25.01.2014 Views

Ferroresonance Study in Voltage Transformers Connecting ... - ijcee

Ferroresonance Study in Voltage Transformers Connecting ... - ijcee

Ferroresonance Study in Voltage Transformers Connecting ... - ijcee

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

International Journal of Computer and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 4, No. 5, October 2012<br />

<strong>Ferroresonance</strong> <strong>Study</strong> <strong>in</strong> <strong>Voltage</strong> <strong>Transformers</strong> Connect<strong>in</strong>g<br />

Metal Oxide Varistor<br />

Hamid Radmanesh, Mahdi Jafari, Mat<strong>in</strong> Nademi, and Maryam Nademi<br />

<br />

Abstract—This paper studies the effect on Metal Oxide<br />

Varistor (MOV) on ferroresonance phenomenon <strong>in</strong> iron core<br />

voltage transformer (VT). It is expected that MOV generally<br />

cause ferroresonance ‘dropout'. Time-doma<strong>in</strong> study has been<br />

carried out to study this effect. Simulation has been done on a<br />

voltage transformer rated 100VA, 275 kV. The magnetization<br />

characteristic of the transformer is modeled by a s<strong>in</strong>gle-value<br />

two-term polynomial with order seven. The core loss is modeled<br />

by l<strong>in</strong>ear resistance. The simulation results reveal that<br />

connect<strong>in</strong>g the MOV <strong>in</strong> parallel to VT, exhibits a great<br />

mitigat<strong>in</strong>g effect on ferroresonance overvoltages. Phase plan,<br />

voltage waveforms, along with bifurcation diagrams are also<br />

derived. Significant effect on the onset of chaos, the range of<br />

parameter values that may lead to chaos along with<br />

ferroresonance overvoltages has been obta<strong>in</strong>ed and presented.<br />

Index Terms—Metal oxide varistot, chaos, bifurcation,<br />

ferroresonance, voltage transformers<br />

I. INTRODUCTION<br />

<strong>Ferroresonance</strong> is a complicated nonl<strong>in</strong>ear electrical<br />

phenomenon, which can lead to dangerous transformer<br />

overvoltages many times the normal equipment rat<strong>in</strong>gs.<br />

<strong>Ferroresonance</strong> occurs when a nonl<strong>in</strong>ear <strong>in</strong>ductor, usually a<br />

transformer with a saturable magnetic core, is excited<br />

through a l<strong>in</strong>ear capacitor from a s<strong>in</strong>usoidal source,<br />

particularly <strong>in</strong> the presence of long l<strong>in</strong>es or capacitive power<br />

cables. It is usually <strong>in</strong>itiated by a system disturbance of some<br />

form, for example, the disconnection of transformer feeder<br />

l<strong>in</strong>es or the open<strong>in</strong>g of a circuit breaker <strong>in</strong> series with a<br />

voltage transformer. Also, it can produce unpredictable<br />

overvoltages and abnormal currents. The prerequisite for<br />

ferroresonance is a circuit conta<strong>in</strong><strong>in</strong>g nonl<strong>in</strong>ear iron core<br />

<strong>in</strong>ductance and some existed capacitance. The abrupt<br />

transition or jump from one state to another is triggered by a<br />

disturbance, switch<strong>in</strong>g action or a gradual change <strong>in</strong> values of<br />

a parameter. The first analytical work was done by<br />

Rudenberg <strong>in</strong> the 1940’s [1]. More exact<strong>in</strong>g and detailed<br />

work was done later by Hayashi <strong>in</strong> the 1950’s [2].<br />

Subsequent research has been divided <strong>in</strong>to two ma<strong>in</strong> areas:<br />

improv<strong>in</strong>g the transformer models and study<strong>in</strong>g<br />

ferroresonance at the system level. Typical cases of<br />

ferroresonance are reported <strong>in</strong> [3]. One of the most possible<br />

cases which may happen is nonl<strong>in</strong>ear iron core <strong>in</strong>ductor that<br />

Manuscript received September 9, 2012; revised October 23, 2012.<br />

Hamid Radmanesh is with the Hamid Radmanesh is with Electrical<br />

Eng<strong>in</strong>eer<strong>in</strong>g Department, Shahab Danesh Institute of Higher Education,<br />

ghom, Iran(e-mail: Hamid.radmanesh@aut.ac.ir).<br />

Mahdi Jafari, Mat<strong>in</strong> Nademi and Maryam Nademi are with Department of<br />

Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Islamic Azad University, Takestan Branch, Takestan,<br />

Iran(e-mail: mahdijafari84@gmail.com; hrbscstudent@gmail.com;<br />

mam.nademi@gmail.com)<br />

is fed by a series capacitor. These capacitances can be<br />

orig<strong>in</strong>ated from several th<strong>in</strong>gs, such as l<strong>in</strong>e-to-l<strong>in</strong>e<br />

capacitance, parallel l<strong>in</strong>es, conductor to earth capacitance<br />

and circuit breaker grad<strong>in</strong>g capacitance [3]. Arturi [4] and<br />

Mork [5] have demonstrated the use of duality<br />

transformations to obta<strong>in</strong> transformer equivalent circuits. In<br />

[6], the chaotic behavior of the simple power system is<br />

<strong>in</strong>vestigated for a range of load<strong>in</strong>g conditions through<br />

computer simulations. The analysis of the severe over<br />

voltages caused by neutral shift and ferroresonance due to the<br />

disconnection of one phase of an ungrounded-ye delta<br />

transformer bank from the source is presented <strong>in</strong> [7]. The<br />

implications of apply<strong>in</strong>g MOV <strong>in</strong> the distribution<br />

environment are described <strong>in</strong> [8], [9]. In [10], the<br />

performances of metal oxide arresters exposed to<br />

ferroresonance conditions <strong>in</strong> pad mount transformers are<br />

analyzed. In [10], it has been po<strong>in</strong>ted out that the arresters<br />

have a mitigat<strong>in</strong>g effect on the chaotic ferroresonance. An<br />

improved algorithm for generat<strong>in</strong>g the bifurcation diagrams<br />

of steady-state solutions to analyses chaotic ferroresonance<br />

<strong>in</strong> the presence of multiple nonl<strong>in</strong>earities has been reported <strong>in</strong><br />

[11] Evolv<strong>in</strong>g Po<strong>in</strong>care maps is a new tool and it provides<br />

better visualization of the dynamics [12]. The effect of a<br />

connected MOV <strong>in</strong> parallel to the power transformer is<br />

illustrated <strong>in</strong> [13]. Evaluation of chaotic ferroresonance <strong>in</strong><br />

power transformers <strong>in</strong>clud<strong>in</strong>g nonl<strong>in</strong>ear core losses is<br />

<strong>in</strong>vestigated <strong>in</strong> [14]. Analysis of ferroresonance phenomena<br />

<strong>in</strong> power transformers <strong>in</strong>clud<strong>in</strong>g neutral resistance effect is<br />

<strong>in</strong>vestigated <strong>in</strong> [28]. Analysis of chaotic ferroresonance <strong>in</strong><br />

transmission systems <strong>in</strong> the same right-of-way’ has been<br />

done <strong>in</strong> [16], and f<strong>in</strong>ally effect of circuit breaker shunt<br />

resistance on chaotic ferroresonance <strong>in</strong> voltage transformer<br />

has shown <strong>in</strong> [17], <strong>in</strong> this work ferroresonance has been<br />

controlled by consider<strong>in</strong>g C.B resistance effect. In all<br />

previous studies, the effect of MOV on ferroresonance<br />

phenomena <strong>in</strong> voltage transformer has been neglected.<br />

Current paper studies the effect of MOV on the global<br />

behavior of a VT ferroresonance circuit <strong>in</strong> voltage<br />

transformer.<br />

II. SYSTEM MODELLING WITHOUT MOV<br />

Dur<strong>in</strong>g VT ferroresonance an oscillation occurs between<br />

the nonl<strong>in</strong>ear iron core <strong>in</strong>ductance of the VT and exist<strong>in</strong>g<br />

capacitances of network. In this case, energy is coupled to the<br />

nonl<strong>in</strong>ear core of the VT via the open circuit breaker grad<strong>in</strong>g<br />

capacitance or system capacitance to susta<strong>in</strong> the resonance.<br />

The result may be saturation <strong>in</strong> the VT core and very high<br />

voltage up to 4pu can theoretically ga<strong>in</strong>ed <strong>in</strong> worst case<br />

conditions. The magnetiz<strong>in</strong>g characteristic of a typical<br />

100VA VTs can be presented by 7 order polynomial [17].<br />

These VTs fed through circuit breaker grad<strong>in</strong>g capacitance,<br />

739


International Journal of Computer and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 4, No. 5, October 2012<br />

and studied us<strong>in</strong>g nonl<strong>in</strong>ear dynamics analysis and packages<br />

such as Rung kutta Fehlberg algorithm and MATLAB<br />

SIMULINK. Fig. 1 shows the s<strong>in</strong>gle l<strong>in</strong>e diagram of the most<br />

commonly encountered system arrangement that can give<br />

rise to VT ferroresonance [17]. <strong>Ferroresonance</strong> can occur<br />

upon open<strong>in</strong>g of disconnector 3 with circuit breaker open and<br />

either disconnector 1 or 2 closed. Alternatively it can also<br />

occur upon closure of both disconnector 1 or 2 with circuit<br />

breaker and disconnector 3 open.<br />

Reserve Busbar<br />

Ma<strong>in</strong> Busbar<br />

i<br />

7<br />

a b<br />

(1)<br />

where, a 3.14,<br />

b 0. 41<br />

The polynomial of order seven and the coefficient b of 1<br />

are chosen for the best fit of the saturation region.<br />

Fig. 3 shows the comparison between different<br />

approximations of saturation region aga<strong>in</strong>st the true<br />

magnetization characteristic that was obta<strong>in</strong>ed from field<br />

measurement by dick and Watson [18].<br />

Disconnector1<br />

Grad<strong>in</strong>g Capacitor<br />

Disconnector3<br />

Disconnector2<br />

Circuit Breaker<br />

Fig. 1. System one l<strong>in</strong>e diagram arrangement result<strong>in</strong>g to VT<br />

ferroresonance<br />

The system arrangement shown <strong>in</strong> Fig. 1 can effectively be<br />

reduced to an equivalent circuit as shown <strong>in</strong> Fig. 2.<br />

e<br />

i<br />

Cseries<br />

i1<br />

Cshunt Rcore Ltrans V<br />

Fig. 2. Basic reduced equivalent ferroresonance circuit [30]<br />

pu<br />

,<br />

1.7<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

(i)<br />

(ii)<br />

VT<br />

i2<br />

i3<br />

(iii)<br />

(iV)<br />

(V)<br />

7<br />

(i) i 3.14 0.41<br />

9 2<br />

(ii) i 10 <br />

11<br />

(iii) i 0.28<br />

0.72<br />

(iV) Transformer<br />

11 2<br />

(V) i 10 <br />

0.2 0.4 0.6 0.8 1 1.2<br />

i, pu<br />

2<br />

10<br />

Fig. 3. Nonl<strong>in</strong>ear characteristics of transformer core with different values<br />

of q<br />

In Fig. 2, E is the RMS supply phase voltage, C series is the<br />

circuit breaker grad<strong>in</strong>g capacitance and C shunt is the total<br />

phase-to-earth capacitance of the arrangement. The resistor R<br />

represents a voltage transformer core loss that has been found<br />

to be an important factor <strong>in</strong> the <strong>in</strong>itiation of ferroresonance.<br />

In the peak current range for steady-state operation, the<br />

flux-current l<strong>in</strong>kage can be approximated by a l<strong>in</strong>ear<br />

i L<br />

a<br />

characteristic such as where the coefficient of the<br />

l<strong>in</strong>ear term (a) corresponds closely to the reciprocal of the<br />

<strong>in</strong>ductance ( a 1/ L)<br />

. However, for very high currents the<br />

iron core might be driven <strong>in</strong>to saturation and the flux-current<br />

characteristic becomes highly nonl<strong>in</strong>ear, here the<br />

i<br />

characteristic of the voltage transformer is modeled as<br />

<strong>in</strong> [8] by the polynomial<br />

III. SYSTEM DYNAMIC AND EQUATION<br />

Mathematical analysis of equivalent circuit by apply<strong>in</strong>g<br />

KVL and KCL has been done and equations of system can be<br />

presented. Where, ω is supply frequency, and E is the rms<br />

supply phase voltage, C series is the circuit breaker grad<strong>in</strong>g<br />

capacitance and C shunt is the total phase-to-earth capacitance<br />

of the arrangement and <strong>in</strong> (1) a=3.4 and b=0.41 are the<br />

seven order polynomial sufficient [17].<br />

<br />

<br />

peak<br />

<br />

v L<br />

<br />

vRMS<br />

2<br />

<br />

d<br />

<br />

dt<br />

2<br />

d e vL<br />

d <br />

i C C e<br />

ser<br />

ser <br />

2<br />

dt dt <br />

i i i i<br />

1<br />

<br />

R<br />

<strong>Voltage</strong> of MOSA(perunit<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

2<br />

3<br />

(4)<br />

<br />

2<br />

Cser<br />

1 d <br />

<br />

2E<br />

cost<br />

<br />

2<br />

C C<br />

dt<br />

1 d<br />

1<br />

7<br />

<br />

a<br />

b<br />

<br />

C C dt C C<br />

ser<br />

sh<br />

ser<br />

-3<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

Current of MOSA(perunit)<br />

sh<br />

ser<br />

sh<br />

V-I Characteristic of Metal Oxide Sure Arrester<br />

Fig. 4. V-I characteristic of MOV<br />

IV. METAL OXIDE VARISTOR MODEL<br />

Surge arrester is highly nonl<strong>in</strong>ear resistor used to protect<br />

power equipment aga<strong>in</strong>st overvoltages. The nonl<strong>in</strong>ear V-I<br />

characteristic of each column of the surge arrester is<br />

modelled by comb<strong>in</strong>ation of the exponential functions of the<br />

form:<br />

(2)<br />

(3)<br />

(5)<br />

740


International Journal of Computer and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 4, No. 5, October 2012<br />

V<br />

V<br />

<br />

<br />

<br />

I<br />

<br />

<br />

<br />

1/ <br />

i<br />

Ki<br />

ref<br />

I <br />

(6)<br />

ref<br />

where V represents resistive voltage drop, I represents<br />

arrester current and K is constant and α is nonl<strong>in</strong>earity<br />

constant. This V-I characteristic is graphically represented as<br />

follows:<br />

result for E=4 pu <strong>in</strong>clud<strong>in</strong>g of MOV by phase plan diagram.<br />

<strong>Voltage</strong> of Transformer<br />

Time Doma<strong>in</strong> Simulation of over voltage on <strong>Voltage</strong> Transformer with MOV<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

V. SYSTEM MODELLING WITH MOV<br />

Connect<strong>in</strong>g MOV to the system <strong>in</strong> Fig. 2, circuit can be<br />

driven <strong>in</strong> Fig. 5.<br />

e <br />

i<br />

Cseries<br />

i1<br />

i2<br />

i3<br />

Cshunt Rcore Ltrans<br />

2E<br />

s<strong>in</strong>( t)<br />

Fig. 5. Basic reduced equivalent ferroresonance circuit connect<strong>in</strong>g MOV<br />

<strong>Voltage</strong> of Transformer<br />

10<br />

5<br />

0<br />

-5<br />

i4<br />

MOV<br />

Time Doma<strong>in</strong> Simulation of over voltage on <strong>Voltage</strong> Transformer without MOV<br />

-10<br />

0 50 100 150 200 250 300<br />

Time(perunit)<br />

Fig. 6. Time doma<strong>in</strong> simulation for chaotic motion without MOV<br />

The differential equation for the circuit <strong>in</strong> Fig. 5 can be<br />

modified as follows:<br />

<br />

1 d<br />

1 d<br />

1<br />

7<br />

E<br />

cost<br />

( a<br />

b<br />

)<br />

R dt C kdt C<br />

( C<br />

<br />

C<br />

C<br />

series<br />

series<br />

core<br />

shunt<br />

) <br />

<br />

<br />

2<br />

d<br />

dt<br />

<br />

<br />

2<br />

<br />

series<br />

series<br />

(7)<br />

-3<br />

-4<br />

0 50 100 150 200 250 300<br />

Time(perunit)<br />

Fig. 7. Time doma<strong>in</strong> simulation for chaotic motion with MOV<br />

Correspond<strong>in</strong>g phase plan diagrams has been shown the<br />

effect of the MOV to damp the overvoltages and it is shown<br />

<strong>in</strong> Figs. 8, 9 for E=4 pu. it obviously shows that MOV clamp<br />

the ferroresonance overvoltage and keep it <strong>in</strong> E=2.5 pu.<br />

Phase plan diagrams has been shown the apparent the MOV<br />

effect. It is obviously shows that MOV clamp the<br />

ferroresonance overvoltage and keeps it <strong>in</strong> E=2.5pu. Table (1)<br />

shows the system parameters that have been considered for<br />

this case of simulation.<br />

TABLE I: PARAMETER VALUE FOR SIMULATION<br />

Parameter<br />

Actual value<br />

Per unit<br />

value<br />

E 275kv 1 pu<br />

ω 377 rad/sec 1 pu<br />

C series<br />

0.5 nf<br />

39.959<br />

pu<br />

C shunt 1.25nf 99 pu<br />

Rcore 225 MΩ 0.89 pu<br />

<strong>Voltage</strong> of Transformer<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

Phase Plan Diagram of Over <strong>Voltage</strong> on <strong>Voltage</strong> Transformer without MOV<br />

-8<br />

VI. SIMULATION RESULTS<br />

Multipliers Equations (10) and (14) conta<strong>in</strong> a nonl<strong>in</strong>ear<br />

term and do not have simple analytical solution. So the<br />

equations were solved numerically us<strong>in</strong>g an embedded<br />

Runge-Kutta-Fehlberg algorithm with adaptive step size<br />

control. Values of E and ω were fixed by 1 pu, correspond<strong>in</strong>g<br />

to AC supply voltage and frequency. C series is the CB grad<strong>in</strong>g<br />

capacitance and its value obviously depends on the type of<br />

circuit breaker which is used. In this analysis C series is<br />

assumed 0.5nF and C shunt vary between 0.1nF to 3nF. Initial<br />

condition are<br />

V( t)<br />

2, (<br />

t)<br />

0<br />

at t=0, represent<strong>in</strong>g<br />

circuit breaker operation at maximum voltage. In this state,<br />

system for both cases, with and without MOV has been<br />

simulated for E=4 pu. The studied system has a chaotic<br />

behaviour for E=4 pu while by apply<strong>in</strong>g MOV, system<br />

behaviour rema<strong>in</strong>s periodic for E=1 pu and E=4 pu. Figs. 6<br />

and 7 show time doma<strong>in</strong> simulation for these two cases which<br />

represented the chaotic voltage wave form some<br />

subharmonic resonance, Figs. 8 and 9 show the simulation<br />

result for E=4 pu <strong>in</strong>clud<strong>in</strong>g of MOV by phase plan diagram.<br />

-10<br />

-4 -3 -2 -1 0 1 2 3 4<br />

Flux L<strong>in</strong>kage of Transformer<br />

Fig. 8. Phase plan diagram for chaotic motion without MOV<br />

<strong>Voltage</strong> of Transformer<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

Bifurcation Diagram of Over <strong>Voltage</strong> on <strong>Voltage</strong> Transformer with MOV<br />

-4<br />

-3 -2 -1 0 1 2 3<br />

Initial condition<br />

Fig. 9. Correspond<strong>in</strong>g phase plan diagram for chaotic motion with MOV<br />

<strong>Voltage</strong> of Transformer<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Bifurcation Diagram of Over <strong>Voltage</strong> on <strong>Voltage</strong> Transformer without MOV<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

Input <strong>Voltage</strong>(perunit)<br />

Fig. 10. Bifurcation diagram for voltage of transformer versus voltage of<br />

system, without MOV<br />

741


International Journal of Computer and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 4, No. 5, October 2012<br />

By us<strong>in</strong>g bifurcation diagrams, Fig. 10 clearly shows the<br />

ferroresonance overvoltage <strong>in</strong> VT when voltage of system<br />

<strong>in</strong>crease to 3 pu.<br />

System parameters are listed <strong>in</strong> Table II.<br />

TABLE II: PARAMETER VALUE FOR SIMULATION<br />

Parameter<br />

Actual value<br />

Per unit<br />

value<br />

E 275kv 1 pu<br />

ω 377 rad/sec 1 pu<br />

C series<br />

0.5 nf<br />

39.959<br />

pu<br />

C shunt 0.1nf 7.92 pu<br />

Rcore 225 MΩ 0.89 pu<br />

In Fig. 10, when E=0.25 pu, voltage of VT has a period-1<br />

behaviour. In E=1 pu, period-3 appears and <strong>in</strong> E=2.5 pu crisis<br />

take place and suddenly system goes to the chaotic region. It<br />

has been shown that system behaviour is period doubl<strong>in</strong>g<br />

bifurcation and there are many resonances, because system is<br />

cont<strong>in</strong>uous then it is look like doff<strong>in</strong>g equation.<br />

Correspond<strong>in</strong>g bifurcation diagram with the same parameter<br />

<strong>in</strong> the case of apply<strong>in</strong>g MOV parallel to the VT has been<br />

shown <strong>in</strong> Fig. 11.<br />

<strong>Voltage</strong> of Transformer<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Bifurcation Diagram of Over <strong>Voltage</strong> on <strong>Voltage</strong> Transformer with MOV<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

Input <strong>Voltage</strong>(perunit)<br />

Fig. 11 Bifurcation diagram for voltage of transformer versus voltage of<br />

system, consider<strong>in</strong>g MOV effect<br />

By apply<strong>in</strong>g MOV, system behaviours com<strong>in</strong>g out from<br />

chaotic region, the MOV clamps the overvoltage from 3pu to<br />

1.8pu. In the real systems, maximum overvoltage that VT can<br />

withstand is 4pu, and if over voltages cross it, VT failure<br />

follows.<br />

VII. CONCLUSION<br />

<strong>Voltage</strong> <strong>Transformers</strong> fed through circuit breaker grad<strong>in</strong>g<br />

capacitance have been shown exhibit<strong>in</strong>g fundamental<br />

frequency and chaotic ferroresonance conditions similar to<br />

high capacity power transformers fed via capacitive coupl<strong>in</strong>g<br />

from nearby sources like parallel transmission l<strong>in</strong>es.<br />

Simulations have shown that a change <strong>in</strong> the value of the<br />

equivalent l<strong>in</strong>e to ground capacitance, may orig<strong>in</strong>ate different<br />

types of ferroresonance over voltages. MOV successfully can<br />

cause ferroresonance drop out. In the case of apply<strong>in</strong>g MOV,<br />

system shows less sensitivity to <strong>in</strong>itial conditions and<br />

variation <strong>in</strong> system parameters. To cont<strong>in</strong>ue this study, one<br />

may <strong>in</strong>clude nonl<strong>in</strong>ear core model and enhance extracted<br />

results.<br />

ACKNOWLEDGMENT<br />

Correspond<strong>in</strong>g author would like to appriciate Dr. Ali<br />

Nasrabadi of the Shahed University, Tehran, Iran, for<br />

provid<strong>in</strong>g MATLAB data files for the time doma<strong>in</strong><br />

simulations, and Mrs. Leila Kharazmi for her English edit<strong>in</strong>g.<br />

REFERENCES<br />

[1] R. Rudenberg, Transient Performance of Electric Power Systems, New<br />

York, NY: McGraw-Hill Book Company, 1950, ch. 48.<br />

[2] C. Hayashi, Nonl<strong>in</strong>ear Oscillations <strong>in</strong> Physical Systems, New York,<br />

NY: McGraw-Hill Book Company, 1964.<br />

[3] E. J. Dolan, D. A. Gillies, and E. W. Kimbark, “<strong>Ferroresonance</strong> <strong>in</strong> a<br />

transformer switched with an EVH l<strong>in</strong>e,” IEEE Transactions on Power<br />

Apparatus and Systems PAS-91, 1972.<br />

[4] C. M. Arturi, “Transient simulation and analysis of a five-limb<br />

generator step-up transformer follow<strong>in</strong>g an out-of-phase<br />

synchronization,” IEEE Trans. Power Delivery, vol. 6, no. 1, pp.<br />

196–207, Jan. 1991.<br />

[5] “<strong>Ferroresonance</strong> and chaos—Observation and simulation of<br />

ferroresonance <strong>in</strong> a five-legged core distribution transformer,” North<br />

Dakota State University, Ph.D. dissertation, Publication no. 9227588,<br />

UMI Publish<strong>in</strong>g Services, Ann Arbor, MI 48106, (800) 521-0600, May<br />

1992.<br />

[6] H. D. Chiang, C.W. Liu, P. P. Variya, F. F. Wu, and M. G. Lauby,<br />

“Chaos <strong>in</strong> a simple power system,” IEEE Trans., Power Syst., 1993, vol.<br />

8, 940, pp. 1407-1417.<br />

[7] R. A. Wall<strong>in</strong>g, K. Hartanar, and W. J. ROS, “Self generated over<br />

voltages due to open-phas<strong>in</strong>g of ungrounded- wye delta transformer<br />

banks,” IEEE Trans. Power Deliv, 1995, vol. 10, no. 1, pp. 526-531.<br />

[8] T. A. Short, J. J. Burke, and R. T. Mancao, “Application of MOVs <strong>in</strong><br />

the distribution environment,” IEEE Trans. Power Deliv, 1994, vol. 9,<br />

no. 1, pp. 293-305.<br />

[9] S. S. Kershaw, K. B. Gaibrois, and K. B. Stump, “Apply<strong>in</strong>g<br />

metal-oxide surge arrester on distribution systems,” IEEE Trans.<br />

Power Deliv., 1989, vol. 4, no. 1, pp. 301-307.<br />

[10] R. A. Wall<strong>in</strong>g, R. K. Hartana, R. M. Reckard, M. P. Sampart, and T. R.<br />

Balgle, “Performance of metal oxide arresters exposed to<br />

ferroresonance pad mount transformer,” IEEE ran. Power Deiv, 1994,<br />

vol. 9, no. 2, pp.7888-795.<br />

[11] K. A. Anbarri, “Some <strong>in</strong>vestigation <strong>in</strong>to occurrence of chaotic<br />

ferroresonance <strong>in</strong> power system,” PhD. Thesis, Anna University,Dep.<br />

of Elec. & Electronic Eng., Chennai, India, March 2004.<br />

[12] W. L. A. Neves and H. Dommel, “on model<strong>in</strong>g iron core<br />

nonl<strong>in</strong>earities,” IEEE Transactions on Power Systems, vol. 8, 1993.<br />

[13] K. A. Anbarri, R. Ramanujam, T. Keerthiga, and K. Kuppusamy,<br />

“Analysis of nonl<strong>in</strong>ear phenomena <strong>in</strong> MOV connected <strong>Transformers</strong>,”<br />

[14] A. Abbasi, H. Radmanesh, M. Rostami, and H. R. Abbasi, “Evaluation<br />

of Chaotic <strong>Ferroresonance</strong> <strong>in</strong> power transformers <strong>in</strong>clud<strong>in</strong>g Nonl<strong>in</strong>ear<br />

Core Losses,” EEEIC Conference, Poland, 2009.<br />

[15] H. Radmanesh, A. Abassi, M. Rostami, "Analysis of ferroresonance<br />

phenomena <strong>in</strong> power transformers <strong>in</strong>clud<strong>in</strong>g neutral resistance effect,"<br />

Southeastcon, 2009. SOUTHEASTCON '09. IEEE, pp.1-5, 5-8 March<br />

2009<br />

[16] S. L. Naresh, “Analysis of chaotic ferroresonance <strong>in</strong> transmission<br />

systems <strong>in</strong> the same right-of-way,” ME Thesis, Anna University, Dep.<br />

of Elec and Electronic Eng., Chennai, India, Dec 2002.<br />

[17] H. Radmanesh and M. Rostami, "Effect of Circuit Breaker Shunt<br />

Resistance on Chaotic <strong>Ferroresonance</strong> <strong>in</strong> <strong>Voltage</strong> Transformer,"<br />

Advances <strong>in</strong> Electrical and Computer Eng<strong>in</strong>eer<strong>in</strong>g, vol. 10, no. 3, pp.<br />

71-77, 2010.<br />

[18] E. P. Dick and W. Watson, “Transformer models for transient studies<br />

based on field measurement,” IEEE Trans., 1981, PAS-100, pp.<br />

409-417.<br />

Hamid Radmanesh was born <strong>in</strong> 1981. He studied<br />

Telecommunication eng<strong>in</strong>eer<strong>in</strong>g at Malek-Ashtar<br />

University of Technology, Tehran, Iran, and received<br />

the BSC degree <strong>in</strong> 2006, also studied electrical<br />

eng<strong>in</strong>eer<strong>in</strong>g at Shahed University Tehran, Iran, and<br />

received the MSC degree <strong>in</strong> 2009. Currently, He is<br />

PhD student <strong>in</strong> Amirkabir University of Technology.<br />

His research <strong>in</strong>terests <strong>in</strong>clude design and model<strong>in</strong>g of<br />

power electronic converters, drives, transient and<br />

chaos <strong>in</strong> power system apparatus.<br />

742

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!