511 41588 154 1350 2n=2x=24<br />

Pedaliaceae 332 3771 103 948 2n=2x=26<br />

Euphorbiaceae 83468 63398 63078 400 2n=2x=20<br />

L<strong>in</strong>aceae 4794 12604 1862 686 2n=2x=30<br />

* as on 26-10-2010 at NCBI website (http://www.ncbi.nlm.nih.gov)<br />

**castor 4X draft genome sequence available now


<strong>Molecular</strong> markers used <strong>in</strong> the crops<br />

Crop Markers Used for<br />

Sunflower<br />

Safflower<br />

Sesame<br />

RAPD, ISSR, AFLP, EST-<br />

SSR, SSR, InDels, SNP<br />

RAPD, ISSR, AFLP, EST-<br />

SSR, SSR, SNP<br />

RAPD, ISSR, AFLP, EST-<br />

SSR, SSR<br />

Diversity, Phylogenetic, map<br />

development, tagg<strong>in</strong>g and<br />

mapp<strong>in</strong>g qualitative and<br />

quantitative traits, MAS<br />

Diversity, Phylogenetic, map<br />

development, tagg<strong>in</strong>g and<br />

mapp<strong>in</strong>g qualitative traits<br />

Diversity, tagg<strong>in</strong>g of<br />

qualitative traits<br />

Castor RAPD, SSR, EST-SSR, SNP Diversity<br />

L<strong>in</strong>seed RAPD, AFLP, SSR, EST-SSR Diversity, tagg<strong>in</strong>g


Sunflower<br />

• All key components (saturated map, trait-marker association,<br />

f<strong>in</strong>e mapped loci, mapped QTLs) for MAS available<br />

• Well saturated reference map developed with anonymous, gene-targeted<br />

and perfect markers available<br />

• A well characterized wild species’ gene-pool for <strong>in</strong>trogression available<br />

- already SNPs and their LD decay for wild populations available<br />

• Well characterized resistance gene islands for <strong>in</strong>trogression<br />

• TILLING platform available<br />

• Time and resources ripe for exploitation of MAS <strong>in</strong> crop improvement<br />

SND, Alternaria, downey mildew and powdery mildew tolerance –<br />

immediate task


Tagg<strong>in</strong>g and mapp<strong>in</strong>g <strong>in</strong> Sunflower<br />

Trait Gene Markers used Closest<br />

genetic<br />

distance (cM)<br />

Downy<br />

mildew<br />

Pl1<br />

--<br />

Pl5/ Pl8<br />

Pl5/Pl8<br />

--<br />

--<br />

Pl13<br />

Orobanche Or 5<br />

Or3<br />

Sclerot<strong>in</strong>ia<br />

midstalk-rot<br />

White rot<br />

and black<br />

stem<br />

Chlorotic<br />

mottle virus<br />

Phoma basal<br />

stem and<br />

root necrosis<br />

QTL<br />

--<br />

--<br />

RFLP, CAPS<br />

IFLP, NBS-LRR, SSR<br />

TIR-NBS-LRR<br />

SSR<br />

STS<br />

EST<br />

TRAP, SSR<br />

SSR, AFLP<br />

RFLP, SSR<br />

SSR<br />

SSR<br />

SSR<br />

--<br />

2.4<br />

--<br />

--<br />

--<br />

--<br />

0.9<br />

5.6<br />

--<br />

--<br />

--<br />

--<br />

Reference<br />

Gedil et al., 2001<br />

Slabaugh et al., 2003<br />

Radwan et al., 2003<br />

Duble et al., 2004<br />

Radwan et al., 2004<br />

Bouzidi et al., 2007<br />

Sujatha et al., 2009<br />

Tang et al., 2003<br />

Perez-Vich et al., 2004<br />

Micic et al., 2004<br />

Micic et al., 2005a<br />

Micic et al., 2005b<br />

QTL RFLP, SSR -- Bert et al., 2004<br />

Rcmo-1 SSR 4.0 Lenardon et al., 2005<br />

QTL SSR, AFLP -- Abou et al., 2006


Tagg<strong>in</strong>g and mapp<strong>in</strong>g <strong>in</strong> Sunflower…<br />

Trait Gene Markers used<br />

Rust<br />

(Pucc<strong>in</strong>ia<br />

helianthi)<br />

R1 and<br />

R(Adv)<br />

Closest<br />

genetic<br />

distance (cM)<br />

Reference<br />

RAPD -- Lawson et al., 1996<br />

Oil content QTL AFLP, SSR 20.9 Mokrani et al., 2002<br />

Gammatocopherol<br />

content<br />

High stearic<br />

acid content<br />

Seed<br />

hypodermis<br />

color<br />

Tph2 SSR, INDEL 3.6 María et al., 2006<br />

Es1, Es2<br />

and Es3<br />

SSR 3.9 Perez-Vich et al., 2006<br />

Hyp RFLP -- Leon et al., 1996<br />

Seed-quality QTL SSR -- Ebrahimi et al., 2008<br />

Selfpoll<strong>in</strong>ation<br />

and seed<br />

dormancy<br />

Restor<strong>in</strong>g<br />

pollen fertility<br />

Nuclear<br />

male-sterility<br />

QTL SSR -- Gandhi et al., 2005<br />

Rf1 RAPD, SCAR, AFLP 0.3 Horn et al., 2003<br />

ms9<br />

Rf (4)<br />

SSR, TRAP<br />

SSR and RFLPderived<br />

STS-markers<br />

1.2<br />

0.9<br />

Chen et al., 2006<br />

Feng and Jan, 2008


Tagg<strong>in</strong>g and mapp<strong>in</strong>g <strong>in</strong> Sunflower…<br />

Trait Gene Markers used<br />

Plant height or<br />

flower<strong>in</strong>g dates<br />

Lemon ray flower<br />

color<br />

Branch<strong>in</strong>g and<br />

pericarp pigment<br />

Closest<br />

genetic<br />

distance (cM)<br />

Reference<br />

QTL SSR -- Bert et al., 2003<br />

Yf, Yf1 SSR, EST 2.3, 1.5 Yue et al., 2008<br />

Hyp SSR -- Tang et al., 2006<br />

Apical branch<strong>in</strong>g b (1) TRAP, RFLP 2.5 Rojas-Burros et al., 2008<br />

Early domestication QTL SSR -- Wills and Burke, 2007<br />

Chlorophyll<br />

fluorescence<br />

Chlorophyll<br />

deficiency<br />

Photosynthesis and<br />

water status<br />

Plant water status<br />

and osmotic<br />

adjustment<br />

Drought or sal<strong>in</strong>ity<br />

stress<br />

Chill<strong>in</strong>g and salt<br />

stresses<br />

QTL SSR -- Poormohammad et al., 2008<br />

Yl SSR, TRAP 4.2 Yue et al., 2009<br />

QTL AFLP 6.0 Herve et al., 2001<br />

QTL AFLP, SSR 3.7 Poormohammad et al., 2007<br />

QTL SSR -- Xianan and Baird, 2003<br />

-- EST -- Paula et al., 2008


Validation at <strong>in</strong>dividual plants


Sujatha et al., 2009. TAG 119:795-803


Use of SNP – characterization of <strong>in</strong>bred l<strong>in</strong>es<br />

(Fusari et al., 2008, BMC Plant Biology 8:7)<br />

• A set of 28 candidate genes related to biotic and abiotic stresses<br />

studied <strong>in</strong> 19 sunflower <strong>in</strong>bred l<strong>in</strong>es.<br />

• A total of 14,348 bp of sequence alignment analyzed per <strong>in</strong>dividual (1<br />

SNP/ 69 nucleotides and 38 <strong>in</strong>dels identified)<br />

• The number of haplotypes per region ranged from 1 to 9<br />

(mean = 3.54 ± 1.88).<br />

• Two putative gene pools identified (G1 and G2), with a large<br />

proportion of the <strong>in</strong>bred l<strong>in</strong>es be<strong>in</strong>g assigned to G1<br />

• LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp) than the LD<br />

trend l<strong>in</strong>e for the entire set of 19 <strong>in</strong>dividuals<br />

(r2 = 0.64 for the same distance)<br />

This work could facilitate association mapp<strong>in</strong>g with lower marker<br />

densities than those usually reported for other plant species


MAS as applied <strong>in</strong> breed<strong>in</strong>g programmes of sunflower<br />

• Much of the work <strong>in</strong> private sector – for downey mildew resistance,<br />

high oleic content, herbicide tolerance (simple traits)<br />

• Complex traits like Sclerot<strong>in</strong>ia, Phoma and Phomopsis be<strong>in</strong>g taken up<br />

• Candidate gene based MAS be<strong>in</strong>g followed for transferr<strong>in</strong>g resistance genes<br />

from wild species (both <strong>in</strong> public and private research)<br />

• AB-QTL adopted for transferr<strong>in</strong>g QTLs for transferr<strong>in</strong>g agronomic traits<br />

(for <strong>in</strong>creased oil content through <strong>in</strong>trogression from wild)<br />

• Transfer of restorer genes us<strong>in</strong>g ‘perfect markers’<br />

• Gene pyramid<strong>in</strong>g aga<strong>in</strong>st stem rot<br />

• In general, very limited application of MAS for complex traits – factors like<br />

diagnostic gene-based assays, high-throughput cost effective assays,<br />

methods to accurately def<strong>in</strong>e QTLs, TILLING and association mapp<strong>in</strong>g<br />

be<strong>in</strong>g addressed now.


Safflower<br />

• So far markers have been used for either diversity studies or<br />

for tagg<strong>in</strong>g some qualitative traits (male sterility and high<br />

l<strong>in</strong>olenic acid)<br />

• SNPs identified <strong>in</strong> only a small target region – aga<strong>in</strong> used for phylogenetic<br />

studies<br />

• Very recently, a skeletal map (with only 116 EST-markers) has been developed<br />

- need for saturated map<br />

• About 800 EST-SSRs have been developed –<br />

but so far used only for diversity studies<br />

• At DOR, the developed markers are be<strong>in</strong>g used for tagg<strong>in</strong>g wilt resistance<br />

genes from different wild species sources<br />

Immediate targets for MAS – resistance aga<strong>in</strong>st many isolates of wilt<br />

- Alternaria tolerance


Sesame<br />

• So far, studies restricted to diversity studies us<strong>in</strong>g anonymous markers<br />

• Recently, EST-SSRs (about 50) developed<br />

• No molecular map developed<br />

• Closed capsule trait has been tagged us<strong>in</strong>g AFLP<br />

• Determ<strong>in</strong>ate growth habit (Dt) gene tagged us<strong>in</strong>g RAPD and ISSR<br />

Exploitation of the variability <strong>in</strong> sesame germplasm us<strong>in</strong>g association<br />

mapp<strong>in</strong>g should be a priority area<br />

Mapp<strong>in</strong>g of genes for capsules per plant, seeds per capsule and earl<strong>in</strong>ess<br />

- with an emphasis to <strong>in</strong>crease the yield<br />

Develop<strong>in</strong>g the molecular map is an essential activity to harness<br />

benefits of MAS <strong>in</strong> future


Castor<br />

• Marker work restricted to only assessment of diversity<br />

• These studies have <strong>in</strong>dicated very low genetic diversity <strong>in</strong> the world collection<br />

- monotypic species – so only primary gene pool to be exploited<br />

• So far ma<strong>in</strong>ly anonymous markers have been used for diversity study<br />

• We have developed 519 class I EST-SSR primers and they are be<strong>in</strong>g used<br />

<strong>in</strong> tagg<strong>in</strong>g wilt resistance gene(s)<br />

• Recently complete genome sequence published<br />

(Nature Biotech., August 22, 2010)<br />

Immediate target traits – reduced ric<strong>in</strong> and RCA content – complex genomics<br />

- Botrytis tolerance (devastat<strong>in</strong>g disease with 80% loss)<br />

- sex expression problem<br />

- heterotic pools for <strong>in</strong>creased yields


L<strong>in</strong>seed<br />

Mianly diversity studies so far – with anonymous markers<br />

Very recently, 610 EST-SSR primer pairs developed <strong>in</strong> Canada<br />

Immediate targets<br />

• Development of good markers and a molecular map<br />

• Bud fly tolerance<br />

• Development of dual type genotypes for both fibre and oil


Where we stand – with respect to MAS<br />

Crop Strength Weakness Opportunity Traits of<br />

importance<br />

Sunflower<br />

Safflower<br />

Sesame<br />

Castor<br />

L<strong>in</strong>seed<br />

Saturated Maps,<br />

<strong>in</strong>ternational,<br />

characterized<br />

genepool<br />

Skeletal map,<br />

Markers (recently)<br />

Germplasm<br />

Germplasm<br />

Some genomic<br />

resources<br />

Genomic<br />

resources,<br />

GENOME<br />

SEQUENCED<br />

Germplasm<br />

Some genomic<br />

resources<br />

Germplasm<br />

Still MAS not<br />

much adopted<br />

for QTLs<br />

Very small<br />

group work<strong>in</strong>g<br />

on markers<br />

No map,<br />

Very small<br />

group work<strong>in</strong>g<br />

on markers<br />

No map,<br />

Small group,<br />

Less<br />

variability,<br />

monotypic<br />

No map,<br />

Small group<br />

MAS could be<br />

adopted for<br />

several traits<br />

Saturated maps,<br />

Use of MAS,<br />

Germplasm<br />

Saturated maps,<br />

Use of MAS,<br />

Germplasm<br />

Maps and MAS<br />

Germplasm<br />

MAPS and MAS<br />

SND, Alternaria<br />

Yield plateau<br />

Alternaria, wilt<br />

Capsule<br />

shatter<strong>in</strong>g<br />

‘Ric<strong>in</strong>’ tox<strong>in</strong><br />

Botrytis ,<br />

capsule borer<br />

Sex expression<br />

Bud fly,<br />

Alternaria


Major challenges – across all the crops (except sunflower)<br />

• Mostly grown on marg<strong>in</strong>al soils without irrigation – so drought tolerant cultivars<br />

the need of the hour<br />

• Non availability of validated markers with high PIC values – scope for DArT<br />

• Non availability of molecular maps<br />

• Very small group is work<strong>in</strong>g on these crops – barely any on markers<br />

• Not much of work on MAS <strong>in</strong> India – especially people with active<br />

crop improvement activities<br />

• Need for trait based mapp<strong>in</strong>g populations<br />

• Capacity build<strong>in</strong>g – critical tra<strong>in</strong>ed mass not available to take up the MAS<br />

• Plant breeders – to be empowered better to take part <strong>in</strong> the marker work<br />

• Exploitation of the germplasm available – association mapp<strong>in</strong>g !!!


Thank you


Crop-wise Area, production and yield of oilseeds <strong>in</strong> the world<br />

(2008-09)<br />

Crop<br />

Area<br />

‘000 ha<br />

Production<br />

‘000 tons<br />

Yield<br />

kg/ha<br />

Groundnut 24590 38201 1554<br />

Rapeseed and<br />

2384 58364 1883<br />

mustard<br />

Soybean 96870 230953 2384<br />

Sesame 7534 3603 478<br />

Sunflower 25024 35643 1424<br />

Safflower 691 615 890<br />

L<strong>in</strong>seed 2437 2200 903<br />

Castor 1525 1581 1037<br />

Total 189658 371160 1957

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!