20.01.2014 Views

Nano-Lithography - KTH

Nano-Lithography - KTH

Nano-Lithography - KTH

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Nano</strong>-<strong>Lithography</strong><br />

-Patterning techniques for fabrication<br />

of nano-scale devices<br />

Per-Erik Hellström<br />

Lärarprov för antagning till docent<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

1


<strong>Nano</strong>-<strong>Lithography</strong><br />

Feature size < 100 nm<br />

Resist<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

2


• <strong>Nano</strong>-scale devices<br />

• Basics of optical lithography<br />

• Advanced optical lithography<br />

• <strong>Nano</strong>-lithography for low volume applications<br />

• Summary<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

3


<strong>Nano</strong>-Electronics<br />

poly-Si<br />

150nm<br />

50nm<br />

NiSi<br />

EKT at <strong>KTH</strong><br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

4


<strong>Nano</strong>-wires in sensor application<br />

EKT at <strong>KTH</strong><br />

Si<br />

H=15 nm<br />

nanowire-FET<br />

W=15 nm<br />

Adsorption of<br />

DNA probes<br />

Capture of<br />

complementary DNA<br />

I<br />

I+ΔI 1<br />

I+ΔI 1 +ΔI 2<br />

Immobilization<br />

Hybridization<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

5


Photonic Crystals<br />

Ziyang Zhang, FMI at <strong>KTH</strong><br />

500 nm<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

6


<strong>Lithography</strong> specifications<br />

Resolution<br />

Pattern shape<br />

Large & small patterns<br />

Alignment<br />

Throughput<br />

Initial cost<br />

Running cost<br />

Ideal<br />

<strong>Lithography</strong><br />

Good<br />

Any<br />

Yes<br />

Good<br />

High<br />

Low<br />

Low<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

7


• <strong>Nano</strong>-scale devices<br />

• Basics of optical lithography<br />

– Projection lithography<br />

– Resolution<br />

• Advanced optical lithography<br />

• <strong>Nano</strong>-lithography for low volume applications<br />

• Summary<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

8


Projection <strong>Lithography</strong><br />

Intensity<br />

at mask<br />

Light source: λ<br />

Mask<br />

Intensity<br />

on wafer<br />

Light is diffracted<br />

Focusing lens<br />

Image on wafer<br />

Resist<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

9


Projection <strong>Lithography</strong><br />

Light source: λ<br />

Rayleigh criteria for<br />

resolving two point sources<br />

The resolution (R) is:<br />

Mask<br />

R<br />

λ<br />

= 0.61<br />

NA<br />

n<br />

α<br />

Numerical Aperture<br />

NA=n sin α<br />

Aerial image<br />

Resist<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

10


Projection <strong>Lithography</strong><br />

Light source: λ<br />

R<br />

=<br />

k<br />

1<br />

λ<br />

NA<br />

Mask<br />

Resolution factor k 1<br />

• mask design<br />

• resist process<br />

•k 1<br />

~0.6-0.8<br />

n<br />

α<br />

Numerical Aperture<br />

NA=n sin α<br />

Aerial image<br />

Resist<br />

I-line stepper in<br />

Electrum Laboratory<br />

λ=365 nm,NA=0.45,k 1<br />

=0.6<br />

⇒<br />

R≈500 nm<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

11


• <strong>Nano</strong>-scale devices<br />

• Basics of optical lithography<br />

• Advanced optical lithography<br />

– Shorter wavelength λ<br />

– Reduce resolution factor k 1<br />

– Increase lenses numerical aperture NA<br />

• <strong>Nano</strong>-lithography for low volume applications<br />

• Summary<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

12


Shorter wavelength<br />

R<br />

=<br />

k<br />

1<br />

λ<br />

NA<br />

λ [nm]<br />

436<br />

365<br />

248<br />

193<br />

Light source<br />

Hg arc lamp<br />

Hg arc lamp<br />

KrF excimer laser<br />

ArF excimer laser<br />

First year<br />

in production<br />

~1994<br />

~1997<br />

~2003<br />

157<br />

EUV 13.5<br />

F 2 excimer laser<br />

Laser or discharge of<br />

liquid target (Xe, Li…)<br />

CaF 2 lenses<br />

Reflective mirrors<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

13


Reduce resolution factor k 1<br />

Amplitude<br />

at Mask<br />

Normal Mask<br />

Phase Shift Mask<br />

R<br />

=<br />

d<br />

180° Phase Shift<br />

=<br />

k<br />

1<br />

λ<br />

NA<br />

λ<br />

2 −1<br />

( n )<br />

Amplitude<br />

at Wafer<br />

Intensity<br />

at Wafer<br />

• Different implementations on mask<br />

• Pattern dependent<br />

•k 1 can be reduced up to 40 %<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

14


Reduce resolution factor k 1<br />

Resist chemistry<br />

436, 365 nm: Photo-Active-Component (PAC)<br />

248,193 nm: Photo-Acid-Generator (PAG)<br />

R<br />

=<br />

k<br />

1<br />

λ<br />

NA<br />

Mask design and<br />

resist process<br />

Contrast<br />

436, 365 nm: γ=2-3, (Q f /Q 0 ≈2.5)<br />

248,193 nm: γ=5-10 (Q f /Q 0 ≈1.3)<br />

λ [nm]<br />

436<br />

365<br />

248<br />

193<br />

k 1<br />

0.8<br />

0.6<br />

0.3-0.4<br />

0.3-0.4<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

15


Increase NA<br />

R<br />

=<br />

k<br />

1<br />

λ<br />

NA<br />

Lens fabrication<br />

Immersion <strong>Lithography</strong><br />

λ [nm]<br />

436<br />

365<br />

248<br />

193<br />

NA<br />

0.15-0.45<br />

0.35-0.60<br />

0.35-0.82<br />

0.60-0.93<br />

n<br />

n H O<br />

α<br />

H 2<br />

O<br />

Numerical Aperture<br />

NA=n sin α<br />

= 1.44 ⇒ NA ≈1.36<br />

2<br />

Expected in production during 2006<br />

State of the Art: λ=193 nm, NA=0.93, k 1 =0.3 ⇒ R≈60 nm<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

16


Minimum feature size<br />

Production<br />

2003<br />

2005<br />

2007<br />

2009<br />

2011<br />

Technology<br />

Node<br />

90 nm<br />

65 nm<br />

45 nm<br />

32 nm<br />

22 nm<br />

Half pitch<br />

[nm]<br />

110<br />

105<br />

~80<br />

~ 55<br />

~39<br />

L G [nm]<br />

60<br />

42<br />

~30<br />

~21<br />

~16<br />

P. Bai, et. al., IEDM2005<br />

L G<br />

pitch<br />

λ=193nm<br />

λ=193nm<br />

immersion<br />

•193nm immersion<br />

with higher n?<br />

•EUV?<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

17


Why is optical lithography so<br />

succesful?<br />

•It’s not only resolution, it’s cost!<br />

193 nm lithography tool ~140 MSEK<br />

Mask set cost ~7 MSEK<br />

Affordable for high volume production<br />

due to high throughput ~100 wafer/hour<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

18


• <strong>Nano</strong>-scale devices<br />

• Basics of optical lithography<br />

• Advanced optical lithography<br />

• <strong>Nano</strong>-lithography for low volume applications<br />

– Electron Beam <strong>Lithography</strong><br />

– <strong>Nano</strong> Imprint <strong>Lithography</strong><br />

– Sidewall Transfer <strong>Lithography</strong><br />

• Summary<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

19


Electron beam lithography<br />

• Direct write<br />

• Arbitrary shape<br />

• λ < 0.1 nm<br />

• Beam width ~ 5 nm<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

20


Resolution of EB lithography<br />

• High Energy 100 keV<br />

• High contrast resist<br />

• Thin resist<br />

– Resist stack<br />

– Hard mask<br />

Thin resist<br />

Hard Mask<br />

Thick resist<br />

Wafer<br />

Wafer<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

21


Resolution of EB lithography<br />

• High Energy 100 keV<br />

• High contrast resist<br />

• Thin resist<br />

– Resist stack<br />

– Hard mask<br />

Resolution of equal lines and spaces<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

22


<strong>Nano</strong> Imprint <strong>Lithography</strong><br />

• Step and flash<br />

• Resolution ~10 nm<br />

• Arbitrary shape<br />

• Quartz master<br />

1X method<br />

• Alignment ~1 µm<br />

C.R.K. Marrian and D.M. Tennant, JVST, 2003<br />

50 nm pillars after 500 imprints<br />

with same master<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

23


Sidewall Transfer <strong>Lithography</strong><br />

• Combines lithography and process technology<br />

• In theory k 1 →0 for lines:<br />

R<br />

=<br />

k<br />

1<br />

λ<br />

NA<br />

• Pitch is determined by resolution of lithography<br />

• Optical lithography ⇒ high throughput<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

24


Sidewall Transfer <strong>Lithography</strong> Process<br />

Cross Section<br />

Top view<br />

Resist<br />

Si 0.2 Ge 0.8<br />

poly-Si<br />

SiO 2<br />

Wafer<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

25


Sidewall Transfer <strong>Lithography</strong> Process<br />

SiN<br />

Si 0.2 Ge 0.8<br />

poly-Si<br />

Cross Section<br />

Top view<br />

SiO 2<br />

Wafer<br />

Nitride<br />

100 nm<br />

Poly SiGe<br />

Oxide hard mask<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

26


Sidewall Transfer <strong>Lithography</strong> Process<br />

SiN<br />

Si 0.2 Ge 0.8<br />

poly-Si<br />

SiO 2<br />

Wafer<br />

Cross Section<br />

Top view<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

27


Sidewall Transfer <strong>Lithography</strong> Process<br />

SiN<br />

Resist<br />

poly-Si<br />

SiO 2<br />

Wafer<br />

Cross Section<br />

Top view<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

28


Sidewall Transfer <strong>Lithography</strong> Process<br />

SiN<br />

Resist<br />

poly-Si<br />

SiO 2<br />

Wafer<br />

Cross Section<br />

Top view<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

29


Sidewall Transfer <strong>Lithography</strong> Process<br />

SiN<br />

Resist<br />

poly-Si<br />

SiO 2<br />

Wafer<br />

Cross Section<br />

Top view<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

30


Sidewall Transfer <strong>Lithography</strong> Process<br />

SiN<br />

Cross Section<br />

Top view<br />

poly-Si<br />

SiO 2<br />

Wafer<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

31


Sidewall Transfer <strong>Lithography</strong><br />

10 poly-Si lines<br />

Width=45 nm<br />

poly-Si<br />

50nm<br />

150nm<br />

NiSi<br />

poly-Si contact<br />

Si<br />

H=15 nm<br />

W=15 nm<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

32


Sidewall Transfer <strong>Lithography</strong><br />

Line Width Roughness is small for STL<br />

Resist<br />

Roughness along a resist edge<br />

is called Line Edge Roughness<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

33


Sidewall Transfer <strong>Lithography</strong><br />

Line Width Roughness is small for STL<br />

STL<br />

STL EB ArF<br />

A. Kaneko, et. al., IEDM2005<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

34


Summary<br />

Ideal<br />

Advanced<br />

Optical<br />

Electron<br />

Beam<br />

<strong>Nano</strong><br />

Imprint<br />

Sidewall<br />

Transfer<br />

Resolution<br />

Good<br />

Good<br />

Good<br />

Good<br />

Good<br />

Pattern shape<br />

Any<br />

Any<br />

Any<br />

Any<br />

Lines/<br />

Rings<br />

Large & small<br />

patterns<br />

Yes<br />

Yes<br />

No<br />

Yes<br />

Yes<br />

Alignment<br />

Good<br />

Good<br />

Good<br />

Poor<br />

Good<br />

Throughput<br />

High<br />

High<br />

Low<br />

Medium<br />

High<br />

Initial cost<br />

Low<br />

High<br />

Medium<br />

Low<br />

Low<br />

Running cost<br />

Low<br />

High<br />

Low<br />

Medium<br />

Low<br />

Per-Erik Hellstöm, Docent Lecture 14 th of February 2006<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!