22.01.2014 Views

Instantaneous Point-source Solution - IfH

Instantaneous Point-source Solution - IfH

Instantaneous Point-source Solution - IfH

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

UNIVERSITY OF KARLSRUHE<br />

Institute for Hydromechanics<br />

Directory<br />

Mixing, Transport, and Transformation<br />

Lecture 2:<br />

<strong>Instantaneous</strong> <strong>Point</strong>-<strong>source</strong> <strong>Solution</strong><br />

• Table of Contents.<br />

• Begin lecture notes.<br />

Comments and Questions: socolofsky@ifh.uka.de<br />

Last Revision Date: April 5, 2002<br />

[PgUp] [PgDn] [Back]


Table of Contents 2<br />

<strong>Instantaneous</strong> <strong>Point</strong>-<strong>source</strong> <strong>Solution</strong><br />

Table of Contents<br />

1. Review of the advective diffusion equation<br />

1.1. Fickian diffusion<br />

1.2. Advection<br />

1.3. Advective-diffusion equation<br />

2. Moving coordinate system<br />

3. Similarity solution to the one-dimensional diffusion equation<br />

3.1. Dimensional analysis<br />

3.2. Coordinate transformation<br />

3.3. <strong>Solution</strong><br />

4. Interpretation of the similarity solution<br />

5. <strong>Point</strong>-<strong>source</strong> solution with advection<br />

A. References<br />

[PgUp] [PgDn] [Back]


Section 1: Review of the advective diffusion equation 3<br />

1. Review of the advective diffusion equation<br />

Diffusion has two primary properties: it is random in nature, and<br />

transport is from high concentration to low concentration regions,<br />

with an equilibrium state of uniform concentration.<br />

1.1. Fickian diffusion<br />

A static model of one-dimensional diffusion is given in Figure 1. This<br />

model can also be viewed as an animation.<br />

This motion is described by Fick’s law, given by<br />

( ∂C<br />

⃗q = −D<br />

∂x , ∂C<br />

∂y , ∂C )<br />

∂z<br />

= −D∇C<br />

= −D ∂C .<br />

∂x i<br />

(1)<br />

Processes that obey this relationship are called Fickian diffusion processes.<br />

In water, D is of order 2·10 −9 m 2 /s (See Table 1).<br />

[PgUp] [PgDn] [Back]


Section 1: Review of the advective diffusion equation 4<br />

1.2. Advection<br />

In a current, the molecules experience two types of motion:<br />

• Due to diffusion, each molecule in time δt will move either one<br />

step to the left or one step to the right (i.e. ±δx).<br />

• Due to advection, each molecule will also move uδt in the crossflow<br />

direction.<br />

These processes are clearly additive and independent: we can use<br />

superposition.<br />

Thus, the advective-diffusive flux vector becomes<br />

⃗J = ⃗uC + ⃗q<br />

= u i C − D ∂C<br />

∂x i<br />

. (2)<br />

[PgUp] [PgDn] [Back]


Section 1: Review of the advective diffusion equation 5<br />

1.3. Advective-diffusion equation<br />

To derive the governing equation we use the control volume shown in<br />

Figure 2. From the conservation of mass, the net flux through the<br />

control volume is<br />

∂M<br />

∂t<br />

= ∑ J in − ∑ J out , (3)<br />

and for the x-direction, we have<br />

(<br />

∆J x = uC − D ∂C )∣ (<br />

∣∣∣1<br />

δyδz − uC − D ∂C )∣ ∣∣∣2<br />

δyδz. (4)<br />

∂x<br />

∂x<br />

After using Taylor-series expansion we obtain<br />

∂C<br />

∂t + ∂(u iC)<br />

∂x i<br />

the governing Advective-Diffusion (A-D) equation.<br />

= D ∂2 C<br />

∂x 2 , (5)<br />

i<br />

[PgUp] [PgDn] [Back]


Section 2: Moving coordinate system 6<br />

2. Moving coordinate system<br />

For one-dimensional diffusion in a steady flow, we can simplify (5)<br />

using a moving coordinate transformation. The new coordinates are<br />

ξ = x − (x 0 + ut) (6)<br />

τ = t, (7)<br />

The one-dimensional advective-diffusion equation with a steady current<br />

⃗u = (u, 0, 0) is<br />

∂C<br />

∂t + u∂C ∂x = D ∂2 C<br />

∂x 2 . (8)<br />

To perform the coordinate transformation, we must substitute the<br />

new coordinates into this equation. To do this we use the chain rule,<br />

giving<br />

∂C<br />

∂t<br />

∂C<br />

∂x<br />

= ∂C<br />

∂τ<br />

= ∂C<br />

∂τ<br />

∂τ<br />

∂t + ∂C ∂ξ<br />

∂ξ ∂t<br />

∂τ<br />

∂x + ∂C ∂ξ<br />

∂ξ ∂x<br />

[PgUp] [PgDn] [Back]


Section 2: Moving coordinate system 7<br />

From the definitions of the coordinate transformations we have<br />

and<br />

∂ξ<br />

∂t<br />

∂τ<br />

∂t<br />

= −u<br />

= 1<br />

∂ξ<br />

∂x = 1<br />

∂τ<br />

∂x = 0.<br />

Substituting into the governing equation (8) gives<br />

∂C ∂τ<br />

+ ∂C [<br />

∂ξ ∂C<br />

∂τ ∂t ∂ξ ∂t + u ∂ξ<br />

∂ξ ∂x + ∂C ]<br />

∂τ<br />

=<br />

∂τ ∂x<br />

( ∂ ∂ξ<br />

D<br />

∂ξ ∂x + ∂ ) (<br />

∂τ ∂C<br />

∂τ ∂x ∂ξ<br />

∂ξ<br />

∂x + ∂C<br />

∂τ<br />

)<br />

∂τ<br />

∂x<br />

(9)<br />

[PgUp] [PgDn] [Back]


Section 2: Moving coordinate system 8<br />

which reduces to<br />

∂C<br />

∂τ = D ∂2 C<br />

∂ξ 2 . (10)<br />

This is just the one-dimensional pure diffusion equation in the coordinates<br />

τ and ξ.<br />

Hence, we only need to find the point-<strong>source</strong> solution for pure<br />

diffusion.<br />

[PgUp] [PgDn] [Back]


Section 3: Similarity solution to the one-dimensional diffusion equation 9<br />

3. Similarity solution to the one-dimensional diffusion<br />

equation<br />

Consider the one-dimensional inviscid problem of a narrow, infinite<br />

pipe (radius a) as depicted in Figure 3. A mass of tracer, M, is<br />

injected uniformly across the cross-section of area A = πa 2 at the<br />

point x = 0 at time t = 0. We seek a solution for the spread of tracer<br />

in time due to pure diffusion.<br />

The governing equation is<br />

∂C<br />

∂t = D ∂2 C<br />

∂x 2 (11)<br />

which requires two boundary conditions and an initial condition:<br />

• As boundary conditions, we impose that the concentration at<br />

±∞ remain zero:<br />

C(±∞, t) = 0. (12)<br />

[PgUp] [PgDn] [Back]


Section 3: Similarity solution to the one-dimensional diffusion equation 10<br />

• The initial condition is that the dye tracer is injected instantaneously<br />

and uniformly across the cross-section over an infinitesimally<br />

small width in the x-direction:<br />

C(x, 0) = (M/A)δ(x) (13)<br />

where δ(x) is zero everywhere accept at x = 0, where it is infinite,<br />

but the integral of the delta function from −∞ to ∞ is 1.<br />

Thus, the total injected mass is given by<br />

∫<br />

M = C(x, t)dV (14)<br />

=<br />

V<br />

∫ ∞ ∫ a<br />

−∞<br />

To find the solution we use the similarity method.<br />

0<br />

(M/A)δ(x)2πrdrdx. (15)<br />

[PgUp] [PgDn] [Back]


Section 3: Similarity solution to the one-dimensional diffusion equation 11<br />

3.1. Dimensional analysis<br />

To use dimensional analysis, we must consider all the parameters that<br />

control the solution. Table 4 summarizes the dependent and independent<br />

variables for our problem. There are m = 5 parameters and<br />

n = 3 dimensions; thus, we can form two dimensionless groups:<br />

π 1 =<br />

π 2 =<br />

C<br />

M/(A √ Dt)<br />

(16)<br />

x<br />

√<br />

Dt<br />

(17)<br />

From dimensional analysis we have that π 1 = f(π 2 ), which implies<br />

for the solution of C:<br />

C =<br />

M ( ) x<br />

A √ Dt f √ (18)<br />

Dt<br />

where f is a yet-unknown function with arguement π 2 . (18) is called<br />

a similarity solution because C has the same shape in x at all times t.<br />

[PgUp] [PgDn] [Back]


Section 3: Similarity solution to the one-dimensional diffusion equation 12<br />

3.2. Coordinate transformation<br />

The similarity solution represented by (18) is really just a coordinate<br />

transformation. The new coordinate η = x/ √ Dt is called the<br />

similarity variable. For the coordinate transformation we have:<br />

Thus, we must<br />

η =<br />

1. Substitute C = M/(A √ Dt)f(x/ √ Dt).<br />

2. Substitute η = x/ √ Dt.<br />

x<br />

√<br />

Dt<br />

(19)<br />

∂η<br />

= − η (20)<br />

∂t 2t<br />

∂η<br />

∂x = 1<br />

√ . (21)<br />

Dt<br />

[PgUp] [PgDn] [Back]


Section 3: Similarity solution to the one-dimensional diffusion equation 13<br />

Using the chain rule to compute ∂C/∂t we have:<br />

∂C<br />

= ∂ [ ] M<br />

∂t ∂t A √ Dt f(η) (<br />

M<br />

=<br />

A √ − 1 ) 1<br />

Dt 2 t f(η) + M<br />

A √ Dt<br />

= − M (<br />

2At √ f + η ∂f<br />

Dt ∂η<br />

∂f ∂η<br />

∂η ∂t<br />

Using the chain rule to compute ∂ 2 C/∂x 2 we have:<br />

∂ 2 C<br />

∂x 2 = ∂ [ ( ∂ M<br />

∂x ∂x<br />

= ∂<br />

∂x<br />

=<br />

[ ∂η<br />

∂x<br />

M<br />

ADt √ Dt<br />

∂f<br />

∂η<br />

)<br />

. (22)<br />

A √ Dt f(η) )]<br />

M<br />

]<br />

A √ Dt<br />

∂ 2 f<br />

∂η 2 . (23)<br />

[PgUp] [PgDn] [Back]


Section 3: Similarity solution to the one-dimensional diffusion equation 14<br />

After substituting these two results into the diffusion equation, we<br />

obtain the ordinary differential equation in η<br />

d 2 f<br />

dη 2 + 1 (<br />

f + η df )<br />

= 0. (24)<br />

2 dη<br />

3.3. <strong>Solution</strong><br />

To solve (24) we first make use of the identity<br />

d(fη)<br />

dη<br />

= f + η df<br />

dη . (25)<br />

Substituting gives us<br />

[<br />

d df<br />

dη dη + 1 ]<br />

2 fη = 0. (26)<br />

To solve this equation requires two integrations.<br />

[PgUp] [PgDn] [Back]


Section 3: Similarity solution to the one-dimensional diffusion equation 15<br />

1. Integrating once leaves us with<br />

df<br />

dη + 1 2 fη = C 0. (27)<br />

It can be shown that choosing C 0 = 0 satisfies both boundary<br />

conditions and the initial condition (see Appendix B in the class<br />

notes).<br />

2. The second integration requires a little algebra. First, move the<br />

second term to the right-hand-side.<br />

df<br />

dη = −1 fη. (28)<br />

2<br />

Next, like terms:<br />

df<br />

f = −1 ηdη. (29)<br />

2<br />

Finally, integrate both sides:<br />

)<br />

f = C 1 exp<br />

(− η2<br />

. (30)<br />

4<br />

[PgUp] [PgDn] [Back]


Section 3: Similarity solution to the one-dimensional diffusion equation 16<br />

To find C 1 we must use the conservation of mass:<br />

∫<br />

M = C(x, t)dV<br />

=<br />

= M<br />

which gives the constraint<br />

∫ ∞<br />

−∞<br />

V<br />

∫ ∞ ∫ a<br />

−∞ 0<br />

∫ ∞<br />

−∞<br />

C(η)2πrdr √ Dtdη<br />

f(η)dη<br />

(<br />

C 1 exp − η )<br />

dη = 1. (31)<br />

4<br />

To solve this integral we need to make one more change of variables<br />

to remove the 1/4 from the exponential. Thus, we introduce ζ such<br />

that<br />

ζ 2 = 1 4 η2 (32)<br />

2dζ = dη. (33)<br />

[PgUp] [PgDn] [Back]


Section 3: Similarity solution to the one-dimensional diffusion equation 17<br />

Solving for C 1 leaves<br />

1<br />

C 1 =<br />

2 ∫ ∞<br />

−∞ exp(−ζ2 )dζ , (34)<br />

and after looking up the integral in a table, we obtain C 1 = 1/(2 √ π).<br />

Thus, f = exp(η 2 /4)/(2 √ π), and our similarity solution is<br />

( )<br />

M<br />

C(x, t) =<br />

A √ 4πDt exp − x2<br />

. (35)<br />

4Dt<br />

[PgUp] [PgDn] [Back]


Section 4: Interpretation of the similarity solution 18<br />

4. Interpretation of the similarity solution<br />

Figure 4 shows the solution (35) in non-dimensional space. The<br />

animation also plots this solution, confirming that our solution is valid<br />

for a Fickian diffusion process.<br />

Comparing (35) with the Gaussian probability distribution reveals<br />

that (35) is the normal bell-shaped curve with a standard deviation,<br />

σ, of width<br />

σ 2 = 2Dt. (36)<br />

The concept of self similarity is now also evident: the concentration<br />

profile shape is always Gaussian. By plotting in non-dimensional<br />

space, the profiles also collapse into a single profile; thus, profiles for<br />

all times t > 0 are given by the result in the figure.<br />

[PgUp] [PgDn] [Back]


Section 5: <strong>Point</strong>-<strong>source</strong> solution with advection 19<br />

5. <strong>Point</strong>-<strong>source</strong> solution with advection<br />

The final step is to substitute the coordinate transformation for the<br />

moving reference frame into the point <strong>source</strong> solution (35). In the<br />

moving coordinate system, this solution is<br />

( )<br />

M<br />

C(ξ, τ) =<br />

A √ 4πDτ exp − ξ2<br />

. (37)<br />

4Dτ<br />

Our coordinate transformation was ξ = x − (x 0 + ut) and τ = t.<br />

Substituting into (37) gives:<br />

(<br />

M<br />

C(x, t) =<br />

A √ 4πDt exp − (x − (x 0 + ut) 2 )<br />

. (38)<br />

4Dt<br />

Figure 5 shows the schematic behavior of this solution for three different<br />

times, t 1 , t 2 , and t 3 . A second animation shows this solution<br />

in action.<br />

[PgUp] [PgDn] [Back]


Figures and tables 20<br />

Figure 1: Schematic of the one-dimensional molecular (Brownian) motion<br />

of a group of molecules illustrating the Fickian diffusion model.<br />

The upper part of the figure shows the particles themselves; the lower<br />

part of the figure gives the corresponding histogram of particle location,<br />

which is analogous to concentration.<br />

(a.) Initial<br />

distribution<br />

(b.) Random<br />

motions<br />

(c.) Final<br />

distribution<br />

n<br />

n<br />

n<br />

0 x<br />

0 x<br />

0<br />

x<br />

[PgUp] [PgDn] [Back]


Figures and tables 21<br />

Table 1: Molecular diffusion coefficients for typical solutes in water<br />

at standard pressure and temperature (20 ◦ C). a<br />

Solute name Chemical symbol Diffusion coefficient b<br />

hydrogen ion H + 0.85<br />

hydroxide ion OH − 0.48<br />

oxygen O 2 0.20<br />

carbon dioxide CO 2 0.17<br />

bicarbonate HCO − 3 0.11<br />

carbonate<br />

CO 2−<br />

3 0.08<br />

methane CH 4 0.16<br />

ammonium NH + 4 0.18<br />

ammonia NH 3 0.20<br />

(10 −4 cm 2 /s)<br />

[PgUp] [PgDn] [Back]


Figures and tables 22<br />

Table 2: Molecular diffusion coefficients (continued).<br />

Solute name Chemical symbol Diffusion coefficient b<br />

nitrate NO − 3 0.17<br />

phosphoric acid H 3PO 4 0.08<br />

dihydrogen phosphate H 2PO − 4 0.08<br />

hydrogen phosphate<br />

phosphate<br />

HPO 2−<br />

4 0.07<br />

PO 3−<br />

4 0.05<br />

hydrogen sulfide H 2S 0.17<br />

hydrogen sulfide ion HS − 0.16<br />

sulfate<br />

SO 2−<br />

4 0.10<br />

silica H 4SiO 4 0.10<br />

(10 −4 cm 2 /s)<br />

[PgUp] [PgDn] [Back]


Figures and tables 23<br />

Table 3: Molecular diffusion coefficients (continued).<br />

Solute name Chemical symbol Diffusion coefficient b<br />

calcium ion Ca 2+ 0.07<br />

magnesium ion Mg 2+ 0.06<br />

iron ion Fe 2+ 0.06<br />

manganese ion Mn 2+ 0.06<br />

a Taken from diffusion coefficients web page<br />

b for water at 20 ◦ C with salinity of 0.5 ppt.<br />

c for water at 10 ◦ C with salinity of 0.5 ppt.<br />

(10 −4 cm 2 /s)<br />

[PgUp] [PgDn] [Back]


Figures and tables 24<br />

Figure 2: Schematic of a control volume with crossflow.<br />

z<br />

J x,in<br />

δz<br />

J x,out<br />

x<br />

u<br />

-y<br />

δx<br />

δy<br />

[PgUp] [PgDn] [Back]


Figures and tables 25<br />

Figure 3: Definitions sketch for one-dimensional pure diffusion in an<br />

infinite pipe.<br />

-x x<br />

A<br />

M<br />

[PgUp] [PgDn] [Back]


Figures and tables 26<br />

Table 4: Dimensional variables for one-dimensional pipe diffusion.<br />

Variable<br />

Dimensions<br />

dependent variable C M/L 3<br />

independent variables M/A M/L 2<br />

D L 2 /T<br />

x<br />

L<br />

t<br />

T<br />

[PgUp] [PgDn] [Back]


Figures and tables 27<br />

Figure 4: Self-similarity solution for one-dimensional diffusion of an<br />

instantaneous point <strong>source</strong> in an infinite domain.<br />

1<br />

<strong>Point</strong> <strong>source</strong> solution<br />

C A (4πD t) 1/2 / M<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−4 −2 0 2 4<br />

η = x / (4Dt) 1/2<br />

[PgUp] [PgDn] [Back]


Figures and tables 28<br />

Figure 5: Schematic solution of the advective-diffusion equation in<br />

one dimension. The dotted line plots the maximum concentration as<br />

the cloud moves downstream.<br />

1.5<br />

<strong>Solution</strong> of the advective−diffusion equation<br />

C max<br />

Concentration<br />

1<br />

0.5<br />

t 1<br />

t 2 t3<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Position<br />

[PgUp] [PgDn] [Back]


References<br />

Fischer, H. B., List, E. G., Koh, R. C. Y., Imberger, J. & Brooks,<br />

N. H. (1979), Mixing in Inland and Coastal Waters, Academic<br />

Press, New York, NY.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!